]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge branch 'work.dcache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / intel-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2006-2014 Intel Corporation.
4 *
5 * Authors: David Woodhouse <dwmw2@infradead.org>,
6 * Ashok Raj <ashok.raj@intel.com>,
7 * Shaohua Li <shaohua.li@intel.com>,
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9 * Fenghua Yu <fenghua.yu@intel.com>
10 * Joerg Roedel <jroedel@suse.de>
11 */
12
13 #define pr_fmt(fmt) "DMAR: " fmt
14 #define dev_fmt(fmt) pr_fmt(fmt)
15
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
31 #include <linux/io.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <linux/swiotlb.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48 #include <trace/events/intel_iommu.h>
49
50 #include "irq_remapping.h"
51 #include "intel-pasid.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83
84 /* page table handling */
85 #define LEVEL_STRIDE (9)
86 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
87
88 /*
89 * This bitmap is used to advertise the page sizes our hardware support
90 * to the IOMMU core, which will then use this information to split
91 * physically contiguous memory regions it is mapping into page sizes
92 * that we support.
93 *
94 * Traditionally the IOMMU core just handed us the mappings directly,
95 * after making sure the size is an order of a 4KiB page and that the
96 * mapping has natural alignment.
97 *
98 * To retain this behavior, we currently advertise that we support
99 * all page sizes that are an order of 4KiB.
100 *
101 * If at some point we'd like to utilize the IOMMU core's new behavior,
102 * we could change this to advertise the real page sizes we support.
103 */
104 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
105
106 static inline int agaw_to_level(int agaw)
107 {
108 return agaw + 2;
109 }
110
111 static inline int agaw_to_width(int agaw)
112 {
113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 }
115
116 static inline int width_to_agaw(int width)
117 {
118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 }
120
121 static inline unsigned int level_to_offset_bits(int level)
122 {
123 return (level - 1) * LEVEL_STRIDE;
124 }
125
126 static inline int pfn_level_offset(unsigned long pfn, int level)
127 {
128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
129 }
130
131 static inline unsigned long level_mask(int level)
132 {
133 return -1UL << level_to_offset_bits(level);
134 }
135
136 static inline unsigned long level_size(int level)
137 {
138 return 1UL << level_to_offset_bits(level);
139 }
140
141 static inline unsigned long align_to_level(unsigned long pfn, int level)
142 {
143 return (pfn + level_size(level) - 1) & level_mask(level);
144 }
145
146 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
147 {
148 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 }
150
151 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
152 are never going to work. */
153 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
154 {
155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
156 }
157
158 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
159 {
160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
161 }
162 static inline unsigned long page_to_dma_pfn(struct page *pg)
163 {
164 return mm_to_dma_pfn(page_to_pfn(pg));
165 }
166 static inline unsigned long virt_to_dma_pfn(void *p)
167 {
168 return page_to_dma_pfn(virt_to_page(p));
169 }
170
171 /* global iommu list, set NULL for ignored DMAR units */
172 static struct intel_iommu **g_iommus;
173
174 static void __init check_tylersburg_isoch(void);
175 static int rwbf_quirk;
176
177 /*
178 * set to 1 to panic kernel if can't successfully enable VT-d
179 * (used when kernel is launched w/ TXT)
180 */
181 static int force_on = 0;
182 int intel_iommu_tboot_noforce;
183 static int no_platform_optin;
184
185 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
186
187 /*
188 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
189 * if marked present.
190 */
191 static phys_addr_t root_entry_lctp(struct root_entry *re)
192 {
193 if (!(re->lo & 1))
194 return 0;
195
196 return re->lo & VTD_PAGE_MASK;
197 }
198
199 /*
200 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
201 * if marked present.
202 */
203 static phys_addr_t root_entry_uctp(struct root_entry *re)
204 {
205 if (!(re->hi & 1))
206 return 0;
207
208 return re->hi & VTD_PAGE_MASK;
209 }
210
211 static inline void context_clear_pasid_enable(struct context_entry *context)
212 {
213 context->lo &= ~(1ULL << 11);
214 }
215
216 static inline bool context_pasid_enabled(struct context_entry *context)
217 {
218 return !!(context->lo & (1ULL << 11));
219 }
220
221 static inline void context_set_copied(struct context_entry *context)
222 {
223 context->hi |= (1ull << 3);
224 }
225
226 static inline bool context_copied(struct context_entry *context)
227 {
228 return !!(context->hi & (1ULL << 3));
229 }
230
231 static inline bool __context_present(struct context_entry *context)
232 {
233 return (context->lo & 1);
234 }
235
236 bool context_present(struct context_entry *context)
237 {
238 return context_pasid_enabled(context) ?
239 __context_present(context) :
240 __context_present(context) && !context_copied(context);
241 }
242
243 static inline void context_set_present(struct context_entry *context)
244 {
245 context->lo |= 1;
246 }
247
248 static inline void context_set_fault_enable(struct context_entry *context)
249 {
250 context->lo &= (((u64)-1) << 2) | 1;
251 }
252
253 static inline void context_set_translation_type(struct context_entry *context,
254 unsigned long value)
255 {
256 context->lo &= (((u64)-1) << 4) | 3;
257 context->lo |= (value & 3) << 2;
258 }
259
260 static inline void context_set_address_root(struct context_entry *context,
261 unsigned long value)
262 {
263 context->lo &= ~VTD_PAGE_MASK;
264 context->lo |= value & VTD_PAGE_MASK;
265 }
266
267 static inline void context_set_address_width(struct context_entry *context,
268 unsigned long value)
269 {
270 context->hi |= value & 7;
271 }
272
273 static inline void context_set_domain_id(struct context_entry *context,
274 unsigned long value)
275 {
276 context->hi |= (value & ((1 << 16) - 1)) << 8;
277 }
278
279 static inline int context_domain_id(struct context_entry *c)
280 {
281 return((c->hi >> 8) & 0xffff);
282 }
283
284 static inline void context_clear_entry(struct context_entry *context)
285 {
286 context->lo = 0;
287 context->hi = 0;
288 }
289
290 /*
291 * This domain is a statically identity mapping domain.
292 * 1. This domain creats a static 1:1 mapping to all usable memory.
293 * 2. It maps to each iommu if successful.
294 * 3. Each iommu mapps to this domain if successful.
295 */
296 static struct dmar_domain *si_domain;
297 static int hw_pass_through = 1;
298
299 /* si_domain contains mulitple devices */
300 #define DOMAIN_FLAG_STATIC_IDENTITY BIT(0)
301
302 /*
303 * This is a DMA domain allocated through the iommu domain allocation
304 * interface. But one or more devices belonging to this domain have
305 * been chosen to use a private domain. We should avoid to use the
306 * map/unmap/iova_to_phys APIs on it.
307 */
308 #define DOMAIN_FLAG_LOSE_CHILDREN BIT(1)
309
310 #define for_each_domain_iommu(idx, domain) \
311 for (idx = 0; idx < g_num_of_iommus; idx++) \
312 if (domain->iommu_refcnt[idx])
313
314 struct dmar_rmrr_unit {
315 struct list_head list; /* list of rmrr units */
316 struct acpi_dmar_header *hdr; /* ACPI header */
317 u64 base_address; /* reserved base address*/
318 u64 end_address; /* reserved end address */
319 struct dmar_dev_scope *devices; /* target devices */
320 int devices_cnt; /* target device count */
321 };
322
323 struct dmar_atsr_unit {
324 struct list_head list; /* list of ATSR units */
325 struct acpi_dmar_header *hdr; /* ACPI header */
326 struct dmar_dev_scope *devices; /* target devices */
327 int devices_cnt; /* target device count */
328 u8 include_all:1; /* include all ports */
329 };
330
331 static LIST_HEAD(dmar_atsr_units);
332 static LIST_HEAD(dmar_rmrr_units);
333
334 #define for_each_rmrr_units(rmrr) \
335 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
336
337 /* bitmap for indexing intel_iommus */
338 static int g_num_of_iommus;
339
340 static void domain_exit(struct dmar_domain *domain);
341 static void domain_remove_dev_info(struct dmar_domain *domain);
342 static void dmar_remove_one_dev_info(struct device *dev);
343 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
344 static void domain_context_clear(struct intel_iommu *iommu,
345 struct device *dev);
346 static int domain_detach_iommu(struct dmar_domain *domain,
347 struct intel_iommu *iommu);
348 static bool device_is_rmrr_locked(struct device *dev);
349 static int intel_iommu_attach_device(struct iommu_domain *domain,
350 struct device *dev);
351 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
352 dma_addr_t iova);
353
354 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
355 int dmar_disabled = 0;
356 #else
357 int dmar_disabled = 1;
358 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
359
360 int intel_iommu_sm;
361 int intel_iommu_enabled = 0;
362 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
363
364 static int dmar_map_gfx = 1;
365 static int dmar_forcedac;
366 static int intel_iommu_strict;
367 static int intel_iommu_superpage = 1;
368 static int iommu_identity_mapping;
369 static int intel_no_bounce;
370
371 #define IDENTMAP_ALL 1
372 #define IDENTMAP_GFX 2
373 #define IDENTMAP_AZALIA 4
374
375 int intel_iommu_gfx_mapped;
376 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
377
378 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
379 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
380 static DEFINE_SPINLOCK(device_domain_lock);
381 static LIST_HEAD(device_domain_list);
382
383 #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \
384 to_pci_dev(d)->untrusted)
385
386 /*
387 * Iterate over elements in device_domain_list and call the specified
388 * callback @fn against each element.
389 */
390 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
391 void *data), void *data)
392 {
393 int ret = 0;
394 unsigned long flags;
395 struct device_domain_info *info;
396
397 spin_lock_irqsave(&device_domain_lock, flags);
398 list_for_each_entry(info, &device_domain_list, global) {
399 ret = fn(info, data);
400 if (ret) {
401 spin_unlock_irqrestore(&device_domain_lock, flags);
402 return ret;
403 }
404 }
405 spin_unlock_irqrestore(&device_domain_lock, flags);
406
407 return 0;
408 }
409
410 const struct iommu_ops intel_iommu_ops;
411
412 static bool translation_pre_enabled(struct intel_iommu *iommu)
413 {
414 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
415 }
416
417 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
418 {
419 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
420 }
421
422 static void init_translation_status(struct intel_iommu *iommu)
423 {
424 u32 gsts;
425
426 gsts = readl(iommu->reg + DMAR_GSTS_REG);
427 if (gsts & DMA_GSTS_TES)
428 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
429 }
430
431 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
432 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
433 {
434 return container_of(dom, struct dmar_domain, domain);
435 }
436
437 static int __init intel_iommu_setup(char *str)
438 {
439 if (!str)
440 return -EINVAL;
441 while (*str) {
442 if (!strncmp(str, "on", 2)) {
443 dmar_disabled = 0;
444 pr_info("IOMMU enabled\n");
445 } else if (!strncmp(str, "off", 3)) {
446 dmar_disabled = 1;
447 no_platform_optin = 1;
448 pr_info("IOMMU disabled\n");
449 } else if (!strncmp(str, "igfx_off", 8)) {
450 dmar_map_gfx = 0;
451 pr_info("Disable GFX device mapping\n");
452 } else if (!strncmp(str, "forcedac", 8)) {
453 pr_info("Forcing DAC for PCI devices\n");
454 dmar_forcedac = 1;
455 } else if (!strncmp(str, "strict", 6)) {
456 pr_info("Disable batched IOTLB flush\n");
457 intel_iommu_strict = 1;
458 } else if (!strncmp(str, "sp_off", 6)) {
459 pr_info("Disable supported super page\n");
460 intel_iommu_superpage = 0;
461 } else if (!strncmp(str, "sm_on", 5)) {
462 pr_info("Intel-IOMMU: scalable mode supported\n");
463 intel_iommu_sm = 1;
464 } else if (!strncmp(str, "tboot_noforce", 13)) {
465 printk(KERN_INFO
466 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
467 intel_iommu_tboot_noforce = 1;
468 } else if (!strncmp(str, "nobounce", 8)) {
469 pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
470 intel_no_bounce = 1;
471 }
472
473 str += strcspn(str, ",");
474 while (*str == ',')
475 str++;
476 }
477 return 0;
478 }
479 __setup("intel_iommu=", intel_iommu_setup);
480
481 static struct kmem_cache *iommu_domain_cache;
482 static struct kmem_cache *iommu_devinfo_cache;
483
484 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
485 {
486 struct dmar_domain **domains;
487 int idx = did >> 8;
488
489 domains = iommu->domains[idx];
490 if (!domains)
491 return NULL;
492
493 return domains[did & 0xff];
494 }
495
496 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
497 struct dmar_domain *domain)
498 {
499 struct dmar_domain **domains;
500 int idx = did >> 8;
501
502 if (!iommu->domains[idx]) {
503 size_t size = 256 * sizeof(struct dmar_domain *);
504 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
505 }
506
507 domains = iommu->domains[idx];
508 if (WARN_ON(!domains))
509 return;
510 else
511 domains[did & 0xff] = domain;
512 }
513
514 void *alloc_pgtable_page(int node)
515 {
516 struct page *page;
517 void *vaddr = NULL;
518
519 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
520 if (page)
521 vaddr = page_address(page);
522 return vaddr;
523 }
524
525 void free_pgtable_page(void *vaddr)
526 {
527 free_page((unsigned long)vaddr);
528 }
529
530 static inline void *alloc_domain_mem(void)
531 {
532 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
533 }
534
535 static void free_domain_mem(void *vaddr)
536 {
537 kmem_cache_free(iommu_domain_cache, vaddr);
538 }
539
540 static inline void * alloc_devinfo_mem(void)
541 {
542 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
543 }
544
545 static inline void free_devinfo_mem(void *vaddr)
546 {
547 kmem_cache_free(iommu_devinfo_cache, vaddr);
548 }
549
550 static inline int domain_type_is_si(struct dmar_domain *domain)
551 {
552 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
553 }
554
555 static inline int domain_pfn_supported(struct dmar_domain *domain,
556 unsigned long pfn)
557 {
558 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
559
560 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
561 }
562
563 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
564 {
565 unsigned long sagaw;
566 int agaw = -1;
567
568 sagaw = cap_sagaw(iommu->cap);
569 for (agaw = width_to_agaw(max_gaw);
570 agaw >= 0; agaw--) {
571 if (test_bit(agaw, &sagaw))
572 break;
573 }
574
575 return agaw;
576 }
577
578 /*
579 * Calculate max SAGAW for each iommu.
580 */
581 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
582 {
583 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
584 }
585
586 /*
587 * calculate agaw for each iommu.
588 * "SAGAW" may be different across iommus, use a default agaw, and
589 * get a supported less agaw for iommus that don't support the default agaw.
590 */
591 int iommu_calculate_agaw(struct intel_iommu *iommu)
592 {
593 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
594 }
595
596 /* This functionin only returns single iommu in a domain */
597 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
598 {
599 int iommu_id;
600
601 /* si_domain and vm domain should not get here. */
602 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
603 return NULL;
604
605 for_each_domain_iommu(iommu_id, domain)
606 break;
607
608 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
609 return NULL;
610
611 return g_iommus[iommu_id];
612 }
613
614 static void domain_update_iommu_coherency(struct dmar_domain *domain)
615 {
616 struct dmar_drhd_unit *drhd;
617 struct intel_iommu *iommu;
618 bool found = false;
619 int i;
620
621 domain->iommu_coherency = 1;
622
623 for_each_domain_iommu(i, domain) {
624 found = true;
625 if (!ecap_coherent(g_iommus[i]->ecap)) {
626 domain->iommu_coherency = 0;
627 break;
628 }
629 }
630 if (found)
631 return;
632
633 /* No hardware attached; use lowest common denominator */
634 rcu_read_lock();
635 for_each_active_iommu(iommu, drhd) {
636 if (!ecap_coherent(iommu->ecap)) {
637 domain->iommu_coherency = 0;
638 break;
639 }
640 }
641 rcu_read_unlock();
642 }
643
644 static int domain_update_iommu_snooping(struct intel_iommu *skip)
645 {
646 struct dmar_drhd_unit *drhd;
647 struct intel_iommu *iommu;
648 int ret = 1;
649
650 rcu_read_lock();
651 for_each_active_iommu(iommu, drhd) {
652 if (iommu != skip) {
653 if (!ecap_sc_support(iommu->ecap)) {
654 ret = 0;
655 break;
656 }
657 }
658 }
659 rcu_read_unlock();
660
661 return ret;
662 }
663
664 static int domain_update_iommu_superpage(struct intel_iommu *skip)
665 {
666 struct dmar_drhd_unit *drhd;
667 struct intel_iommu *iommu;
668 int mask = 0xf;
669
670 if (!intel_iommu_superpage) {
671 return 0;
672 }
673
674 /* set iommu_superpage to the smallest common denominator */
675 rcu_read_lock();
676 for_each_active_iommu(iommu, drhd) {
677 if (iommu != skip) {
678 mask &= cap_super_page_val(iommu->cap);
679 if (!mask)
680 break;
681 }
682 }
683 rcu_read_unlock();
684
685 return fls(mask);
686 }
687
688 /* Some capabilities may be different across iommus */
689 static void domain_update_iommu_cap(struct dmar_domain *domain)
690 {
691 domain_update_iommu_coherency(domain);
692 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
693 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
694 }
695
696 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
697 u8 devfn, int alloc)
698 {
699 struct root_entry *root = &iommu->root_entry[bus];
700 struct context_entry *context;
701 u64 *entry;
702
703 entry = &root->lo;
704 if (sm_supported(iommu)) {
705 if (devfn >= 0x80) {
706 devfn -= 0x80;
707 entry = &root->hi;
708 }
709 devfn *= 2;
710 }
711 if (*entry & 1)
712 context = phys_to_virt(*entry & VTD_PAGE_MASK);
713 else {
714 unsigned long phy_addr;
715 if (!alloc)
716 return NULL;
717
718 context = alloc_pgtable_page(iommu->node);
719 if (!context)
720 return NULL;
721
722 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
723 phy_addr = virt_to_phys((void *)context);
724 *entry = phy_addr | 1;
725 __iommu_flush_cache(iommu, entry, sizeof(*entry));
726 }
727 return &context[devfn];
728 }
729
730 static int iommu_dummy(struct device *dev)
731 {
732 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
733 }
734
735 /**
736 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
737 * sub-hierarchy of a candidate PCI-PCI bridge
738 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
739 * @bridge: the candidate PCI-PCI bridge
740 *
741 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
742 */
743 static bool
744 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
745 {
746 struct pci_dev *pdev, *pbridge;
747
748 if (!dev_is_pci(dev) || !dev_is_pci(bridge))
749 return false;
750
751 pdev = to_pci_dev(dev);
752 pbridge = to_pci_dev(bridge);
753
754 if (pbridge->subordinate &&
755 pbridge->subordinate->number <= pdev->bus->number &&
756 pbridge->subordinate->busn_res.end >= pdev->bus->number)
757 return true;
758
759 return false;
760 }
761
762 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
763 {
764 struct dmar_drhd_unit *drhd = NULL;
765 struct intel_iommu *iommu;
766 struct device *tmp;
767 struct pci_dev *pdev = NULL;
768 u16 segment = 0;
769 int i;
770
771 if (iommu_dummy(dev))
772 return NULL;
773
774 if (dev_is_pci(dev)) {
775 struct pci_dev *pf_pdev;
776
777 pdev = to_pci_dev(dev);
778
779 #ifdef CONFIG_X86
780 /* VMD child devices currently cannot be handled individually */
781 if (is_vmd(pdev->bus))
782 return NULL;
783 #endif
784
785 /* VFs aren't listed in scope tables; we need to look up
786 * the PF instead to find the IOMMU. */
787 pf_pdev = pci_physfn(pdev);
788 dev = &pf_pdev->dev;
789 segment = pci_domain_nr(pdev->bus);
790 } else if (has_acpi_companion(dev))
791 dev = &ACPI_COMPANION(dev)->dev;
792
793 rcu_read_lock();
794 for_each_active_iommu(iommu, drhd) {
795 if (pdev && segment != drhd->segment)
796 continue;
797
798 for_each_active_dev_scope(drhd->devices,
799 drhd->devices_cnt, i, tmp) {
800 if (tmp == dev) {
801 /* For a VF use its original BDF# not that of the PF
802 * which we used for the IOMMU lookup. Strictly speaking
803 * we could do this for all PCI devices; we only need to
804 * get the BDF# from the scope table for ACPI matches. */
805 if (pdev && pdev->is_virtfn)
806 goto got_pdev;
807
808 *bus = drhd->devices[i].bus;
809 *devfn = drhd->devices[i].devfn;
810 goto out;
811 }
812
813 if (is_downstream_to_pci_bridge(dev, tmp))
814 goto got_pdev;
815 }
816
817 if (pdev && drhd->include_all) {
818 got_pdev:
819 *bus = pdev->bus->number;
820 *devfn = pdev->devfn;
821 goto out;
822 }
823 }
824 iommu = NULL;
825 out:
826 rcu_read_unlock();
827
828 return iommu;
829 }
830
831 static void domain_flush_cache(struct dmar_domain *domain,
832 void *addr, int size)
833 {
834 if (!domain->iommu_coherency)
835 clflush_cache_range(addr, size);
836 }
837
838 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
839 {
840 struct context_entry *context;
841 int ret = 0;
842 unsigned long flags;
843
844 spin_lock_irqsave(&iommu->lock, flags);
845 context = iommu_context_addr(iommu, bus, devfn, 0);
846 if (context)
847 ret = context_present(context);
848 spin_unlock_irqrestore(&iommu->lock, flags);
849 return ret;
850 }
851
852 static void free_context_table(struct intel_iommu *iommu)
853 {
854 int i;
855 unsigned long flags;
856 struct context_entry *context;
857
858 spin_lock_irqsave(&iommu->lock, flags);
859 if (!iommu->root_entry) {
860 goto out;
861 }
862 for (i = 0; i < ROOT_ENTRY_NR; i++) {
863 context = iommu_context_addr(iommu, i, 0, 0);
864 if (context)
865 free_pgtable_page(context);
866
867 if (!sm_supported(iommu))
868 continue;
869
870 context = iommu_context_addr(iommu, i, 0x80, 0);
871 if (context)
872 free_pgtable_page(context);
873
874 }
875 free_pgtable_page(iommu->root_entry);
876 iommu->root_entry = NULL;
877 out:
878 spin_unlock_irqrestore(&iommu->lock, flags);
879 }
880
881 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
882 unsigned long pfn, int *target_level)
883 {
884 struct dma_pte *parent, *pte;
885 int level = agaw_to_level(domain->agaw);
886 int offset;
887
888 BUG_ON(!domain->pgd);
889
890 if (!domain_pfn_supported(domain, pfn))
891 /* Address beyond IOMMU's addressing capabilities. */
892 return NULL;
893
894 parent = domain->pgd;
895
896 while (1) {
897 void *tmp_page;
898
899 offset = pfn_level_offset(pfn, level);
900 pte = &parent[offset];
901 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
902 break;
903 if (level == *target_level)
904 break;
905
906 if (!dma_pte_present(pte)) {
907 uint64_t pteval;
908
909 tmp_page = alloc_pgtable_page(domain->nid);
910
911 if (!tmp_page)
912 return NULL;
913
914 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
915 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
916 if (cmpxchg64(&pte->val, 0ULL, pteval))
917 /* Someone else set it while we were thinking; use theirs. */
918 free_pgtable_page(tmp_page);
919 else
920 domain_flush_cache(domain, pte, sizeof(*pte));
921 }
922 if (level == 1)
923 break;
924
925 parent = phys_to_virt(dma_pte_addr(pte));
926 level--;
927 }
928
929 if (!*target_level)
930 *target_level = level;
931
932 return pte;
933 }
934
935 /* return address's pte at specific level */
936 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
937 unsigned long pfn,
938 int level, int *large_page)
939 {
940 struct dma_pte *parent, *pte;
941 int total = agaw_to_level(domain->agaw);
942 int offset;
943
944 parent = domain->pgd;
945 while (level <= total) {
946 offset = pfn_level_offset(pfn, total);
947 pte = &parent[offset];
948 if (level == total)
949 return pte;
950
951 if (!dma_pte_present(pte)) {
952 *large_page = total;
953 break;
954 }
955
956 if (dma_pte_superpage(pte)) {
957 *large_page = total;
958 return pte;
959 }
960
961 parent = phys_to_virt(dma_pte_addr(pte));
962 total--;
963 }
964 return NULL;
965 }
966
967 /* clear last level pte, a tlb flush should be followed */
968 static void dma_pte_clear_range(struct dmar_domain *domain,
969 unsigned long start_pfn,
970 unsigned long last_pfn)
971 {
972 unsigned int large_page;
973 struct dma_pte *first_pte, *pte;
974
975 BUG_ON(!domain_pfn_supported(domain, start_pfn));
976 BUG_ON(!domain_pfn_supported(domain, last_pfn));
977 BUG_ON(start_pfn > last_pfn);
978
979 /* we don't need lock here; nobody else touches the iova range */
980 do {
981 large_page = 1;
982 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
983 if (!pte) {
984 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
985 continue;
986 }
987 do {
988 dma_clear_pte(pte);
989 start_pfn += lvl_to_nr_pages(large_page);
990 pte++;
991 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
992
993 domain_flush_cache(domain, first_pte,
994 (void *)pte - (void *)first_pte);
995
996 } while (start_pfn && start_pfn <= last_pfn);
997 }
998
999 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1000 int retain_level, struct dma_pte *pte,
1001 unsigned long pfn, unsigned long start_pfn,
1002 unsigned long last_pfn)
1003 {
1004 pfn = max(start_pfn, pfn);
1005 pte = &pte[pfn_level_offset(pfn, level)];
1006
1007 do {
1008 unsigned long level_pfn;
1009 struct dma_pte *level_pte;
1010
1011 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1012 goto next;
1013
1014 level_pfn = pfn & level_mask(level);
1015 level_pte = phys_to_virt(dma_pte_addr(pte));
1016
1017 if (level > 2) {
1018 dma_pte_free_level(domain, level - 1, retain_level,
1019 level_pte, level_pfn, start_pfn,
1020 last_pfn);
1021 }
1022
1023 /*
1024 * Free the page table if we're below the level we want to
1025 * retain and the range covers the entire table.
1026 */
1027 if (level < retain_level && !(start_pfn > level_pfn ||
1028 last_pfn < level_pfn + level_size(level) - 1)) {
1029 dma_clear_pte(pte);
1030 domain_flush_cache(domain, pte, sizeof(*pte));
1031 free_pgtable_page(level_pte);
1032 }
1033 next:
1034 pfn += level_size(level);
1035 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1036 }
1037
1038 /*
1039 * clear last level (leaf) ptes and free page table pages below the
1040 * level we wish to keep intact.
1041 */
1042 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1043 unsigned long start_pfn,
1044 unsigned long last_pfn,
1045 int retain_level)
1046 {
1047 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1048 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1049 BUG_ON(start_pfn > last_pfn);
1050
1051 dma_pte_clear_range(domain, start_pfn, last_pfn);
1052
1053 /* We don't need lock here; nobody else touches the iova range */
1054 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1055 domain->pgd, 0, start_pfn, last_pfn);
1056
1057 /* free pgd */
1058 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1059 free_pgtable_page(domain->pgd);
1060 domain->pgd = NULL;
1061 }
1062 }
1063
1064 /* When a page at a given level is being unlinked from its parent, we don't
1065 need to *modify* it at all. All we need to do is make a list of all the
1066 pages which can be freed just as soon as we've flushed the IOTLB and we
1067 know the hardware page-walk will no longer touch them.
1068 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1069 be freed. */
1070 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1071 int level, struct dma_pte *pte,
1072 struct page *freelist)
1073 {
1074 struct page *pg;
1075
1076 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1077 pg->freelist = freelist;
1078 freelist = pg;
1079
1080 if (level == 1)
1081 return freelist;
1082
1083 pte = page_address(pg);
1084 do {
1085 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1086 freelist = dma_pte_list_pagetables(domain, level - 1,
1087 pte, freelist);
1088 pte++;
1089 } while (!first_pte_in_page(pte));
1090
1091 return freelist;
1092 }
1093
1094 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1095 struct dma_pte *pte, unsigned long pfn,
1096 unsigned long start_pfn,
1097 unsigned long last_pfn,
1098 struct page *freelist)
1099 {
1100 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1101
1102 pfn = max(start_pfn, pfn);
1103 pte = &pte[pfn_level_offset(pfn, level)];
1104
1105 do {
1106 unsigned long level_pfn;
1107
1108 if (!dma_pte_present(pte))
1109 goto next;
1110
1111 level_pfn = pfn & level_mask(level);
1112
1113 /* If range covers entire pagetable, free it */
1114 if (start_pfn <= level_pfn &&
1115 last_pfn >= level_pfn + level_size(level) - 1) {
1116 /* These suborbinate page tables are going away entirely. Don't
1117 bother to clear them; we're just going to *free* them. */
1118 if (level > 1 && !dma_pte_superpage(pte))
1119 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1120
1121 dma_clear_pte(pte);
1122 if (!first_pte)
1123 first_pte = pte;
1124 last_pte = pte;
1125 } else if (level > 1) {
1126 /* Recurse down into a level that isn't *entirely* obsolete */
1127 freelist = dma_pte_clear_level(domain, level - 1,
1128 phys_to_virt(dma_pte_addr(pte)),
1129 level_pfn, start_pfn, last_pfn,
1130 freelist);
1131 }
1132 next:
1133 pfn += level_size(level);
1134 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1135
1136 if (first_pte)
1137 domain_flush_cache(domain, first_pte,
1138 (void *)++last_pte - (void *)first_pte);
1139
1140 return freelist;
1141 }
1142
1143 /* We can't just free the pages because the IOMMU may still be walking
1144 the page tables, and may have cached the intermediate levels. The
1145 pages can only be freed after the IOTLB flush has been done. */
1146 static struct page *domain_unmap(struct dmar_domain *domain,
1147 unsigned long start_pfn,
1148 unsigned long last_pfn)
1149 {
1150 struct page *freelist;
1151
1152 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1153 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1154 BUG_ON(start_pfn > last_pfn);
1155
1156 /* we don't need lock here; nobody else touches the iova range */
1157 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1158 domain->pgd, 0, start_pfn, last_pfn, NULL);
1159
1160 /* free pgd */
1161 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1162 struct page *pgd_page = virt_to_page(domain->pgd);
1163 pgd_page->freelist = freelist;
1164 freelist = pgd_page;
1165
1166 domain->pgd = NULL;
1167 }
1168
1169 return freelist;
1170 }
1171
1172 static void dma_free_pagelist(struct page *freelist)
1173 {
1174 struct page *pg;
1175
1176 while ((pg = freelist)) {
1177 freelist = pg->freelist;
1178 free_pgtable_page(page_address(pg));
1179 }
1180 }
1181
1182 static void iova_entry_free(unsigned long data)
1183 {
1184 struct page *freelist = (struct page *)data;
1185
1186 dma_free_pagelist(freelist);
1187 }
1188
1189 /* iommu handling */
1190 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1191 {
1192 struct root_entry *root;
1193 unsigned long flags;
1194
1195 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1196 if (!root) {
1197 pr_err("Allocating root entry for %s failed\n",
1198 iommu->name);
1199 return -ENOMEM;
1200 }
1201
1202 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1203
1204 spin_lock_irqsave(&iommu->lock, flags);
1205 iommu->root_entry = root;
1206 spin_unlock_irqrestore(&iommu->lock, flags);
1207
1208 return 0;
1209 }
1210
1211 static void iommu_set_root_entry(struct intel_iommu *iommu)
1212 {
1213 u64 addr;
1214 u32 sts;
1215 unsigned long flag;
1216
1217 addr = virt_to_phys(iommu->root_entry);
1218 if (sm_supported(iommu))
1219 addr |= DMA_RTADDR_SMT;
1220
1221 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1222 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1223
1224 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1225
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228 readl, (sts & DMA_GSTS_RTPS), sts);
1229
1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1231 }
1232
1233 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1234 {
1235 u32 val;
1236 unsigned long flag;
1237
1238 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1239 return;
1240
1241 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1243
1244 /* Make sure hardware complete it */
1245 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1246 readl, (!(val & DMA_GSTS_WBFS)), val);
1247
1248 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1249 }
1250
1251 /* return value determine if we need a write buffer flush */
1252 static void __iommu_flush_context(struct intel_iommu *iommu,
1253 u16 did, u16 source_id, u8 function_mask,
1254 u64 type)
1255 {
1256 u64 val = 0;
1257 unsigned long flag;
1258
1259 switch (type) {
1260 case DMA_CCMD_GLOBAL_INVL:
1261 val = DMA_CCMD_GLOBAL_INVL;
1262 break;
1263 case DMA_CCMD_DOMAIN_INVL:
1264 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1265 break;
1266 case DMA_CCMD_DEVICE_INVL:
1267 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1268 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1269 break;
1270 default:
1271 BUG();
1272 }
1273 val |= DMA_CCMD_ICC;
1274
1275 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1276 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1277
1278 /* Make sure hardware complete it */
1279 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1280 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1281
1282 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1283 }
1284
1285 /* return value determine if we need a write buffer flush */
1286 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1287 u64 addr, unsigned int size_order, u64 type)
1288 {
1289 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1290 u64 val = 0, val_iva = 0;
1291 unsigned long flag;
1292
1293 switch (type) {
1294 case DMA_TLB_GLOBAL_FLUSH:
1295 /* global flush doesn't need set IVA_REG */
1296 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1297 break;
1298 case DMA_TLB_DSI_FLUSH:
1299 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1300 break;
1301 case DMA_TLB_PSI_FLUSH:
1302 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1303 /* IH bit is passed in as part of address */
1304 val_iva = size_order | addr;
1305 break;
1306 default:
1307 BUG();
1308 }
1309 /* Note: set drain read/write */
1310 #if 0
1311 /*
1312 * This is probably to be super secure.. Looks like we can
1313 * ignore it without any impact.
1314 */
1315 if (cap_read_drain(iommu->cap))
1316 val |= DMA_TLB_READ_DRAIN;
1317 #endif
1318 if (cap_write_drain(iommu->cap))
1319 val |= DMA_TLB_WRITE_DRAIN;
1320
1321 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1322 /* Note: Only uses first TLB reg currently */
1323 if (val_iva)
1324 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1325 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1326
1327 /* Make sure hardware complete it */
1328 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1329 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1330
1331 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1332
1333 /* check IOTLB invalidation granularity */
1334 if (DMA_TLB_IAIG(val) == 0)
1335 pr_err("Flush IOTLB failed\n");
1336 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1337 pr_debug("TLB flush request %Lx, actual %Lx\n",
1338 (unsigned long long)DMA_TLB_IIRG(type),
1339 (unsigned long long)DMA_TLB_IAIG(val));
1340 }
1341
1342 static struct device_domain_info *
1343 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1344 u8 bus, u8 devfn)
1345 {
1346 struct device_domain_info *info;
1347
1348 assert_spin_locked(&device_domain_lock);
1349
1350 if (!iommu->qi)
1351 return NULL;
1352
1353 list_for_each_entry(info, &domain->devices, link)
1354 if (info->iommu == iommu && info->bus == bus &&
1355 info->devfn == devfn) {
1356 if (info->ats_supported && info->dev)
1357 return info;
1358 break;
1359 }
1360
1361 return NULL;
1362 }
1363
1364 static void domain_update_iotlb(struct dmar_domain *domain)
1365 {
1366 struct device_domain_info *info;
1367 bool has_iotlb_device = false;
1368
1369 assert_spin_locked(&device_domain_lock);
1370
1371 list_for_each_entry(info, &domain->devices, link) {
1372 struct pci_dev *pdev;
1373
1374 if (!info->dev || !dev_is_pci(info->dev))
1375 continue;
1376
1377 pdev = to_pci_dev(info->dev);
1378 if (pdev->ats_enabled) {
1379 has_iotlb_device = true;
1380 break;
1381 }
1382 }
1383
1384 domain->has_iotlb_device = has_iotlb_device;
1385 }
1386
1387 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1388 {
1389 struct pci_dev *pdev;
1390
1391 assert_spin_locked(&device_domain_lock);
1392
1393 if (!info || !dev_is_pci(info->dev))
1394 return;
1395
1396 pdev = to_pci_dev(info->dev);
1397 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1398 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1399 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1400 * reserved, which should be set to 0.
1401 */
1402 if (!ecap_dit(info->iommu->ecap))
1403 info->pfsid = 0;
1404 else {
1405 struct pci_dev *pf_pdev;
1406
1407 /* pdev will be returned if device is not a vf */
1408 pf_pdev = pci_physfn(pdev);
1409 info->pfsid = pci_dev_id(pf_pdev);
1410 }
1411
1412 #ifdef CONFIG_INTEL_IOMMU_SVM
1413 /* The PCIe spec, in its wisdom, declares that the behaviour of
1414 the device if you enable PASID support after ATS support is
1415 undefined. So always enable PASID support on devices which
1416 have it, even if we can't yet know if we're ever going to
1417 use it. */
1418 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1419 info->pasid_enabled = 1;
1420
1421 if (info->pri_supported &&
1422 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) &&
1423 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1424 info->pri_enabled = 1;
1425 #endif
1426 if (!pdev->untrusted && info->ats_supported &&
1427 pci_ats_page_aligned(pdev) &&
1428 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1429 info->ats_enabled = 1;
1430 domain_update_iotlb(info->domain);
1431 info->ats_qdep = pci_ats_queue_depth(pdev);
1432 }
1433 }
1434
1435 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1436 {
1437 struct pci_dev *pdev;
1438
1439 assert_spin_locked(&device_domain_lock);
1440
1441 if (!dev_is_pci(info->dev))
1442 return;
1443
1444 pdev = to_pci_dev(info->dev);
1445
1446 if (info->ats_enabled) {
1447 pci_disable_ats(pdev);
1448 info->ats_enabled = 0;
1449 domain_update_iotlb(info->domain);
1450 }
1451 #ifdef CONFIG_INTEL_IOMMU_SVM
1452 if (info->pri_enabled) {
1453 pci_disable_pri(pdev);
1454 info->pri_enabled = 0;
1455 }
1456 if (info->pasid_enabled) {
1457 pci_disable_pasid(pdev);
1458 info->pasid_enabled = 0;
1459 }
1460 #endif
1461 }
1462
1463 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1464 u64 addr, unsigned mask)
1465 {
1466 u16 sid, qdep;
1467 unsigned long flags;
1468 struct device_domain_info *info;
1469
1470 if (!domain->has_iotlb_device)
1471 return;
1472
1473 spin_lock_irqsave(&device_domain_lock, flags);
1474 list_for_each_entry(info, &domain->devices, link) {
1475 if (!info->ats_enabled)
1476 continue;
1477
1478 sid = info->bus << 8 | info->devfn;
1479 qdep = info->ats_qdep;
1480 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1481 qdep, addr, mask);
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484 }
1485
1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
1490 {
1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493 u16 did = domain->iommu_did[iommu->seq_id];
1494
1495 BUG_ON(pages == 0);
1496
1497 if (ih)
1498 ih = 1 << 6;
1499 /*
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507 DMA_TLB_DSI_FLUSH);
1508 else
1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510 DMA_TLB_PSI_FLUSH);
1511
1512 /*
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
1515 */
1516 if (!cap_caching_mode(iommu->cap) || !map)
1517 iommu_flush_dev_iotlb(domain, addr, mask);
1518 }
1519
1520 /* Notification for newly created mappings */
1521 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1522 struct dmar_domain *domain,
1523 unsigned long pfn, unsigned int pages)
1524 {
1525 /* It's a non-present to present mapping. Only flush if caching mode */
1526 if (cap_caching_mode(iommu->cap))
1527 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1528 else
1529 iommu_flush_write_buffer(iommu);
1530 }
1531
1532 static void iommu_flush_iova(struct iova_domain *iovad)
1533 {
1534 struct dmar_domain *domain;
1535 int idx;
1536
1537 domain = container_of(iovad, struct dmar_domain, iovad);
1538
1539 for_each_domain_iommu(idx, domain) {
1540 struct intel_iommu *iommu = g_iommus[idx];
1541 u16 did = domain->iommu_did[iommu->seq_id];
1542
1543 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1544
1545 if (!cap_caching_mode(iommu->cap))
1546 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1547 0, MAX_AGAW_PFN_WIDTH);
1548 }
1549 }
1550
1551 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1552 {
1553 u32 pmen;
1554 unsigned long flags;
1555
1556 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1557 return;
1558
1559 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1560 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1561 pmen &= ~DMA_PMEN_EPM;
1562 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1563
1564 /* wait for the protected region status bit to clear */
1565 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1566 readl, !(pmen & DMA_PMEN_PRS), pmen);
1567
1568 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1569 }
1570
1571 static void iommu_enable_translation(struct intel_iommu *iommu)
1572 {
1573 u32 sts;
1574 unsigned long flags;
1575
1576 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1577 iommu->gcmd |= DMA_GCMD_TE;
1578 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1579
1580 /* Make sure hardware complete it */
1581 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1582 readl, (sts & DMA_GSTS_TES), sts);
1583
1584 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1585 }
1586
1587 static void iommu_disable_translation(struct intel_iommu *iommu)
1588 {
1589 u32 sts;
1590 unsigned long flag;
1591
1592 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1593 iommu->gcmd &= ~DMA_GCMD_TE;
1594 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1595
1596 /* Make sure hardware complete it */
1597 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1598 readl, (!(sts & DMA_GSTS_TES)), sts);
1599
1600 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1601 }
1602
1603 static int iommu_init_domains(struct intel_iommu *iommu)
1604 {
1605 u32 ndomains, nlongs;
1606 size_t size;
1607
1608 ndomains = cap_ndoms(iommu->cap);
1609 pr_debug("%s: Number of Domains supported <%d>\n",
1610 iommu->name, ndomains);
1611 nlongs = BITS_TO_LONGS(ndomains);
1612
1613 spin_lock_init(&iommu->lock);
1614
1615 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1616 if (!iommu->domain_ids) {
1617 pr_err("%s: Allocating domain id array failed\n",
1618 iommu->name);
1619 return -ENOMEM;
1620 }
1621
1622 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1623 iommu->domains = kzalloc(size, GFP_KERNEL);
1624
1625 if (iommu->domains) {
1626 size = 256 * sizeof(struct dmar_domain *);
1627 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1628 }
1629
1630 if (!iommu->domains || !iommu->domains[0]) {
1631 pr_err("%s: Allocating domain array failed\n",
1632 iommu->name);
1633 kfree(iommu->domain_ids);
1634 kfree(iommu->domains);
1635 iommu->domain_ids = NULL;
1636 iommu->domains = NULL;
1637 return -ENOMEM;
1638 }
1639
1640 /*
1641 * If Caching mode is set, then invalid translations are tagged
1642 * with domain-id 0, hence we need to pre-allocate it. We also
1643 * use domain-id 0 as a marker for non-allocated domain-id, so
1644 * make sure it is not used for a real domain.
1645 */
1646 set_bit(0, iommu->domain_ids);
1647
1648 /*
1649 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1650 * entry for first-level or pass-through translation modes should
1651 * be programmed with a domain id different from those used for
1652 * second-level or nested translation. We reserve a domain id for
1653 * this purpose.
1654 */
1655 if (sm_supported(iommu))
1656 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1657
1658 return 0;
1659 }
1660
1661 static void disable_dmar_iommu(struct intel_iommu *iommu)
1662 {
1663 struct device_domain_info *info, *tmp;
1664 unsigned long flags;
1665
1666 if (!iommu->domains || !iommu->domain_ids)
1667 return;
1668
1669 spin_lock_irqsave(&device_domain_lock, flags);
1670 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1671 if (info->iommu != iommu)
1672 continue;
1673
1674 if (!info->dev || !info->domain)
1675 continue;
1676
1677 __dmar_remove_one_dev_info(info);
1678 }
1679 spin_unlock_irqrestore(&device_domain_lock, flags);
1680
1681 if (iommu->gcmd & DMA_GCMD_TE)
1682 iommu_disable_translation(iommu);
1683 }
1684
1685 static void free_dmar_iommu(struct intel_iommu *iommu)
1686 {
1687 if ((iommu->domains) && (iommu->domain_ids)) {
1688 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1689 int i;
1690
1691 for (i = 0; i < elems; i++)
1692 kfree(iommu->domains[i]);
1693 kfree(iommu->domains);
1694 kfree(iommu->domain_ids);
1695 iommu->domains = NULL;
1696 iommu->domain_ids = NULL;
1697 }
1698
1699 g_iommus[iommu->seq_id] = NULL;
1700
1701 /* free context mapping */
1702 free_context_table(iommu);
1703
1704 #ifdef CONFIG_INTEL_IOMMU_SVM
1705 if (pasid_supported(iommu)) {
1706 if (ecap_prs(iommu->ecap))
1707 intel_svm_finish_prq(iommu);
1708 }
1709 #endif
1710 }
1711
1712 static struct dmar_domain *alloc_domain(int flags)
1713 {
1714 struct dmar_domain *domain;
1715
1716 domain = alloc_domain_mem();
1717 if (!domain)
1718 return NULL;
1719
1720 memset(domain, 0, sizeof(*domain));
1721 domain->nid = NUMA_NO_NODE;
1722 domain->flags = flags;
1723 domain->has_iotlb_device = false;
1724 INIT_LIST_HEAD(&domain->devices);
1725
1726 return domain;
1727 }
1728
1729 /* Must be called with iommu->lock */
1730 static int domain_attach_iommu(struct dmar_domain *domain,
1731 struct intel_iommu *iommu)
1732 {
1733 unsigned long ndomains;
1734 int num;
1735
1736 assert_spin_locked(&device_domain_lock);
1737 assert_spin_locked(&iommu->lock);
1738
1739 domain->iommu_refcnt[iommu->seq_id] += 1;
1740 domain->iommu_count += 1;
1741 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1742 ndomains = cap_ndoms(iommu->cap);
1743 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1744
1745 if (num >= ndomains) {
1746 pr_err("%s: No free domain ids\n", iommu->name);
1747 domain->iommu_refcnt[iommu->seq_id] -= 1;
1748 domain->iommu_count -= 1;
1749 return -ENOSPC;
1750 }
1751
1752 set_bit(num, iommu->domain_ids);
1753 set_iommu_domain(iommu, num, domain);
1754
1755 domain->iommu_did[iommu->seq_id] = num;
1756 domain->nid = iommu->node;
1757
1758 domain_update_iommu_cap(domain);
1759 }
1760
1761 return 0;
1762 }
1763
1764 static int domain_detach_iommu(struct dmar_domain *domain,
1765 struct intel_iommu *iommu)
1766 {
1767 int num, count;
1768
1769 assert_spin_locked(&device_domain_lock);
1770 assert_spin_locked(&iommu->lock);
1771
1772 domain->iommu_refcnt[iommu->seq_id] -= 1;
1773 count = --domain->iommu_count;
1774 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1775 num = domain->iommu_did[iommu->seq_id];
1776 clear_bit(num, iommu->domain_ids);
1777 set_iommu_domain(iommu, num, NULL);
1778
1779 domain_update_iommu_cap(domain);
1780 domain->iommu_did[iommu->seq_id] = 0;
1781 }
1782
1783 return count;
1784 }
1785
1786 static struct iova_domain reserved_iova_list;
1787 static struct lock_class_key reserved_rbtree_key;
1788
1789 static int dmar_init_reserved_ranges(void)
1790 {
1791 struct pci_dev *pdev = NULL;
1792 struct iova *iova;
1793 int i;
1794
1795 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1796
1797 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1798 &reserved_rbtree_key);
1799
1800 /* IOAPIC ranges shouldn't be accessed by DMA */
1801 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1802 IOVA_PFN(IOAPIC_RANGE_END));
1803 if (!iova) {
1804 pr_err("Reserve IOAPIC range failed\n");
1805 return -ENODEV;
1806 }
1807
1808 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1809 for_each_pci_dev(pdev) {
1810 struct resource *r;
1811
1812 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1813 r = &pdev->resource[i];
1814 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1815 continue;
1816 iova = reserve_iova(&reserved_iova_list,
1817 IOVA_PFN(r->start),
1818 IOVA_PFN(r->end));
1819 if (!iova) {
1820 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1821 return -ENODEV;
1822 }
1823 }
1824 }
1825 return 0;
1826 }
1827
1828 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1829 {
1830 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1831 }
1832
1833 static inline int guestwidth_to_adjustwidth(int gaw)
1834 {
1835 int agaw;
1836 int r = (gaw - 12) % 9;
1837
1838 if (r == 0)
1839 agaw = gaw;
1840 else
1841 agaw = gaw + 9 - r;
1842 if (agaw > 64)
1843 agaw = 64;
1844 return agaw;
1845 }
1846
1847 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1848 int guest_width)
1849 {
1850 int adjust_width, agaw;
1851 unsigned long sagaw;
1852 int err;
1853
1854 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1855
1856 err = init_iova_flush_queue(&domain->iovad,
1857 iommu_flush_iova, iova_entry_free);
1858 if (err)
1859 return err;
1860
1861 domain_reserve_special_ranges(domain);
1862
1863 /* calculate AGAW */
1864 if (guest_width > cap_mgaw(iommu->cap))
1865 guest_width = cap_mgaw(iommu->cap);
1866 domain->gaw = guest_width;
1867 adjust_width = guestwidth_to_adjustwidth(guest_width);
1868 agaw = width_to_agaw(adjust_width);
1869 sagaw = cap_sagaw(iommu->cap);
1870 if (!test_bit(agaw, &sagaw)) {
1871 /* hardware doesn't support it, choose a bigger one */
1872 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1873 agaw = find_next_bit(&sagaw, 5, agaw);
1874 if (agaw >= 5)
1875 return -ENODEV;
1876 }
1877 domain->agaw = agaw;
1878
1879 if (ecap_coherent(iommu->ecap))
1880 domain->iommu_coherency = 1;
1881 else
1882 domain->iommu_coherency = 0;
1883
1884 if (ecap_sc_support(iommu->ecap))
1885 domain->iommu_snooping = 1;
1886 else
1887 domain->iommu_snooping = 0;
1888
1889 if (intel_iommu_superpage)
1890 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1891 else
1892 domain->iommu_superpage = 0;
1893
1894 domain->nid = iommu->node;
1895
1896 /* always allocate the top pgd */
1897 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1898 if (!domain->pgd)
1899 return -ENOMEM;
1900 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1901 return 0;
1902 }
1903
1904 static void domain_exit(struct dmar_domain *domain)
1905 {
1906
1907 /* Remove associated devices and clear attached or cached domains */
1908 domain_remove_dev_info(domain);
1909
1910 /* destroy iovas */
1911 put_iova_domain(&domain->iovad);
1912
1913 if (domain->pgd) {
1914 struct page *freelist;
1915
1916 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1917 dma_free_pagelist(freelist);
1918 }
1919
1920 free_domain_mem(domain);
1921 }
1922
1923 /*
1924 * Get the PASID directory size for scalable mode context entry.
1925 * Value of X in the PDTS field of a scalable mode context entry
1926 * indicates PASID directory with 2^(X + 7) entries.
1927 */
1928 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1929 {
1930 int pds, max_pde;
1931
1932 max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1933 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1934 if (pds < 7)
1935 return 0;
1936
1937 return pds - 7;
1938 }
1939
1940 /*
1941 * Set the RID_PASID field of a scalable mode context entry. The
1942 * IOMMU hardware will use the PASID value set in this field for
1943 * DMA translations of DMA requests without PASID.
1944 */
1945 static inline void
1946 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1947 {
1948 context->hi |= pasid & ((1 << 20) - 1);
1949 context->hi |= (1 << 20);
1950 }
1951
1952 /*
1953 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1954 * entry.
1955 */
1956 static inline void context_set_sm_dte(struct context_entry *context)
1957 {
1958 context->lo |= (1 << 2);
1959 }
1960
1961 /*
1962 * Set the PRE(Page Request Enable) field of a scalable mode context
1963 * entry.
1964 */
1965 static inline void context_set_sm_pre(struct context_entry *context)
1966 {
1967 context->lo |= (1 << 4);
1968 }
1969
1970 /* Convert value to context PASID directory size field coding. */
1971 #define context_pdts(pds) (((pds) & 0x7) << 9)
1972
1973 static int domain_context_mapping_one(struct dmar_domain *domain,
1974 struct intel_iommu *iommu,
1975 struct pasid_table *table,
1976 u8 bus, u8 devfn)
1977 {
1978 u16 did = domain->iommu_did[iommu->seq_id];
1979 int translation = CONTEXT_TT_MULTI_LEVEL;
1980 struct device_domain_info *info = NULL;
1981 struct context_entry *context;
1982 unsigned long flags;
1983 int ret;
1984
1985 WARN_ON(did == 0);
1986
1987 if (hw_pass_through && domain_type_is_si(domain))
1988 translation = CONTEXT_TT_PASS_THROUGH;
1989
1990 pr_debug("Set context mapping for %02x:%02x.%d\n",
1991 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1992
1993 BUG_ON(!domain->pgd);
1994
1995 spin_lock_irqsave(&device_domain_lock, flags);
1996 spin_lock(&iommu->lock);
1997
1998 ret = -ENOMEM;
1999 context = iommu_context_addr(iommu, bus, devfn, 1);
2000 if (!context)
2001 goto out_unlock;
2002
2003 ret = 0;
2004 if (context_present(context))
2005 goto out_unlock;
2006
2007 /*
2008 * For kdump cases, old valid entries may be cached due to the
2009 * in-flight DMA and copied pgtable, but there is no unmapping
2010 * behaviour for them, thus we need an explicit cache flush for
2011 * the newly-mapped device. For kdump, at this point, the device
2012 * is supposed to finish reset at its driver probe stage, so no
2013 * in-flight DMA will exist, and we don't need to worry anymore
2014 * hereafter.
2015 */
2016 if (context_copied(context)) {
2017 u16 did_old = context_domain_id(context);
2018
2019 if (did_old < cap_ndoms(iommu->cap)) {
2020 iommu->flush.flush_context(iommu, did_old,
2021 (((u16)bus) << 8) | devfn,
2022 DMA_CCMD_MASK_NOBIT,
2023 DMA_CCMD_DEVICE_INVL);
2024 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2025 DMA_TLB_DSI_FLUSH);
2026 }
2027 }
2028
2029 context_clear_entry(context);
2030
2031 if (sm_supported(iommu)) {
2032 unsigned long pds;
2033
2034 WARN_ON(!table);
2035
2036 /* Setup the PASID DIR pointer: */
2037 pds = context_get_sm_pds(table);
2038 context->lo = (u64)virt_to_phys(table->table) |
2039 context_pdts(pds);
2040
2041 /* Setup the RID_PASID field: */
2042 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2043
2044 /*
2045 * Setup the Device-TLB enable bit and Page request
2046 * Enable bit:
2047 */
2048 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2049 if (info && info->ats_supported)
2050 context_set_sm_dte(context);
2051 if (info && info->pri_supported)
2052 context_set_sm_pre(context);
2053 } else {
2054 struct dma_pte *pgd = domain->pgd;
2055 int agaw;
2056
2057 context_set_domain_id(context, did);
2058
2059 if (translation != CONTEXT_TT_PASS_THROUGH) {
2060 /*
2061 * Skip top levels of page tables for iommu which has
2062 * less agaw than default. Unnecessary for PT mode.
2063 */
2064 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2065 ret = -ENOMEM;
2066 pgd = phys_to_virt(dma_pte_addr(pgd));
2067 if (!dma_pte_present(pgd))
2068 goto out_unlock;
2069 }
2070
2071 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2072 if (info && info->ats_supported)
2073 translation = CONTEXT_TT_DEV_IOTLB;
2074 else
2075 translation = CONTEXT_TT_MULTI_LEVEL;
2076
2077 context_set_address_root(context, virt_to_phys(pgd));
2078 context_set_address_width(context, agaw);
2079 } else {
2080 /*
2081 * In pass through mode, AW must be programmed to
2082 * indicate the largest AGAW value supported by
2083 * hardware. And ASR is ignored by hardware.
2084 */
2085 context_set_address_width(context, iommu->msagaw);
2086 }
2087
2088 context_set_translation_type(context, translation);
2089 }
2090
2091 context_set_fault_enable(context);
2092 context_set_present(context);
2093 domain_flush_cache(domain, context, sizeof(*context));
2094
2095 /*
2096 * It's a non-present to present mapping. If hardware doesn't cache
2097 * non-present entry we only need to flush the write-buffer. If the
2098 * _does_ cache non-present entries, then it does so in the special
2099 * domain #0, which we have to flush:
2100 */
2101 if (cap_caching_mode(iommu->cap)) {
2102 iommu->flush.flush_context(iommu, 0,
2103 (((u16)bus) << 8) | devfn,
2104 DMA_CCMD_MASK_NOBIT,
2105 DMA_CCMD_DEVICE_INVL);
2106 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2107 } else {
2108 iommu_flush_write_buffer(iommu);
2109 }
2110 iommu_enable_dev_iotlb(info);
2111
2112 ret = 0;
2113
2114 out_unlock:
2115 spin_unlock(&iommu->lock);
2116 spin_unlock_irqrestore(&device_domain_lock, flags);
2117
2118 return ret;
2119 }
2120
2121 struct domain_context_mapping_data {
2122 struct dmar_domain *domain;
2123 struct intel_iommu *iommu;
2124 struct pasid_table *table;
2125 };
2126
2127 static int domain_context_mapping_cb(struct pci_dev *pdev,
2128 u16 alias, void *opaque)
2129 {
2130 struct domain_context_mapping_data *data = opaque;
2131
2132 return domain_context_mapping_one(data->domain, data->iommu,
2133 data->table, PCI_BUS_NUM(alias),
2134 alias & 0xff);
2135 }
2136
2137 static int
2138 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2139 {
2140 struct domain_context_mapping_data data;
2141 struct pasid_table *table;
2142 struct intel_iommu *iommu;
2143 u8 bus, devfn;
2144
2145 iommu = device_to_iommu(dev, &bus, &devfn);
2146 if (!iommu)
2147 return -ENODEV;
2148
2149 table = intel_pasid_get_table(dev);
2150
2151 if (!dev_is_pci(dev))
2152 return domain_context_mapping_one(domain, iommu, table,
2153 bus, devfn);
2154
2155 data.domain = domain;
2156 data.iommu = iommu;
2157 data.table = table;
2158
2159 return pci_for_each_dma_alias(to_pci_dev(dev),
2160 &domain_context_mapping_cb, &data);
2161 }
2162
2163 static int domain_context_mapped_cb(struct pci_dev *pdev,
2164 u16 alias, void *opaque)
2165 {
2166 struct intel_iommu *iommu = opaque;
2167
2168 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2169 }
2170
2171 static int domain_context_mapped(struct device *dev)
2172 {
2173 struct intel_iommu *iommu;
2174 u8 bus, devfn;
2175
2176 iommu = device_to_iommu(dev, &bus, &devfn);
2177 if (!iommu)
2178 return -ENODEV;
2179
2180 if (!dev_is_pci(dev))
2181 return device_context_mapped(iommu, bus, devfn);
2182
2183 return !pci_for_each_dma_alias(to_pci_dev(dev),
2184 domain_context_mapped_cb, iommu);
2185 }
2186
2187 /* Returns a number of VTD pages, but aligned to MM page size */
2188 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2189 size_t size)
2190 {
2191 host_addr &= ~PAGE_MASK;
2192 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2193 }
2194
2195 /* Return largest possible superpage level for a given mapping */
2196 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2197 unsigned long iov_pfn,
2198 unsigned long phy_pfn,
2199 unsigned long pages)
2200 {
2201 int support, level = 1;
2202 unsigned long pfnmerge;
2203
2204 support = domain->iommu_superpage;
2205
2206 /* To use a large page, the virtual *and* physical addresses
2207 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2208 of them will mean we have to use smaller pages. So just
2209 merge them and check both at once. */
2210 pfnmerge = iov_pfn | phy_pfn;
2211
2212 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2213 pages >>= VTD_STRIDE_SHIFT;
2214 if (!pages)
2215 break;
2216 pfnmerge >>= VTD_STRIDE_SHIFT;
2217 level++;
2218 support--;
2219 }
2220 return level;
2221 }
2222
2223 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2224 struct scatterlist *sg, unsigned long phys_pfn,
2225 unsigned long nr_pages, int prot)
2226 {
2227 struct dma_pte *first_pte = NULL, *pte = NULL;
2228 phys_addr_t uninitialized_var(pteval);
2229 unsigned long sg_res = 0;
2230 unsigned int largepage_lvl = 0;
2231 unsigned long lvl_pages = 0;
2232
2233 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2234
2235 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2236 return -EINVAL;
2237
2238 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2239
2240 if (!sg) {
2241 sg_res = nr_pages;
2242 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2243 }
2244
2245 while (nr_pages > 0) {
2246 uint64_t tmp;
2247
2248 if (!sg_res) {
2249 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2250
2251 sg_res = aligned_nrpages(sg->offset, sg->length);
2252 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2253 sg->dma_length = sg->length;
2254 pteval = (sg_phys(sg) - pgoff) | prot;
2255 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2256 }
2257
2258 if (!pte) {
2259 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2260
2261 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2262 if (!pte)
2263 return -ENOMEM;
2264 /* It is large page*/
2265 if (largepage_lvl > 1) {
2266 unsigned long nr_superpages, end_pfn;
2267
2268 pteval |= DMA_PTE_LARGE_PAGE;
2269 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2270
2271 nr_superpages = sg_res / lvl_pages;
2272 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2273
2274 /*
2275 * Ensure that old small page tables are
2276 * removed to make room for superpage(s).
2277 * We're adding new large pages, so make sure
2278 * we don't remove their parent tables.
2279 */
2280 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2281 largepage_lvl + 1);
2282 } else {
2283 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2284 }
2285
2286 }
2287 /* We don't need lock here, nobody else
2288 * touches the iova range
2289 */
2290 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2291 if (tmp) {
2292 static int dumps = 5;
2293 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2294 iov_pfn, tmp, (unsigned long long)pteval);
2295 if (dumps) {
2296 dumps--;
2297 debug_dma_dump_mappings(NULL);
2298 }
2299 WARN_ON(1);
2300 }
2301
2302 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2303
2304 BUG_ON(nr_pages < lvl_pages);
2305 BUG_ON(sg_res < lvl_pages);
2306
2307 nr_pages -= lvl_pages;
2308 iov_pfn += lvl_pages;
2309 phys_pfn += lvl_pages;
2310 pteval += lvl_pages * VTD_PAGE_SIZE;
2311 sg_res -= lvl_pages;
2312
2313 /* If the next PTE would be the first in a new page, then we
2314 need to flush the cache on the entries we've just written.
2315 And then we'll need to recalculate 'pte', so clear it and
2316 let it get set again in the if (!pte) block above.
2317
2318 If we're done (!nr_pages) we need to flush the cache too.
2319
2320 Also if we've been setting superpages, we may need to
2321 recalculate 'pte' and switch back to smaller pages for the
2322 end of the mapping, if the trailing size is not enough to
2323 use another superpage (i.e. sg_res < lvl_pages). */
2324 pte++;
2325 if (!nr_pages || first_pte_in_page(pte) ||
2326 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2327 domain_flush_cache(domain, first_pte,
2328 (void *)pte - (void *)first_pte);
2329 pte = NULL;
2330 }
2331
2332 if (!sg_res && nr_pages)
2333 sg = sg_next(sg);
2334 }
2335 return 0;
2336 }
2337
2338 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2339 struct scatterlist *sg, unsigned long phys_pfn,
2340 unsigned long nr_pages, int prot)
2341 {
2342 int iommu_id, ret;
2343 struct intel_iommu *iommu;
2344
2345 /* Do the real mapping first */
2346 ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2347 if (ret)
2348 return ret;
2349
2350 for_each_domain_iommu(iommu_id, domain) {
2351 iommu = g_iommus[iommu_id];
2352 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2353 }
2354
2355 return 0;
2356 }
2357
2358 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2359 struct scatterlist *sg, unsigned long nr_pages,
2360 int prot)
2361 {
2362 return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2363 }
2364
2365 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2366 unsigned long phys_pfn, unsigned long nr_pages,
2367 int prot)
2368 {
2369 return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2370 }
2371
2372 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2373 {
2374 unsigned long flags;
2375 struct context_entry *context;
2376 u16 did_old;
2377
2378 if (!iommu)
2379 return;
2380
2381 spin_lock_irqsave(&iommu->lock, flags);
2382 context = iommu_context_addr(iommu, bus, devfn, 0);
2383 if (!context) {
2384 spin_unlock_irqrestore(&iommu->lock, flags);
2385 return;
2386 }
2387 did_old = context_domain_id(context);
2388 context_clear_entry(context);
2389 __iommu_flush_cache(iommu, context, sizeof(*context));
2390 spin_unlock_irqrestore(&iommu->lock, flags);
2391 iommu->flush.flush_context(iommu,
2392 did_old,
2393 (((u16)bus) << 8) | devfn,
2394 DMA_CCMD_MASK_NOBIT,
2395 DMA_CCMD_DEVICE_INVL);
2396 iommu->flush.flush_iotlb(iommu,
2397 did_old,
2398 0,
2399 0,
2400 DMA_TLB_DSI_FLUSH);
2401 }
2402
2403 static inline void unlink_domain_info(struct device_domain_info *info)
2404 {
2405 assert_spin_locked(&device_domain_lock);
2406 list_del(&info->link);
2407 list_del(&info->global);
2408 if (info->dev)
2409 info->dev->archdata.iommu = NULL;
2410 }
2411
2412 static void domain_remove_dev_info(struct dmar_domain *domain)
2413 {
2414 struct device_domain_info *info, *tmp;
2415 unsigned long flags;
2416
2417 spin_lock_irqsave(&device_domain_lock, flags);
2418 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2419 __dmar_remove_one_dev_info(info);
2420 spin_unlock_irqrestore(&device_domain_lock, flags);
2421 }
2422
2423 /*
2424 * find_domain
2425 * Note: we use struct device->archdata.iommu stores the info
2426 */
2427 static struct dmar_domain *find_domain(struct device *dev)
2428 {
2429 struct device_domain_info *info;
2430
2431 if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2432 struct iommu_domain *domain;
2433
2434 dev->archdata.iommu = NULL;
2435 domain = iommu_get_domain_for_dev(dev);
2436 if (domain)
2437 intel_iommu_attach_device(domain, dev);
2438 }
2439
2440 /* No lock here, assumes no domain exit in normal case */
2441 info = dev->archdata.iommu;
2442
2443 if (likely(info))
2444 return info->domain;
2445 return NULL;
2446 }
2447
2448 static inline struct device_domain_info *
2449 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2450 {
2451 struct device_domain_info *info;
2452
2453 list_for_each_entry(info, &device_domain_list, global)
2454 if (info->iommu->segment == segment && info->bus == bus &&
2455 info->devfn == devfn)
2456 return info;
2457
2458 return NULL;
2459 }
2460
2461 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2462 int bus, int devfn,
2463 struct device *dev,
2464 struct dmar_domain *domain)
2465 {
2466 struct dmar_domain *found = NULL;
2467 struct device_domain_info *info;
2468 unsigned long flags;
2469 int ret;
2470
2471 info = alloc_devinfo_mem();
2472 if (!info)
2473 return NULL;
2474
2475 info->bus = bus;
2476 info->devfn = devfn;
2477 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2478 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2479 info->ats_qdep = 0;
2480 info->dev = dev;
2481 info->domain = domain;
2482 info->iommu = iommu;
2483 info->pasid_table = NULL;
2484 info->auxd_enabled = 0;
2485 INIT_LIST_HEAD(&info->auxiliary_domains);
2486
2487 if (dev && dev_is_pci(dev)) {
2488 struct pci_dev *pdev = to_pci_dev(info->dev);
2489
2490 if (!pdev->untrusted &&
2491 !pci_ats_disabled() &&
2492 ecap_dev_iotlb_support(iommu->ecap) &&
2493 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2494 dmar_find_matched_atsr_unit(pdev))
2495 info->ats_supported = 1;
2496
2497 if (sm_supported(iommu)) {
2498 if (pasid_supported(iommu)) {
2499 int features = pci_pasid_features(pdev);
2500 if (features >= 0)
2501 info->pasid_supported = features | 1;
2502 }
2503
2504 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2505 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2506 info->pri_supported = 1;
2507 }
2508 }
2509
2510 spin_lock_irqsave(&device_domain_lock, flags);
2511 if (dev)
2512 found = find_domain(dev);
2513
2514 if (!found) {
2515 struct device_domain_info *info2;
2516 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2517 if (info2) {
2518 found = info2->domain;
2519 info2->dev = dev;
2520 }
2521 }
2522
2523 if (found) {
2524 spin_unlock_irqrestore(&device_domain_lock, flags);
2525 free_devinfo_mem(info);
2526 /* Caller must free the original domain */
2527 return found;
2528 }
2529
2530 spin_lock(&iommu->lock);
2531 ret = domain_attach_iommu(domain, iommu);
2532 spin_unlock(&iommu->lock);
2533
2534 if (ret) {
2535 spin_unlock_irqrestore(&device_domain_lock, flags);
2536 free_devinfo_mem(info);
2537 return NULL;
2538 }
2539
2540 list_add(&info->link, &domain->devices);
2541 list_add(&info->global, &device_domain_list);
2542 if (dev)
2543 dev->archdata.iommu = info;
2544 spin_unlock_irqrestore(&device_domain_lock, flags);
2545
2546 /* PASID table is mandatory for a PCI device in scalable mode. */
2547 if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2548 ret = intel_pasid_alloc_table(dev);
2549 if (ret) {
2550 dev_err(dev, "PASID table allocation failed\n");
2551 dmar_remove_one_dev_info(dev);
2552 return NULL;
2553 }
2554
2555 /* Setup the PASID entry for requests without PASID: */
2556 spin_lock(&iommu->lock);
2557 if (hw_pass_through && domain_type_is_si(domain))
2558 ret = intel_pasid_setup_pass_through(iommu, domain,
2559 dev, PASID_RID2PASID);
2560 else
2561 ret = intel_pasid_setup_second_level(iommu, domain,
2562 dev, PASID_RID2PASID);
2563 spin_unlock(&iommu->lock);
2564 if (ret) {
2565 dev_err(dev, "Setup RID2PASID failed\n");
2566 dmar_remove_one_dev_info(dev);
2567 return NULL;
2568 }
2569 }
2570
2571 if (dev && domain_context_mapping(domain, dev)) {
2572 dev_err(dev, "Domain context map failed\n");
2573 dmar_remove_one_dev_info(dev);
2574 return NULL;
2575 }
2576
2577 return domain;
2578 }
2579
2580 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2581 {
2582 *(u16 *)opaque = alias;
2583 return 0;
2584 }
2585
2586 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2587 {
2588 struct device_domain_info *info;
2589 struct dmar_domain *domain = NULL;
2590 struct intel_iommu *iommu;
2591 u16 dma_alias;
2592 unsigned long flags;
2593 u8 bus, devfn;
2594
2595 iommu = device_to_iommu(dev, &bus, &devfn);
2596 if (!iommu)
2597 return NULL;
2598
2599 if (dev_is_pci(dev)) {
2600 struct pci_dev *pdev = to_pci_dev(dev);
2601
2602 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2603
2604 spin_lock_irqsave(&device_domain_lock, flags);
2605 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2606 PCI_BUS_NUM(dma_alias),
2607 dma_alias & 0xff);
2608 if (info) {
2609 iommu = info->iommu;
2610 domain = info->domain;
2611 }
2612 spin_unlock_irqrestore(&device_domain_lock, flags);
2613
2614 /* DMA alias already has a domain, use it */
2615 if (info)
2616 goto out;
2617 }
2618
2619 /* Allocate and initialize new domain for the device */
2620 domain = alloc_domain(0);
2621 if (!domain)
2622 return NULL;
2623 if (domain_init(domain, iommu, gaw)) {
2624 domain_exit(domain);
2625 return NULL;
2626 }
2627
2628 out:
2629 return domain;
2630 }
2631
2632 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2633 struct dmar_domain *domain)
2634 {
2635 struct intel_iommu *iommu;
2636 struct dmar_domain *tmp;
2637 u16 req_id, dma_alias;
2638 u8 bus, devfn;
2639
2640 iommu = device_to_iommu(dev, &bus, &devfn);
2641 if (!iommu)
2642 return NULL;
2643
2644 req_id = ((u16)bus << 8) | devfn;
2645
2646 if (dev_is_pci(dev)) {
2647 struct pci_dev *pdev = to_pci_dev(dev);
2648
2649 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2650
2651 /* register PCI DMA alias device */
2652 if (req_id != dma_alias) {
2653 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2654 dma_alias & 0xff, NULL, domain);
2655
2656 if (!tmp || tmp != domain)
2657 return tmp;
2658 }
2659 }
2660
2661 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2662 if (!tmp || tmp != domain)
2663 return tmp;
2664
2665 return domain;
2666 }
2667
2668 static int iommu_domain_identity_map(struct dmar_domain *domain,
2669 unsigned long long start,
2670 unsigned long long end)
2671 {
2672 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2673 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2674
2675 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2676 dma_to_mm_pfn(last_vpfn))) {
2677 pr_err("Reserving iova failed\n");
2678 return -ENOMEM;
2679 }
2680
2681 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2682 /*
2683 * RMRR range might have overlap with physical memory range,
2684 * clear it first
2685 */
2686 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2687
2688 return __domain_mapping(domain, first_vpfn, NULL,
2689 first_vpfn, last_vpfn - first_vpfn + 1,
2690 DMA_PTE_READ|DMA_PTE_WRITE);
2691 }
2692
2693 static int domain_prepare_identity_map(struct device *dev,
2694 struct dmar_domain *domain,
2695 unsigned long long start,
2696 unsigned long long end)
2697 {
2698 /* For _hardware_ passthrough, don't bother. But for software
2699 passthrough, we do it anyway -- it may indicate a memory
2700 range which is reserved in E820, so which didn't get set
2701 up to start with in si_domain */
2702 if (domain == si_domain && hw_pass_through) {
2703 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2704 start, end);
2705 return 0;
2706 }
2707
2708 dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2709
2710 if (end < start) {
2711 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2712 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2713 dmi_get_system_info(DMI_BIOS_VENDOR),
2714 dmi_get_system_info(DMI_BIOS_VERSION),
2715 dmi_get_system_info(DMI_PRODUCT_VERSION));
2716 return -EIO;
2717 }
2718
2719 if (end >> agaw_to_width(domain->agaw)) {
2720 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2721 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2722 agaw_to_width(domain->agaw),
2723 dmi_get_system_info(DMI_BIOS_VENDOR),
2724 dmi_get_system_info(DMI_BIOS_VERSION),
2725 dmi_get_system_info(DMI_PRODUCT_VERSION));
2726 return -EIO;
2727 }
2728
2729 return iommu_domain_identity_map(domain, start, end);
2730 }
2731
2732 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2733
2734 static int __init si_domain_init(int hw)
2735 {
2736 struct dmar_rmrr_unit *rmrr;
2737 struct device *dev;
2738 int i, nid, ret;
2739
2740 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2741 if (!si_domain)
2742 return -EFAULT;
2743
2744 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2745 domain_exit(si_domain);
2746 return -EFAULT;
2747 }
2748
2749 if (hw)
2750 return 0;
2751
2752 for_each_online_node(nid) {
2753 unsigned long start_pfn, end_pfn;
2754 int i;
2755
2756 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2757 ret = iommu_domain_identity_map(si_domain,
2758 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2759 if (ret)
2760 return ret;
2761 }
2762 }
2763
2764 /*
2765 * Normally we use DMA domains for devices which have RMRRs. But we
2766 * loose this requirement for graphic and usb devices. Identity map
2767 * the RMRRs for graphic and USB devices so that they could use the
2768 * si_domain.
2769 */
2770 for_each_rmrr_units(rmrr) {
2771 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2772 i, dev) {
2773 unsigned long long start = rmrr->base_address;
2774 unsigned long long end = rmrr->end_address;
2775
2776 if (device_is_rmrr_locked(dev))
2777 continue;
2778
2779 if (WARN_ON(end < start ||
2780 end >> agaw_to_width(si_domain->agaw)))
2781 continue;
2782
2783 ret = iommu_domain_identity_map(si_domain, start, end);
2784 if (ret)
2785 return ret;
2786 }
2787 }
2788
2789 return 0;
2790 }
2791
2792 static int identity_mapping(struct device *dev)
2793 {
2794 struct device_domain_info *info;
2795
2796 info = dev->archdata.iommu;
2797 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2798 return (info->domain == si_domain);
2799
2800 return 0;
2801 }
2802
2803 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2804 {
2805 struct dmar_domain *ndomain;
2806 struct intel_iommu *iommu;
2807 u8 bus, devfn;
2808
2809 iommu = device_to_iommu(dev, &bus, &devfn);
2810 if (!iommu)
2811 return -ENODEV;
2812
2813 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2814 if (ndomain != domain)
2815 return -EBUSY;
2816
2817 return 0;
2818 }
2819
2820 static bool device_has_rmrr(struct device *dev)
2821 {
2822 struct dmar_rmrr_unit *rmrr;
2823 struct device *tmp;
2824 int i;
2825
2826 rcu_read_lock();
2827 for_each_rmrr_units(rmrr) {
2828 /*
2829 * Return TRUE if this RMRR contains the device that
2830 * is passed in.
2831 */
2832 for_each_active_dev_scope(rmrr->devices,
2833 rmrr->devices_cnt, i, tmp)
2834 if (tmp == dev ||
2835 is_downstream_to_pci_bridge(dev, tmp)) {
2836 rcu_read_unlock();
2837 return true;
2838 }
2839 }
2840 rcu_read_unlock();
2841 return false;
2842 }
2843
2844 /**
2845 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2846 * is relaxable (ie. is allowed to be not enforced under some conditions)
2847 * @dev: device handle
2848 *
2849 * We assume that PCI USB devices with RMRRs have them largely
2850 * for historical reasons and that the RMRR space is not actively used post
2851 * boot. This exclusion may change if vendors begin to abuse it.
2852 *
2853 * The same exception is made for graphics devices, with the requirement that
2854 * any use of the RMRR regions will be torn down before assigning the device
2855 * to a guest.
2856 *
2857 * Return: true if the RMRR is relaxable, false otherwise
2858 */
2859 static bool device_rmrr_is_relaxable(struct device *dev)
2860 {
2861 struct pci_dev *pdev;
2862
2863 if (!dev_is_pci(dev))
2864 return false;
2865
2866 pdev = to_pci_dev(dev);
2867 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2868 return true;
2869 else
2870 return false;
2871 }
2872
2873 /*
2874 * There are a couple cases where we need to restrict the functionality of
2875 * devices associated with RMRRs. The first is when evaluating a device for
2876 * identity mapping because problems exist when devices are moved in and out
2877 * of domains and their respective RMRR information is lost. This means that
2878 * a device with associated RMRRs will never be in a "passthrough" domain.
2879 * The second is use of the device through the IOMMU API. This interface
2880 * expects to have full control of the IOVA space for the device. We cannot
2881 * satisfy both the requirement that RMRR access is maintained and have an
2882 * unencumbered IOVA space. We also have no ability to quiesce the device's
2883 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2884 * We therefore prevent devices associated with an RMRR from participating in
2885 * the IOMMU API, which eliminates them from device assignment.
2886 *
2887 * In both cases, devices which have relaxable RMRRs are not concerned by this
2888 * restriction. See device_rmrr_is_relaxable comment.
2889 */
2890 static bool device_is_rmrr_locked(struct device *dev)
2891 {
2892 if (!device_has_rmrr(dev))
2893 return false;
2894
2895 if (device_rmrr_is_relaxable(dev))
2896 return false;
2897
2898 return true;
2899 }
2900
2901 /*
2902 * Return the required default domain type for a specific device.
2903 *
2904 * @dev: the device in query
2905 * @startup: true if this is during early boot
2906 *
2907 * Returns:
2908 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2909 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2910 * - 0: both identity and dynamic domains work for this device
2911 */
2912 static int device_def_domain_type(struct device *dev)
2913 {
2914 if (dev_is_pci(dev)) {
2915 struct pci_dev *pdev = to_pci_dev(dev);
2916
2917 if (device_is_rmrr_locked(dev))
2918 return IOMMU_DOMAIN_DMA;
2919
2920 /*
2921 * Prevent any device marked as untrusted from getting
2922 * placed into the statically identity mapping domain.
2923 */
2924 if (pdev->untrusted)
2925 return IOMMU_DOMAIN_DMA;
2926
2927 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2928 return IOMMU_DOMAIN_IDENTITY;
2929
2930 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2931 return IOMMU_DOMAIN_IDENTITY;
2932
2933 /*
2934 * We want to start off with all devices in the 1:1 domain, and
2935 * take them out later if we find they can't access all of memory.
2936 *
2937 * However, we can't do this for PCI devices behind bridges,
2938 * because all PCI devices behind the same bridge will end up
2939 * with the same source-id on their transactions.
2940 *
2941 * Practically speaking, we can't change things around for these
2942 * devices at run-time, because we can't be sure there'll be no
2943 * DMA transactions in flight for any of their siblings.
2944 *
2945 * So PCI devices (unless they're on the root bus) as well as
2946 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2947 * the 1:1 domain, just in _case_ one of their siblings turns out
2948 * not to be able to map all of memory.
2949 */
2950 if (!pci_is_pcie(pdev)) {
2951 if (!pci_is_root_bus(pdev->bus))
2952 return IOMMU_DOMAIN_DMA;
2953 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2954 return IOMMU_DOMAIN_DMA;
2955 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2956 return IOMMU_DOMAIN_DMA;
2957 } else {
2958 if (device_has_rmrr(dev))
2959 return IOMMU_DOMAIN_DMA;
2960 }
2961
2962 return (iommu_identity_mapping & IDENTMAP_ALL) ?
2963 IOMMU_DOMAIN_IDENTITY : 0;
2964 }
2965
2966 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2967 {
2968 /*
2969 * Start from the sane iommu hardware state.
2970 * If the queued invalidation is already initialized by us
2971 * (for example, while enabling interrupt-remapping) then
2972 * we got the things already rolling from a sane state.
2973 */
2974 if (!iommu->qi) {
2975 /*
2976 * Clear any previous faults.
2977 */
2978 dmar_fault(-1, iommu);
2979 /*
2980 * Disable queued invalidation if supported and already enabled
2981 * before OS handover.
2982 */
2983 dmar_disable_qi(iommu);
2984 }
2985
2986 if (dmar_enable_qi(iommu)) {
2987 /*
2988 * Queued Invalidate not enabled, use Register Based Invalidate
2989 */
2990 iommu->flush.flush_context = __iommu_flush_context;
2991 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2992 pr_info("%s: Using Register based invalidation\n",
2993 iommu->name);
2994 } else {
2995 iommu->flush.flush_context = qi_flush_context;
2996 iommu->flush.flush_iotlb = qi_flush_iotlb;
2997 pr_info("%s: Using Queued invalidation\n", iommu->name);
2998 }
2999 }
3000
3001 static int copy_context_table(struct intel_iommu *iommu,
3002 struct root_entry *old_re,
3003 struct context_entry **tbl,
3004 int bus, bool ext)
3005 {
3006 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3007 struct context_entry *new_ce = NULL, ce;
3008 struct context_entry *old_ce = NULL;
3009 struct root_entry re;
3010 phys_addr_t old_ce_phys;
3011
3012 tbl_idx = ext ? bus * 2 : bus;
3013 memcpy(&re, old_re, sizeof(re));
3014
3015 for (devfn = 0; devfn < 256; devfn++) {
3016 /* First calculate the correct index */
3017 idx = (ext ? devfn * 2 : devfn) % 256;
3018
3019 if (idx == 0) {
3020 /* First save what we may have and clean up */
3021 if (new_ce) {
3022 tbl[tbl_idx] = new_ce;
3023 __iommu_flush_cache(iommu, new_ce,
3024 VTD_PAGE_SIZE);
3025 pos = 1;
3026 }
3027
3028 if (old_ce)
3029 memunmap(old_ce);
3030
3031 ret = 0;
3032 if (devfn < 0x80)
3033 old_ce_phys = root_entry_lctp(&re);
3034 else
3035 old_ce_phys = root_entry_uctp(&re);
3036
3037 if (!old_ce_phys) {
3038 if (ext && devfn == 0) {
3039 /* No LCTP, try UCTP */
3040 devfn = 0x7f;
3041 continue;
3042 } else {
3043 goto out;
3044 }
3045 }
3046
3047 ret = -ENOMEM;
3048 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3049 MEMREMAP_WB);
3050 if (!old_ce)
3051 goto out;
3052
3053 new_ce = alloc_pgtable_page(iommu->node);
3054 if (!new_ce)
3055 goto out_unmap;
3056
3057 ret = 0;
3058 }
3059
3060 /* Now copy the context entry */
3061 memcpy(&ce, old_ce + idx, sizeof(ce));
3062
3063 if (!__context_present(&ce))
3064 continue;
3065
3066 did = context_domain_id(&ce);
3067 if (did >= 0 && did < cap_ndoms(iommu->cap))
3068 set_bit(did, iommu->domain_ids);
3069
3070 /*
3071 * We need a marker for copied context entries. This
3072 * marker needs to work for the old format as well as
3073 * for extended context entries.
3074 *
3075 * Bit 67 of the context entry is used. In the old
3076 * format this bit is available to software, in the
3077 * extended format it is the PGE bit, but PGE is ignored
3078 * by HW if PASIDs are disabled (and thus still
3079 * available).
3080 *
3081 * So disable PASIDs first and then mark the entry
3082 * copied. This means that we don't copy PASID
3083 * translations from the old kernel, but this is fine as
3084 * faults there are not fatal.
3085 */
3086 context_clear_pasid_enable(&ce);
3087 context_set_copied(&ce);
3088
3089 new_ce[idx] = ce;
3090 }
3091
3092 tbl[tbl_idx + pos] = new_ce;
3093
3094 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3095
3096 out_unmap:
3097 memunmap(old_ce);
3098
3099 out:
3100 return ret;
3101 }
3102
3103 static int copy_translation_tables(struct intel_iommu *iommu)
3104 {
3105 struct context_entry **ctxt_tbls;
3106 struct root_entry *old_rt;
3107 phys_addr_t old_rt_phys;
3108 int ctxt_table_entries;
3109 unsigned long flags;
3110 u64 rtaddr_reg;
3111 int bus, ret;
3112 bool new_ext, ext;
3113
3114 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3115 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3116 new_ext = !!ecap_ecs(iommu->ecap);
3117
3118 /*
3119 * The RTT bit can only be changed when translation is disabled,
3120 * but disabling translation means to open a window for data
3121 * corruption. So bail out and don't copy anything if we would
3122 * have to change the bit.
3123 */
3124 if (new_ext != ext)
3125 return -EINVAL;
3126
3127 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3128 if (!old_rt_phys)
3129 return -EINVAL;
3130
3131 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3132 if (!old_rt)
3133 return -ENOMEM;
3134
3135 /* This is too big for the stack - allocate it from slab */
3136 ctxt_table_entries = ext ? 512 : 256;
3137 ret = -ENOMEM;
3138 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3139 if (!ctxt_tbls)
3140 goto out_unmap;
3141
3142 for (bus = 0; bus < 256; bus++) {
3143 ret = copy_context_table(iommu, &old_rt[bus],
3144 ctxt_tbls, bus, ext);
3145 if (ret) {
3146 pr_err("%s: Failed to copy context table for bus %d\n",
3147 iommu->name, bus);
3148 continue;
3149 }
3150 }
3151
3152 spin_lock_irqsave(&iommu->lock, flags);
3153
3154 /* Context tables are copied, now write them to the root_entry table */
3155 for (bus = 0; bus < 256; bus++) {
3156 int idx = ext ? bus * 2 : bus;
3157 u64 val;
3158
3159 if (ctxt_tbls[idx]) {
3160 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3161 iommu->root_entry[bus].lo = val;
3162 }
3163
3164 if (!ext || !ctxt_tbls[idx + 1])
3165 continue;
3166
3167 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3168 iommu->root_entry[bus].hi = val;
3169 }
3170
3171 spin_unlock_irqrestore(&iommu->lock, flags);
3172
3173 kfree(ctxt_tbls);
3174
3175 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3176
3177 ret = 0;
3178
3179 out_unmap:
3180 memunmap(old_rt);
3181
3182 return ret;
3183 }
3184
3185 static int __init init_dmars(void)
3186 {
3187 struct dmar_drhd_unit *drhd;
3188 struct intel_iommu *iommu;
3189 int ret;
3190
3191 /*
3192 * for each drhd
3193 * allocate root
3194 * initialize and program root entry to not present
3195 * endfor
3196 */
3197 for_each_drhd_unit(drhd) {
3198 /*
3199 * lock not needed as this is only incremented in the single
3200 * threaded kernel __init code path all other access are read
3201 * only
3202 */
3203 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3204 g_num_of_iommus++;
3205 continue;
3206 }
3207 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3208 }
3209
3210 /* Preallocate enough resources for IOMMU hot-addition */
3211 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3212 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3213
3214 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3215 GFP_KERNEL);
3216 if (!g_iommus) {
3217 pr_err("Allocating global iommu array failed\n");
3218 ret = -ENOMEM;
3219 goto error;
3220 }
3221
3222 for_each_iommu(iommu, drhd) {
3223 if (drhd->ignored) {
3224 iommu_disable_translation(iommu);
3225 continue;
3226 }
3227
3228 /*
3229 * Find the max pasid size of all IOMMU's in the system.
3230 * We need to ensure the system pasid table is no bigger
3231 * than the smallest supported.
3232 */
3233 if (pasid_supported(iommu)) {
3234 u32 temp = 2 << ecap_pss(iommu->ecap);
3235
3236 intel_pasid_max_id = min_t(u32, temp,
3237 intel_pasid_max_id);
3238 }
3239
3240 g_iommus[iommu->seq_id] = iommu;
3241
3242 intel_iommu_init_qi(iommu);
3243
3244 ret = iommu_init_domains(iommu);
3245 if (ret)
3246 goto free_iommu;
3247
3248 init_translation_status(iommu);
3249
3250 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3251 iommu_disable_translation(iommu);
3252 clear_translation_pre_enabled(iommu);
3253 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3254 iommu->name);
3255 }
3256
3257 /*
3258 * TBD:
3259 * we could share the same root & context tables
3260 * among all IOMMU's. Need to Split it later.
3261 */
3262 ret = iommu_alloc_root_entry(iommu);
3263 if (ret)
3264 goto free_iommu;
3265
3266 if (translation_pre_enabled(iommu)) {
3267 pr_info("Translation already enabled - trying to copy translation structures\n");
3268
3269 ret = copy_translation_tables(iommu);
3270 if (ret) {
3271 /*
3272 * We found the IOMMU with translation
3273 * enabled - but failed to copy over the
3274 * old root-entry table. Try to proceed
3275 * by disabling translation now and
3276 * allocating a clean root-entry table.
3277 * This might cause DMAR faults, but
3278 * probably the dump will still succeed.
3279 */
3280 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3281 iommu->name);
3282 iommu_disable_translation(iommu);
3283 clear_translation_pre_enabled(iommu);
3284 } else {
3285 pr_info("Copied translation tables from previous kernel for %s\n",
3286 iommu->name);
3287 }
3288 }
3289
3290 if (!ecap_pass_through(iommu->ecap))
3291 hw_pass_through = 0;
3292 #ifdef CONFIG_INTEL_IOMMU_SVM
3293 if (pasid_supported(iommu))
3294 intel_svm_init(iommu);
3295 #endif
3296 }
3297
3298 /*
3299 * Now that qi is enabled on all iommus, set the root entry and flush
3300 * caches. This is required on some Intel X58 chipsets, otherwise the
3301 * flush_context function will loop forever and the boot hangs.
3302 */
3303 for_each_active_iommu(iommu, drhd) {
3304 iommu_flush_write_buffer(iommu);
3305 iommu_set_root_entry(iommu);
3306 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3307 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3308 }
3309
3310 if (iommu_default_passthrough())
3311 iommu_identity_mapping |= IDENTMAP_ALL;
3312
3313 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3314 dmar_map_gfx = 0;
3315 #endif
3316
3317 if (!dmar_map_gfx)
3318 iommu_identity_mapping |= IDENTMAP_GFX;
3319
3320 check_tylersburg_isoch();
3321
3322 ret = si_domain_init(hw_pass_through);
3323 if (ret)
3324 goto free_iommu;
3325
3326 /*
3327 * for each drhd
3328 * enable fault log
3329 * global invalidate context cache
3330 * global invalidate iotlb
3331 * enable translation
3332 */
3333 for_each_iommu(iommu, drhd) {
3334 if (drhd->ignored) {
3335 /*
3336 * we always have to disable PMRs or DMA may fail on
3337 * this device
3338 */
3339 if (force_on)
3340 iommu_disable_protect_mem_regions(iommu);
3341 continue;
3342 }
3343
3344 iommu_flush_write_buffer(iommu);
3345
3346 #ifdef CONFIG_INTEL_IOMMU_SVM
3347 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3348 /*
3349 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3350 * could cause possible lock race condition.
3351 */
3352 up_write(&dmar_global_lock);
3353 ret = intel_svm_enable_prq(iommu);
3354 down_write(&dmar_global_lock);
3355 if (ret)
3356 goto free_iommu;
3357 }
3358 #endif
3359 ret = dmar_set_interrupt(iommu);
3360 if (ret)
3361 goto free_iommu;
3362 }
3363
3364 return 0;
3365
3366 free_iommu:
3367 for_each_active_iommu(iommu, drhd) {
3368 disable_dmar_iommu(iommu);
3369 free_dmar_iommu(iommu);
3370 }
3371
3372 kfree(g_iommus);
3373
3374 error:
3375 return ret;
3376 }
3377
3378 /* This takes a number of _MM_ pages, not VTD pages */
3379 static unsigned long intel_alloc_iova(struct device *dev,
3380 struct dmar_domain *domain,
3381 unsigned long nrpages, uint64_t dma_mask)
3382 {
3383 unsigned long iova_pfn;
3384
3385 /* Restrict dma_mask to the width that the iommu can handle */
3386 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3387 /* Ensure we reserve the whole size-aligned region */
3388 nrpages = __roundup_pow_of_two(nrpages);
3389
3390 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3391 /*
3392 * First try to allocate an io virtual address in
3393 * DMA_BIT_MASK(32) and if that fails then try allocating
3394 * from higher range
3395 */
3396 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3397 IOVA_PFN(DMA_BIT_MASK(32)), false);
3398 if (iova_pfn)
3399 return iova_pfn;
3400 }
3401 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3402 IOVA_PFN(dma_mask), true);
3403 if (unlikely(!iova_pfn)) {
3404 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3405 return 0;
3406 }
3407
3408 return iova_pfn;
3409 }
3410
3411 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3412 {
3413 struct dmar_domain *domain, *tmp;
3414 struct dmar_rmrr_unit *rmrr;
3415 struct device *i_dev;
3416 int i, ret;
3417
3418 /* Device shouldn't be attached by any domains. */
3419 domain = find_domain(dev);
3420 if (domain)
3421 return NULL;
3422
3423 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3424 if (!domain)
3425 goto out;
3426
3427 /* We have a new domain - setup possible RMRRs for the device */
3428 rcu_read_lock();
3429 for_each_rmrr_units(rmrr) {
3430 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3431 i, i_dev) {
3432 if (i_dev != dev)
3433 continue;
3434
3435 ret = domain_prepare_identity_map(dev, domain,
3436 rmrr->base_address,
3437 rmrr->end_address);
3438 if (ret)
3439 dev_err(dev, "Mapping reserved region failed\n");
3440 }
3441 }
3442 rcu_read_unlock();
3443
3444 tmp = set_domain_for_dev(dev, domain);
3445 if (!tmp || domain != tmp) {
3446 domain_exit(domain);
3447 domain = tmp;
3448 }
3449
3450 out:
3451 if (!domain)
3452 dev_err(dev, "Allocating domain failed\n");
3453 else
3454 domain->domain.type = IOMMU_DOMAIN_DMA;
3455
3456 return domain;
3457 }
3458
3459 /* Check if the dev needs to go through non-identity map and unmap process.*/
3460 static bool iommu_need_mapping(struct device *dev)
3461 {
3462 int ret;
3463
3464 if (iommu_dummy(dev))
3465 return false;
3466
3467 ret = identity_mapping(dev);
3468 if (ret) {
3469 u64 dma_mask = *dev->dma_mask;
3470
3471 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3472 dma_mask = dev->coherent_dma_mask;
3473
3474 if (dma_mask >= dma_get_required_mask(dev))
3475 return false;
3476
3477 /*
3478 * 32 bit DMA is removed from si_domain and fall back to
3479 * non-identity mapping.
3480 */
3481 dmar_remove_one_dev_info(dev);
3482 ret = iommu_request_dma_domain_for_dev(dev);
3483 if (ret) {
3484 struct iommu_domain *domain;
3485 struct dmar_domain *dmar_domain;
3486
3487 domain = iommu_get_domain_for_dev(dev);
3488 if (domain) {
3489 dmar_domain = to_dmar_domain(domain);
3490 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3491 }
3492 dmar_remove_one_dev_info(dev);
3493 get_private_domain_for_dev(dev);
3494 }
3495
3496 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3497 }
3498
3499 return true;
3500 }
3501
3502 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3503 size_t size, int dir, u64 dma_mask)
3504 {
3505 struct dmar_domain *domain;
3506 phys_addr_t start_paddr;
3507 unsigned long iova_pfn;
3508 int prot = 0;
3509 int ret;
3510 struct intel_iommu *iommu;
3511 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3512
3513 BUG_ON(dir == DMA_NONE);
3514
3515 domain = find_domain(dev);
3516 if (!domain)
3517 return DMA_MAPPING_ERROR;
3518
3519 iommu = domain_get_iommu(domain);
3520 size = aligned_nrpages(paddr, size);
3521
3522 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3523 if (!iova_pfn)
3524 goto error;
3525
3526 /*
3527 * Check if DMAR supports zero-length reads on write only
3528 * mappings..
3529 */
3530 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3531 !cap_zlr(iommu->cap))
3532 prot |= DMA_PTE_READ;
3533 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3534 prot |= DMA_PTE_WRITE;
3535 /*
3536 * paddr - (paddr + size) might be partial page, we should map the whole
3537 * page. Note: if two part of one page are separately mapped, we
3538 * might have two guest_addr mapping to the same host paddr, but this
3539 * is not a big problem
3540 */
3541 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3542 mm_to_dma_pfn(paddr_pfn), size, prot);
3543 if (ret)
3544 goto error;
3545
3546 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3547 start_paddr += paddr & ~PAGE_MASK;
3548
3549 trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);
3550
3551 return start_paddr;
3552
3553 error:
3554 if (iova_pfn)
3555 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3556 dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3557 size, (unsigned long long)paddr, dir);
3558 return DMA_MAPPING_ERROR;
3559 }
3560
3561 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3562 unsigned long offset, size_t size,
3563 enum dma_data_direction dir,
3564 unsigned long attrs)
3565 {
3566 if (iommu_need_mapping(dev))
3567 return __intel_map_single(dev, page_to_phys(page) + offset,
3568 size, dir, *dev->dma_mask);
3569 return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3570 }
3571
3572 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3573 size_t size, enum dma_data_direction dir,
3574 unsigned long attrs)
3575 {
3576 if (iommu_need_mapping(dev))
3577 return __intel_map_single(dev, phys_addr, size, dir,
3578 *dev->dma_mask);
3579 return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3580 }
3581
3582 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3583 {
3584 struct dmar_domain *domain;
3585 unsigned long start_pfn, last_pfn;
3586 unsigned long nrpages;
3587 unsigned long iova_pfn;
3588 struct intel_iommu *iommu;
3589 struct page *freelist;
3590 struct pci_dev *pdev = NULL;
3591
3592 domain = find_domain(dev);
3593 BUG_ON(!domain);
3594
3595 iommu = domain_get_iommu(domain);
3596
3597 iova_pfn = IOVA_PFN(dev_addr);
3598
3599 nrpages = aligned_nrpages(dev_addr, size);
3600 start_pfn = mm_to_dma_pfn(iova_pfn);
3601 last_pfn = start_pfn + nrpages - 1;
3602
3603 if (dev_is_pci(dev))
3604 pdev = to_pci_dev(dev);
3605
3606 freelist = domain_unmap(domain, start_pfn, last_pfn);
3607 if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3608 !has_iova_flush_queue(&domain->iovad)) {
3609 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3610 nrpages, !freelist, 0);
3611 /* free iova */
3612 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3613 dma_free_pagelist(freelist);
3614 } else {
3615 queue_iova(&domain->iovad, iova_pfn, nrpages,
3616 (unsigned long)freelist);
3617 /*
3618 * queue up the release of the unmap to save the 1/6th of the
3619 * cpu used up by the iotlb flush operation...
3620 */
3621 }
3622
3623 trace_unmap_single(dev, dev_addr, size);
3624 }
3625
3626 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3627 size_t size, enum dma_data_direction dir,
3628 unsigned long attrs)
3629 {
3630 if (iommu_need_mapping(dev))
3631 intel_unmap(dev, dev_addr, size);
3632 else
3633 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3634 }
3635
3636 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3637 size_t size, enum dma_data_direction dir, unsigned long attrs)
3638 {
3639 if (iommu_need_mapping(dev))
3640 intel_unmap(dev, dev_addr, size);
3641 }
3642
3643 static void *intel_alloc_coherent(struct device *dev, size_t size,
3644 dma_addr_t *dma_handle, gfp_t flags,
3645 unsigned long attrs)
3646 {
3647 struct page *page = NULL;
3648 int order;
3649
3650 if (!iommu_need_mapping(dev))
3651 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3652
3653 size = PAGE_ALIGN(size);
3654 order = get_order(size);
3655
3656 if (gfpflags_allow_blocking(flags)) {
3657 unsigned int count = size >> PAGE_SHIFT;
3658
3659 page = dma_alloc_from_contiguous(dev, count, order,
3660 flags & __GFP_NOWARN);
3661 }
3662
3663 if (!page)
3664 page = alloc_pages(flags, order);
3665 if (!page)
3666 return NULL;
3667 memset(page_address(page), 0, size);
3668
3669 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3670 DMA_BIDIRECTIONAL,
3671 dev->coherent_dma_mask);
3672 if (*dma_handle != DMA_MAPPING_ERROR)
3673 return page_address(page);
3674 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3675 __free_pages(page, order);
3676
3677 return NULL;
3678 }
3679
3680 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3681 dma_addr_t dma_handle, unsigned long attrs)
3682 {
3683 int order;
3684 struct page *page = virt_to_page(vaddr);
3685
3686 if (!iommu_need_mapping(dev))
3687 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3688
3689 size = PAGE_ALIGN(size);
3690 order = get_order(size);
3691
3692 intel_unmap(dev, dma_handle, size);
3693 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3694 __free_pages(page, order);
3695 }
3696
3697 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3698 int nelems, enum dma_data_direction dir,
3699 unsigned long attrs)
3700 {
3701 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3702 unsigned long nrpages = 0;
3703 struct scatterlist *sg;
3704 int i;
3705
3706 if (!iommu_need_mapping(dev))
3707 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3708
3709 for_each_sg(sglist, sg, nelems, i) {
3710 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3711 }
3712
3713 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3714
3715 trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3716 }
3717
3718 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3719 enum dma_data_direction dir, unsigned long attrs)
3720 {
3721 int i;
3722 struct dmar_domain *domain;
3723 size_t size = 0;
3724 int prot = 0;
3725 unsigned long iova_pfn;
3726 int ret;
3727 struct scatterlist *sg;
3728 unsigned long start_vpfn;
3729 struct intel_iommu *iommu;
3730
3731 BUG_ON(dir == DMA_NONE);
3732 if (!iommu_need_mapping(dev))
3733 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3734
3735 domain = find_domain(dev);
3736 if (!domain)
3737 return 0;
3738
3739 iommu = domain_get_iommu(domain);
3740
3741 for_each_sg(sglist, sg, nelems, i)
3742 size += aligned_nrpages(sg->offset, sg->length);
3743
3744 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3745 *dev->dma_mask);
3746 if (!iova_pfn) {
3747 sglist->dma_length = 0;
3748 return 0;
3749 }
3750
3751 /*
3752 * Check if DMAR supports zero-length reads on write only
3753 * mappings..
3754 */
3755 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3756 !cap_zlr(iommu->cap))
3757 prot |= DMA_PTE_READ;
3758 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3759 prot |= DMA_PTE_WRITE;
3760
3761 start_vpfn = mm_to_dma_pfn(iova_pfn);
3762
3763 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3764 if (unlikely(ret)) {
3765 dma_pte_free_pagetable(domain, start_vpfn,
3766 start_vpfn + size - 1,
3767 agaw_to_level(domain->agaw) + 1);
3768 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3769 return 0;
3770 }
3771
3772 trace_map_sg(dev, iova_pfn << PAGE_SHIFT,
3773 sg_phys(sglist), size << VTD_PAGE_SHIFT);
3774
3775 return nelems;
3776 }
3777
3778 static const struct dma_map_ops intel_dma_ops = {
3779 .alloc = intel_alloc_coherent,
3780 .free = intel_free_coherent,
3781 .map_sg = intel_map_sg,
3782 .unmap_sg = intel_unmap_sg,
3783 .map_page = intel_map_page,
3784 .unmap_page = intel_unmap_page,
3785 .map_resource = intel_map_resource,
3786 .unmap_resource = intel_unmap_resource,
3787 .dma_supported = dma_direct_supported,
3788 .mmap = dma_common_mmap,
3789 .get_sgtable = dma_common_get_sgtable,
3790 };
3791
3792 static void
3793 bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
3794 enum dma_data_direction dir, enum dma_sync_target target)
3795 {
3796 struct dmar_domain *domain;
3797 phys_addr_t tlb_addr;
3798
3799 domain = find_domain(dev);
3800 if (WARN_ON(!domain))
3801 return;
3802
3803 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
3804 if (is_swiotlb_buffer(tlb_addr))
3805 swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
3806 }
3807
3808 static dma_addr_t
3809 bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
3810 enum dma_data_direction dir, unsigned long attrs,
3811 u64 dma_mask)
3812 {
3813 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3814 struct dmar_domain *domain;
3815 struct intel_iommu *iommu;
3816 unsigned long iova_pfn;
3817 unsigned long nrpages;
3818 phys_addr_t tlb_addr;
3819 int prot = 0;
3820 int ret;
3821
3822 domain = find_domain(dev);
3823 if (WARN_ON(dir == DMA_NONE || !domain))
3824 return DMA_MAPPING_ERROR;
3825
3826 iommu = domain_get_iommu(domain);
3827 if (WARN_ON(!iommu))
3828 return DMA_MAPPING_ERROR;
3829
3830 nrpages = aligned_nrpages(0, size);
3831 iova_pfn = intel_alloc_iova(dev, domain,
3832 dma_to_mm_pfn(nrpages), dma_mask);
3833 if (!iova_pfn)
3834 return DMA_MAPPING_ERROR;
3835
3836 /*
3837 * Check if DMAR supports zero-length reads on write only
3838 * mappings..
3839 */
3840 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
3841 !cap_zlr(iommu->cap))
3842 prot |= DMA_PTE_READ;
3843 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3844 prot |= DMA_PTE_WRITE;
3845
3846 /*
3847 * If both the physical buffer start address and size are
3848 * page aligned, we don't need to use a bounce page.
3849 */
3850 if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
3851 tlb_addr = swiotlb_tbl_map_single(dev,
3852 __phys_to_dma(dev, io_tlb_start),
3853 paddr, size, aligned_size, dir, attrs);
3854 if (tlb_addr == DMA_MAPPING_ERROR) {
3855 goto swiotlb_error;
3856 } else {
3857 /* Cleanup the padding area. */
3858 void *padding_start = phys_to_virt(tlb_addr);
3859 size_t padding_size = aligned_size;
3860
3861 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
3862 (dir == DMA_TO_DEVICE ||
3863 dir == DMA_BIDIRECTIONAL)) {
3864 padding_start += size;
3865 padding_size -= size;
3866 }
3867
3868 memset(padding_start, 0, padding_size);
3869 }
3870 } else {
3871 tlb_addr = paddr;
3872 }
3873
3874 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3875 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
3876 if (ret)
3877 goto mapping_error;
3878
3879 trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);
3880
3881 return (phys_addr_t)iova_pfn << PAGE_SHIFT;
3882
3883 mapping_error:
3884 if (is_swiotlb_buffer(tlb_addr))
3885 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3886 aligned_size, dir, attrs);
3887 swiotlb_error:
3888 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3889 dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
3890 size, (unsigned long long)paddr, dir);
3891
3892 return DMA_MAPPING_ERROR;
3893 }
3894
3895 static void
3896 bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
3897 enum dma_data_direction dir, unsigned long attrs)
3898 {
3899 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3900 struct dmar_domain *domain;
3901 phys_addr_t tlb_addr;
3902
3903 domain = find_domain(dev);
3904 if (WARN_ON(!domain))
3905 return;
3906
3907 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
3908 if (WARN_ON(!tlb_addr))
3909 return;
3910
3911 intel_unmap(dev, dev_addr, size);
3912 if (is_swiotlb_buffer(tlb_addr))
3913 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3914 aligned_size, dir, attrs);
3915
3916 trace_bounce_unmap_single(dev, dev_addr, size);
3917 }
3918
3919 static dma_addr_t
3920 bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
3921 size_t size, enum dma_data_direction dir, unsigned long attrs)
3922 {
3923 return bounce_map_single(dev, page_to_phys(page) + offset,
3924 size, dir, attrs, *dev->dma_mask);
3925 }
3926
3927 static dma_addr_t
3928 bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
3929 enum dma_data_direction dir, unsigned long attrs)
3930 {
3931 return bounce_map_single(dev, phys_addr, size,
3932 dir, attrs, *dev->dma_mask);
3933 }
3934
3935 static void
3936 bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
3937 enum dma_data_direction dir, unsigned long attrs)
3938 {
3939 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3940 }
3941
3942 static void
3943 bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
3944 enum dma_data_direction dir, unsigned long attrs)
3945 {
3946 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3947 }
3948
3949 static void
3950 bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3951 enum dma_data_direction dir, unsigned long attrs)
3952 {
3953 struct scatterlist *sg;
3954 int i;
3955
3956 for_each_sg(sglist, sg, nelems, i)
3957 bounce_unmap_page(dev, sg->dma_address,
3958 sg_dma_len(sg), dir, attrs);
3959 }
3960
3961 static int
3962 bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3963 enum dma_data_direction dir, unsigned long attrs)
3964 {
3965 int i;
3966 struct scatterlist *sg;
3967
3968 for_each_sg(sglist, sg, nelems, i) {
3969 sg->dma_address = bounce_map_page(dev, sg_page(sg),
3970 sg->offset, sg->length,
3971 dir, attrs);
3972 if (sg->dma_address == DMA_MAPPING_ERROR)
3973 goto out_unmap;
3974 sg_dma_len(sg) = sg->length;
3975 }
3976
3977 return nelems;
3978
3979 out_unmap:
3980 bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
3981 return 0;
3982 }
3983
3984 static void
3985 bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
3986 size_t size, enum dma_data_direction dir)
3987 {
3988 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
3989 }
3990
3991 static void
3992 bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
3993 size_t size, enum dma_data_direction dir)
3994 {
3995 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
3996 }
3997
3998 static void
3999 bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
4000 int nelems, enum dma_data_direction dir)
4001 {
4002 struct scatterlist *sg;
4003 int i;
4004
4005 for_each_sg(sglist, sg, nelems, i)
4006 bounce_sync_single(dev, sg_dma_address(sg),
4007 sg_dma_len(sg), dir, SYNC_FOR_CPU);
4008 }
4009
4010 static void
4011 bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
4012 int nelems, enum dma_data_direction dir)
4013 {
4014 struct scatterlist *sg;
4015 int i;
4016
4017 for_each_sg(sglist, sg, nelems, i)
4018 bounce_sync_single(dev, sg_dma_address(sg),
4019 sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
4020 }
4021
4022 static const struct dma_map_ops bounce_dma_ops = {
4023 .alloc = intel_alloc_coherent,
4024 .free = intel_free_coherent,
4025 .map_sg = bounce_map_sg,
4026 .unmap_sg = bounce_unmap_sg,
4027 .map_page = bounce_map_page,
4028 .unmap_page = bounce_unmap_page,
4029 .sync_single_for_cpu = bounce_sync_single_for_cpu,
4030 .sync_single_for_device = bounce_sync_single_for_device,
4031 .sync_sg_for_cpu = bounce_sync_sg_for_cpu,
4032 .sync_sg_for_device = bounce_sync_sg_for_device,
4033 .map_resource = bounce_map_resource,
4034 .unmap_resource = bounce_unmap_resource,
4035 .dma_supported = dma_direct_supported,
4036 };
4037
4038 static inline int iommu_domain_cache_init(void)
4039 {
4040 int ret = 0;
4041
4042 iommu_domain_cache = kmem_cache_create("iommu_domain",
4043 sizeof(struct dmar_domain),
4044 0,
4045 SLAB_HWCACHE_ALIGN,
4046
4047 NULL);
4048 if (!iommu_domain_cache) {
4049 pr_err("Couldn't create iommu_domain cache\n");
4050 ret = -ENOMEM;
4051 }
4052
4053 return ret;
4054 }
4055
4056 static inline int iommu_devinfo_cache_init(void)
4057 {
4058 int ret = 0;
4059
4060 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4061 sizeof(struct device_domain_info),
4062 0,
4063 SLAB_HWCACHE_ALIGN,
4064 NULL);
4065 if (!iommu_devinfo_cache) {
4066 pr_err("Couldn't create devinfo cache\n");
4067 ret = -ENOMEM;
4068 }
4069
4070 return ret;
4071 }
4072
4073 static int __init iommu_init_mempool(void)
4074 {
4075 int ret;
4076 ret = iova_cache_get();
4077 if (ret)
4078 return ret;
4079
4080 ret = iommu_domain_cache_init();
4081 if (ret)
4082 goto domain_error;
4083
4084 ret = iommu_devinfo_cache_init();
4085 if (!ret)
4086 return ret;
4087
4088 kmem_cache_destroy(iommu_domain_cache);
4089 domain_error:
4090 iova_cache_put();
4091
4092 return -ENOMEM;
4093 }
4094
4095 static void __init iommu_exit_mempool(void)
4096 {
4097 kmem_cache_destroy(iommu_devinfo_cache);
4098 kmem_cache_destroy(iommu_domain_cache);
4099 iova_cache_put();
4100 }
4101
4102 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4103 {
4104 struct dmar_drhd_unit *drhd;
4105 u32 vtbar;
4106 int rc;
4107
4108 /* We know that this device on this chipset has its own IOMMU.
4109 * If we find it under a different IOMMU, then the BIOS is lying
4110 * to us. Hope that the IOMMU for this device is actually
4111 * disabled, and it needs no translation...
4112 */
4113 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4114 if (rc) {
4115 /* "can't" happen */
4116 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4117 return;
4118 }
4119 vtbar &= 0xffff0000;
4120
4121 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4122 drhd = dmar_find_matched_drhd_unit(pdev);
4123 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4124 TAINT_FIRMWARE_WORKAROUND,
4125 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4126 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4127 }
4128 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4129
4130 static void __init init_no_remapping_devices(void)
4131 {
4132 struct dmar_drhd_unit *drhd;
4133 struct device *dev;
4134 int i;
4135
4136 for_each_drhd_unit(drhd) {
4137 if (!drhd->include_all) {
4138 for_each_active_dev_scope(drhd->devices,
4139 drhd->devices_cnt, i, dev)
4140 break;
4141 /* ignore DMAR unit if no devices exist */
4142 if (i == drhd->devices_cnt)
4143 drhd->ignored = 1;
4144 }
4145 }
4146
4147 for_each_active_drhd_unit(drhd) {
4148 if (drhd->include_all)
4149 continue;
4150
4151 for_each_active_dev_scope(drhd->devices,
4152 drhd->devices_cnt, i, dev)
4153 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4154 break;
4155 if (i < drhd->devices_cnt)
4156 continue;
4157
4158 /* This IOMMU has *only* gfx devices. Either bypass it or
4159 set the gfx_mapped flag, as appropriate */
4160 if (!dmar_map_gfx) {
4161 drhd->ignored = 1;
4162 for_each_active_dev_scope(drhd->devices,
4163 drhd->devices_cnt, i, dev)
4164 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4165 }
4166 }
4167 }
4168
4169 #ifdef CONFIG_SUSPEND
4170 static int init_iommu_hw(void)
4171 {
4172 struct dmar_drhd_unit *drhd;
4173 struct intel_iommu *iommu = NULL;
4174
4175 for_each_active_iommu(iommu, drhd)
4176 if (iommu->qi)
4177 dmar_reenable_qi(iommu);
4178
4179 for_each_iommu(iommu, drhd) {
4180 if (drhd->ignored) {
4181 /*
4182 * we always have to disable PMRs or DMA may fail on
4183 * this device
4184 */
4185 if (force_on)
4186 iommu_disable_protect_mem_regions(iommu);
4187 continue;
4188 }
4189
4190 iommu_flush_write_buffer(iommu);
4191
4192 iommu_set_root_entry(iommu);
4193
4194 iommu->flush.flush_context(iommu, 0, 0, 0,
4195 DMA_CCMD_GLOBAL_INVL);
4196 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4197 iommu_enable_translation(iommu);
4198 iommu_disable_protect_mem_regions(iommu);
4199 }
4200
4201 return 0;
4202 }
4203
4204 static void iommu_flush_all(void)
4205 {
4206 struct dmar_drhd_unit *drhd;
4207 struct intel_iommu *iommu;
4208
4209 for_each_active_iommu(iommu, drhd) {
4210 iommu->flush.flush_context(iommu, 0, 0, 0,
4211 DMA_CCMD_GLOBAL_INVL);
4212 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4213 DMA_TLB_GLOBAL_FLUSH);
4214 }
4215 }
4216
4217 static int iommu_suspend(void)
4218 {
4219 struct dmar_drhd_unit *drhd;
4220 struct intel_iommu *iommu = NULL;
4221 unsigned long flag;
4222
4223 for_each_active_iommu(iommu, drhd) {
4224 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4225 GFP_ATOMIC);
4226 if (!iommu->iommu_state)
4227 goto nomem;
4228 }
4229
4230 iommu_flush_all();
4231
4232 for_each_active_iommu(iommu, drhd) {
4233 iommu_disable_translation(iommu);
4234
4235 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4236
4237 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4238 readl(iommu->reg + DMAR_FECTL_REG);
4239 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4240 readl(iommu->reg + DMAR_FEDATA_REG);
4241 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4242 readl(iommu->reg + DMAR_FEADDR_REG);
4243 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4244 readl(iommu->reg + DMAR_FEUADDR_REG);
4245
4246 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4247 }
4248 return 0;
4249
4250 nomem:
4251 for_each_active_iommu(iommu, drhd)
4252 kfree(iommu->iommu_state);
4253
4254 return -ENOMEM;
4255 }
4256
4257 static void iommu_resume(void)
4258 {
4259 struct dmar_drhd_unit *drhd;
4260 struct intel_iommu *iommu = NULL;
4261 unsigned long flag;
4262
4263 if (init_iommu_hw()) {
4264 if (force_on)
4265 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4266 else
4267 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4268 return;
4269 }
4270
4271 for_each_active_iommu(iommu, drhd) {
4272
4273 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4274
4275 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4276 iommu->reg + DMAR_FECTL_REG);
4277 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4278 iommu->reg + DMAR_FEDATA_REG);
4279 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4280 iommu->reg + DMAR_FEADDR_REG);
4281 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4282 iommu->reg + DMAR_FEUADDR_REG);
4283
4284 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4285 }
4286
4287 for_each_active_iommu(iommu, drhd)
4288 kfree(iommu->iommu_state);
4289 }
4290
4291 static struct syscore_ops iommu_syscore_ops = {
4292 .resume = iommu_resume,
4293 .suspend = iommu_suspend,
4294 };
4295
4296 static void __init init_iommu_pm_ops(void)
4297 {
4298 register_syscore_ops(&iommu_syscore_ops);
4299 }
4300
4301 #else
4302 static inline void init_iommu_pm_ops(void) {}
4303 #endif /* CONFIG_PM */
4304
4305 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4306 {
4307 struct acpi_dmar_reserved_memory *rmrr;
4308 struct dmar_rmrr_unit *rmrru;
4309
4310 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4311 if (!rmrru)
4312 goto out;
4313
4314 rmrru->hdr = header;
4315 rmrr = (struct acpi_dmar_reserved_memory *)header;
4316 rmrru->base_address = rmrr->base_address;
4317 rmrru->end_address = rmrr->end_address;
4318
4319 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4320 ((void *)rmrr) + rmrr->header.length,
4321 &rmrru->devices_cnt);
4322 if (rmrru->devices_cnt && rmrru->devices == NULL)
4323 goto free_rmrru;
4324
4325 list_add(&rmrru->list, &dmar_rmrr_units);
4326
4327 return 0;
4328 free_rmrru:
4329 kfree(rmrru);
4330 out:
4331 return -ENOMEM;
4332 }
4333
4334 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4335 {
4336 struct dmar_atsr_unit *atsru;
4337 struct acpi_dmar_atsr *tmp;
4338
4339 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4340 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4341 if (atsr->segment != tmp->segment)
4342 continue;
4343 if (atsr->header.length != tmp->header.length)
4344 continue;
4345 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4346 return atsru;
4347 }
4348
4349 return NULL;
4350 }
4351
4352 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4353 {
4354 struct acpi_dmar_atsr *atsr;
4355 struct dmar_atsr_unit *atsru;
4356
4357 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4358 return 0;
4359
4360 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4361 atsru = dmar_find_atsr(atsr);
4362 if (atsru)
4363 return 0;
4364
4365 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4366 if (!atsru)
4367 return -ENOMEM;
4368
4369 /*
4370 * If memory is allocated from slab by ACPI _DSM method, we need to
4371 * copy the memory content because the memory buffer will be freed
4372 * on return.
4373 */
4374 atsru->hdr = (void *)(atsru + 1);
4375 memcpy(atsru->hdr, hdr, hdr->length);
4376 atsru->include_all = atsr->flags & 0x1;
4377 if (!atsru->include_all) {
4378 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4379 (void *)atsr + atsr->header.length,
4380 &atsru->devices_cnt);
4381 if (atsru->devices_cnt && atsru->devices == NULL) {
4382 kfree(atsru);
4383 return -ENOMEM;
4384 }
4385 }
4386
4387 list_add_rcu(&atsru->list, &dmar_atsr_units);
4388
4389 return 0;
4390 }
4391
4392 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4393 {
4394 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4395 kfree(atsru);
4396 }
4397
4398 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4399 {
4400 struct acpi_dmar_atsr *atsr;
4401 struct dmar_atsr_unit *atsru;
4402
4403 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4404 atsru = dmar_find_atsr(atsr);
4405 if (atsru) {
4406 list_del_rcu(&atsru->list);
4407 synchronize_rcu();
4408 intel_iommu_free_atsr(atsru);
4409 }
4410
4411 return 0;
4412 }
4413
4414 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4415 {
4416 int i;
4417 struct device *dev;
4418 struct acpi_dmar_atsr *atsr;
4419 struct dmar_atsr_unit *atsru;
4420
4421 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4422 atsru = dmar_find_atsr(atsr);
4423 if (!atsru)
4424 return 0;
4425
4426 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4427 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4428 i, dev)
4429 return -EBUSY;
4430 }
4431
4432 return 0;
4433 }
4434
4435 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4436 {
4437 int sp, ret;
4438 struct intel_iommu *iommu = dmaru->iommu;
4439
4440 if (g_iommus[iommu->seq_id])
4441 return 0;
4442
4443 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4444 pr_warn("%s: Doesn't support hardware pass through.\n",
4445 iommu->name);
4446 return -ENXIO;
4447 }
4448 if (!ecap_sc_support(iommu->ecap) &&
4449 domain_update_iommu_snooping(iommu)) {
4450 pr_warn("%s: Doesn't support snooping.\n",
4451 iommu->name);
4452 return -ENXIO;
4453 }
4454 sp = domain_update_iommu_superpage(iommu) - 1;
4455 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4456 pr_warn("%s: Doesn't support large page.\n",
4457 iommu->name);
4458 return -ENXIO;
4459 }
4460
4461 /*
4462 * Disable translation if already enabled prior to OS handover.
4463 */
4464 if (iommu->gcmd & DMA_GCMD_TE)
4465 iommu_disable_translation(iommu);
4466
4467 g_iommus[iommu->seq_id] = iommu;
4468 ret = iommu_init_domains(iommu);
4469 if (ret == 0)
4470 ret = iommu_alloc_root_entry(iommu);
4471 if (ret)
4472 goto out;
4473
4474 #ifdef CONFIG_INTEL_IOMMU_SVM
4475 if (pasid_supported(iommu))
4476 intel_svm_init(iommu);
4477 #endif
4478
4479 if (dmaru->ignored) {
4480 /*
4481 * we always have to disable PMRs or DMA may fail on this device
4482 */
4483 if (force_on)
4484 iommu_disable_protect_mem_regions(iommu);
4485 return 0;
4486 }
4487
4488 intel_iommu_init_qi(iommu);
4489 iommu_flush_write_buffer(iommu);
4490
4491 #ifdef CONFIG_INTEL_IOMMU_SVM
4492 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4493 ret = intel_svm_enable_prq(iommu);
4494 if (ret)
4495 goto disable_iommu;
4496 }
4497 #endif
4498 ret = dmar_set_interrupt(iommu);
4499 if (ret)
4500 goto disable_iommu;
4501
4502 iommu_set_root_entry(iommu);
4503 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4504 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4505 iommu_enable_translation(iommu);
4506
4507 iommu_disable_protect_mem_regions(iommu);
4508 return 0;
4509
4510 disable_iommu:
4511 disable_dmar_iommu(iommu);
4512 out:
4513 free_dmar_iommu(iommu);
4514 return ret;
4515 }
4516
4517 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4518 {
4519 int ret = 0;
4520 struct intel_iommu *iommu = dmaru->iommu;
4521
4522 if (!intel_iommu_enabled)
4523 return 0;
4524 if (iommu == NULL)
4525 return -EINVAL;
4526
4527 if (insert) {
4528 ret = intel_iommu_add(dmaru);
4529 } else {
4530 disable_dmar_iommu(iommu);
4531 free_dmar_iommu(iommu);
4532 }
4533
4534 return ret;
4535 }
4536
4537 static void intel_iommu_free_dmars(void)
4538 {
4539 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4540 struct dmar_atsr_unit *atsru, *atsr_n;
4541
4542 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4543 list_del(&rmrru->list);
4544 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4545 kfree(rmrru);
4546 }
4547
4548 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4549 list_del(&atsru->list);
4550 intel_iommu_free_atsr(atsru);
4551 }
4552 }
4553
4554 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4555 {
4556 int i, ret = 1;
4557 struct pci_bus *bus;
4558 struct pci_dev *bridge = NULL;
4559 struct device *tmp;
4560 struct acpi_dmar_atsr *atsr;
4561 struct dmar_atsr_unit *atsru;
4562
4563 dev = pci_physfn(dev);
4564 for (bus = dev->bus; bus; bus = bus->parent) {
4565 bridge = bus->self;
4566 /* If it's an integrated device, allow ATS */
4567 if (!bridge)
4568 return 1;
4569 /* Connected via non-PCIe: no ATS */
4570 if (!pci_is_pcie(bridge) ||
4571 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4572 return 0;
4573 /* If we found the root port, look it up in the ATSR */
4574 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4575 break;
4576 }
4577
4578 rcu_read_lock();
4579 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4580 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4581 if (atsr->segment != pci_domain_nr(dev->bus))
4582 continue;
4583
4584 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4585 if (tmp == &bridge->dev)
4586 goto out;
4587
4588 if (atsru->include_all)
4589 goto out;
4590 }
4591 ret = 0;
4592 out:
4593 rcu_read_unlock();
4594
4595 return ret;
4596 }
4597
4598 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4599 {
4600 int ret;
4601 struct dmar_rmrr_unit *rmrru;
4602 struct dmar_atsr_unit *atsru;
4603 struct acpi_dmar_atsr *atsr;
4604 struct acpi_dmar_reserved_memory *rmrr;
4605
4606 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4607 return 0;
4608
4609 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4610 rmrr = container_of(rmrru->hdr,
4611 struct acpi_dmar_reserved_memory, header);
4612 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4613 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4614 ((void *)rmrr) + rmrr->header.length,
4615 rmrr->segment, rmrru->devices,
4616 rmrru->devices_cnt);
4617 if (ret < 0)
4618 return ret;
4619 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4620 dmar_remove_dev_scope(info, rmrr->segment,
4621 rmrru->devices, rmrru->devices_cnt);
4622 }
4623 }
4624
4625 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4626 if (atsru->include_all)
4627 continue;
4628
4629 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4630 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4631 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4632 (void *)atsr + atsr->header.length,
4633 atsr->segment, atsru->devices,
4634 atsru->devices_cnt);
4635 if (ret > 0)
4636 break;
4637 else if (ret < 0)
4638 return ret;
4639 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4640 if (dmar_remove_dev_scope(info, atsr->segment,
4641 atsru->devices, atsru->devices_cnt))
4642 break;
4643 }
4644 }
4645
4646 return 0;
4647 }
4648
4649 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4650 unsigned long val, void *v)
4651 {
4652 struct memory_notify *mhp = v;
4653 unsigned long long start, end;
4654 unsigned long start_vpfn, last_vpfn;
4655
4656 switch (val) {
4657 case MEM_GOING_ONLINE:
4658 start = mhp->start_pfn << PAGE_SHIFT;
4659 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4660 if (iommu_domain_identity_map(si_domain, start, end)) {
4661 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4662 start, end);
4663 return NOTIFY_BAD;
4664 }
4665 break;
4666
4667 case MEM_OFFLINE:
4668 case MEM_CANCEL_ONLINE:
4669 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4670 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4671 while (start_vpfn <= last_vpfn) {
4672 struct iova *iova;
4673 struct dmar_drhd_unit *drhd;
4674 struct intel_iommu *iommu;
4675 struct page *freelist;
4676
4677 iova = find_iova(&si_domain->iovad, start_vpfn);
4678 if (iova == NULL) {
4679 pr_debug("Failed get IOVA for PFN %lx\n",
4680 start_vpfn);
4681 break;
4682 }
4683
4684 iova = split_and_remove_iova(&si_domain->iovad, iova,
4685 start_vpfn, last_vpfn);
4686 if (iova == NULL) {
4687 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4688 start_vpfn, last_vpfn);
4689 return NOTIFY_BAD;
4690 }
4691
4692 freelist = domain_unmap(si_domain, iova->pfn_lo,
4693 iova->pfn_hi);
4694
4695 rcu_read_lock();
4696 for_each_active_iommu(iommu, drhd)
4697 iommu_flush_iotlb_psi(iommu, si_domain,
4698 iova->pfn_lo, iova_size(iova),
4699 !freelist, 0);
4700 rcu_read_unlock();
4701 dma_free_pagelist(freelist);
4702
4703 start_vpfn = iova->pfn_hi + 1;
4704 free_iova_mem(iova);
4705 }
4706 break;
4707 }
4708
4709 return NOTIFY_OK;
4710 }
4711
4712 static struct notifier_block intel_iommu_memory_nb = {
4713 .notifier_call = intel_iommu_memory_notifier,
4714 .priority = 0
4715 };
4716
4717 static void free_all_cpu_cached_iovas(unsigned int cpu)
4718 {
4719 int i;
4720
4721 for (i = 0; i < g_num_of_iommus; i++) {
4722 struct intel_iommu *iommu = g_iommus[i];
4723 struct dmar_domain *domain;
4724 int did;
4725
4726 if (!iommu)
4727 continue;
4728
4729 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4730 domain = get_iommu_domain(iommu, (u16)did);
4731
4732 if (!domain)
4733 continue;
4734 free_cpu_cached_iovas(cpu, &domain->iovad);
4735 }
4736 }
4737 }
4738
4739 static int intel_iommu_cpu_dead(unsigned int cpu)
4740 {
4741 free_all_cpu_cached_iovas(cpu);
4742 return 0;
4743 }
4744
4745 static void intel_disable_iommus(void)
4746 {
4747 struct intel_iommu *iommu = NULL;
4748 struct dmar_drhd_unit *drhd;
4749
4750 for_each_iommu(iommu, drhd)
4751 iommu_disable_translation(iommu);
4752 }
4753
4754 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4755 {
4756 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4757
4758 return container_of(iommu_dev, struct intel_iommu, iommu);
4759 }
4760
4761 static ssize_t intel_iommu_show_version(struct device *dev,
4762 struct device_attribute *attr,
4763 char *buf)
4764 {
4765 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4766 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4767 return sprintf(buf, "%d:%d\n",
4768 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4769 }
4770 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4771
4772 static ssize_t intel_iommu_show_address(struct device *dev,
4773 struct device_attribute *attr,
4774 char *buf)
4775 {
4776 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4777 return sprintf(buf, "%llx\n", iommu->reg_phys);
4778 }
4779 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4780
4781 static ssize_t intel_iommu_show_cap(struct device *dev,
4782 struct device_attribute *attr,
4783 char *buf)
4784 {
4785 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4786 return sprintf(buf, "%llx\n", iommu->cap);
4787 }
4788 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4789
4790 static ssize_t intel_iommu_show_ecap(struct device *dev,
4791 struct device_attribute *attr,
4792 char *buf)
4793 {
4794 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4795 return sprintf(buf, "%llx\n", iommu->ecap);
4796 }
4797 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4798
4799 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4800 struct device_attribute *attr,
4801 char *buf)
4802 {
4803 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4804 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4805 }
4806 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4807
4808 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4809 struct device_attribute *attr,
4810 char *buf)
4811 {
4812 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4813 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4814 cap_ndoms(iommu->cap)));
4815 }
4816 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4817
4818 static struct attribute *intel_iommu_attrs[] = {
4819 &dev_attr_version.attr,
4820 &dev_attr_address.attr,
4821 &dev_attr_cap.attr,
4822 &dev_attr_ecap.attr,
4823 &dev_attr_domains_supported.attr,
4824 &dev_attr_domains_used.attr,
4825 NULL,
4826 };
4827
4828 static struct attribute_group intel_iommu_group = {
4829 .name = "intel-iommu",
4830 .attrs = intel_iommu_attrs,
4831 };
4832
4833 const struct attribute_group *intel_iommu_groups[] = {
4834 &intel_iommu_group,
4835 NULL,
4836 };
4837
4838 static inline bool has_untrusted_dev(void)
4839 {
4840 struct pci_dev *pdev = NULL;
4841
4842 for_each_pci_dev(pdev)
4843 if (pdev->untrusted)
4844 return true;
4845
4846 return false;
4847 }
4848
4849 static int __init platform_optin_force_iommu(void)
4850 {
4851 if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4852 return 0;
4853
4854 if (no_iommu || dmar_disabled)
4855 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4856
4857 /*
4858 * If Intel-IOMMU is disabled by default, we will apply identity
4859 * map for all devices except those marked as being untrusted.
4860 */
4861 if (dmar_disabled)
4862 iommu_identity_mapping |= IDENTMAP_ALL;
4863
4864 dmar_disabled = 0;
4865 no_iommu = 0;
4866
4867 return 1;
4868 }
4869
4870 static int __init probe_acpi_namespace_devices(void)
4871 {
4872 struct dmar_drhd_unit *drhd;
4873 /* To avoid a -Wunused-but-set-variable warning. */
4874 struct intel_iommu *iommu __maybe_unused;
4875 struct device *dev;
4876 int i, ret = 0;
4877
4878 for_each_active_iommu(iommu, drhd) {
4879 for_each_active_dev_scope(drhd->devices,
4880 drhd->devices_cnt, i, dev) {
4881 struct acpi_device_physical_node *pn;
4882 struct iommu_group *group;
4883 struct acpi_device *adev;
4884
4885 if (dev->bus != &acpi_bus_type)
4886 continue;
4887
4888 adev = to_acpi_device(dev);
4889 mutex_lock(&adev->physical_node_lock);
4890 list_for_each_entry(pn,
4891 &adev->physical_node_list, node) {
4892 group = iommu_group_get(pn->dev);
4893 if (group) {
4894 iommu_group_put(group);
4895 continue;
4896 }
4897
4898 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4899 ret = iommu_probe_device(pn->dev);
4900 if (ret)
4901 break;
4902 }
4903 mutex_unlock(&adev->physical_node_lock);
4904
4905 if (ret)
4906 return ret;
4907 }
4908 }
4909
4910 return 0;
4911 }
4912
4913 int __init intel_iommu_init(void)
4914 {
4915 int ret = -ENODEV;
4916 struct dmar_drhd_unit *drhd;
4917 struct intel_iommu *iommu;
4918
4919 /*
4920 * Intel IOMMU is required for a TXT/tboot launch or platform
4921 * opt in, so enforce that.
4922 */
4923 force_on = tboot_force_iommu() || platform_optin_force_iommu();
4924
4925 if (iommu_init_mempool()) {
4926 if (force_on)
4927 panic("tboot: Failed to initialize iommu memory\n");
4928 return -ENOMEM;
4929 }
4930
4931 down_write(&dmar_global_lock);
4932 if (dmar_table_init()) {
4933 if (force_on)
4934 panic("tboot: Failed to initialize DMAR table\n");
4935 goto out_free_dmar;
4936 }
4937
4938 if (dmar_dev_scope_init() < 0) {
4939 if (force_on)
4940 panic("tboot: Failed to initialize DMAR device scope\n");
4941 goto out_free_dmar;
4942 }
4943
4944 up_write(&dmar_global_lock);
4945
4946 /*
4947 * The bus notifier takes the dmar_global_lock, so lockdep will
4948 * complain later when we register it under the lock.
4949 */
4950 dmar_register_bus_notifier();
4951
4952 down_write(&dmar_global_lock);
4953
4954 if (no_iommu || dmar_disabled) {
4955 /*
4956 * We exit the function here to ensure IOMMU's remapping and
4957 * mempool aren't setup, which means that the IOMMU's PMRs
4958 * won't be disabled via the call to init_dmars(). So disable
4959 * it explicitly here. The PMRs were setup by tboot prior to
4960 * calling SENTER, but the kernel is expected to reset/tear
4961 * down the PMRs.
4962 */
4963 if (intel_iommu_tboot_noforce) {
4964 for_each_iommu(iommu, drhd)
4965 iommu_disable_protect_mem_regions(iommu);
4966 }
4967
4968 /*
4969 * Make sure the IOMMUs are switched off, even when we
4970 * boot into a kexec kernel and the previous kernel left
4971 * them enabled
4972 */
4973 intel_disable_iommus();
4974 goto out_free_dmar;
4975 }
4976
4977 if (list_empty(&dmar_rmrr_units))
4978 pr_info("No RMRR found\n");
4979
4980 if (list_empty(&dmar_atsr_units))
4981 pr_info("No ATSR found\n");
4982
4983 if (dmar_init_reserved_ranges()) {
4984 if (force_on)
4985 panic("tboot: Failed to reserve iommu ranges\n");
4986 goto out_free_reserved_range;
4987 }
4988
4989 if (dmar_map_gfx)
4990 intel_iommu_gfx_mapped = 1;
4991
4992 init_no_remapping_devices();
4993
4994 ret = init_dmars();
4995 if (ret) {
4996 if (force_on)
4997 panic("tboot: Failed to initialize DMARs\n");
4998 pr_err("Initialization failed\n");
4999 goto out_free_reserved_range;
5000 }
5001 up_write(&dmar_global_lock);
5002
5003 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
5004 /*
5005 * If the system has no untrusted device or the user has decided
5006 * to disable the bounce page mechanisms, we don't need swiotlb.
5007 * Mark this and the pre-allocated bounce pages will be released
5008 * later.
5009 */
5010 if (!has_untrusted_dev() || intel_no_bounce)
5011 swiotlb = 0;
5012 #endif
5013 dma_ops = &intel_dma_ops;
5014
5015 init_iommu_pm_ops();
5016
5017 for_each_active_iommu(iommu, drhd) {
5018 iommu_device_sysfs_add(&iommu->iommu, NULL,
5019 intel_iommu_groups,
5020 "%s", iommu->name);
5021 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
5022 iommu_device_register(&iommu->iommu);
5023 }
5024
5025 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
5026 if (si_domain && !hw_pass_through)
5027 register_memory_notifier(&intel_iommu_memory_nb);
5028 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
5029 intel_iommu_cpu_dead);
5030
5031 down_read(&dmar_global_lock);
5032 if (probe_acpi_namespace_devices())
5033 pr_warn("ACPI name space devices didn't probe correctly\n");
5034 up_read(&dmar_global_lock);
5035
5036 /* Finally, we enable the DMA remapping hardware. */
5037 for_each_iommu(iommu, drhd) {
5038 if (!drhd->ignored && !translation_pre_enabled(iommu))
5039 iommu_enable_translation(iommu);
5040
5041 iommu_disable_protect_mem_regions(iommu);
5042 }
5043 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
5044
5045 intel_iommu_enabled = 1;
5046 intel_iommu_debugfs_init();
5047
5048 return 0;
5049
5050 out_free_reserved_range:
5051 put_iova_domain(&reserved_iova_list);
5052 out_free_dmar:
5053 intel_iommu_free_dmars();
5054 up_write(&dmar_global_lock);
5055 iommu_exit_mempool();
5056 return ret;
5057 }
5058
5059 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
5060 {
5061 struct intel_iommu *iommu = opaque;
5062
5063 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
5064 return 0;
5065 }
5066
5067 /*
5068 * NB - intel-iommu lacks any sort of reference counting for the users of
5069 * dependent devices. If multiple endpoints have intersecting dependent
5070 * devices, unbinding the driver from any one of them will possibly leave
5071 * the others unable to operate.
5072 */
5073 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
5074 {
5075 if (!iommu || !dev || !dev_is_pci(dev))
5076 return;
5077
5078 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
5079 }
5080
5081 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5082 {
5083 struct dmar_domain *domain;
5084 struct intel_iommu *iommu;
5085 unsigned long flags;
5086
5087 assert_spin_locked(&device_domain_lock);
5088
5089 if (WARN_ON(!info))
5090 return;
5091
5092 iommu = info->iommu;
5093 domain = info->domain;
5094
5095 if (info->dev) {
5096 if (dev_is_pci(info->dev) && sm_supported(iommu))
5097 intel_pasid_tear_down_entry(iommu, info->dev,
5098 PASID_RID2PASID);
5099
5100 iommu_disable_dev_iotlb(info);
5101 domain_context_clear(iommu, info->dev);
5102 intel_pasid_free_table(info->dev);
5103 }
5104
5105 unlink_domain_info(info);
5106
5107 spin_lock_irqsave(&iommu->lock, flags);
5108 domain_detach_iommu(domain, iommu);
5109 spin_unlock_irqrestore(&iommu->lock, flags);
5110
5111 /* free the private domain */
5112 if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5113 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
5114 list_empty(&domain->devices))
5115 domain_exit(info->domain);
5116
5117 free_devinfo_mem(info);
5118 }
5119
5120 static void dmar_remove_one_dev_info(struct device *dev)
5121 {
5122 struct device_domain_info *info;
5123 unsigned long flags;
5124
5125 spin_lock_irqsave(&device_domain_lock, flags);
5126 info = dev->archdata.iommu;
5127 if (info)
5128 __dmar_remove_one_dev_info(info);
5129 spin_unlock_irqrestore(&device_domain_lock, flags);
5130 }
5131
5132 static int md_domain_init(struct dmar_domain *domain, int guest_width)
5133 {
5134 int adjust_width;
5135
5136 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5137 domain_reserve_special_ranges(domain);
5138
5139 /* calculate AGAW */
5140 domain->gaw = guest_width;
5141 adjust_width = guestwidth_to_adjustwidth(guest_width);
5142 domain->agaw = width_to_agaw(adjust_width);
5143
5144 domain->iommu_coherency = 0;
5145 domain->iommu_snooping = 0;
5146 domain->iommu_superpage = 0;
5147 domain->max_addr = 0;
5148
5149 /* always allocate the top pgd */
5150 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5151 if (!domain->pgd)
5152 return -ENOMEM;
5153 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5154 return 0;
5155 }
5156
5157 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5158 {
5159 struct dmar_domain *dmar_domain;
5160 struct iommu_domain *domain;
5161
5162 switch (type) {
5163 case IOMMU_DOMAIN_DMA:
5164 /* fallthrough */
5165 case IOMMU_DOMAIN_UNMANAGED:
5166 dmar_domain = alloc_domain(0);
5167 if (!dmar_domain) {
5168 pr_err("Can't allocate dmar_domain\n");
5169 return NULL;
5170 }
5171 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5172 pr_err("Domain initialization failed\n");
5173 domain_exit(dmar_domain);
5174 return NULL;
5175 }
5176
5177 if (type == IOMMU_DOMAIN_DMA &&
5178 init_iova_flush_queue(&dmar_domain->iovad,
5179 iommu_flush_iova, iova_entry_free)) {
5180 pr_warn("iova flush queue initialization failed\n");
5181 intel_iommu_strict = 1;
5182 }
5183
5184 domain_update_iommu_cap(dmar_domain);
5185
5186 domain = &dmar_domain->domain;
5187 domain->geometry.aperture_start = 0;
5188 domain->geometry.aperture_end =
5189 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5190 domain->geometry.force_aperture = true;
5191
5192 return domain;
5193 case IOMMU_DOMAIN_IDENTITY:
5194 return &si_domain->domain;
5195 default:
5196 return NULL;
5197 }
5198
5199 return NULL;
5200 }
5201
5202 static void intel_iommu_domain_free(struct iommu_domain *domain)
5203 {
5204 if (domain != &si_domain->domain)
5205 domain_exit(to_dmar_domain(domain));
5206 }
5207
5208 /*
5209 * Check whether a @domain could be attached to the @dev through the
5210 * aux-domain attach/detach APIs.
5211 */
5212 static inline bool
5213 is_aux_domain(struct device *dev, struct iommu_domain *domain)
5214 {
5215 struct device_domain_info *info = dev->archdata.iommu;
5216
5217 return info && info->auxd_enabled &&
5218 domain->type == IOMMU_DOMAIN_UNMANAGED;
5219 }
5220
5221 static void auxiliary_link_device(struct dmar_domain *domain,
5222 struct device *dev)
5223 {
5224 struct device_domain_info *info = dev->archdata.iommu;
5225
5226 assert_spin_locked(&device_domain_lock);
5227 if (WARN_ON(!info))
5228 return;
5229
5230 domain->auxd_refcnt++;
5231 list_add(&domain->auxd, &info->auxiliary_domains);
5232 }
5233
5234 static void auxiliary_unlink_device(struct dmar_domain *domain,
5235 struct device *dev)
5236 {
5237 struct device_domain_info *info = dev->archdata.iommu;
5238
5239 assert_spin_locked(&device_domain_lock);
5240 if (WARN_ON(!info))
5241 return;
5242
5243 list_del(&domain->auxd);
5244 domain->auxd_refcnt--;
5245
5246 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5247 intel_pasid_free_id(domain->default_pasid);
5248 }
5249
5250 static int aux_domain_add_dev(struct dmar_domain *domain,
5251 struct device *dev)
5252 {
5253 int ret;
5254 u8 bus, devfn;
5255 unsigned long flags;
5256 struct intel_iommu *iommu;
5257
5258 iommu = device_to_iommu(dev, &bus, &devfn);
5259 if (!iommu)
5260 return -ENODEV;
5261
5262 if (domain->default_pasid <= 0) {
5263 int pasid;
5264
5265 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
5266 pci_max_pasids(to_pci_dev(dev)),
5267 GFP_KERNEL);
5268 if (pasid <= 0) {
5269 pr_err("Can't allocate default pasid\n");
5270 return -ENODEV;
5271 }
5272 domain->default_pasid = pasid;
5273 }
5274
5275 spin_lock_irqsave(&device_domain_lock, flags);
5276 /*
5277 * iommu->lock must be held to attach domain to iommu and setup the
5278 * pasid entry for second level translation.
5279 */
5280 spin_lock(&iommu->lock);
5281 ret = domain_attach_iommu(domain, iommu);
5282 if (ret)
5283 goto attach_failed;
5284
5285 /* Setup the PASID entry for mediated devices: */
5286 ret = intel_pasid_setup_second_level(iommu, domain, dev,
5287 domain->default_pasid);
5288 if (ret)
5289 goto table_failed;
5290 spin_unlock(&iommu->lock);
5291
5292 auxiliary_link_device(domain, dev);
5293
5294 spin_unlock_irqrestore(&device_domain_lock, flags);
5295
5296 return 0;
5297
5298 table_failed:
5299 domain_detach_iommu(domain, iommu);
5300 attach_failed:
5301 spin_unlock(&iommu->lock);
5302 spin_unlock_irqrestore(&device_domain_lock, flags);
5303 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5304 intel_pasid_free_id(domain->default_pasid);
5305
5306 return ret;
5307 }
5308
5309 static void aux_domain_remove_dev(struct dmar_domain *domain,
5310 struct device *dev)
5311 {
5312 struct device_domain_info *info;
5313 struct intel_iommu *iommu;
5314 unsigned long flags;
5315
5316 if (!is_aux_domain(dev, &domain->domain))
5317 return;
5318
5319 spin_lock_irqsave(&device_domain_lock, flags);
5320 info = dev->archdata.iommu;
5321 iommu = info->iommu;
5322
5323 auxiliary_unlink_device(domain, dev);
5324
5325 spin_lock(&iommu->lock);
5326 intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5327 domain_detach_iommu(domain, iommu);
5328 spin_unlock(&iommu->lock);
5329
5330 spin_unlock_irqrestore(&device_domain_lock, flags);
5331 }
5332
5333 static int prepare_domain_attach_device(struct iommu_domain *domain,
5334 struct device *dev)
5335 {
5336 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5337 struct intel_iommu *iommu;
5338 int addr_width;
5339 u8 bus, devfn;
5340
5341 iommu = device_to_iommu(dev, &bus, &devfn);
5342 if (!iommu)
5343 return -ENODEV;
5344
5345 /* check if this iommu agaw is sufficient for max mapped address */
5346 addr_width = agaw_to_width(iommu->agaw);
5347 if (addr_width > cap_mgaw(iommu->cap))
5348 addr_width = cap_mgaw(iommu->cap);
5349
5350 if (dmar_domain->max_addr > (1LL << addr_width)) {
5351 dev_err(dev, "%s: iommu width (%d) is not "
5352 "sufficient for the mapped address (%llx)\n",
5353 __func__, addr_width, dmar_domain->max_addr);
5354 return -EFAULT;
5355 }
5356 dmar_domain->gaw = addr_width;
5357
5358 /*
5359 * Knock out extra levels of page tables if necessary
5360 */
5361 while (iommu->agaw < dmar_domain->agaw) {
5362 struct dma_pte *pte;
5363
5364 pte = dmar_domain->pgd;
5365 if (dma_pte_present(pte)) {
5366 dmar_domain->pgd = (struct dma_pte *)
5367 phys_to_virt(dma_pte_addr(pte));
5368 free_pgtable_page(pte);
5369 }
5370 dmar_domain->agaw--;
5371 }
5372
5373 return 0;
5374 }
5375
5376 static int intel_iommu_attach_device(struct iommu_domain *domain,
5377 struct device *dev)
5378 {
5379 int ret;
5380
5381 if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5382 device_is_rmrr_locked(dev)) {
5383 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5384 return -EPERM;
5385 }
5386
5387 if (is_aux_domain(dev, domain))
5388 return -EPERM;
5389
5390 /* normally dev is not mapped */
5391 if (unlikely(domain_context_mapped(dev))) {
5392 struct dmar_domain *old_domain;
5393
5394 old_domain = find_domain(dev);
5395 if (old_domain)
5396 dmar_remove_one_dev_info(dev);
5397 }
5398
5399 ret = prepare_domain_attach_device(domain, dev);
5400 if (ret)
5401 return ret;
5402
5403 return domain_add_dev_info(to_dmar_domain(domain), dev);
5404 }
5405
5406 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5407 struct device *dev)
5408 {
5409 int ret;
5410
5411 if (!is_aux_domain(dev, domain))
5412 return -EPERM;
5413
5414 ret = prepare_domain_attach_device(domain, dev);
5415 if (ret)
5416 return ret;
5417
5418 return aux_domain_add_dev(to_dmar_domain(domain), dev);
5419 }
5420
5421 static void intel_iommu_detach_device(struct iommu_domain *domain,
5422 struct device *dev)
5423 {
5424 dmar_remove_one_dev_info(dev);
5425 }
5426
5427 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5428 struct device *dev)
5429 {
5430 aux_domain_remove_dev(to_dmar_domain(domain), dev);
5431 }
5432
5433 static int intel_iommu_map(struct iommu_domain *domain,
5434 unsigned long iova, phys_addr_t hpa,
5435 size_t size, int iommu_prot)
5436 {
5437 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5438 u64 max_addr;
5439 int prot = 0;
5440 int ret;
5441
5442 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5443 return -EINVAL;
5444
5445 if (iommu_prot & IOMMU_READ)
5446 prot |= DMA_PTE_READ;
5447 if (iommu_prot & IOMMU_WRITE)
5448 prot |= DMA_PTE_WRITE;
5449 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5450 prot |= DMA_PTE_SNP;
5451
5452 max_addr = iova + size;
5453 if (dmar_domain->max_addr < max_addr) {
5454 u64 end;
5455
5456 /* check if minimum agaw is sufficient for mapped address */
5457 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5458 if (end < max_addr) {
5459 pr_err("%s: iommu width (%d) is not "
5460 "sufficient for the mapped address (%llx)\n",
5461 __func__, dmar_domain->gaw, max_addr);
5462 return -EFAULT;
5463 }
5464 dmar_domain->max_addr = max_addr;
5465 }
5466 /* Round up size to next multiple of PAGE_SIZE, if it and
5467 the low bits of hpa would take us onto the next page */
5468 size = aligned_nrpages(hpa, size);
5469 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5470 hpa >> VTD_PAGE_SHIFT, size, prot);
5471 return ret;
5472 }
5473
5474 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5475 unsigned long iova, size_t size,
5476 struct iommu_iotlb_gather *gather)
5477 {
5478 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5479 struct page *freelist = NULL;
5480 unsigned long start_pfn, last_pfn;
5481 unsigned int npages;
5482 int iommu_id, level = 0;
5483
5484 /* Cope with horrid API which requires us to unmap more than the
5485 size argument if it happens to be a large-page mapping. */
5486 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5487 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5488 return 0;
5489
5490 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5491 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5492
5493 start_pfn = iova >> VTD_PAGE_SHIFT;
5494 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5495
5496 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5497
5498 npages = last_pfn - start_pfn + 1;
5499
5500 for_each_domain_iommu(iommu_id, dmar_domain)
5501 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5502 start_pfn, npages, !freelist, 0);
5503
5504 dma_free_pagelist(freelist);
5505
5506 if (dmar_domain->max_addr == iova + size)
5507 dmar_domain->max_addr = iova;
5508
5509 return size;
5510 }
5511
5512 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5513 dma_addr_t iova)
5514 {
5515 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5516 struct dma_pte *pte;
5517 int level = 0;
5518 u64 phys = 0;
5519
5520 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5521 return 0;
5522
5523 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5524 if (pte)
5525 phys = dma_pte_addr(pte);
5526
5527 return phys;
5528 }
5529
5530 static inline bool scalable_mode_support(void)
5531 {
5532 struct dmar_drhd_unit *drhd;
5533 struct intel_iommu *iommu;
5534 bool ret = true;
5535
5536 rcu_read_lock();
5537 for_each_active_iommu(iommu, drhd) {
5538 if (!sm_supported(iommu)) {
5539 ret = false;
5540 break;
5541 }
5542 }
5543 rcu_read_unlock();
5544
5545 return ret;
5546 }
5547
5548 static inline bool iommu_pasid_support(void)
5549 {
5550 struct dmar_drhd_unit *drhd;
5551 struct intel_iommu *iommu;
5552 bool ret = true;
5553
5554 rcu_read_lock();
5555 for_each_active_iommu(iommu, drhd) {
5556 if (!pasid_supported(iommu)) {
5557 ret = false;
5558 break;
5559 }
5560 }
5561 rcu_read_unlock();
5562
5563 return ret;
5564 }
5565
5566 static bool intel_iommu_capable(enum iommu_cap cap)
5567 {
5568 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5569 return domain_update_iommu_snooping(NULL) == 1;
5570 if (cap == IOMMU_CAP_INTR_REMAP)
5571 return irq_remapping_enabled == 1;
5572
5573 return false;
5574 }
5575
5576 static int intel_iommu_add_device(struct device *dev)
5577 {
5578 struct dmar_domain *dmar_domain;
5579 struct iommu_domain *domain;
5580 struct intel_iommu *iommu;
5581 struct iommu_group *group;
5582 u8 bus, devfn;
5583 int ret;
5584
5585 iommu = device_to_iommu(dev, &bus, &devfn);
5586 if (!iommu)
5587 return -ENODEV;
5588
5589 iommu_device_link(&iommu->iommu, dev);
5590
5591 if (translation_pre_enabled(iommu))
5592 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5593
5594 group = iommu_group_get_for_dev(dev);
5595
5596 if (IS_ERR(group))
5597 return PTR_ERR(group);
5598
5599 iommu_group_put(group);
5600
5601 domain = iommu_get_domain_for_dev(dev);
5602 dmar_domain = to_dmar_domain(domain);
5603 if (domain->type == IOMMU_DOMAIN_DMA) {
5604 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5605 ret = iommu_request_dm_for_dev(dev);
5606 if (ret) {
5607 dmar_remove_one_dev_info(dev);
5608 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5609 domain_add_dev_info(si_domain, dev);
5610 dev_info(dev,
5611 "Device uses a private identity domain.\n");
5612 }
5613 }
5614 } else {
5615 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5616 ret = iommu_request_dma_domain_for_dev(dev);
5617 if (ret) {
5618 dmar_remove_one_dev_info(dev);
5619 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5620 if (!get_private_domain_for_dev(dev)) {
5621 dev_warn(dev,
5622 "Failed to get a private domain.\n");
5623 return -ENOMEM;
5624 }
5625
5626 dev_info(dev,
5627 "Device uses a private dma domain.\n");
5628 }
5629 }
5630 }
5631
5632 if (device_needs_bounce(dev)) {
5633 dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
5634 set_dma_ops(dev, &bounce_dma_ops);
5635 }
5636
5637 return 0;
5638 }
5639
5640 static void intel_iommu_remove_device(struct device *dev)
5641 {
5642 struct intel_iommu *iommu;
5643 u8 bus, devfn;
5644
5645 iommu = device_to_iommu(dev, &bus, &devfn);
5646 if (!iommu)
5647 return;
5648
5649 dmar_remove_one_dev_info(dev);
5650
5651 iommu_group_remove_device(dev);
5652
5653 iommu_device_unlink(&iommu->iommu, dev);
5654
5655 if (device_needs_bounce(dev))
5656 set_dma_ops(dev, NULL);
5657 }
5658
5659 static void intel_iommu_get_resv_regions(struct device *device,
5660 struct list_head *head)
5661 {
5662 int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5663 struct iommu_resv_region *reg;
5664 struct dmar_rmrr_unit *rmrr;
5665 struct device *i_dev;
5666 int i;
5667
5668 down_read(&dmar_global_lock);
5669 for_each_rmrr_units(rmrr) {
5670 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5671 i, i_dev) {
5672 struct iommu_resv_region *resv;
5673 enum iommu_resv_type type;
5674 size_t length;
5675
5676 if (i_dev != device &&
5677 !is_downstream_to_pci_bridge(device, i_dev))
5678 continue;
5679
5680 length = rmrr->end_address - rmrr->base_address + 1;
5681
5682 type = device_rmrr_is_relaxable(device) ?
5683 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5684
5685 resv = iommu_alloc_resv_region(rmrr->base_address,
5686 length, prot, type);
5687 if (!resv)
5688 break;
5689
5690 list_add_tail(&resv->list, head);
5691 }
5692 }
5693 up_read(&dmar_global_lock);
5694
5695 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5696 if (dev_is_pci(device)) {
5697 struct pci_dev *pdev = to_pci_dev(device);
5698
5699 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5700 reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5701 IOMMU_RESV_DIRECT);
5702 if (reg)
5703 list_add_tail(&reg->list, head);
5704 }
5705 }
5706 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5707
5708 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5709 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5710 0, IOMMU_RESV_MSI);
5711 if (!reg)
5712 return;
5713 list_add_tail(&reg->list, head);
5714 }
5715
5716 static void intel_iommu_put_resv_regions(struct device *dev,
5717 struct list_head *head)
5718 {
5719 struct iommu_resv_region *entry, *next;
5720
5721 list_for_each_entry_safe(entry, next, head, list)
5722 kfree(entry);
5723 }
5724
5725 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5726 {
5727 struct device_domain_info *info;
5728 struct context_entry *context;
5729 struct dmar_domain *domain;
5730 unsigned long flags;
5731 u64 ctx_lo;
5732 int ret;
5733
5734 domain = find_domain(dev);
5735 if (!domain)
5736 return -EINVAL;
5737
5738 spin_lock_irqsave(&device_domain_lock, flags);
5739 spin_lock(&iommu->lock);
5740
5741 ret = -EINVAL;
5742 info = dev->archdata.iommu;
5743 if (!info || !info->pasid_supported)
5744 goto out;
5745
5746 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5747 if (WARN_ON(!context))
5748 goto out;
5749
5750 ctx_lo = context[0].lo;
5751
5752 if (!(ctx_lo & CONTEXT_PASIDE)) {
5753 ctx_lo |= CONTEXT_PASIDE;
5754 context[0].lo = ctx_lo;
5755 wmb();
5756 iommu->flush.flush_context(iommu,
5757 domain->iommu_did[iommu->seq_id],
5758 PCI_DEVID(info->bus, info->devfn),
5759 DMA_CCMD_MASK_NOBIT,
5760 DMA_CCMD_DEVICE_INVL);
5761 }
5762
5763 /* Enable PASID support in the device, if it wasn't already */
5764 if (!info->pasid_enabled)
5765 iommu_enable_dev_iotlb(info);
5766
5767 ret = 0;
5768
5769 out:
5770 spin_unlock(&iommu->lock);
5771 spin_unlock_irqrestore(&device_domain_lock, flags);
5772
5773 return ret;
5774 }
5775
5776 static void intel_iommu_apply_resv_region(struct device *dev,
5777 struct iommu_domain *domain,
5778 struct iommu_resv_region *region)
5779 {
5780 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5781 unsigned long start, end;
5782
5783 start = IOVA_PFN(region->start);
5784 end = IOVA_PFN(region->start + region->length - 1);
5785
5786 WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5787 }
5788
5789 #ifdef CONFIG_INTEL_IOMMU_SVM
5790 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5791 {
5792 struct intel_iommu *iommu;
5793 u8 bus, devfn;
5794
5795 if (iommu_dummy(dev)) {
5796 dev_warn(dev,
5797 "No IOMMU translation for device; cannot enable SVM\n");
5798 return NULL;
5799 }
5800
5801 iommu = device_to_iommu(dev, &bus, &devfn);
5802 if ((!iommu)) {
5803 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5804 return NULL;
5805 }
5806
5807 return iommu;
5808 }
5809 #endif /* CONFIG_INTEL_IOMMU_SVM */
5810
5811 static int intel_iommu_enable_auxd(struct device *dev)
5812 {
5813 struct device_domain_info *info;
5814 struct intel_iommu *iommu;
5815 unsigned long flags;
5816 u8 bus, devfn;
5817 int ret;
5818
5819 iommu = device_to_iommu(dev, &bus, &devfn);
5820 if (!iommu || dmar_disabled)
5821 return -EINVAL;
5822
5823 if (!sm_supported(iommu) || !pasid_supported(iommu))
5824 return -EINVAL;
5825
5826 ret = intel_iommu_enable_pasid(iommu, dev);
5827 if (ret)
5828 return -ENODEV;
5829
5830 spin_lock_irqsave(&device_domain_lock, flags);
5831 info = dev->archdata.iommu;
5832 info->auxd_enabled = 1;
5833 spin_unlock_irqrestore(&device_domain_lock, flags);
5834
5835 return 0;
5836 }
5837
5838 static int intel_iommu_disable_auxd(struct device *dev)
5839 {
5840 struct device_domain_info *info;
5841 unsigned long flags;
5842
5843 spin_lock_irqsave(&device_domain_lock, flags);
5844 info = dev->archdata.iommu;
5845 if (!WARN_ON(!info))
5846 info->auxd_enabled = 0;
5847 spin_unlock_irqrestore(&device_domain_lock, flags);
5848
5849 return 0;
5850 }
5851
5852 /*
5853 * A PCI express designated vendor specific extended capability is defined
5854 * in the section 3.7 of Intel scalable I/O virtualization technical spec
5855 * for system software and tools to detect endpoint devices supporting the
5856 * Intel scalable IO virtualization without host driver dependency.
5857 *
5858 * Returns the address of the matching extended capability structure within
5859 * the device's PCI configuration space or 0 if the device does not support
5860 * it.
5861 */
5862 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5863 {
5864 int pos;
5865 u16 vendor, id;
5866
5867 pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5868 while (pos) {
5869 pci_read_config_word(pdev, pos + 4, &vendor);
5870 pci_read_config_word(pdev, pos + 8, &id);
5871 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5872 return pos;
5873
5874 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5875 }
5876
5877 return 0;
5878 }
5879
5880 static bool
5881 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5882 {
5883 if (feat == IOMMU_DEV_FEAT_AUX) {
5884 int ret;
5885
5886 if (!dev_is_pci(dev) || dmar_disabled ||
5887 !scalable_mode_support() || !iommu_pasid_support())
5888 return false;
5889
5890 ret = pci_pasid_features(to_pci_dev(dev));
5891 if (ret < 0)
5892 return false;
5893
5894 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5895 }
5896
5897 return false;
5898 }
5899
5900 static int
5901 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5902 {
5903 if (feat == IOMMU_DEV_FEAT_AUX)
5904 return intel_iommu_enable_auxd(dev);
5905
5906 return -ENODEV;
5907 }
5908
5909 static int
5910 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5911 {
5912 if (feat == IOMMU_DEV_FEAT_AUX)
5913 return intel_iommu_disable_auxd(dev);
5914
5915 return -ENODEV;
5916 }
5917
5918 static bool
5919 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5920 {
5921 struct device_domain_info *info = dev->archdata.iommu;
5922
5923 if (feat == IOMMU_DEV_FEAT_AUX)
5924 return scalable_mode_support() && info && info->auxd_enabled;
5925
5926 return false;
5927 }
5928
5929 static int
5930 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5931 {
5932 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5933
5934 return dmar_domain->default_pasid > 0 ?
5935 dmar_domain->default_pasid : -EINVAL;
5936 }
5937
5938 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5939 struct device *dev)
5940 {
5941 return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5942 }
5943
5944 const struct iommu_ops intel_iommu_ops = {
5945 .capable = intel_iommu_capable,
5946 .domain_alloc = intel_iommu_domain_alloc,
5947 .domain_free = intel_iommu_domain_free,
5948 .attach_dev = intel_iommu_attach_device,
5949 .detach_dev = intel_iommu_detach_device,
5950 .aux_attach_dev = intel_iommu_aux_attach_device,
5951 .aux_detach_dev = intel_iommu_aux_detach_device,
5952 .aux_get_pasid = intel_iommu_aux_get_pasid,
5953 .map = intel_iommu_map,
5954 .unmap = intel_iommu_unmap,
5955 .iova_to_phys = intel_iommu_iova_to_phys,
5956 .add_device = intel_iommu_add_device,
5957 .remove_device = intel_iommu_remove_device,
5958 .get_resv_regions = intel_iommu_get_resv_regions,
5959 .put_resv_regions = intel_iommu_put_resv_regions,
5960 .apply_resv_region = intel_iommu_apply_resv_region,
5961 .device_group = pci_device_group,
5962 .dev_has_feat = intel_iommu_dev_has_feat,
5963 .dev_feat_enabled = intel_iommu_dev_feat_enabled,
5964 .dev_enable_feat = intel_iommu_dev_enable_feat,
5965 .dev_disable_feat = intel_iommu_dev_disable_feat,
5966 .is_attach_deferred = intel_iommu_is_attach_deferred,
5967 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5968 };
5969
5970 static void quirk_iommu_igfx(struct pci_dev *dev)
5971 {
5972 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5973 dmar_map_gfx = 0;
5974 }
5975
5976 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5977 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
5978 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
5979 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
5980 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
5981 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
5982 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
5983 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
5984
5985 /* Broadwell igfx malfunctions with dmar */
5986 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
5987 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
5988 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
5989 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
5990 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
5991 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
5992 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
5993 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
5994 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
5995 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
5996 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
5997 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
5998 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
5999 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
6000 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
6001 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
6002 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
6003 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
6004 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
6005 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
6006 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
6007 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
6008 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
6009 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6010
6011 static void quirk_iommu_rwbf(struct pci_dev *dev)
6012 {
6013 /*
6014 * Mobile 4 Series Chipset neglects to set RWBF capability,
6015 * but needs it. Same seems to hold for the desktop versions.
6016 */
6017 pci_info(dev, "Forcing write-buffer flush capability\n");
6018 rwbf_quirk = 1;
6019 }
6020
6021 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6022 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
6023 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
6024 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
6025 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
6026 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
6027 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6028
6029 #define GGC 0x52
6030 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
6031 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
6032 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
6033 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
6034 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
6035 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
6036 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
6037 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
6038
6039 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6040 {
6041 unsigned short ggc;
6042
6043 if (pci_read_config_word(dev, GGC, &ggc))
6044 return;
6045
6046 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6047 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6048 dmar_map_gfx = 0;
6049 } else if (dmar_map_gfx) {
6050 /* we have to ensure the gfx device is idle before we flush */
6051 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6052 intel_iommu_strict = 1;
6053 }
6054 }
6055 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
6056 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
6057 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
6058 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
6059
6060 /* On Tylersburg chipsets, some BIOSes have been known to enable the
6061 ISOCH DMAR unit for the Azalia sound device, but not give it any
6062 TLB entries, which causes it to deadlock. Check for that. We do
6063 this in a function called from init_dmars(), instead of in a PCI
6064 quirk, because we don't want to print the obnoxious "BIOS broken"
6065 message if VT-d is actually disabled.
6066 */
6067 static void __init check_tylersburg_isoch(void)
6068 {
6069 struct pci_dev *pdev;
6070 uint32_t vtisochctrl;
6071
6072 /* If there's no Azalia in the system anyway, forget it. */
6073 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
6074 if (!pdev)
6075 return;
6076 pci_dev_put(pdev);
6077
6078 /* System Management Registers. Might be hidden, in which case
6079 we can't do the sanity check. But that's OK, because the
6080 known-broken BIOSes _don't_ actually hide it, so far. */
6081 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
6082 if (!pdev)
6083 return;
6084
6085 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
6086 pci_dev_put(pdev);
6087 return;
6088 }
6089
6090 pci_dev_put(pdev);
6091
6092 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
6093 if (vtisochctrl & 1)
6094 return;
6095
6096 /* Drop all bits other than the number of TLB entries */
6097 vtisochctrl &= 0x1c;
6098
6099 /* If we have the recommended number of TLB entries (16), fine. */
6100 if (vtisochctrl == 0x10)
6101 return;
6102
6103 /* Zero TLB entries? You get to ride the short bus to school. */
6104 if (!vtisochctrl) {
6105 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
6106 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
6107 dmi_get_system_info(DMI_BIOS_VENDOR),
6108 dmi_get_system_info(DMI_BIOS_VERSION),
6109 dmi_get_system_info(DMI_PRODUCT_VERSION));
6110 iommu_identity_mapping |= IDENTMAP_AZALIA;
6111 return;
6112 }
6113
6114 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6115 vtisochctrl);
6116 }