]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge tag 'hsi-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
87 *
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
91 *
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
94 *
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
97 */
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102 return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117 return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127 return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132 return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137 return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158 return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162 return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
174 */
175 static int force_on = 0;
176
177 /*
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
182 */
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190 return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194 root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198 root->val |= value & VTD_PAGE_MASK;
199 }
200
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
203 {
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
208 }
209
210 /*
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
220 */
221 struct context_entry {
222 u64 lo;
223 u64 hi;
224 };
225
226 static inline bool context_present(struct context_entry *context)
227 {
228 return (context->lo & 1);
229 }
230 static inline void context_set_present(struct context_entry *context)
231 {
232 context->lo |= 1;
233 }
234
235 static inline void context_set_fault_enable(struct context_entry *context)
236 {
237 context->lo &= (((u64)-1) << 2) | 1;
238 }
239
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
242 {
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
245 }
246
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
249 {
250 context->lo |= value & VTD_PAGE_MASK;
251 }
252
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
255 {
256 context->hi |= value & 7;
257 }
258
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
261 {
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
263 }
264
265 static inline void context_clear_entry(struct context_entry *context)
266 {
267 context->lo = 0;
268 context->hi = 0;
269 }
270
271 /*
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
279 */
280 struct dma_pte {
281 u64 val;
282 };
283
284 static inline void dma_clear_pte(struct dma_pte *pte)
285 {
286 pte->val = 0;
287 }
288
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
290 {
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
297 }
298
299 static inline bool dma_pte_present(struct dma_pte *pte)
300 {
301 return (pte->val & 3) != 0;
302 }
303
304 static inline bool dma_pte_superpage(struct dma_pte *pte)
305 {
306 return (pte->val & DMA_PTE_LARGE_PAGE);
307 }
308
309 static inline int first_pte_in_page(struct dma_pte *pte)
310 {
311 return !((unsigned long)pte & ~VTD_PAGE_MASK);
312 }
313
314 /*
315 * This domain is a statically identity mapping domain.
316 * 1. This domain creats a static 1:1 mapping to all usable memory.
317 * 2. It maps to each iommu if successful.
318 * 3. Each iommu mapps to this domain if successful.
319 */
320 static struct dmar_domain *si_domain;
321 static int hw_pass_through = 1;
322
323 /* domain represents a virtual machine, more than one devices
324 * across iommus may be owned in one domain, e.g. kvm guest.
325 */
326 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
327
328 /* si_domain contains mulitple devices */
329 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
330
331 /* define the limit of IOMMUs supported in each domain */
332 #ifdef CONFIG_X86
333 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
334 #else
335 # define IOMMU_UNITS_SUPPORTED 64
336 #endif
337
338 struct dmar_domain {
339 int id; /* domain id */
340 int nid; /* node id */
341 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
342 /* bitmap of iommus this domain uses*/
343
344 struct list_head devices; /* all devices' list */
345 struct iova_domain iovad; /* iova's that belong to this domain */
346
347 struct dma_pte *pgd; /* virtual address */
348 int gaw; /* max guest address width */
349
350 /* adjusted guest address width, 0 is level 2 30-bit */
351 int agaw;
352
353 int flags; /* flags to find out type of domain */
354
355 int iommu_coherency;/* indicate coherency of iommu access */
356 int iommu_snooping; /* indicate snooping control feature*/
357 int iommu_count; /* reference count of iommu */
358 int iommu_superpage;/* Level of superpages supported:
359 0 == 4KiB (no superpages), 1 == 2MiB,
360 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
361 spinlock_t iommu_lock; /* protect iommu set in domain */
362 u64 max_addr; /* maximum mapped address */
363 };
364
365 /* PCI domain-device relationship */
366 struct device_domain_info {
367 struct list_head link; /* link to domain siblings */
368 struct list_head global; /* link to global list */
369 u8 bus; /* PCI bus number */
370 u8 devfn; /* PCI devfn number */
371 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
372 struct intel_iommu *iommu; /* IOMMU used by this device */
373 struct dmar_domain *domain; /* pointer to domain */
374 };
375
376 struct dmar_rmrr_unit {
377 struct list_head list; /* list of rmrr units */
378 struct acpi_dmar_header *hdr; /* ACPI header */
379 u64 base_address; /* reserved base address*/
380 u64 end_address; /* reserved end address */
381 struct dmar_dev_scope *devices; /* target devices */
382 int devices_cnt; /* target device count */
383 };
384
385 struct dmar_atsr_unit {
386 struct list_head list; /* list of ATSR units */
387 struct acpi_dmar_header *hdr; /* ACPI header */
388 struct dmar_dev_scope *devices; /* target devices */
389 int devices_cnt; /* target device count */
390 u8 include_all:1; /* include all ports */
391 };
392
393 static LIST_HEAD(dmar_atsr_units);
394 static LIST_HEAD(dmar_rmrr_units);
395
396 #define for_each_rmrr_units(rmrr) \
397 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
398
399 static void flush_unmaps_timeout(unsigned long data);
400
401 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
402
403 #define HIGH_WATER_MARK 250
404 struct deferred_flush_tables {
405 int next;
406 struct iova *iova[HIGH_WATER_MARK];
407 struct dmar_domain *domain[HIGH_WATER_MARK];
408 struct page *freelist[HIGH_WATER_MARK];
409 };
410
411 static struct deferred_flush_tables *deferred_flush;
412
413 /* bitmap for indexing intel_iommus */
414 static int g_num_of_iommus;
415
416 static DEFINE_SPINLOCK(async_umap_flush_lock);
417 static LIST_HEAD(unmaps_to_do);
418
419 static int timer_on;
420 static long list_size;
421
422 static void domain_exit(struct dmar_domain *domain);
423 static void domain_remove_dev_info(struct dmar_domain *domain);
424 static void domain_remove_one_dev_info(struct dmar_domain *domain,
425 struct device *dev);
426 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
427 struct device *dev);
428 static int domain_detach_iommu(struct dmar_domain *domain,
429 struct intel_iommu *iommu);
430
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled = 0;
433 #else
434 int dmar_disabled = 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
436
437 int intel_iommu_enabled = 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
439
440 static int dmar_map_gfx = 1;
441 static int dmar_forcedac;
442 static int intel_iommu_strict;
443 static int intel_iommu_superpage = 1;
444
445 int intel_iommu_gfx_mapped;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
447
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock);
450 static LIST_HEAD(device_domain_list);
451
452 static const struct iommu_ops intel_iommu_ops;
453
454 static int __init intel_iommu_setup(char *str)
455 {
456 if (!str)
457 return -EINVAL;
458 while (*str) {
459 if (!strncmp(str, "on", 2)) {
460 dmar_disabled = 0;
461 printk(KERN_INFO "Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str, "off", 3)) {
463 dmar_disabled = 1;
464 printk(KERN_INFO "Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str, "igfx_off", 8)) {
466 dmar_map_gfx = 0;
467 printk(KERN_INFO
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str, "forcedac", 8)) {
470 printk(KERN_INFO
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
472 dmar_forcedac = 1;
473 } else if (!strncmp(str, "strict", 6)) {
474 printk(KERN_INFO
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict = 1;
477 } else if (!strncmp(str, "sp_off", 6)) {
478 printk(KERN_INFO
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage = 0;
481 }
482
483 str += strcspn(str, ",");
484 while (*str == ',')
485 str++;
486 }
487 return 0;
488 }
489 __setup("intel_iommu=", intel_iommu_setup);
490
491 static struct kmem_cache *iommu_domain_cache;
492 static struct kmem_cache *iommu_devinfo_cache;
493 static struct kmem_cache *iommu_iova_cache;
494
495 static inline void *alloc_pgtable_page(int node)
496 {
497 struct page *page;
498 void *vaddr = NULL;
499
500 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
501 if (page)
502 vaddr = page_address(page);
503 return vaddr;
504 }
505
506 static inline void free_pgtable_page(void *vaddr)
507 {
508 free_page((unsigned long)vaddr);
509 }
510
511 static inline void *alloc_domain_mem(void)
512 {
513 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
514 }
515
516 static void free_domain_mem(void *vaddr)
517 {
518 kmem_cache_free(iommu_domain_cache, vaddr);
519 }
520
521 static inline void * alloc_devinfo_mem(void)
522 {
523 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
524 }
525
526 static inline void free_devinfo_mem(void *vaddr)
527 {
528 kmem_cache_free(iommu_devinfo_cache, vaddr);
529 }
530
531 struct iova *alloc_iova_mem(void)
532 {
533 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
534 }
535
536 void free_iova_mem(struct iova *iova)
537 {
538 kmem_cache_free(iommu_iova_cache, iova);
539 }
540
541 static inline int domain_type_is_vm(struct dmar_domain *domain)
542 {
543 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
544 }
545
546 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
547 {
548 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
549 DOMAIN_FLAG_STATIC_IDENTITY);
550 }
551
552 static inline int domain_pfn_supported(struct dmar_domain *domain,
553 unsigned long pfn)
554 {
555 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
556
557 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
558 }
559
560 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
561 {
562 unsigned long sagaw;
563 int agaw = -1;
564
565 sagaw = cap_sagaw(iommu->cap);
566 for (agaw = width_to_agaw(max_gaw);
567 agaw >= 0; agaw--) {
568 if (test_bit(agaw, &sagaw))
569 break;
570 }
571
572 return agaw;
573 }
574
575 /*
576 * Calculate max SAGAW for each iommu.
577 */
578 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
579 {
580 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
581 }
582
583 /*
584 * calculate agaw for each iommu.
585 * "SAGAW" may be different across iommus, use a default agaw, and
586 * get a supported less agaw for iommus that don't support the default agaw.
587 */
588 int iommu_calculate_agaw(struct intel_iommu *iommu)
589 {
590 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
591 }
592
593 /* This functionin only returns single iommu in a domain */
594 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
595 {
596 int iommu_id;
597
598 /* si_domain and vm domain should not get here. */
599 BUG_ON(domain_type_is_vm_or_si(domain));
600 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
601 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
602 return NULL;
603
604 return g_iommus[iommu_id];
605 }
606
607 static void domain_update_iommu_coherency(struct dmar_domain *domain)
608 {
609 struct dmar_drhd_unit *drhd;
610 struct intel_iommu *iommu;
611 int i, found = 0;
612
613 domain->iommu_coherency = 1;
614
615 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
616 found = 1;
617 if (!ecap_coherent(g_iommus[i]->ecap)) {
618 domain->iommu_coherency = 0;
619 break;
620 }
621 }
622 if (found)
623 return;
624
625 /* No hardware attached; use lowest common denominator */
626 rcu_read_lock();
627 for_each_active_iommu(iommu, drhd) {
628 if (!ecap_coherent(iommu->ecap)) {
629 domain->iommu_coherency = 0;
630 break;
631 }
632 }
633 rcu_read_unlock();
634 }
635
636 static int domain_update_iommu_snooping(struct intel_iommu *skip)
637 {
638 struct dmar_drhd_unit *drhd;
639 struct intel_iommu *iommu;
640 int ret = 1;
641
642 rcu_read_lock();
643 for_each_active_iommu(iommu, drhd) {
644 if (iommu != skip) {
645 if (!ecap_sc_support(iommu->ecap)) {
646 ret = 0;
647 break;
648 }
649 }
650 }
651 rcu_read_unlock();
652
653 return ret;
654 }
655
656 static int domain_update_iommu_superpage(struct intel_iommu *skip)
657 {
658 struct dmar_drhd_unit *drhd;
659 struct intel_iommu *iommu;
660 int mask = 0xf;
661
662 if (!intel_iommu_superpage) {
663 return 0;
664 }
665
666 /* set iommu_superpage to the smallest common denominator */
667 rcu_read_lock();
668 for_each_active_iommu(iommu, drhd) {
669 if (iommu != skip) {
670 mask &= cap_super_page_val(iommu->cap);
671 if (!mask)
672 break;
673 }
674 }
675 rcu_read_unlock();
676
677 return fls(mask);
678 }
679
680 /* Some capabilities may be different across iommus */
681 static void domain_update_iommu_cap(struct dmar_domain *domain)
682 {
683 domain_update_iommu_coherency(domain);
684 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
685 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
686 }
687
688 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
689 {
690 struct dmar_drhd_unit *drhd = NULL;
691 struct intel_iommu *iommu;
692 struct device *tmp;
693 struct pci_dev *ptmp, *pdev = NULL;
694 u16 segment = 0;
695 int i;
696
697 if (dev_is_pci(dev)) {
698 pdev = to_pci_dev(dev);
699 segment = pci_domain_nr(pdev->bus);
700 } else if (ACPI_COMPANION(dev))
701 dev = &ACPI_COMPANION(dev)->dev;
702
703 rcu_read_lock();
704 for_each_active_iommu(iommu, drhd) {
705 if (pdev && segment != drhd->segment)
706 continue;
707
708 for_each_active_dev_scope(drhd->devices,
709 drhd->devices_cnt, i, tmp) {
710 if (tmp == dev) {
711 *bus = drhd->devices[i].bus;
712 *devfn = drhd->devices[i].devfn;
713 goto out;
714 }
715
716 if (!pdev || !dev_is_pci(tmp))
717 continue;
718
719 ptmp = to_pci_dev(tmp);
720 if (ptmp->subordinate &&
721 ptmp->subordinate->number <= pdev->bus->number &&
722 ptmp->subordinate->busn_res.end >= pdev->bus->number)
723 goto got_pdev;
724 }
725
726 if (pdev && drhd->include_all) {
727 got_pdev:
728 *bus = pdev->bus->number;
729 *devfn = pdev->devfn;
730 goto out;
731 }
732 }
733 iommu = NULL;
734 out:
735 rcu_read_unlock();
736
737 return iommu;
738 }
739
740 static void domain_flush_cache(struct dmar_domain *domain,
741 void *addr, int size)
742 {
743 if (!domain->iommu_coherency)
744 clflush_cache_range(addr, size);
745 }
746
747 /* Gets context entry for a given bus and devfn */
748 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
749 u8 bus, u8 devfn)
750 {
751 struct root_entry *root;
752 struct context_entry *context;
753 unsigned long phy_addr;
754 unsigned long flags;
755
756 spin_lock_irqsave(&iommu->lock, flags);
757 root = &iommu->root_entry[bus];
758 context = get_context_addr_from_root(root);
759 if (!context) {
760 context = (struct context_entry *)
761 alloc_pgtable_page(iommu->node);
762 if (!context) {
763 spin_unlock_irqrestore(&iommu->lock, flags);
764 return NULL;
765 }
766 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
767 phy_addr = virt_to_phys((void *)context);
768 set_root_value(root, phy_addr);
769 set_root_present(root);
770 __iommu_flush_cache(iommu, root, sizeof(*root));
771 }
772 spin_unlock_irqrestore(&iommu->lock, flags);
773 return &context[devfn];
774 }
775
776 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
777 {
778 struct root_entry *root;
779 struct context_entry *context;
780 int ret;
781 unsigned long flags;
782
783 spin_lock_irqsave(&iommu->lock, flags);
784 root = &iommu->root_entry[bus];
785 context = get_context_addr_from_root(root);
786 if (!context) {
787 ret = 0;
788 goto out;
789 }
790 ret = context_present(&context[devfn]);
791 out:
792 spin_unlock_irqrestore(&iommu->lock, flags);
793 return ret;
794 }
795
796 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
797 {
798 struct root_entry *root;
799 struct context_entry *context;
800 unsigned long flags;
801
802 spin_lock_irqsave(&iommu->lock, flags);
803 root = &iommu->root_entry[bus];
804 context = get_context_addr_from_root(root);
805 if (context) {
806 context_clear_entry(&context[devfn]);
807 __iommu_flush_cache(iommu, &context[devfn], \
808 sizeof(*context));
809 }
810 spin_unlock_irqrestore(&iommu->lock, flags);
811 }
812
813 static void free_context_table(struct intel_iommu *iommu)
814 {
815 struct root_entry *root;
816 int i;
817 unsigned long flags;
818 struct context_entry *context;
819
820 spin_lock_irqsave(&iommu->lock, flags);
821 if (!iommu->root_entry) {
822 goto out;
823 }
824 for (i = 0; i < ROOT_ENTRY_NR; i++) {
825 root = &iommu->root_entry[i];
826 context = get_context_addr_from_root(root);
827 if (context)
828 free_pgtable_page(context);
829 }
830 free_pgtable_page(iommu->root_entry);
831 iommu->root_entry = NULL;
832 out:
833 spin_unlock_irqrestore(&iommu->lock, flags);
834 }
835
836 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
837 unsigned long pfn, int *target_level)
838 {
839 struct dma_pte *parent, *pte = NULL;
840 int level = agaw_to_level(domain->agaw);
841 int offset;
842
843 BUG_ON(!domain->pgd);
844
845 if (!domain_pfn_supported(domain, pfn))
846 /* Address beyond IOMMU's addressing capabilities. */
847 return NULL;
848
849 parent = domain->pgd;
850
851 while (1) {
852 void *tmp_page;
853
854 offset = pfn_level_offset(pfn, level);
855 pte = &parent[offset];
856 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
857 break;
858 if (level == *target_level)
859 break;
860
861 if (!dma_pte_present(pte)) {
862 uint64_t pteval;
863
864 tmp_page = alloc_pgtable_page(domain->nid);
865
866 if (!tmp_page)
867 return NULL;
868
869 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
870 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
871 if (cmpxchg64(&pte->val, 0ULL, pteval))
872 /* Someone else set it while we were thinking; use theirs. */
873 free_pgtable_page(tmp_page);
874 else
875 domain_flush_cache(domain, pte, sizeof(*pte));
876 }
877 if (level == 1)
878 break;
879
880 parent = phys_to_virt(dma_pte_addr(pte));
881 level--;
882 }
883
884 if (!*target_level)
885 *target_level = level;
886
887 return pte;
888 }
889
890
891 /* return address's pte at specific level */
892 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
893 unsigned long pfn,
894 int level, int *large_page)
895 {
896 struct dma_pte *parent, *pte = NULL;
897 int total = agaw_to_level(domain->agaw);
898 int offset;
899
900 parent = domain->pgd;
901 while (level <= total) {
902 offset = pfn_level_offset(pfn, total);
903 pte = &parent[offset];
904 if (level == total)
905 return pte;
906
907 if (!dma_pte_present(pte)) {
908 *large_page = total;
909 break;
910 }
911
912 if (dma_pte_superpage(pte)) {
913 *large_page = total;
914 return pte;
915 }
916
917 parent = phys_to_virt(dma_pte_addr(pte));
918 total--;
919 }
920 return NULL;
921 }
922
923 /* clear last level pte, a tlb flush should be followed */
924 static void dma_pte_clear_range(struct dmar_domain *domain,
925 unsigned long start_pfn,
926 unsigned long last_pfn)
927 {
928 unsigned int large_page = 1;
929 struct dma_pte *first_pte, *pte;
930
931 BUG_ON(!domain_pfn_supported(domain, start_pfn));
932 BUG_ON(!domain_pfn_supported(domain, last_pfn));
933 BUG_ON(start_pfn > last_pfn);
934
935 /* we don't need lock here; nobody else touches the iova range */
936 do {
937 large_page = 1;
938 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
939 if (!pte) {
940 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
941 continue;
942 }
943 do {
944 dma_clear_pte(pte);
945 start_pfn += lvl_to_nr_pages(large_page);
946 pte++;
947 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
948
949 domain_flush_cache(domain, first_pte,
950 (void *)pte - (void *)first_pte);
951
952 } while (start_pfn && start_pfn <= last_pfn);
953 }
954
955 static void dma_pte_free_level(struct dmar_domain *domain, int level,
956 struct dma_pte *pte, unsigned long pfn,
957 unsigned long start_pfn, unsigned long last_pfn)
958 {
959 pfn = max(start_pfn, pfn);
960 pte = &pte[pfn_level_offset(pfn, level)];
961
962 do {
963 unsigned long level_pfn;
964 struct dma_pte *level_pte;
965
966 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
967 goto next;
968
969 level_pfn = pfn & level_mask(level - 1);
970 level_pte = phys_to_virt(dma_pte_addr(pte));
971
972 if (level > 2)
973 dma_pte_free_level(domain, level - 1, level_pte,
974 level_pfn, start_pfn, last_pfn);
975
976 /* If range covers entire pagetable, free it */
977 if (!(start_pfn > level_pfn ||
978 last_pfn < level_pfn + level_size(level) - 1)) {
979 dma_clear_pte(pte);
980 domain_flush_cache(domain, pte, sizeof(*pte));
981 free_pgtable_page(level_pte);
982 }
983 next:
984 pfn += level_size(level);
985 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
986 }
987
988 /* free page table pages. last level pte should already be cleared */
989 static void dma_pte_free_pagetable(struct dmar_domain *domain,
990 unsigned long start_pfn,
991 unsigned long last_pfn)
992 {
993 BUG_ON(!domain_pfn_supported(domain, start_pfn));
994 BUG_ON(!domain_pfn_supported(domain, last_pfn));
995 BUG_ON(start_pfn > last_pfn);
996
997 dma_pte_clear_range(domain, start_pfn, last_pfn);
998
999 /* We don't need lock here; nobody else touches the iova range */
1000 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1001 domain->pgd, 0, start_pfn, last_pfn);
1002
1003 /* free pgd */
1004 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1005 free_pgtable_page(domain->pgd);
1006 domain->pgd = NULL;
1007 }
1008 }
1009
1010 /* When a page at a given level is being unlinked from its parent, we don't
1011 need to *modify* it at all. All we need to do is make a list of all the
1012 pages which can be freed just as soon as we've flushed the IOTLB and we
1013 know the hardware page-walk will no longer touch them.
1014 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1015 be freed. */
1016 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1017 int level, struct dma_pte *pte,
1018 struct page *freelist)
1019 {
1020 struct page *pg;
1021
1022 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1023 pg->freelist = freelist;
1024 freelist = pg;
1025
1026 if (level == 1)
1027 return freelist;
1028
1029 pte = page_address(pg);
1030 do {
1031 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1032 freelist = dma_pte_list_pagetables(domain, level - 1,
1033 pte, freelist);
1034 pte++;
1035 } while (!first_pte_in_page(pte));
1036
1037 return freelist;
1038 }
1039
1040 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1041 struct dma_pte *pte, unsigned long pfn,
1042 unsigned long start_pfn,
1043 unsigned long last_pfn,
1044 struct page *freelist)
1045 {
1046 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1047
1048 pfn = max(start_pfn, pfn);
1049 pte = &pte[pfn_level_offset(pfn, level)];
1050
1051 do {
1052 unsigned long level_pfn;
1053
1054 if (!dma_pte_present(pte))
1055 goto next;
1056
1057 level_pfn = pfn & level_mask(level);
1058
1059 /* If range covers entire pagetable, free it */
1060 if (start_pfn <= level_pfn &&
1061 last_pfn >= level_pfn + level_size(level) - 1) {
1062 /* These suborbinate page tables are going away entirely. Don't
1063 bother to clear them; we're just going to *free* them. */
1064 if (level > 1 && !dma_pte_superpage(pte))
1065 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1066
1067 dma_clear_pte(pte);
1068 if (!first_pte)
1069 first_pte = pte;
1070 last_pte = pte;
1071 } else if (level > 1) {
1072 /* Recurse down into a level that isn't *entirely* obsolete */
1073 freelist = dma_pte_clear_level(domain, level - 1,
1074 phys_to_virt(dma_pte_addr(pte)),
1075 level_pfn, start_pfn, last_pfn,
1076 freelist);
1077 }
1078 next:
1079 pfn += level_size(level);
1080 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1081
1082 if (first_pte)
1083 domain_flush_cache(domain, first_pte,
1084 (void *)++last_pte - (void *)first_pte);
1085
1086 return freelist;
1087 }
1088
1089 /* We can't just free the pages because the IOMMU may still be walking
1090 the page tables, and may have cached the intermediate levels. The
1091 pages can only be freed after the IOTLB flush has been done. */
1092 struct page *domain_unmap(struct dmar_domain *domain,
1093 unsigned long start_pfn,
1094 unsigned long last_pfn)
1095 {
1096 struct page *freelist = NULL;
1097
1098 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1099 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1100 BUG_ON(start_pfn > last_pfn);
1101
1102 /* we don't need lock here; nobody else touches the iova range */
1103 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1104 domain->pgd, 0, start_pfn, last_pfn, NULL);
1105
1106 /* free pgd */
1107 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1108 struct page *pgd_page = virt_to_page(domain->pgd);
1109 pgd_page->freelist = freelist;
1110 freelist = pgd_page;
1111
1112 domain->pgd = NULL;
1113 }
1114
1115 return freelist;
1116 }
1117
1118 void dma_free_pagelist(struct page *freelist)
1119 {
1120 struct page *pg;
1121
1122 while ((pg = freelist)) {
1123 freelist = pg->freelist;
1124 free_pgtable_page(page_address(pg));
1125 }
1126 }
1127
1128 /* iommu handling */
1129 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1130 {
1131 struct root_entry *root;
1132 unsigned long flags;
1133
1134 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1135 if (!root)
1136 return -ENOMEM;
1137
1138 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1139
1140 spin_lock_irqsave(&iommu->lock, flags);
1141 iommu->root_entry = root;
1142 spin_unlock_irqrestore(&iommu->lock, flags);
1143
1144 return 0;
1145 }
1146
1147 static void iommu_set_root_entry(struct intel_iommu *iommu)
1148 {
1149 void *addr;
1150 u32 sts;
1151 unsigned long flag;
1152
1153 addr = iommu->root_entry;
1154
1155 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1156 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1157
1158 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1159
1160 /* Make sure hardware complete it */
1161 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1162 readl, (sts & DMA_GSTS_RTPS), sts);
1163
1164 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1165 }
1166
1167 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1168 {
1169 u32 val;
1170 unsigned long flag;
1171
1172 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1173 return;
1174
1175 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1176 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1177
1178 /* Make sure hardware complete it */
1179 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1180 readl, (!(val & DMA_GSTS_WBFS)), val);
1181
1182 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1183 }
1184
1185 /* return value determine if we need a write buffer flush */
1186 static void __iommu_flush_context(struct intel_iommu *iommu,
1187 u16 did, u16 source_id, u8 function_mask,
1188 u64 type)
1189 {
1190 u64 val = 0;
1191 unsigned long flag;
1192
1193 switch (type) {
1194 case DMA_CCMD_GLOBAL_INVL:
1195 val = DMA_CCMD_GLOBAL_INVL;
1196 break;
1197 case DMA_CCMD_DOMAIN_INVL:
1198 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1199 break;
1200 case DMA_CCMD_DEVICE_INVL:
1201 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1202 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1203 break;
1204 default:
1205 BUG();
1206 }
1207 val |= DMA_CCMD_ICC;
1208
1209 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1210 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1211
1212 /* Make sure hardware complete it */
1213 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1214 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1215
1216 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1217 }
1218
1219 /* return value determine if we need a write buffer flush */
1220 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1221 u64 addr, unsigned int size_order, u64 type)
1222 {
1223 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1224 u64 val = 0, val_iva = 0;
1225 unsigned long flag;
1226
1227 switch (type) {
1228 case DMA_TLB_GLOBAL_FLUSH:
1229 /* global flush doesn't need set IVA_REG */
1230 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1231 break;
1232 case DMA_TLB_DSI_FLUSH:
1233 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1234 break;
1235 case DMA_TLB_PSI_FLUSH:
1236 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1237 /* IH bit is passed in as part of address */
1238 val_iva = size_order | addr;
1239 break;
1240 default:
1241 BUG();
1242 }
1243 /* Note: set drain read/write */
1244 #if 0
1245 /*
1246 * This is probably to be super secure.. Looks like we can
1247 * ignore it without any impact.
1248 */
1249 if (cap_read_drain(iommu->cap))
1250 val |= DMA_TLB_READ_DRAIN;
1251 #endif
1252 if (cap_write_drain(iommu->cap))
1253 val |= DMA_TLB_WRITE_DRAIN;
1254
1255 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1256 /* Note: Only uses first TLB reg currently */
1257 if (val_iva)
1258 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1259 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1260
1261 /* Make sure hardware complete it */
1262 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1263 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1264
1265 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1266
1267 /* check IOTLB invalidation granularity */
1268 if (DMA_TLB_IAIG(val) == 0)
1269 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1270 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1271 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1272 (unsigned long long)DMA_TLB_IIRG(type),
1273 (unsigned long long)DMA_TLB_IAIG(val));
1274 }
1275
1276 static struct device_domain_info *
1277 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1278 u8 bus, u8 devfn)
1279 {
1280 int found = 0;
1281 unsigned long flags;
1282 struct device_domain_info *info;
1283 struct pci_dev *pdev;
1284
1285 if (!ecap_dev_iotlb_support(iommu->ecap))
1286 return NULL;
1287
1288 if (!iommu->qi)
1289 return NULL;
1290
1291 spin_lock_irqsave(&device_domain_lock, flags);
1292 list_for_each_entry(info, &domain->devices, link)
1293 if (info->iommu == iommu && info->bus == bus &&
1294 info->devfn == devfn) {
1295 found = 1;
1296 break;
1297 }
1298 spin_unlock_irqrestore(&device_domain_lock, flags);
1299
1300 if (!found || !info->dev || !dev_is_pci(info->dev))
1301 return NULL;
1302
1303 pdev = to_pci_dev(info->dev);
1304
1305 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1306 return NULL;
1307
1308 if (!dmar_find_matched_atsr_unit(pdev))
1309 return NULL;
1310
1311 return info;
1312 }
1313
1314 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1315 {
1316 if (!info || !dev_is_pci(info->dev))
1317 return;
1318
1319 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1320 }
1321
1322 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1323 {
1324 if (!info->dev || !dev_is_pci(info->dev) ||
1325 !pci_ats_enabled(to_pci_dev(info->dev)))
1326 return;
1327
1328 pci_disable_ats(to_pci_dev(info->dev));
1329 }
1330
1331 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1332 u64 addr, unsigned mask)
1333 {
1334 u16 sid, qdep;
1335 unsigned long flags;
1336 struct device_domain_info *info;
1337
1338 spin_lock_irqsave(&device_domain_lock, flags);
1339 list_for_each_entry(info, &domain->devices, link) {
1340 struct pci_dev *pdev;
1341 if (!info->dev || !dev_is_pci(info->dev))
1342 continue;
1343
1344 pdev = to_pci_dev(info->dev);
1345 if (!pci_ats_enabled(pdev))
1346 continue;
1347
1348 sid = info->bus << 8 | info->devfn;
1349 qdep = pci_ats_queue_depth(pdev);
1350 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1351 }
1352 spin_unlock_irqrestore(&device_domain_lock, flags);
1353 }
1354
1355 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1356 unsigned long pfn, unsigned int pages, int ih, int map)
1357 {
1358 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1359 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1360
1361 BUG_ON(pages == 0);
1362
1363 if (ih)
1364 ih = 1 << 6;
1365 /*
1366 * Fallback to domain selective flush if no PSI support or the size is
1367 * too big.
1368 * PSI requires page size to be 2 ^ x, and the base address is naturally
1369 * aligned to the size
1370 */
1371 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1372 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1373 DMA_TLB_DSI_FLUSH);
1374 else
1375 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1376 DMA_TLB_PSI_FLUSH);
1377
1378 /*
1379 * In caching mode, changes of pages from non-present to present require
1380 * flush. However, device IOTLB doesn't need to be flushed in this case.
1381 */
1382 if (!cap_caching_mode(iommu->cap) || !map)
1383 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1384 }
1385
1386 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1387 {
1388 u32 pmen;
1389 unsigned long flags;
1390
1391 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1392 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1393 pmen &= ~DMA_PMEN_EPM;
1394 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1395
1396 /* wait for the protected region status bit to clear */
1397 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1398 readl, !(pmen & DMA_PMEN_PRS), pmen);
1399
1400 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1401 }
1402
1403 static void iommu_enable_translation(struct intel_iommu *iommu)
1404 {
1405 u32 sts;
1406 unsigned long flags;
1407
1408 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1409 iommu->gcmd |= DMA_GCMD_TE;
1410 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1411
1412 /* Make sure hardware complete it */
1413 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1414 readl, (sts & DMA_GSTS_TES), sts);
1415
1416 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1417 }
1418
1419 static void iommu_disable_translation(struct intel_iommu *iommu)
1420 {
1421 u32 sts;
1422 unsigned long flag;
1423
1424 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1425 iommu->gcmd &= ~DMA_GCMD_TE;
1426 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1427
1428 /* Make sure hardware complete it */
1429 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1430 readl, (!(sts & DMA_GSTS_TES)), sts);
1431
1432 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1433 }
1434
1435
1436 static int iommu_init_domains(struct intel_iommu *iommu)
1437 {
1438 unsigned long ndomains;
1439 unsigned long nlongs;
1440
1441 ndomains = cap_ndoms(iommu->cap);
1442 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1443 iommu->seq_id, ndomains);
1444 nlongs = BITS_TO_LONGS(ndomains);
1445
1446 spin_lock_init(&iommu->lock);
1447
1448 /* TBD: there might be 64K domains,
1449 * consider other allocation for future chip
1450 */
1451 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1452 if (!iommu->domain_ids) {
1453 pr_err("IOMMU%d: allocating domain id array failed\n",
1454 iommu->seq_id);
1455 return -ENOMEM;
1456 }
1457 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1458 GFP_KERNEL);
1459 if (!iommu->domains) {
1460 pr_err("IOMMU%d: allocating domain array failed\n",
1461 iommu->seq_id);
1462 kfree(iommu->domain_ids);
1463 iommu->domain_ids = NULL;
1464 return -ENOMEM;
1465 }
1466
1467 /*
1468 * if Caching mode is set, then invalid translations are tagged
1469 * with domainid 0. Hence we need to pre-allocate it.
1470 */
1471 if (cap_caching_mode(iommu->cap))
1472 set_bit(0, iommu->domain_ids);
1473 return 0;
1474 }
1475
1476 static void free_dmar_iommu(struct intel_iommu *iommu)
1477 {
1478 struct dmar_domain *domain;
1479 int i;
1480
1481 if ((iommu->domains) && (iommu->domain_ids)) {
1482 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1483 /*
1484 * Domain id 0 is reserved for invalid translation
1485 * if hardware supports caching mode.
1486 */
1487 if (cap_caching_mode(iommu->cap) && i == 0)
1488 continue;
1489
1490 domain = iommu->domains[i];
1491 clear_bit(i, iommu->domain_ids);
1492 if (domain_detach_iommu(domain, iommu) == 0 &&
1493 !domain_type_is_vm(domain))
1494 domain_exit(domain);
1495 }
1496 }
1497
1498 if (iommu->gcmd & DMA_GCMD_TE)
1499 iommu_disable_translation(iommu);
1500
1501 kfree(iommu->domains);
1502 kfree(iommu->domain_ids);
1503 iommu->domains = NULL;
1504 iommu->domain_ids = NULL;
1505
1506 g_iommus[iommu->seq_id] = NULL;
1507
1508 /* free context mapping */
1509 free_context_table(iommu);
1510 }
1511
1512 static struct dmar_domain *alloc_domain(int flags)
1513 {
1514 /* domain id for virtual machine, it won't be set in context */
1515 static atomic_t vm_domid = ATOMIC_INIT(0);
1516 struct dmar_domain *domain;
1517
1518 domain = alloc_domain_mem();
1519 if (!domain)
1520 return NULL;
1521
1522 memset(domain, 0, sizeof(*domain));
1523 domain->nid = -1;
1524 domain->flags = flags;
1525 spin_lock_init(&domain->iommu_lock);
1526 INIT_LIST_HEAD(&domain->devices);
1527 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1528 domain->id = atomic_inc_return(&vm_domid);
1529
1530 return domain;
1531 }
1532
1533 static int __iommu_attach_domain(struct dmar_domain *domain,
1534 struct intel_iommu *iommu)
1535 {
1536 int num;
1537 unsigned long ndomains;
1538
1539 ndomains = cap_ndoms(iommu->cap);
1540 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1541 if (num < ndomains) {
1542 set_bit(num, iommu->domain_ids);
1543 iommu->domains[num] = domain;
1544 } else {
1545 num = -ENOSPC;
1546 }
1547
1548 return num;
1549 }
1550
1551 static int iommu_attach_domain(struct dmar_domain *domain,
1552 struct intel_iommu *iommu)
1553 {
1554 int num;
1555 unsigned long flags;
1556
1557 spin_lock_irqsave(&iommu->lock, flags);
1558 num = __iommu_attach_domain(domain, iommu);
1559 spin_unlock_irqrestore(&iommu->lock, flags);
1560 if (num < 0)
1561 pr_err("IOMMU: no free domain ids\n");
1562
1563 return num;
1564 }
1565
1566 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1567 struct intel_iommu *iommu)
1568 {
1569 int num;
1570 unsigned long ndomains;
1571
1572 ndomains = cap_ndoms(iommu->cap);
1573 for_each_set_bit(num, iommu->domain_ids, ndomains)
1574 if (iommu->domains[num] == domain)
1575 return num;
1576
1577 return __iommu_attach_domain(domain, iommu);
1578 }
1579
1580 static void iommu_detach_domain(struct dmar_domain *domain,
1581 struct intel_iommu *iommu)
1582 {
1583 unsigned long flags;
1584 int num, ndomains;
1585
1586 spin_lock_irqsave(&iommu->lock, flags);
1587 if (domain_type_is_vm_or_si(domain)) {
1588 ndomains = cap_ndoms(iommu->cap);
1589 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1590 if (iommu->domains[num] == domain) {
1591 clear_bit(num, iommu->domain_ids);
1592 iommu->domains[num] = NULL;
1593 break;
1594 }
1595 }
1596 } else {
1597 clear_bit(domain->id, iommu->domain_ids);
1598 iommu->domains[domain->id] = NULL;
1599 }
1600 spin_unlock_irqrestore(&iommu->lock, flags);
1601 }
1602
1603 static void domain_attach_iommu(struct dmar_domain *domain,
1604 struct intel_iommu *iommu)
1605 {
1606 unsigned long flags;
1607
1608 spin_lock_irqsave(&domain->iommu_lock, flags);
1609 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1610 domain->iommu_count++;
1611 if (domain->iommu_count == 1)
1612 domain->nid = iommu->node;
1613 domain_update_iommu_cap(domain);
1614 }
1615 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1616 }
1617
1618 static int domain_detach_iommu(struct dmar_domain *domain,
1619 struct intel_iommu *iommu)
1620 {
1621 unsigned long flags;
1622 int count = INT_MAX;
1623
1624 spin_lock_irqsave(&domain->iommu_lock, flags);
1625 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1626 count = --domain->iommu_count;
1627 domain_update_iommu_cap(domain);
1628 }
1629 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1630
1631 return count;
1632 }
1633
1634 static struct iova_domain reserved_iova_list;
1635 static struct lock_class_key reserved_rbtree_key;
1636
1637 static int dmar_init_reserved_ranges(void)
1638 {
1639 struct pci_dev *pdev = NULL;
1640 struct iova *iova;
1641 int i;
1642
1643 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1644
1645 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1646 &reserved_rbtree_key);
1647
1648 /* IOAPIC ranges shouldn't be accessed by DMA */
1649 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1650 IOVA_PFN(IOAPIC_RANGE_END));
1651 if (!iova) {
1652 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1653 return -ENODEV;
1654 }
1655
1656 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1657 for_each_pci_dev(pdev) {
1658 struct resource *r;
1659
1660 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1661 r = &pdev->resource[i];
1662 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1663 continue;
1664 iova = reserve_iova(&reserved_iova_list,
1665 IOVA_PFN(r->start),
1666 IOVA_PFN(r->end));
1667 if (!iova) {
1668 printk(KERN_ERR "Reserve iova failed\n");
1669 return -ENODEV;
1670 }
1671 }
1672 }
1673 return 0;
1674 }
1675
1676 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1677 {
1678 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1679 }
1680
1681 static inline int guestwidth_to_adjustwidth(int gaw)
1682 {
1683 int agaw;
1684 int r = (gaw - 12) % 9;
1685
1686 if (r == 0)
1687 agaw = gaw;
1688 else
1689 agaw = gaw + 9 - r;
1690 if (agaw > 64)
1691 agaw = 64;
1692 return agaw;
1693 }
1694
1695 static int domain_init(struct dmar_domain *domain, int guest_width)
1696 {
1697 struct intel_iommu *iommu;
1698 int adjust_width, agaw;
1699 unsigned long sagaw;
1700
1701 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1702 domain_reserve_special_ranges(domain);
1703
1704 /* calculate AGAW */
1705 iommu = domain_get_iommu(domain);
1706 if (guest_width > cap_mgaw(iommu->cap))
1707 guest_width = cap_mgaw(iommu->cap);
1708 domain->gaw = guest_width;
1709 adjust_width = guestwidth_to_adjustwidth(guest_width);
1710 agaw = width_to_agaw(adjust_width);
1711 sagaw = cap_sagaw(iommu->cap);
1712 if (!test_bit(agaw, &sagaw)) {
1713 /* hardware doesn't support it, choose a bigger one */
1714 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1715 agaw = find_next_bit(&sagaw, 5, agaw);
1716 if (agaw >= 5)
1717 return -ENODEV;
1718 }
1719 domain->agaw = agaw;
1720
1721 if (ecap_coherent(iommu->ecap))
1722 domain->iommu_coherency = 1;
1723 else
1724 domain->iommu_coherency = 0;
1725
1726 if (ecap_sc_support(iommu->ecap))
1727 domain->iommu_snooping = 1;
1728 else
1729 domain->iommu_snooping = 0;
1730
1731 if (intel_iommu_superpage)
1732 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1733 else
1734 domain->iommu_superpage = 0;
1735
1736 domain->nid = iommu->node;
1737
1738 /* always allocate the top pgd */
1739 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1740 if (!domain->pgd)
1741 return -ENOMEM;
1742 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1743 return 0;
1744 }
1745
1746 static void domain_exit(struct dmar_domain *domain)
1747 {
1748 struct dmar_drhd_unit *drhd;
1749 struct intel_iommu *iommu;
1750 struct page *freelist = NULL;
1751
1752 /* Domain 0 is reserved, so dont process it */
1753 if (!domain)
1754 return;
1755
1756 /* Flush any lazy unmaps that may reference this domain */
1757 if (!intel_iommu_strict)
1758 flush_unmaps_timeout(0);
1759
1760 /* remove associated devices */
1761 domain_remove_dev_info(domain);
1762
1763 /* destroy iovas */
1764 put_iova_domain(&domain->iovad);
1765
1766 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1767
1768 /* clear attached or cached domains */
1769 rcu_read_lock();
1770 for_each_active_iommu(iommu, drhd)
1771 iommu_detach_domain(domain, iommu);
1772 rcu_read_unlock();
1773
1774 dma_free_pagelist(freelist);
1775
1776 free_domain_mem(domain);
1777 }
1778
1779 static int domain_context_mapping_one(struct dmar_domain *domain,
1780 struct intel_iommu *iommu,
1781 u8 bus, u8 devfn, int translation)
1782 {
1783 struct context_entry *context;
1784 unsigned long flags;
1785 struct dma_pte *pgd;
1786 int id;
1787 int agaw;
1788 struct device_domain_info *info = NULL;
1789
1790 pr_debug("Set context mapping for %02x:%02x.%d\n",
1791 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1792
1793 BUG_ON(!domain->pgd);
1794 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1795 translation != CONTEXT_TT_MULTI_LEVEL);
1796
1797 context = device_to_context_entry(iommu, bus, devfn);
1798 if (!context)
1799 return -ENOMEM;
1800 spin_lock_irqsave(&iommu->lock, flags);
1801 if (context_present(context)) {
1802 spin_unlock_irqrestore(&iommu->lock, flags);
1803 return 0;
1804 }
1805
1806 id = domain->id;
1807 pgd = domain->pgd;
1808
1809 if (domain_type_is_vm_or_si(domain)) {
1810 if (domain_type_is_vm(domain)) {
1811 id = iommu_attach_vm_domain(domain, iommu);
1812 if (id < 0) {
1813 spin_unlock_irqrestore(&iommu->lock, flags);
1814 pr_err("IOMMU: no free domain ids\n");
1815 return -EFAULT;
1816 }
1817 }
1818
1819 /* Skip top levels of page tables for
1820 * iommu which has less agaw than default.
1821 * Unnecessary for PT mode.
1822 */
1823 if (translation != CONTEXT_TT_PASS_THROUGH) {
1824 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1825 pgd = phys_to_virt(dma_pte_addr(pgd));
1826 if (!dma_pte_present(pgd)) {
1827 spin_unlock_irqrestore(&iommu->lock, flags);
1828 return -ENOMEM;
1829 }
1830 }
1831 }
1832 }
1833
1834 context_set_domain_id(context, id);
1835
1836 if (translation != CONTEXT_TT_PASS_THROUGH) {
1837 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1838 translation = info ? CONTEXT_TT_DEV_IOTLB :
1839 CONTEXT_TT_MULTI_LEVEL;
1840 }
1841 /*
1842 * In pass through mode, AW must be programmed to indicate the largest
1843 * AGAW value supported by hardware. And ASR is ignored by hardware.
1844 */
1845 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1846 context_set_address_width(context, iommu->msagaw);
1847 else {
1848 context_set_address_root(context, virt_to_phys(pgd));
1849 context_set_address_width(context, iommu->agaw);
1850 }
1851
1852 context_set_translation_type(context, translation);
1853 context_set_fault_enable(context);
1854 context_set_present(context);
1855 domain_flush_cache(domain, context, sizeof(*context));
1856
1857 /*
1858 * It's a non-present to present mapping. If hardware doesn't cache
1859 * non-present entry we only need to flush the write-buffer. If the
1860 * _does_ cache non-present entries, then it does so in the special
1861 * domain #0, which we have to flush:
1862 */
1863 if (cap_caching_mode(iommu->cap)) {
1864 iommu->flush.flush_context(iommu, 0,
1865 (((u16)bus) << 8) | devfn,
1866 DMA_CCMD_MASK_NOBIT,
1867 DMA_CCMD_DEVICE_INVL);
1868 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1869 } else {
1870 iommu_flush_write_buffer(iommu);
1871 }
1872 iommu_enable_dev_iotlb(info);
1873 spin_unlock_irqrestore(&iommu->lock, flags);
1874
1875 domain_attach_iommu(domain, iommu);
1876
1877 return 0;
1878 }
1879
1880 struct domain_context_mapping_data {
1881 struct dmar_domain *domain;
1882 struct intel_iommu *iommu;
1883 int translation;
1884 };
1885
1886 static int domain_context_mapping_cb(struct pci_dev *pdev,
1887 u16 alias, void *opaque)
1888 {
1889 struct domain_context_mapping_data *data = opaque;
1890
1891 return domain_context_mapping_one(data->domain, data->iommu,
1892 PCI_BUS_NUM(alias), alias & 0xff,
1893 data->translation);
1894 }
1895
1896 static int
1897 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1898 int translation)
1899 {
1900 struct intel_iommu *iommu;
1901 u8 bus, devfn;
1902 struct domain_context_mapping_data data;
1903
1904 iommu = device_to_iommu(dev, &bus, &devfn);
1905 if (!iommu)
1906 return -ENODEV;
1907
1908 if (!dev_is_pci(dev))
1909 return domain_context_mapping_one(domain, iommu, bus, devfn,
1910 translation);
1911
1912 data.domain = domain;
1913 data.iommu = iommu;
1914 data.translation = translation;
1915
1916 return pci_for_each_dma_alias(to_pci_dev(dev),
1917 &domain_context_mapping_cb, &data);
1918 }
1919
1920 static int domain_context_mapped_cb(struct pci_dev *pdev,
1921 u16 alias, void *opaque)
1922 {
1923 struct intel_iommu *iommu = opaque;
1924
1925 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
1926 }
1927
1928 static int domain_context_mapped(struct device *dev)
1929 {
1930 struct intel_iommu *iommu;
1931 u8 bus, devfn;
1932
1933 iommu = device_to_iommu(dev, &bus, &devfn);
1934 if (!iommu)
1935 return -ENODEV;
1936
1937 if (!dev_is_pci(dev))
1938 return device_context_mapped(iommu, bus, devfn);
1939
1940 return !pci_for_each_dma_alias(to_pci_dev(dev),
1941 domain_context_mapped_cb, iommu);
1942 }
1943
1944 /* Returns a number of VTD pages, but aligned to MM page size */
1945 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1946 size_t size)
1947 {
1948 host_addr &= ~PAGE_MASK;
1949 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1950 }
1951
1952 /* Return largest possible superpage level for a given mapping */
1953 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1954 unsigned long iov_pfn,
1955 unsigned long phy_pfn,
1956 unsigned long pages)
1957 {
1958 int support, level = 1;
1959 unsigned long pfnmerge;
1960
1961 support = domain->iommu_superpage;
1962
1963 /* To use a large page, the virtual *and* physical addresses
1964 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1965 of them will mean we have to use smaller pages. So just
1966 merge them and check both at once. */
1967 pfnmerge = iov_pfn | phy_pfn;
1968
1969 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1970 pages >>= VTD_STRIDE_SHIFT;
1971 if (!pages)
1972 break;
1973 pfnmerge >>= VTD_STRIDE_SHIFT;
1974 level++;
1975 support--;
1976 }
1977 return level;
1978 }
1979
1980 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1981 struct scatterlist *sg, unsigned long phys_pfn,
1982 unsigned long nr_pages, int prot)
1983 {
1984 struct dma_pte *first_pte = NULL, *pte = NULL;
1985 phys_addr_t uninitialized_var(pteval);
1986 unsigned long sg_res;
1987 unsigned int largepage_lvl = 0;
1988 unsigned long lvl_pages = 0;
1989
1990 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
1991
1992 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1993 return -EINVAL;
1994
1995 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1996
1997 if (sg)
1998 sg_res = 0;
1999 else {
2000 sg_res = nr_pages + 1;
2001 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2002 }
2003
2004 while (nr_pages > 0) {
2005 uint64_t tmp;
2006
2007 if (!sg_res) {
2008 sg_res = aligned_nrpages(sg->offset, sg->length);
2009 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2010 sg->dma_length = sg->length;
2011 pteval = page_to_phys(sg_page(sg)) | prot;
2012 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2013 }
2014
2015 if (!pte) {
2016 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2017
2018 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2019 if (!pte)
2020 return -ENOMEM;
2021 /* It is large page*/
2022 if (largepage_lvl > 1) {
2023 pteval |= DMA_PTE_LARGE_PAGE;
2024 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2025 /*
2026 * Ensure that old small page tables are
2027 * removed to make room for superpage,
2028 * if they exist.
2029 */
2030 dma_pte_free_pagetable(domain, iov_pfn,
2031 iov_pfn + lvl_pages - 1);
2032 } else {
2033 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2034 }
2035
2036 }
2037 /* We don't need lock here, nobody else
2038 * touches the iova range
2039 */
2040 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2041 if (tmp) {
2042 static int dumps = 5;
2043 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2044 iov_pfn, tmp, (unsigned long long)pteval);
2045 if (dumps) {
2046 dumps--;
2047 debug_dma_dump_mappings(NULL);
2048 }
2049 WARN_ON(1);
2050 }
2051
2052 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2053
2054 BUG_ON(nr_pages < lvl_pages);
2055 BUG_ON(sg_res < lvl_pages);
2056
2057 nr_pages -= lvl_pages;
2058 iov_pfn += lvl_pages;
2059 phys_pfn += lvl_pages;
2060 pteval += lvl_pages * VTD_PAGE_SIZE;
2061 sg_res -= lvl_pages;
2062
2063 /* If the next PTE would be the first in a new page, then we
2064 need to flush the cache on the entries we've just written.
2065 And then we'll need to recalculate 'pte', so clear it and
2066 let it get set again in the if (!pte) block above.
2067
2068 If we're done (!nr_pages) we need to flush the cache too.
2069
2070 Also if we've been setting superpages, we may need to
2071 recalculate 'pte' and switch back to smaller pages for the
2072 end of the mapping, if the trailing size is not enough to
2073 use another superpage (i.e. sg_res < lvl_pages). */
2074 pte++;
2075 if (!nr_pages || first_pte_in_page(pte) ||
2076 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2077 domain_flush_cache(domain, first_pte,
2078 (void *)pte - (void *)first_pte);
2079 pte = NULL;
2080 }
2081
2082 if (!sg_res && nr_pages)
2083 sg = sg_next(sg);
2084 }
2085 return 0;
2086 }
2087
2088 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2089 struct scatterlist *sg, unsigned long nr_pages,
2090 int prot)
2091 {
2092 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2093 }
2094
2095 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2096 unsigned long phys_pfn, unsigned long nr_pages,
2097 int prot)
2098 {
2099 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2100 }
2101
2102 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2103 {
2104 if (!iommu)
2105 return;
2106
2107 clear_context_table(iommu, bus, devfn);
2108 iommu->flush.flush_context(iommu, 0, 0, 0,
2109 DMA_CCMD_GLOBAL_INVL);
2110 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2111 }
2112
2113 static inline void unlink_domain_info(struct device_domain_info *info)
2114 {
2115 assert_spin_locked(&device_domain_lock);
2116 list_del(&info->link);
2117 list_del(&info->global);
2118 if (info->dev)
2119 info->dev->archdata.iommu = NULL;
2120 }
2121
2122 static void domain_remove_dev_info(struct dmar_domain *domain)
2123 {
2124 struct device_domain_info *info, *tmp;
2125 unsigned long flags;
2126
2127 spin_lock_irqsave(&device_domain_lock, flags);
2128 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2129 unlink_domain_info(info);
2130 spin_unlock_irqrestore(&device_domain_lock, flags);
2131
2132 iommu_disable_dev_iotlb(info);
2133 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2134
2135 if (domain_type_is_vm(domain)) {
2136 iommu_detach_dependent_devices(info->iommu, info->dev);
2137 domain_detach_iommu(domain, info->iommu);
2138 }
2139
2140 free_devinfo_mem(info);
2141 spin_lock_irqsave(&device_domain_lock, flags);
2142 }
2143 spin_unlock_irqrestore(&device_domain_lock, flags);
2144 }
2145
2146 /*
2147 * find_domain
2148 * Note: we use struct device->archdata.iommu stores the info
2149 */
2150 static struct dmar_domain *find_domain(struct device *dev)
2151 {
2152 struct device_domain_info *info;
2153
2154 /* No lock here, assumes no domain exit in normal case */
2155 info = dev->archdata.iommu;
2156 if (info)
2157 return info->domain;
2158 return NULL;
2159 }
2160
2161 static inline struct device_domain_info *
2162 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2163 {
2164 struct device_domain_info *info;
2165
2166 list_for_each_entry(info, &device_domain_list, global)
2167 if (info->iommu->segment == segment && info->bus == bus &&
2168 info->devfn == devfn)
2169 return info;
2170
2171 return NULL;
2172 }
2173
2174 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2175 int bus, int devfn,
2176 struct device *dev,
2177 struct dmar_domain *domain)
2178 {
2179 struct dmar_domain *found = NULL;
2180 struct device_domain_info *info;
2181 unsigned long flags;
2182
2183 info = alloc_devinfo_mem();
2184 if (!info)
2185 return NULL;
2186
2187 info->bus = bus;
2188 info->devfn = devfn;
2189 info->dev = dev;
2190 info->domain = domain;
2191 info->iommu = iommu;
2192
2193 spin_lock_irqsave(&device_domain_lock, flags);
2194 if (dev)
2195 found = find_domain(dev);
2196 else {
2197 struct device_domain_info *info2;
2198 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2199 if (info2)
2200 found = info2->domain;
2201 }
2202 if (found) {
2203 spin_unlock_irqrestore(&device_domain_lock, flags);
2204 free_devinfo_mem(info);
2205 /* Caller must free the original domain */
2206 return found;
2207 }
2208
2209 list_add(&info->link, &domain->devices);
2210 list_add(&info->global, &device_domain_list);
2211 if (dev)
2212 dev->archdata.iommu = info;
2213 spin_unlock_irqrestore(&device_domain_lock, flags);
2214
2215 return domain;
2216 }
2217
2218 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2219 {
2220 *(u16 *)opaque = alias;
2221 return 0;
2222 }
2223
2224 /* domain is initialized */
2225 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2226 {
2227 struct dmar_domain *domain, *tmp;
2228 struct intel_iommu *iommu;
2229 struct device_domain_info *info;
2230 u16 dma_alias;
2231 unsigned long flags;
2232 u8 bus, devfn;
2233
2234 domain = find_domain(dev);
2235 if (domain)
2236 return domain;
2237
2238 iommu = device_to_iommu(dev, &bus, &devfn);
2239 if (!iommu)
2240 return NULL;
2241
2242 if (dev_is_pci(dev)) {
2243 struct pci_dev *pdev = to_pci_dev(dev);
2244
2245 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2246
2247 spin_lock_irqsave(&device_domain_lock, flags);
2248 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2249 PCI_BUS_NUM(dma_alias),
2250 dma_alias & 0xff);
2251 if (info) {
2252 iommu = info->iommu;
2253 domain = info->domain;
2254 }
2255 spin_unlock_irqrestore(&device_domain_lock, flags);
2256
2257 /* DMA alias already has a domain, uses it */
2258 if (info)
2259 goto found_domain;
2260 }
2261
2262 /* Allocate and initialize new domain for the device */
2263 domain = alloc_domain(0);
2264 if (!domain)
2265 return NULL;
2266 domain->id = iommu_attach_domain(domain, iommu);
2267 if (domain->id < 0) {
2268 free_domain_mem(domain);
2269 return NULL;
2270 }
2271 domain_attach_iommu(domain, iommu);
2272 if (domain_init(domain, gaw)) {
2273 domain_exit(domain);
2274 return NULL;
2275 }
2276
2277 /* register PCI DMA alias device */
2278 if (dev_is_pci(dev)) {
2279 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2280 dma_alias & 0xff, NULL, domain);
2281
2282 if (!tmp || tmp != domain) {
2283 domain_exit(domain);
2284 domain = tmp;
2285 }
2286
2287 if (!domain)
2288 return NULL;
2289 }
2290
2291 found_domain:
2292 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2293
2294 if (!tmp || tmp != domain) {
2295 domain_exit(domain);
2296 domain = tmp;
2297 }
2298
2299 return domain;
2300 }
2301
2302 static int iommu_identity_mapping;
2303 #define IDENTMAP_ALL 1
2304 #define IDENTMAP_GFX 2
2305 #define IDENTMAP_AZALIA 4
2306
2307 static int iommu_domain_identity_map(struct dmar_domain *domain,
2308 unsigned long long start,
2309 unsigned long long end)
2310 {
2311 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2312 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2313
2314 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2315 dma_to_mm_pfn(last_vpfn))) {
2316 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2317 return -ENOMEM;
2318 }
2319
2320 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2321 start, end, domain->id);
2322 /*
2323 * RMRR range might have overlap with physical memory range,
2324 * clear it first
2325 */
2326 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2327
2328 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2329 last_vpfn - first_vpfn + 1,
2330 DMA_PTE_READ|DMA_PTE_WRITE);
2331 }
2332
2333 static int iommu_prepare_identity_map(struct device *dev,
2334 unsigned long long start,
2335 unsigned long long end)
2336 {
2337 struct dmar_domain *domain;
2338 int ret;
2339
2340 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2341 if (!domain)
2342 return -ENOMEM;
2343
2344 /* For _hardware_ passthrough, don't bother. But for software
2345 passthrough, we do it anyway -- it may indicate a memory
2346 range which is reserved in E820, so which didn't get set
2347 up to start with in si_domain */
2348 if (domain == si_domain && hw_pass_through) {
2349 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2350 dev_name(dev), start, end);
2351 return 0;
2352 }
2353
2354 printk(KERN_INFO
2355 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2356 dev_name(dev), start, end);
2357
2358 if (end < start) {
2359 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2360 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2361 dmi_get_system_info(DMI_BIOS_VENDOR),
2362 dmi_get_system_info(DMI_BIOS_VERSION),
2363 dmi_get_system_info(DMI_PRODUCT_VERSION));
2364 ret = -EIO;
2365 goto error;
2366 }
2367
2368 if (end >> agaw_to_width(domain->agaw)) {
2369 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2370 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2371 agaw_to_width(domain->agaw),
2372 dmi_get_system_info(DMI_BIOS_VENDOR),
2373 dmi_get_system_info(DMI_BIOS_VERSION),
2374 dmi_get_system_info(DMI_PRODUCT_VERSION));
2375 ret = -EIO;
2376 goto error;
2377 }
2378
2379 ret = iommu_domain_identity_map(domain, start, end);
2380 if (ret)
2381 goto error;
2382
2383 /* context entry init */
2384 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2385 if (ret)
2386 goto error;
2387
2388 return 0;
2389
2390 error:
2391 domain_exit(domain);
2392 return ret;
2393 }
2394
2395 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2396 struct device *dev)
2397 {
2398 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2399 return 0;
2400 return iommu_prepare_identity_map(dev, rmrr->base_address,
2401 rmrr->end_address);
2402 }
2403
2404 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2405 static inline void iommu_prepare_isa(void)
2406 {
2407 struct pci_dev *pdev;
2408 int ret;
2409
2410 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2411 if (!pdev)
2412 return;
2413
2414 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2415 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2416
2417 if (ret)
2418 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2419 "floppy might not work\n");
2420
2421 pci_dev_put(pdev);
2422 }
2423 #else
2424 static inline void iommu_prepare_isa(void)
2425 {
2426 return;
2427 }
2428 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2429
2430 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2431
2432 static int __init si_domain_init(int hw)
2433 {
2434 struct dmar_drhd_unit *drhd;
2435 struct intel_iommu *iommu;
2436 int nid, ret = 0;
2437 bool first = true;
2438
2439 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2440 if (!si_domain)
2441 return -EFAULT;
2442
2443 for_each_active_iommu(iommu, drhd) {
2444 ret = iommu_attach_domain(si_domain, iommu);
2445 if (ret < 0) {
2446 domain_exit(si_domain);
2447 return -EFAULT;
2448 } else if (first) {
2449 si_domain->id = ret;
2450 first = false;
2451 } else if (si_domain->id != ret) {
2452 domain_exit(si_domain);
2453 return -EFAULT;
2454 }
2455 domain_attach_iommu(si_domain, iommu);
2456 }
2457
2458 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2459 domain_exit(si_domain);
2460 return -EFAULT;
2461 }
2462
2463 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2464 si_domain->id);
2465
2466 if (hw)
2467 return 0;
2468
2469 for_each_online_node(nid) {
2470 unsigned long start_pfn, end_pfn;
2471 int i;
2472
2473 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2474 ret = iommu_domain_identity_map(si_domain,
2475 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2476 if (ret)
2477 return ret;
2478 }
2479 }
2480
2481 return 0;
2482 }
2483
2484 static int identity_mapping(struct device *dev)
2485 {
2486 struct device_domain_info *info;
2487
2488 if (likely(!iommu_identity_mapping))
2489 return 0;
2490
2491 info = dev->archdata.iommu;
2492 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2493 return (info->domain == si_domain);
2494
2495 return 0;
2496 }
2497
2498 static int domain_add_dev_info(struct dmar_domain *domain,
2499 struct device *dev, int translation)
2500 {
2501 struct dmar_domain *ndomain;
2502 struct intel_iommu *iommu;
2503 u8 bus, devfn;
2504 int ret;
2505
2506 iommu = device_to_iommu(dev, &bus, &devfn);
2507 if (!iommu)
2508 return -ENODEV;
2509
2510 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2511 if (ndomain != domain)
2512 return -EBUSY;
2513
2514 ret = domain_context_mapping(domain, dev, translation);
2515 if (ret) {
2516 domain_remove_one_dev_info(domain, dev);
2517 return ret;
2518 }
2519
2520 return 0;
2521 }
2522
2523 static bool device_has_rmrr(struct device *dev)
2524 {
2525 struct dmar_rmrr_unit *rmrr;
2526 struct device *tmp;
2527 int i;
2528
2529 rcu_read_lock();
2530 for_each_rmrr_units(rmrr) {
2531 /*
2532 * Return TRUE if this RMRR contains the device that
2533 * is passed in.
2534 */
2535 for_each_active_dev_scope(rmrr->devices,
2536 rmrr->devices_cnt, i, tmp)
2537 if (tmp == dev) {
2538 rcu_read_unlock();
2539 return true;
2540 }
2541 }
2542 rcu_read_unlock();
2543 return false;
2544 }
2545
2546 /*
2547 * There are a couple cases where we need to restrict the functionality of
2548 * devices associated with RMRRs. The first is when evaluating a device for
2549 * identity mapping because problems exist when devices are moved in and out
2550 * of domains and their respective RMRR information is lost. This means that
2551 * a device with associated RMRRs will never be in a "passthrough" domain.
2552 * The second is use of the device through the IOMMU API. This interface
2553 * expects to have full control of the IOVA space for the device. We cannot
2554 * satisfy both the requirement that RMRR access is maintained and have an
2555 * unencumbered IOVA space. We also have no ability to quiesce the device's
2556 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2557 * We therefore prevent devices associated with an RMRR from participating in
2558 * the IOMMU API, which eliminates them from device assignment.
2559 *
2560 * In both cases we assume that PCI USB devices with RMRRs have them largely
2561 * for historical reasons and that the RMRR space is not actively used post
2562 * boot. This exclusion may change if vendors begin to abuse it.
2563 */
2564 static bool device_is_rmrr_locked(struct device *dev)
2565 {
2566 if (!device_has_rmrr(dev))
2567 return false;
2568
2569 if (dev_is_pci(dev)) {
2570 struct pci_dev *pdev = to_pci_dev(dev);
2571
2572 if ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
2573 return false;
2574 }
2575
2576 return true;
2577 }
2578
2579 static int iommu_should_identity_map(struct device *dev, int startup)
2580 {
2581
2582 if (dev_is_pci(dev)) {
2583 struct pci_dev *pdev = to_pci_dev(dev);
2584
2585 if (device_is_rmrr_locked(dev))
2586 return 0;
2587
2588 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2589 return 1;
2590
2591 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2592 return 1;
2593
2594 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2595 return 0;
2596
2597 /*
2598 * We want to start off with all devices in the 1:1 domain, and
2599 * take them out later if we find they can't access all of memory.
2600 *
2601 * However, we can't do this for PCI devices behind bridges,
2602 * because all PCI devices behind the same bridge will end up
2603 * with the same source-id on their transactions.
2604 *
2605 * Practically speaking, we can't change things around for these
2606 * devices at run-time, because we can't be sure there'll be no
2607 * DMA transactions in flight for any of their siblings.
2608 *
2609 * So PCI devices (unless they're on the root bus) as well as
2610 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2611 * the 1:1 domain, just in _case_ one of their siblings turns out
2612 * not to be able to map all of memory.
2613 */
2614 if (!pci_is_pcie(pdev)) {
2615 if (!pci_is_root_bus(pdev->bus))
2616 return 0;
2617 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2618 return 0;
2619 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2620 return 0;
2621 } else {
2622 if (device_has_rmrr(dev))
2623 return 0;
2624 }
2625
2626 /*
2627 * At boot time, we don't yet know if devices will be 64-bit capable.
2628 * Assume that they will — if they turn out not to be, then we can
2629 * take them out of the 1:1 domain later.
2630 */
2631 if (!startup) {
2632 /*
2633 * If the device's dma_mask is less than the system's memory
2634 * size then this is not a candidate for identity mapping.
2635 */
2636 u64 dma_mask = *dev->dma_mask;
2637
2638 if (dev->coherent_dma_mask &&
2639 dev->coherent_dma_mask < dma_mask)
2640 dma_mask = dev->coherent_dma_mask;
2641
2642 return dma_mask >= dma_get_required_mask(dev);
2643 }
2644
2645 return 1;
2646 }
2647
2648 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2649 {
2650 int ret;
2651
2652 if (!iommu_should_identity_map(dev, 1))
2653 return 0;
2654
2655 ret = domain_add_dev_info(si_domain, dev,
2656 hw ? CONTEXT_TT_PASS_THROUGH :
2657 CONTEXT_TT_MULTI_LEVEL);
2658 if (!ret)
2659 pr_info("IOMMU: %s identity mapping for device %s\n",
2660 hw ? "hardware" : "software", dev_name(dev));
2661 else if (ret == -ENODEV)
2662 /* device not associated with an iommu */
2663 ret = 0;
2664
2665 return ret;
2666 }
2667
2668
2669 static int __init iommu_prepare_static_identity_mapping(int hw)
2670 {
2671 struct pci_dev *pdev = NULL;
2672 struct dmar_drhd_unit *drhd;
2673 struct intel_iommu *iommu;
2674 struct device *dev;
2675 int i;
2676 int ret = 0;
2677
2678 ret = si_domain_init(hw);
2679 if (ret)
2680 return -EFAULT;
2681
2682 for_each_pci_dev(pdev) {
2683 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2684 if (ret)
2685 return ret;
2686 }
2687
2688 for_each_active_iommu(iommu, drhd)
2689 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2690 struct acpi_device_physical_node *pn;
2691 struct acpi_device *adev;
2692
2693 if (dev->bus != &acpi_bus_type)
2694 continue;
2695
2696 adev= to_acpi_device(dev);
2697 mutex_lock(&adev->physical_node_lock);
2698 list_for_each_entry(pn, &adev->physical_node_list, node) {
2699 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2700 if (ret)
2701 break;
2702 }
2703 mutex_unlock(&adev->physical_node_lock);
2704 if (ret)
2705 return ret;
2706 }
2707
2708 return 0;
2709 }
2710
2711 static int __init init_dmars(void)
2712 {
2713 struct dmar_drhd_unit *drhd;
2714 struct dmar_rmrr_unit *rmrr;
2715 struct device *dev;
2716 struct intel_iommu *iommu;
2717 int i, ret;
2718
2719 /*
2720 * for each drhd
2721 * allocate root
2722 * initialize and program root entry to not present
2723 * endfor
2724 */
2725 for_each_drhd_unit(drhd) {
2726 /*
2727 * lock not needed as this is only incremented in the single
2728 * threaded kernel __init code path all other access are read
2729 * only
2730 */
2731 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2732 g_num_of_iommus++;
2733 continue;
2734 }
2735 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2736 IOMMU_UNITS_SUPPORTED);
2737 }
2738
2739 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2740 GFP_KERNEL);
2741 if (!g_iommus) {
2742 printk(KERN_ERR "Allocating global iommu array failed\n");
2743 ret = -ENOMEM;
2744 goto error;
2745 }
2746
2747 deferred_flush = kzalloc(g_num_of_iommus *
2748 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2749 if (!deferred_flush) {
2750 ret = -ENOMEM;
2751 goto free_g_iommus;
2752 }
2753
2754 for_each_active_iommu(iommu, drhd) {
2755 g_iommus[iommu->seq_id] = iommu;
2756
2757 ret = iommu_init_domains(iommu);
2758 if (ret)
2759 goto free_iommu;
2760
2761 /*
2762 * TBD:
2763 * we could share the same root & context tables
2764 * among all IOMMU's. Need to Split it later.
2765 */
2766 ret = iommu_alloc_root_entry(iommu);
2767 if (ret) {
2768 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2769 goto free_iommu;
2770 }
2771 if (!ecap_pass_through(iommu->ecap))
2772 hw_pass_through = 0;
2773 }
2774
2775 /*
2776 * Start from the sane iommu hardware state.
2777 */
2778 for_each_active_iommu(iommu, drhd) {
2779 /*
2780 * If the queued invalidation is already initialized by us
2781 * (for example, while enabling interrupt-remapping) then
2782 * we got the things already rolling from a sane state.
2783 */
2784 if (iommu->qi)
2785 continue;
2786
2787 /*
2788 * Clear any previous faults.
2789 */
2790 dmar_fault(-1, iommu);
2791 /*
2792 * Disable queued invalidation if supported and already enabled
2793 * before OS handover.
2794 */
2795 dmar_disable_qi(iommu);
2796 }
2797
2798 for_each_active_iommu(iommu, drhd) {
2799 if (dmar_enable_qi(iommu)) {
2800 /*
2801 * Queued Invalidate not enabled, use Register Based
2802 * Invalidate
2803 */
2804 iommu->flush.flush_context = __iommu_flush_context;
2805 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2806 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2807 "invalidation\n",
2808 iommu->seq_id,
2809 (unsigned long long)drhd->reg_base_addr);
2810 } else {
2811 iommu->flush.flush_context = qi_flush_context;
2812 iommu->flush.flush_iotlb = qi_flush_iotlb;
2813 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2814 "invalidation\n",
2815 iommu->seq_id,
2816 (unsigned long long)drhd->reg_base_addr);
2817 }
2818 }
2819
2820 if (iommu_pass_through)
2821 iommu_identity_mapping |= IDENTMAP_ALL;
2822
2823 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2824 iommu_identity_mapping |= IDENTMAP_GFX;
2825 #endif
2826
2827 check_tylersburg_isoch();
2828
2829 /*
2830 * If pass through is not set or not enabled, setup context entries for
2831 * identity mappings for rmrr, gfx, and isa and may fall back to static
2832 * identity mapping if iommu_identity_mapping is set.
2833 */
2834 if (iommu_identity_mapping) {
2835 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2836 if (ret) {
2837 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2838 goto free_iommu;
2839 }
2840 }
2841 /*
2842 * For each rmrr
2843 * for each dev attached to rmrr
2844 * do
2845 * locate drhd for dev, alloc domain for dev
2846 * allocate free domain
2847 * allocate page table entries for rmrr
2848 * if context not allocated for bus
2849 * allocate and init context
2850 * set present in root table for this bus
2851 * init context with domain, translation etc
2852 * endfor
2853 * endfor
2854 */
2855 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2856 for_each_rmrr_units(rmrr) {
2857 /* some BIOS lists non-exist devices in DMAR table. */
2858 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2859 i, dev) {
2860 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2861 if (ret)
2862 printk(KERN_ERR
2863 "IOMMU: mapping reserved region failed\n");
2864 }
2865 }
2866
2867 iommu_prepare_isa();
2868
2869 /*
2870 * for each drhd
2871 * enable fault log
2872 * global invalidate context cache
2873 * global invalidate iotlb
2874 * enable translation
2875 */
2876 for_each_iommu(iommu, drhd) {
2877 if (drhd->ignored) {
2878 /*
2879 * we always have to disable PMRs or DMA may fail on
2880 * this device
2881 */
2882 if (force_on)
2883 iommu_disable_protect_mem_regions(iommu);
2884 continue;
2885 }
2886
2887 iommu_flush_write_buffer(iommu);
2888
2889 ret = dmar_set_interrupt(iommu);
2890 if (ret)
2891 goto free_iommu;
2892
2893 iommu_set_root_entry(iommu);
2894
2895 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2896 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2897 iommu_enable_translation(iommu);
2898 iommu_disable_protect_mem_regions(iommu);
2899 }
2900
2901 return 0;
2902
2903 free_iommu:
2904 for_each_active_iommu(iommu, drhd)
2905 free_dmar_iommu(iommu);
2906 kfree(deferred_flush);
2907 free_g_iommus:
2908 kfree(g_iommus);
2909 error:
2910 return ret;
2911 }
2912
2913 /* This takes a number of _MM_ pages, not VTD pages */
2914 static struct iova *intel_alloc_iova(struct device *dev,
2915 struct dmar_domain *domain,
2916 unsigned long nrpages, uint64_t dma_mask)
2917 {
2918 struct iova *iova = NULL;
2919
2920 /* Restrict dma_mask to the width that the iommu can handle */
2921 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2922
2923 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2924 /*
2925 * First try to allocate an io virtual address in
2926 * DMA_BIT_MASK(32) and if that fails then try allocating
2927 * from higher range
2928 */
2929 iova = alloc_iova(&domain->iovad, nrpages,
2930 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2931 if (iova)
2932 return iova;
2933 }
2934 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2935 if (unlikely(!iova)) {
2936 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2937 nrpages, dev_name(dev));
2938 return NULL;
2939 }
2940
2941 return iova;
2942 }
2943
2944 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2945 {
2946 struct dmar_domain *domain;
2947 int ret;
2948
2949 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2950 if (!domain) {
2951 printk(KERN_ERR "Allocating domain for %s failed",
2952 dev_name(dev));
2953 return NULL;
2954 }
2955
2956 /* make sure context mapping is ok */
2957 if (unlikely(!domain_context_mapped(dev))) {
2958 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2959 if (ret) {
2960 printk(KERN_ERR "Domain context map for %s failed",
2961 dev_name(dev));
2962 return NULL;
2963 }
2964 }
2965
2966 return domain;
2967 }
2968
2969 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2970 {
2971 struct device_domain_info *info;
2972
2973 /* No lock here, assumes no domain exit in normal case */
2974 info = dev->archdata.iommu;
2975 if (likely(info))
2976 return info->domain;
2977
2978 return __get_valid_domain_for_dev(dev);
2979 }
2980
2981 static int iommu_dummy(struct device *dev)
2982 {
2983 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2984 }
2985
2986 /* Check if the dev needs to go through non-identity map and unmap process.*/
2987 static int iommu_no_mapping(struct device *dev)
2988 {
2989 int found;
2990
2991 if (iommu_dummy(dev))
2992 return 1;
2993
2994 if (!iommu_identity_mapping)
2995 return 0;
2996
2997 found = identity_mapping(dev);
2998 if (found) {
2999 if (iommu_should_identity_map(dev, 0))
3000 return 1;
3001 else {
3002 /*
3003 * 32 bit DMA is removed from si_domain and fall back
3004 * to non-identity mapping.
3005 */
3006 domain_remove_one_dev_info(si_domain, dev);
3007 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
3008 dev_name(dev));
3009 return 0;
3010 }
3011 } else {
3012 /*
3013 * In case of a detached 64 bit DMA device from vm, the device
3014 * is put into si_domain for identity mapping.
3015 */
3016 if (iommu_should_identity_map(dev, 0)) {
3017 int ret;
3018 ret = domain_add_dev_info(si_domain, dev,
3019 hw_pass_through ?
3020 CONTEXT_TT_PASS_THROUGH :
3021 CONTEXT_TT_MULTI_LEVEL);
3022 if (!ret) {
3023 printk(KERN_INFO "64bit %s uses identity mapping\n",
3024 dev_name(dev));
3025 return 1;
3026 }
3027 }
3028 }
3029
3030 return 0;
3031 }
3032
3033 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3034 size_t size, int dir, u64 dma_mask)
3035 {
3036 struct dmar_domain *domain;
3037 phys_addr_t start_paddr;
3038 struct iova *iova;
3039 int prot = 0;
3040 int ret;
3041 struct intel_iommu *iommu;
3042 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3043
3044 BUG_ON(dir == DMA_NONE);
3045
3046 if (iommu_no_mapping(dev))
3047 return paddr;
3048
3049 domain = get_valid_domain_for_dev(dev);
3050 if (!domain)
3051 return 0;
3052
3053 iommu = domain_get_iommu(domain);
3054 size = aligned_nrpages(paddr, size);
3055
3056 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3057 if (!iova)
3058 goto error;
3059
3060 /*
3061 * Check if DMAR supports zero-length reads on write only
3062 * mappings..
3063 */
3064 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3065 !cap_zlr(iommu->cap))
3066 prot |= DMA_PTE_READ;
3067 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3068 prot |= DMA_PTE_WRITE;
3069 /*
3070 * paddr - (paddr + size) might be partial page, we should map the whole
3071 * page. Note: if two part of one page are separately mapped, we
3072 * might have two guest_addr mapping to the same host paddr, but this
3073 * is not a big problem
3074 */
3075 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3076 mm_to_dma_pfn(paddr_pfn), size, prot);
3077 if (ret)
3078 goto error;
3079
3080 /* it's a non-present to present mapping. Only flush if caching mode */
3081 if (cap_caching_mode(iommu->cap))
3082 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3083 else
3084 iommu_flush_write_buffer(iommu);
3085
3086 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3087 start_paddr += paddr & ~PAGE_MASK;
3088 return start_paddr;
3089
3090 error:
3091 if (iova)
3092 __free_iova(&domain->iovad, iova);
3093 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3094 dev_name(dev), size, (unsigned long long)paddr, dir);
3095 return 0;
3096 }
3097
3098 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3099 unsigned long offset, size_t size,
3100 enum dma_data_direction dir,
3101 struct dma_attrs *attrs)
3102 {
3103 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3104 dir, *dev->dma_mask);
3105 }
3106
3107 static void flush_unmaps(void)
3108 {
3109 int i, j;
3110
3111 timer_on = 0;
3112
3113 /* just flush them all */
3114 for (i = 0; i < g_num_of_iommus; i++) {
3115 struct intel_iommu *iommu = g_iommus[i];
3116 if (!iommu)
3117 continue;
3118
3119 if (!deferred_flush[i].next)
3120 continue;
3121
3122 /* In caching mode, global flushes turn emulation expensive */
3123 if (!cap_caching_mode(iommu->cap))
3124 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3125 DMA_TLB_GLOBAL_FLUSH);
3126 for (j = 0; j < deferred_flush[i].next; j++) {
3127 unsigned long mask;
3128 struct iova *iova = deferred_flush[i].iova[j];
3129 struct dmar_domain *domain = deferred_flush[i].domain[j];
3130
3131 /* On real hardware multiple invalidations are expensive */
3132 if (cap_caching_mode(iommu->cap))
3133 iommu_flush_iotlb_psi(iommu, domain->id,
3134 iova->pfn_lo, iova_size(iova),
3135 !deferred_flush[i].freelist[j], 0);
3136 else {
3137 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3138 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3139 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3140 }
3141 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3142 if (deferred_flush[i].freelist[j])
3143 dma_free_pagelist(deferred_flush[i].freelist[j]);
3144 }
3145 deferred_flush[i].next = 0;
3146 }
3147
3148 list_size = 0;
3149 }
3150
3151 static void flush_unmaps_timeout(unsigned long data)
3152 {
3153 unsigned long flags;
3154
3155 spin_lock_irqsave(&async_umap_flush_lock, flags);
3156 flush_unmaps();
3157 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3158 }
3159
3160 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3161 {
3162 unsigned long flags;
3163 int next, iommu_id;
3164 struct intel_iommu *iommu;
3165
3166 spin_lock_irqsave(&async_umap_flush_lock, flags);
3167 if (list_size == HIGH_WATER_MARK)
3168 flush_unmaps();
3169
3170 iommu = domain_get_iommu(dom);
3171 iommu_id = iommu->seq_id;
3172
3173 next = deferred_flush[iommu_id].next;
3174 deferred_flush[iommu_id].domain[next] = dom;
3175 deferred_flush[iommu_id].iova[next] = iova;
3176 deferred_flush[iommu_id].freelist[next] = freelist;
3177 deferred_flush[iommu_id].next++;
3178
3179 if (!timer_on) {
3180 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3181 timer_on = 1;
3182 }
3183 list_size++;
3184 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3185 }
3186
3187 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3188 {
3189 struct dmar_domain *domain;
3190 unsigned long start_pfn, last_pfn;
3191 struct iova *iova;
3192 struct intel_iommu *iommu;
3193 struct page *freelist;
3194
3195 if (iommu_no_mapping(dev))
3196 return;
3197
3198 domain = find_domain(dev);
3199 BUG_ON(!domain);
3200
3201 iommu = domain_get_iommu(domain);
3202
3203 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3204 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3205 (unsigned long long)dev_addr))
3206 return;
3207
3208 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3209 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3210
3211 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3212 dev_name(dev), start_pfn, last_pfn);
3213
3214 freelist = domain_unmap(domain, start_pfn, last_pfn);
3215
3216 if (intel_iommu_strict) {
3217 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3218 last_pfn - start_pfn + 1, !freelist, 0);
3219 /* free iova */
3220 __free_iova(&domain->iovad, iova);
3221 dma_free_pagelist(freelist);
3222 } else {
3223 add_unmap(domain, iova, freelist);
3224 /*
3225 * queue up the release of the unmap to save the 1/6th of the
3226 * cpu used up by the iotlb flush operation...
3227 */
3228 }
3229 }
3230
3231 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3232 size_t size, enum dma_data_direction dir,
3233 struct dma_attrs *attrs)
3234 {
3235 intel_unmap(dev, dev_addr);
3236 }
3237
3238 static void *intel_alloc_coherent(struct device *dev, size_t size,
3239 dma_addr_t *dma_handle, gfp_t flags,
3240 struct dma_attrs *attrs)
3241 {
3242 struct page *page = NULL;
3243 int order;
3244
3245 size = PAGE_ALIGN(size);
3246 order = get_order(size);
3247
3248 if (!iommu_no_mapping(dev))
3249 flags &= ~(GFP_DMA | GFP_DMA32);
3250 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3251 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3252 flags |= GFP_DMA;
3253 else
3254 flags |= GFP_DMA32;
3255 }
3256
3257 if (flags & __GFP_WAIT) {
3258 unsigned int count = size >> PAGE_SHIFT;
3259
3260 page = dma_alloc_from_contiguous(dev, count, order);
3261 if (page && iommu_no_mapping(dev) &&
3262 page_to_phys(page) + size > dev->coherent_dma_mask) {
3263 dma_release_from_contiguous(dev, page, count);
3264 page = NULL;
3265 }
3266 }
3267
3268 if (!page)
3269 page = alloc_pages(flags, order);
3270 if (!page)
3271 return NULL;
3272 memset(page_address(page), 0, size);
3273
3274 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3275 DMA_BIDIRECTIONAL,
3276 dev->coherent_dma_mask);
3277 if (*dma_handle)
3278 return page_address(page);
3279 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3280 __free_pages(page, order);
3281
3282 return NULL;
3283 }
3284
3285 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3286 dma_addr_t dma_handle, struct dma_attrs *attrs)
3287 {
3288 int order;
3289 struct page *page = virt_to_page(vaddr);
3290
3291 size = PAGE_ALIGN(size);
3292 order = get_order(size);
3293
3294 intel_unmap(dev, dma_handle);
3295 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3296 __free_pages(page, order);
3297 }
3298
3299 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3300 int nelems, enum dma_data_direction dir,
3301 struct dma_attrs *attrs)
3302 {
3303 intel_unmap(dev, sglist[0].dma_address);
3304 }
3305
3306 static int intel_nontranslate_map_sg(struct device *hddev,
3307 struct scatterlist *sglist, int nelems, int dir)
3308 {
3309 int i;
3310 struct scatterlist *sg;
3311
3312 for_each_sg(sglist, sg, nelems, i) {
3313 BUG_ON(!sg_page(sg));
3314 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3315 sg->dma_length = sg->length;
3316 }
3317 return nelems;
3318 }
3319
3320 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3321 enum dma_data_direction dir, struct dma_attrs *attrs)
3322 {
3323 int i;
3324 struct dmar_domain *domain;
3325 size_t size = 0;
3326 int prot = 0;
3327 struct iova *iova = NULL;
3328 int ret;
3329 struct scatterlist *sg;
3330 unsigned long start_vpfn;
3331 struct intel_iommu *iommu;
3332
3333 BUG_ON(dir == DMA_NONE);
3334 if (iommu_no_mapping(dev))
3335 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3336
3337 domain = get_valid_domain_for_dev(dev);
3338 if (!domain)
3339 return 0;
3340
3341 iommu = domain_get_iommu(domain);
3342
3343 for_each_sg(sglist, sg, nelems, i)
3344 size += aligned_nrpages(sg->offset, sg->length);
3345
3346 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3347 *dev->dma_mask);
3348 if (!iova) {
3349 sglist->dma_length = 0;
3350 return 0;
3351 }
3352
3353 /*
3354 * Check if DMAR supports zero-length reads on write only
3355 * mappings..
3356 */
3357 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3358 !cap_zlr(iommu->cap))
3359 prot |= DMA_PTE_READ;
3360 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3361 prot |= DMA_PTE_WRITE;
3362
3363 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3364
3365 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3366 if (unlikely(ret)) {
3367 dma_pte_free_pagetable(domain, start_vpfn,
3368 start_vpfn + size - 1);
3369 __free_iova(&domain->iovad, iova);
3370 return 0;
3371 }
3372
3373 /* it's a non-present to present mapping. Only flush if caching mode */
3374 if (cap_caching_mode(iommu->cap))
3375 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3376 else
3377 iommu_flush_write_buffer(iommu);
3378
3379 return nelems;
3380 }
3381
3382 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3383 {
3384 return !dma_addr;
3385 }
3386
3387 struct dma_map_ops intel_dma_ops = {
3388 .alloc = intel_alloc_coherent,
3389 .free = intel_free_coherent,
3390 .map_sg = intel_map_sg,
3391 .unmap_sg = intel_unmap_sg,
3392 .map_page = intel_map_page,
3393 .unmap_page = intel_unmap_page,
3394 .mapping_error = intel_mapping_error,
3395 };
3396
3397 static inline int iommu_domain_cache_init(void)
3398 {
3399 int ret = 0;
3400
3401 iommu_domain_cache = kmem_cache_create("iommu_domain",
3402 sizeof(struct dmar_domain),
3403 0,
3404 SLAB_HWCACHE_ALIGN,
3405
3406 NULL);
3407 if (!iommu_domain_cache) {
3408 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3409 ret = -ENOMEM;
3410 }
3411
3412 return ret;
3413 }
3414
3415 static inline int iommu_devinfo_cache_init(void)
3416 {
3417 int ret = 0;
3418
3419 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3420 sizeof(struct device_domain_info),
3421 0,
3422 SLAB_HWCACHE_ALIGN,
3423 NULL);
3424 if (!iommu_devinfo_cache) {
3425 printk(KERN_ERR "Couldn't create devinfo cache\n");
3426 ret = -ENOMEM;
3427 }
3428
3429 return ret;
3430 }
3431
3432 static inline int iommu_iova_cache_init(void)
3433 {
3434 int ret = 0;
3435
3436 iommu_iova_cache = kmem_cache_create("iommu_iova",
3437 sizeof(struct iova),
3438 0,
3439 SLAB_HWCACHE_ALIGN,
3440 NULL);
3441 if (!iommu_iova_cache) {
3442 printk(KERN_ERR "Couldn't create iova cache\n");
3443 ret = -ENOMEM;
3444 }
3445
3446 return ret;
3447 }
3448
3449 static int __init iommu_init_mempool(void)
3450 {
3451 int ret;
3452 ret = iommu_iova_cache_init();
3453 if (ret)
3454 return ret;
3455
3456 ret = iommu_domain_cache_init();
3457 if (ret)
3458 goto domain_error;
3459
3460 ret = iommu_devinfo_cache_init();
3461 if (!ret)
3462 return ret;
3463
3464 kmem_cache_destroy(iommu_domain_cache);
3465 domain_error:
3466 kmem_cache_destroy(iommu_iova_cache);
3467
3468 return -ENOMEM;
3469 }
3470
3471 static void __init iommu_exit_mempool(void)
3472 {
3473 kmem_cache_destroy(iommu_devinfo_cache);
3474 kmem_cache_destroy(iommu_domain_cache);
3475 kmem_cache_destroy(iommu_iova_cache);
3476
3477 }
3478
3479 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3480 {
3481 struct dmar_drhd_unit *drhd;
3482 u32 vtbar;
3483 int rc;
3484
3485 /* We know that this device on this chipset has its own IOMMU.
3486 * If we find it under a different IOMMU, then the BIOS is lying
3487 * to us. Hope that the IOMMU for this device is actually
3488 * disabled, and it needs no translation...
3489 */
3490 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3491 if (rc) {
3492 /* "can't" happen */
3493 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3494 return;
3495 }
3496 vtbar &= 0xffff0000;
3497
3498 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3499 drhd = dmar_find_matched_drhd_unit(pdev);
3500 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3501 TAINT_FIRMWARE_WORKAROUND,
3502 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3503 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3504 }
3505 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3506
3507 static void __init init_no_remapping_devices(void)
3508 {
3509 struct dmar_drhd_unit *drhd;
3510 struct device *dev;
3511 int i;
3512
3513 for_each_drhd_unit(drhd) {
3514 if (!drhd->include_all) {
3515 for_each_active_dev_scope(drhd->devices,
3516 drhd->devices_cnt, i, dev)
3517 break;
3518 /* ignore DMAR unit if no devices exist */
3519 if (i == drhd->devices_cnt)
3520 drhd->ignored = 1;
3521 }
3522 }
3523
3524 for_each_active_drhd_unit(drhd) {
3525 if (drhd->include_all)
3526 continue;
3527
3528 for_each_active_dev_scope(drhd->devices,
3529 drhd->devices_cnt, i, dev)
3530 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3531 break;
3532 if (i < drhd->devices_cnt)
3533 continue;
3534
3535 /* This IOMMU has *only* gfx devices. Either bypass it or
3536 set the gfx_mapped flag, as appropriate */
3537 if (dmar_map_gfx) {
3538 intel_iommu_gfx_mapped = 1;
3539 } else {
3540 drhd->ignored = 1;
3541 for_each_active_dev_scope(drhd->devices,
3542 drhd->devices_cnt, i, dev)
3543 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3544 }
3545 }
3546 }
3547
3548 #ifdef CONFIG_SUSPEND
3549 static int init_iommu_hw(void)
3550 {
3551 struct dmar_drhd_unit *drhd;
3552 struct intel_iommu *iommu = NULL;
3553
3554 for_each_active_iommu(iommu, drhd)
3555 if (iommu->qi)
3556 dmar_reenable_qi(iommu);
3557
3558 for_each_iommu(iommu, drhd) {
3559 if (drhd->ignored) {
3560 /*
3561 * we always have to disable PMRs or DMA may fail on
3562 * this device
3563 */
3564 if (force_on)
3565 iommu_disable_protect_mem_regions(iommu);
3566 continue;
3567 }
3568
3569 iommu_flush_write_buffer(iommu);
3570
3571 iommu_set_root_entry(iommu);
3572
3573 iommu->flush.flush_context(iommu, 0, 0, 0,
3574 DMA_CCMD_GLOBAL_INVL);
3575 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3576 iommu_enable_translation(iommu);
3577 iommu_disable_protect_mem_regions(iommu);
3578 }
3579
3580 return 0;
3581 }
3582
3583 static void iommu_flush_all(void)
3584 {
3585 struct dmar_drhd_unit *drhd;
3586 struct intel_iommu *iommu;
3587
3588 for_each_active_iommu(iommu, drhd) {
3589 iommu->flush.flush_context(iommu, 0, 0, 0,
3590 DMA_CCMD_GLOBAL_INVL);
3591 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3592 DMA_TLB_GLOBAL_FLUSH);
3593 }
3594 }
3595
3596 static int iommu_suspend(void)
3597 {
3598 struct dmar_drhd_unit *drhd;
3599 struct intel_iommu *iommu = NULL;
3600 unsigned long flag;
3601
3602 for_each_active_iommu(iommu, drhd) {
3603 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3604 GFP_ATOMIC);
3605 if (!iommu->iommu_state)
3606 goto nomem;
3607 }
3608
3609 iommu_flush_all();
3610
3611 for_each_active_iommu(iommu, drhd) {
3612 iommu_disable_translation(iommu);
3613
3614 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3615
3616 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3617 readl(iommu->reg + DMAR_FECTL_REG);
3618 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3619 readl(iommu->reg + DMAR_FEDATA_REG);
3620 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3621 readl(iommu->reg + DMAR_FEADDR_REG);
3622 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3623 readl(iommu->reg + DMAR_FEUADDR_REG);
3624
3625 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3626 }
3627 return 0;
3628
3629 nomem:
3630 for_each_active_iommu(iommu, drhd)
3631 kfree(iommu->iommu_state);
3632
3633 return -ENOMEM;
3634 }
3635
3636 static void iommu_resume(void)
3637 {
3638 struct dmar_drhd_unit *drhd;
3639 struct intel_iommu *iommu = NULL;
3640 unsigned long flag;
3641
3642 if (init_iommu_hw()) {
3643 if (force_on)
3644 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3645 else
3646 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3647 return;
3648 }
3649
3650 for_each_active_iommu(iommu, drhd) {
3651
3652 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3653
3654 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3655 iommu->reg + DMAR_FECTL_REG);
3656 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3657 iommu->reg + DMAR_FEDATA_REG);
3658 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3659 iommu->reg + DMAR_FEADDR_REG);
3660 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3661 iommu->reg + DMAR_FEUADDR_REG);
3662
3663 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3664 }
3665
3666 for_each_active_iommu(iommu, drhd)
3667 kfree(iommu->iommu_state);
3668 }
3669
3670 static struct syscore_ops iommu_syscore_ops = {
3671 .resume = iommu_resume,
3672 .suspend = iommu_suspend,
3673 };
3674
3675 static void __init init_iommu_pm_ops(void)
3676 {
3677 register_syscore_ops(&iommu_syscore_ops);
3678 }
3679
3680 #else
3681 static inline void init_iommu_pm_ops(void) {}
3682 #endif /* CONFIG_PM */
3683
3684
3685 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3686 {
3687 struct acpi_dmar_reserved_memory *rmrr;
3688 struct dmar_rmrr_unit *rmrru;
3689
3690 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3691 if (!rmrru)
3692 return -ENOMEM;
3693
3694 rmrru->hdr = header;
3695 rmrr = (struct acpi_dmar_reserved_memory *)header;
3696 rmrru->base_address = rmrr->base_address;
3697 rmrru->end_address = rmrr->end_address;
3698 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3699 ((void *)rmrr) + rmrr->header.length,
3700 &rmrru->devices_cnt);
3701 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3702 kfree(rmrru);
3703 return -ENOMEM;
3704 }
3705
3706 list_add(&rmrru->list, &dmar_rmrr_units);
3707
3708 return 0;
3709 }
3710
3711 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3712 {
3713 struct acpi_dmar_atsr *atsr;
3714 struct dmar_atsr_unit *atsru;
3715
3716 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3717 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3718 if (!atsru)
3719 return -ENOMEM;
3720
3721 atsru->hdr = hdr;
3722 atsru->include_all = atsr->flags & 0x1;
3723 if (!atsru->include_all) {
3724 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3725 (void *)atsr + atsr->header.length,
3726 &atsru->devices_cnt);
3727 if (atsru->devices_cnt && atsru->devices == NULL) {
3728 kfree(atsru);
3729 return -ENOMEM;
3730 }
3731 }
3732
3733 list_add_rcu(&atsru->list, &dmar_atsr_units);
3734
3735 return 0;
3736 }
3737
3738 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3739 {
3740 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3741 kfree(atsru);
3742 }
3743
3744 static void intel_iommu_free_dmars(void)
3745 {
3746 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3747 struct dmar_atsr_unit *atsru, *atsr_n;
3748
3749 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3750 list_del(&rmrru->list);
3751 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3752 kfree(rmrru);
3753 }
3754
3755 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3756 list_del(&atsru->list);
3757 intel_iommu_free_atsr(atsru);
3758 }
3759 }
3760
3761 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3762 {
3763 int i, ret = 1;
3764 struct pci_bus *bus;
3765 struct pci_dev *bridge = NULL;
3766 struct device *tmp;
3767 struct acpi_dmar_atsr *atsr;
3768 struct dmar_atsr_unit *atsru;
3769
3770 dev = pci_physfn(dev);
3771 for (bus = dev->bus; bus; bus = bus->parent) {
3772 bridge = bus->self;
3773 if (!bridge || !pci_is_pcie(bridge) ||
3774 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3775 return 0;
3776 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3777 break;
3778 }
3779 if (!bridge)
3780 return 0;
3781
3782 rcu_read_lock();
3783 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3784 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3785 if (atsr->segment != pci_domain_nr(dev->bus))
3786 continue;
3787
3788 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3789 if (tmp == &bridge->dev)
3790 goto out;
3791
3792 if (atsru->include_all)
3793 goto out;
3794 }
3795 ret = 0;
3796 out:
3797 rcu_read_unlock();
3798
3799 return ret;
3800 }
3801
3802 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3803 {
3804 int ret = 0;
3805 struct dmar_rmrr_unit *rmrru;
3806 struct dmar_atsr_unit *atsru;
3807 struct acpi_dmar_atsr *atsr;
3808 struct acpi_dmar_reserved_memory *rmrr;
3809
3810 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3811 return 0;
3812
3813 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3814 rmrr = container_of(rmrru->hdr,
3815 struct acpi_dmar_reserved_memory, header);
3816 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3817 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3818 ((void *)rmrr) + rmrr->header.length,
3819 rmrr->segment, rmrru->devices,
3820 rmrru->devices_cnt);
3821 if(ret < 0)
3822 return ret;
3823 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3824 dmar_remove_dev_scope(info, rmrr->segment,
3825 rmrru->devices, rmrru->devices_cnt);
3826 }
3827 }
3828
3829 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3830 if (atsru->include_all)
3831 continue;
3832
3833 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3834 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3835 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3836 (void *)atsr + atsr->header.length,
3837 atsr->segment, atsru->devices,
3838 atsru->devices_cnt);
3839 if (ret > 0)
3840 break;
3841 else if(ret < 0)
3842 return ret;
3843 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3844 if (dmar_remove_dev_scope(info, atsr->segment,
3845 atsru->devices, atsru->devices_cnt))
3846 break;
3847 }
3848 }
3849
3850 return 0;
3851 }
3852
3853 /*
3854 * Here we only respond to action of unbound device from driver.
3855 *
3856 * Added device is not attached to its DMAR domain here yet. That will happen
3857 * when mapping the device to iova.
3858 */
3859 static int device_notifier(struct notifier_block *nb,
3860 unsigned long action, void *data)
3861 {
3862 struct device *dev = data;
3863 struct dmar_domain *domain;
3864
3865 if (iommu_dummy(dev))
3866 return 0;
3867
3868 if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3869 action != BUS_NOTIFY_DEL_DEVICE)
3870 return 0;
3871
3872 domain = find_domain(dev);
3873 if (!domain)
3874 return 0;
3875
3876 down_read(&dmar_global_lock);
3877 domain_remove_one_dev_info(domain, dev);
3878 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
3879 domain_exit(domain);
3880 up_read(&dmar_global_lock);
3881
3882 return 0;
3883 }
3884
3885 static struct notifier_block device_nb = {
3886 .notifier_call = device_notifier,
3887 };
3888
3889 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3890 unsigned long val, void *v)
3891 {
3892 struct memory_notify *mhp = v;
3893 unsigned long long start, end;
3894 unsigned long start_vpfn, last_vpfn;
3895
3896 switch (val) {
3897 case MEM_GOING_ONLINE:
3898 start = mhp->start_pfn << PAGE_SHIFT;
3899 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3900 if (iommu_domain_identity_map(si_domain, start, end)) {
3901 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3902 start, end);
3903 return NOTIFY_BAD;
3904 }
3905 break;
3906
3907 case MEM_OFFLINE:
3908 case MEM_CANCEL_ONLINE:
3909 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3910 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3911 while (start_vpfn <= last_vpfn) {
3912 struct iova *iova;
3913 struct dmar_drhd_unit *drhd;
3914 struct intel_iommu *iommu;
3915 struct page *freelist;
3916
3917 iova = find_iova(&si_domain->iovad, start_vpfn);
3918 if (iova == NULL) {
3919 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3920 start_vpfn);
3921 break;
3922 }
3923
3924 iova = split_and_remove_iova(&si_domain->iovad, iova,
3925 start_vpfn, last_vpfn);
3926 if (iova == NULL) {
3927 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3928 start_vpfn, last_vpfn);
3929 return NOTIFY_BAD;
3930 }
3931
3932 freelist = domain_unmap(si_domain, iova->pfn_lo,
3933 iova->pfn_hi);
3934
3935 rcu_read_lock();
3936 for_each_active_iommu(iommu, drhd)
3937 iommu_flush_iotlb_psi(iommu, si_domain->id,
3938 iova->pfn_lo, iova_size(iova),
3939 !freelist, 0);
3940 rcu_read_unlock();
3941 dma_free_pagelist(freelist);
3942
3943 start_vpfn = iova->pfn_hi + 1;
3944 free_iova_mem(iova);
3945 }
3946 break;
3947 }
3948
3949 return NOTIFY_OK;
3950 }
3951
3952 static struct notifier_block intel_iommu_memory_nb = {
3953 .notifier_call = intel_iommu_memory_notifier,
3954 .priority = 0
3955 };
3956
3957
3958 static ssize_t intel_iommu_show_version(struct device *dev,
3959 struct device_attribute *attr,
3960 char *buf)
3961 {
3962 struct intel_iommu *iommu = dev_get_drvdata(dev);
3963 u32 ver = readl(iommu->reg + DMAR_VER_REG);
3964 return sprintf(buf, "%d:%d\n",
3965 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
3966 }
3967 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
3968
3969 static ssize_t intel_iommu_show_address(struct device *dev,
3970 struct device_attribute *attr,
3971 char *buf)
3972 {
3973 struct intel_iommu *iommu = dev_get_drvdata(dev);
3974 return sprintf(buf, "%llx\n", iommu->reg_phys);
3975 }
3976 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
3977
3978 static ssize_t intel_iommu_show_cap(struct device *dev,
3979 struct device_attribute *attr,
3980 char *buf)
3981 {
3982 struct intel_iommu *iommu = dev_get_drvdata(dev);
3983 return sprintf(buf, "%llx\n", iommu->cap);
3984 }
3985 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
3986
3987 static ssize_t intel_iommu_show_ecap(struct device *dev,
3988 struct device_attribute *attr,
3989 char *buf)
3990 {
3991 struct intel_iommu *iommu = dev_get_drvdata(dev);
3992 return sprintf(buf, "%llx\n", iommu->ecap);
3993 }
3994 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
3995
3996 static struct attribute *intel_iommu_attrs[] = {
3997 &dev_attr_version.attr,
3998 &dev_attr_address.attr,
3999 &dev_attr_cap.attr,
4000 &dev_attr_ecap.attr,
4001 NULL,
4002 };
4003
4004 static struct attribute_group intel_iommu_group = {
4005 .name = "intel-iommu",
4006 .attrs = intel_iommu_attrs,
4007 };
4008
4009 const struct attribute_group *intel_iommu_groups[] = {
4010 &intel_iommu_group,
4011 NULL,
4012 };
4013
4014 int __init intel_iommu_init(void)
4015 {
4016 int ret = -ENODEV;
4017 struct dmar_drhd_unit *drhd;
4018 struct intel_iommu *iommu;
4019
4020 /* VT-d is required for a TXT/tboot launch, so enforce that */
4021 force_on = tboot_force_iommu();
4022
4023 if (iommu_init_mempool()) {
4024 if (force_on)
4025 panic("tboot: Failed to initialize iommu memory\n");
4026 return -ENOMEM;
4027 }
4028
4029 down_write(&dmar_global_lock);
4030 if (dmar_table_init()) {
4031 if (force_on)
4032 panic("tboot: Failed to initialize DMAR table\n");
4033 goto out_free_dmar;
4034 }
4035
4036 /*
4037 * Disable translation if already enabled prior to OS handover.
4038 */
4039 for_each_active_iommu(iommu, drhd)
4040 if (iommu->gcmd & DMA_GCMD_TE)
4041 iommu_disable_translation(iommu);
4042
4043 if (dmar_dev_scope_init() < 0) {
4044 if (force_on)
4045 panic("tboot: Failed to initialize DMAR device scope\n");
4046 goto out_free_dmar;
4047 }
4048
4049 if (no_iommu || dmar_disabled)
4050 goto out_free_dmar;
4051
4052 if (list_empty(&dmar_rmrr_units))
4053 printk(KERN_INFO "DMAR: No RMRR found\n");
4054
4055 if (list_empty(&dmar_atsr_units))
4056 printk(KERN_INFO "DMAR: No ATSR found\n");
4057
4058 if (dmar_init_reserved_ranges()) {
4059 if (force_on)
4060 panic("tboot: Failed to reserve iommu ranges\n");
4061 goto out_free_reserved_range;
4062 }
4063
4064 init_no_remapping_devices();
4065
4066 ret = init_dmars();
4067 if (ret) {
4068 if (force_on)
4069 panic("tboot: Failed to initialize DMARs\n");
4070 printk(KERN_ERR "IOMMU: dmar init failed\n");
4071 goto out_free_reserved_range;
4072 }
4073 up_write(&dmar_global_lock);
4074 printk(KERN_INFO
4075 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4076
4077 init_timer(&unmap_timer);
4078 #ifdef CONFIG_SWIOTLB
4079 swiotlb = 0;
4080 #endif
4081 dma_ops = &intel_dma_ops;
4082
4083 init_iommu_pm_ops();
4084
4085 for_each_active_iommu(iommu, drhd)
4086 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4087 intel_iommu_groups,
4088 iommu->name);
4089
4090 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4091 bus_register_notifier(&pci_bus_type, &device_nb);
4092 if (si_domain && !hw_pass_through)
4093 register_memory_notifier(&intel_iommu_memory_nb);
4094
4095 intel_iommu_enabled = 1;
4096
4097 return 0;
4098
4099 out_free_reserved_range:
4100 put_iova_domain(&reserved_iova_list);
4101 out_free_dmar:
4102 intel_iommu_free_dmars();
4103 up_write(&dmar_global_lock);
4104 iommu_exit_mempool();
4105 return ret;
4106 }
4107
4108 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4109 {
4110 struct intel_iommu *iommu = opaque;
4111
4112 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4113 return 0;
4114 }
4115
4116 /*
4117 * NB - intel-iommu lacks any sort of reference counting for the users of
4118 * dependent devices. If multiple endpoints have intersecting dependent
4119 * devices, unbinding the driver from any one of them will possibly leave
4120 * the others unable to operate.
4121 */
4122 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4123 struct device *dev)
4124 {
4125 if (!iommu || !dev || !dev_is_pci(dev))
4126 return;
4127
4128 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4129 }
4130
4131 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4132 struct device *dev)
4133 {
4134 struct device_domain_info *info, *tmp;
4135 struct intel_iommu *iommu;
4136 unsigned long flags;
4137 int found = 0;
4138 u8 bus, devfn;
4139
4140 iommu = device_to_iommu(dev, &bus, &devfn);
4141 if (!iommu)
4142 return;
4143
4144 spin_lock_irqsave(&device_domain_lock, flags);
4145 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4146 if (info->iommu == iommu && info->bus == bus &&
4147 info->devfn == devfn) {
4148 unlink_domain_info(info);
4149 spin_unlock_irqrestore(&device_domain_lock, flags);
4150
4151 iommu_disable_dev_iotlb(info);
4152 iommu_detach_dev(iommu, info->bus, info->devfn);
4153 iommu_detach_dependent_devices(iommu, dev);
4154 free_devinfo_mem(info);
4155
4156 spin_lock_irqsave(&device_domain_lock, flags);
4157
4158 if (found)
4159 break;
4160 else
4161 continue;
4162 }
4163
4164 /* if there is no other devices under the same iommu
4165 * owned by this domain, clear this iommu in iommu_bmp
4166 * update iommu count and coherency
4167 */
4168 if (info->iommu == iommu)
4169 found = 1;
4170 }
4171
4172 spin_unlock_irqrestore(&device_domain_lock, flags);
4173
4174 if (found == 0) {
4175 domain_detach_iommu(domain, iommu);
4176 if (!domain_type_is_vm_or_si(domain))
4177 iommu_detach_domain(domain, iommu);
4178 }
4179 }
4180
4181 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4182 {
4183 int adjust_width;
4184
4185 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4186 domain_reserve_special_ranges(domain);
4187
4188 /* calculate AGAW */
4189 domain->gaw = guest_width;
4190 adjust_width = guestwidth_to_adjustwidth(guest_width);
4191 domain->agaw = width_to_agaw(adjust_width);
4192
4193 domain->iommu_coherency = 0;
4194 domain->iommu_snooping = 0;
4195 domain->iommu_superpage = 0;
4196 domain->max_addr = 0;
4197
4198 /* always allocate the top pgd */
4199 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4200 if (!domain->pgd)
4201 return -ENOMEM;
4202 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4203 return 0;
4204 }
4205
4206 static int intel_iommu_domain_init(struct iommu_domain *domain)
4207 {
4208 struct dmar_domain *dmar_domain;
4209
4210 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4211 if (!dmar_domain) {
4212 printk(KERN_ERR
4213 "intel_iommu_domain_init: dmar_domain == NULL\n");
4214 return -ENOMEM;
4215 }
4216 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4217 printk(KERN_ERR
4218 "intel_iommu_domain_init() failed\n");
4219 domain_exit(dmar_domain);
4220 return -ENOMEM;
4221 }
4222 domain_update_iommu_cap(dmar_domain);
4223 domain->priv = dmar_domain;
4224
4225 domain->geometry.aperture_start = 0;
4226 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4227 domain->geometry.force_aperture = true;
4228
4229 return 0;
4230 }
4231
4232 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4233 {
4234 struct dmar_domain *dmar_domain = domain->priv;
4235
4236 domain->priv = NULL;
4237 domain_exit(dmar_domain);
4238 }
4239
4240 static int intel_iommu_attach_device(struct iommu_domain *domain,
4241 struct device *dev)
4242 {
4243 struct dmar_domain *dmar_domain = domain->priv;
4244 struct intel_iommu *iommu;
4245 int addr_width;
4246 u8 bus, devfn;
4247
4248 if (device_is_rmrr_locked(dev)) {
4249 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4250 return -EPERM;
4251 }
4252
4253 /* normally dev is not mapped */
4254 if (unlikely(domain_context_mapped(dev))) {
4255 struct dmar_domain *old_domain;
4256
4257 old_domain = find_domain(dev);
4258 if (old_domain) {
4259 if (domain_type_is_vm_or_si(dmar_domain))
4260 domain_remove_one_dev_info(old_domain, dev);
4261 else
4262 domain_remove_dev_info(old_domain);
4263 }
4264 }
4265
4266 iommu = device_to_iommu(dev, &bus, &devfn);
4267 if (!iommu)
4268 return -ENODEV;
4269
4270 /* check if this iommu agaw is sufficient for max mapped address */
4271 addr_width = agaw_to_width(iommu->agaw);
4272 if (addr_width > cap_mgaw(iommu->cap))
4273 addr_width = cap_mgaw(iommu->cap);
4274
4275 if (dmar_domain->max_addr > (1LL << addr_width)) {
4276 printk(KERN_ERR "%s: iommu width (%d) is not "
4277 "sufficient for the mapped address (%llx)\n",
4278 __func__, addr_width, dmar_domain->max_addr);
4279 return -EFAULT;
4280 }
4281 dmar_domain->gaw = addr_width;
4282
4283 /*
4284 * Knock out extra levels of page tables if necessary
4285 */
4286 while (iommu->agaw < dmar_domain->agaw) {
4287 struct dma_pte *pte;
4288
4289 pte = dmar_domain->pgd;
4290 if (dma_pte_present(pte)) {
4291 dmar_domain->pgd = (struct dma_pte *)
4292 phys_to_virt(dma_pte_addr(pte));
4293 free_pgtable_page(pte);
4294 }
4295 dmar_domain->agaw--;
4296 }
4297
4298 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4299 }
4300
4301 static void intel_iommu_detach_device(struct iommu_domain *domain,
4302 struct device *dev)
4303 {
4304 struct dmar_domain *dmar_domain = domain->priv;
4305
4306 domain_remove_one_dev_info(dmar_domain, dev);
4307 }
4308
4309 static int intel_iommu_map(struct iommu_domain *domain,
4310 unsigned long iova, phys_addr_t hpa,
4311 size_t size, int iommu_prot)
4312 {
4313 struct dmar_domain *dmar_domain = domain->priv;
4314 u64 max_addr;
4315 int prot = 0;
4316 int ret;
4317
4318 if (iommu_prot & IOMMU_READ)
4319 prot |= DMA_PTE_READ;
4320 if (iommu_prot & IOMMU_WRITE)
4321 prot |= DMA_PTE_WRITE;
4322 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4323 prot |= DMA_PTE_SNP;
4324
4325 max_addr = iova + size;
4326 if (dmar_domain->max_addr < max_addr) {
4327 u64 end;
4328
4329 /* check if minimum agaw is sufficient for mapped address */
4330 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4331 if (end < max_addr) {
4332 printk(KERN_ERR "%s: iommu width (%d) is not "
4333 "sufficient for the mapped address (%llx)\n",
4334 __func__, dmar_domain->gaw, max_addr);
4335 return -EFAULT;
4336 }
4337 dmar_domain->max_addr = max_addr;
4338 }
4339 /* Round up size to next multiple of PAGE_SIZE, if it and
4340 the low bits of hpa would take us onto the next page */
4341 size = aligned_nrpages(hpa, size);
4342 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4343 hpa >> VTD_PAGE_SHIFT, size, prot);
4344 return ret;
4345 }
4346
4347 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4348 unsigned long iova, size_t size)
4349 {
4350 struct dmar_domain *dmar_domain = domain->priv;
4351 struct page *freelist = NULL;
4352 struct intel_iommu *iommu;
4353 unsigned long start_pfn, last_pfn;
4354 unsigned int npages;
4355 int iommu_id, num, ndomains, level = 0;
4356
4357 /* Cope with horrid API which requires us to unmap more than the
4358 size argument if it happens to be a large-page mapping. */
4359 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4360 BUG();
4361
4362 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4363 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4364
4365 start_pfn = iova >> VTD_PAGE_SHIFT;
4366 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4367
4368 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4369
4370 npages = last_pfn - start_pfn + 1;
4371
4372 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4373 iommu = g_iommus[iommu_id];
4374
4375 /*
4376 * find bit position of dmar_domain
4377 */
4378 ndomains = cap_ndoms(iommu->cap);
4379 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4380 if (iommu->domains[num] == dmar_domain)
4381 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4382 npages, !freelist, 0);
4383 }
4384
4385 }
4386
4387 dma_free_pagelist(freelist);
4388
4389 if (dmar_domain->max_addr == iova + size)
4390 dmar_domain->max_addr = iova;
4391
4392 return size;
4393 }
4394
4395 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4396 dma_addr_t iova)
4397 {
4398 struct dmar_domain *dmar_domain = domain->priv;
4399 struct dma_pte *pte;
4400 int level = 0;
4401 u64 phys = 0;
4402
4403 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4404 if (pte)
4405 phys = dma_pte_addr(pte);
4406
4407 return phys;
4408 }
4409
4410 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4411 unsigned long cap)
4412 {
4413 struct dmar_domain *dmar_domain = domain->priv;
4414
4415 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4416 return dmar_domain->iommu_snooping;
4417 if (cap == IOMMU_CAP_INTR_REMAP)
4418 return irq_remapping_enabled;
4419
4420 return 0;
4421 }
4422
4423 static int intel_iommu_add_device(struct device *dev)
4424 {
4425 struct intel_iommu *iommu;
4426 struct iommu_group *group;
4427 u8 bus, devfn;
4428
4429 iommu = device_to_iommu(dev, &bus, &devfn);
4430 if (!iommu)
4431 return -ENODEV;
4432
4433 iommu_device_link(iommu->iommu_dev, dev);
4434
4435 group = iommu_group_get_for_dev(dev);
4436
4437 if (IS_ERR(group))
4438 return PTR_ERR(group);
4439
4440 iommu_group_put(group);
4441 return 0;
4442 }
4443
4444 static void intel_iommu_remove_device(struct device *dev)
4445 {
4446 struct intel_iommu *iommu;
4447 u8 bus, devfn;
4448
4449 iommu = device_to_iommu(dev, &bus, &devfn);
4450 if (!iommu)
4451 return;
4452
4453 iommu_group_remove_device(dev);
4454
4455 iommu_device_unlink(iommu->iommu_dev, dev);
4456 }
4457
4458 static const struct iommu_ops intel_iommu_ops = {
4459 .domain_init = intel_iommu_domain_init,
4460 .domain_destroy = intel_iommu_domain_destroy,
4461 .attach_dev = intel_iommu_attach_device,
4462 .detach_dev = intel_iommu_detach_device,
4463 .map = intel_iommu_map,
4464 .unmap = intel_iommu_unmap,
4465 .iova_to_phys = intel_iommu_iova_to_phys,
4466 .domain_has_cap = intel_iommu_domain_has_cap,
4467 .add_device = intel_iommu_add_device,
4468 .remove_device = intel_iommu_remove_device,
4469 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4470 };
4471
4472 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4473 {
4474 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4475 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4476 dmar_map_gfx = 0;
4477 }
4478
4479 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4480 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4481 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4482 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4483 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4484 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4485 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4486
4487 static void quirk_iommu_rwbf(struct pci_dev *dev)
4488 {
4489 /*
4490 * Mobile 4 Series Chipset neglects to set RWBF capability,
4491 * but needs it. Same seems to hold for the desktop versions.
4492 */
4493 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4494 rwbf_quirk = 1;
4495 }
4496
4497 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4498 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4499 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4500 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4501 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4502 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4503 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4504
4505 #define GGC 0x52
4506 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4507 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4508 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4509 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4510 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4511 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4512 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4513 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4514
4515 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4516 {
4517 unsigned short ggc;
4518
4519 if (pci_read_config_word(dev, GGC, &ggc))
4520 return;
4521
4522 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4523 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4524 dmar_map_gfx = 0;
4525 } else if (dmar_map_gfx) {
4526 /* we have to ensure the gfx device is idle before we flush */
4527 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4528 intel_iommu_strict = 1;
4529 }
4530 }
4531 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4532 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4533 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4534 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4535
4536 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4537 ISOCH DMAR unit for the Azalia sound device, but not give it any
4538 TLB entries, which causes it to deadlock. Check for that. We do
4539 this in a function called from init_dmars(), instead of in a PCI
4540 quirk, because we don't want to print the obnoxious "BIOS broken"
4541 message if VT-d is actually disabled.
4542 */
4543 static void __init check_tylersburg_isoch(void)
4544 {
4545 struct pci_dev *pdev;
4546 uint32_t vtisochctrl;
4547
4548 /* If there's no Azalia in the system anyway, forget it. */
4549 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4550 if (!pdev)
4551 return;
4552 pci_dev_put(pdev);
4553
4554 /* System Management Registers. Might be hidden, in which case
4555 we can't do the sanity check. But that's OK, because the
4556 known-broken BIOSes _don't_ actually hide it, so far. */
4557 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4558 if (!pdev)
4559 return;
4560
4561 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4562 pci_dev_put(pdev);
4563 return;
4564 }
4565
4566 pci_dev_put(pdev);
4567
4568 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4569 if (vtisochctrl & 1)
4570 return;
4571
4572 /* Drop all bits other than the number of TLB entries */
4573 vtisochctrl &= 0x1c;
4574
4575 /* If we have the recommended number of TLB entries (16), fine. */
4576 if (vtisochctrl == 0x10)
4577 return;
4578
4579 /* Zero TLB entries? You get to ride the short bus to school. */
4580 if (!vtisochctrl) {
4581 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4582 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4583 dmi_get_system_info(DMI_BIOS_VENDOR),
4584 dmi_get_system_info(DMI_BIOS_VERSION),
4585 dmi_get_system_info(DMI_PRODUCT_VERSION));
4586 iommu_identity_mapping |= IDENTMAP_AZALIA;
4587 return;
4588 }
4589
4590 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4591 vtisochctrl);
4592 }