]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/intel_irq_remapping.c
7ca4947c3c10982ecd91b00b92ca43ad7becab7f
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / intel_irq_remapping.c
1 #include <linux/interrupt.h>
2 #include <linux/dmar.h>
3 #include <linux/spinlock.h>
4 #include <linux/slab.h>
5 #include <linux/jiffies.h>
6 #include <linux/hpet.h>
7 #include <linux/pci.h>
8 #include <linux/irq.h>
9 #include <asm/io_apic.h>
10 #include <asm/smp.h>
11 #include <asm/cpu.h>
12 #include <linux/intel-iommu.h>
13 #include <acpi/acpi.h>
14 #include <asm/irq_remapping.h>
15 #include <asm/pci-direct.h>
16 #include <asm/msidef.h>
17
18 #include "irq_remapping.h"
19
20 struct ioapic_scope {
21 struct intel_iommu *iommu;
22 unsigned int id;
23 unsigned int bus; /* PCI bus number */
24 unsigned int devfn; /* PCI devfn number */
25 };
26
27 struct hpet_scope {
28 struct intel_iommu *iommu;
29 u8 id;
30 unsigned int bus;
31 unsigned int devfn;
32 };
33
34 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
35 #define IRTE_DEST(dest) ((x2apic_mode) ? dest : dest << 8)
36
37 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
38 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
39 static int ir_ioapic_num, ir_hpet_num;
40
41 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
42
43 static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
44 {
45 struct irq_cfg *cfg = irq_get_chip_data(irq);
46 return cfg ? &cfg->irq_2_iommu : NULL;
47 }
48
49 int get_irte(int irq, struct irte *entry)
50 {
51 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
52 unsigned long flags;
53 int index;
54
55 if (!entry || !irq_iommu)
56 return -1;
57
58 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
59
60 index = irq_iommu->irte_index + irq_iommu->sub_handle;
61 *entry = *(irq_iommu->iommu->ir_table->base + index);
62
63 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
64 return 0;
65 }
66
67 static int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
68 {
69 struct ir_table *table = iommu->ir_table;
70 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
71 struct irq_cfg *cfg = irq_get_chip_data(irq);
72 u16 index, start_index;
73 unsigned int mask = 0;
74 unsigned long flags;
75 int i;
76
77 if (!count || !irq_iommu)
78 return -1;
79
80 /*
81 * start the IRTE search from index 0.
82 */
83 index = start_index = 0;
84
85 if (count > 1) {
86 count = __roundup_pow_of_two(count);
87 mask = ilog2(count);
88 }
89
90 if (mask > ecap_max_handle_mask(iommu->ecap)) {
91 printk(KERN_ERR
92 "Requested mask %x exceeds the max invalidation handle"
93 " mask value %Lx\n", mask,
94 ecap_max_handle_mask(iommu->ecap));
95 return -1;
96 }
97
98 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
99 do {
100 for (i = index; i < index + count; i++)
101 if (table->base[i].present)
102 break;
103 /* empty index found */
104 if (i == index + count)
105 break;
106
107 index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
108
109 if (index == start_index) {
110 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
111 printk(KERN_ERR "can't allocate an IRTE\n");
112 return -1;
113 }
114 } while (1);
115
116 for (i = index; i < index + count; i++)
117 table->base[i].present = 1;
118
119 cfg->remapped = 1;
120 irq_iommu->iommu = iommu;
121 irq_iommu->irte_index = index;
122 irq_iommu->sub_handle = 0;
123 irq_iommu->irte_mask = mask;
124
125 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
126
127 return index;
128 }
129
130 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
131 {
132 struct qi_desc desc;
133
134 desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
135 | QI_IEC_SELECTIVE;
136 desc.high = 0;
137
138 return qi_submit_sync(&desc, iommu);
139 }
140
141 static int map_irq_to_irte_handle(int irq, u16 *sub_handle)
142 {
143 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
144 unsigned long flags;
145 int index;
146
147 if (!irq_iommu)
148 return -1;
149
150 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
151 *sub_handle = irq_iommu->sub_handle;
152 index = irq_iommu->irte_index;
153 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
154 return index;
155 }
156
157 static int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
158 {
159 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
160 struct irq_cfg *cfg = irq_get_chip_data(irq);
161 unsigned long flags;
162
163 if (!irq_iommu)
164 return -1;
165
166 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
167
168 cfg->remapped = 1;
169 irq_iommu->iommu = iommu;
170 irq_iommu->irte_index = index;
171 irq_iommu->sub_handle = subhandle;
172 irq_iommu->irte_mask = 0;
173
174 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
175
176 return 0;
177 }
178
179 static int modify_irte(int irq, struct irte *irte_modified)
180 {
181 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
182 struct intel_iommu *iommu;
183 unsigned long flags;
184 struct irte *irte;
185 int rc, index;
186
187 if (!irq_iommu)
188 return -1;
189
190 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
191
192 iommu = irq_iommu->iommu;
193
194 index = irq_iommu->irte_index + irq_iommu->sub_handle;
195 irte = &iommu->ir_table->base[index];
196
197 set_64bit(&irte->low, irte_modified->low);
198 set_64bit(&irte->high, irte_modified->high);
199 __iommu_flush_cache(iommu, irte, sizeof(*irte));
200
201 rc = qi_flush_iec(iommu, index, 0);
202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204 return rc;
205 }
206
207 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
208 {
209 int i;
210
211 for (i = 0; i < MAX_HPET_TBS; i++)
212 if (ir_hpet[i].id == hpet_id)
213 return ir_hpet[i].iommu;
214 return NULL;
215 }
216
217 static struct intel_iommu *map_ioapic_to_ir(int apic)
218 {
219 int i;
220
221 for (i = 0; i < MAX_IO_APICS; i++)
222 if (ir_ioapic[i].id == apic)
223 return ir_ioapic[i].iommu;
224 return NULL;
225 }
226
227 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
228 {
229 struct dmar_drhd_unit *drhd;
230
231 drhd = dmar_find_matched_drhd_unit(dev);
232 if (!drhd)
233 return NULL;
234
235 return drhd->iommu;
236 }
237
238 static int clear_entries(struct irq_2_iommu *irq_iommu)
239 {
240 struct irte *start, *entry, *end;
241 struct intel_iommu *iommu;
242 int index;
243
244 if (irq_iommu->sub_handle)
245 return 0;
246
247 iommu = irq_iommu->iommu;
248 index = irq_iommu->irte_index + irq_iommu->sub_handle;
249
250 start = iommu->ir_table->base + index;
251 end = start + (1 << irq_iommu->irte_mask);
252
253 for (entry = start; entry < end; entry++) {
254 set_64bit(&entry->low, 0);
255 set_64bit(&entry->high, 0);
256 }
257
258 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
259 }
260
261 static int free_irte(int irq)
262 {
263 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
264 unsigned long flags;
265 int rc;
266
267 if (!irq_iommu)
268 return -1;
269
270 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
271
272 rc = clear_entries(irq_iommu);
273
274 irq_iommu->iommu = NULL;
275 irq_iommu->irte_index = 0;
276 irq_iommu->sub_handle = 0;
277 irq_iommu->irte_mask = 0;
278
279 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
280
281 return rc;
282 }
283
284 /*
285 * source validation type
286 */
287 #define SVT_NO_VERIFY 0x0 /* no verification is required */
288 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
289 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
290
291 /*
292 * source-id qualifier
293 */
294 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
295 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
296 * the third least significant bit
297 */
298 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
299 * the second and third least significant bits
300 */
301 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
302 * the least three significant bits
303 */
304
305 /*
306 * set SVT, SQ and SID fields of irte to verify
307 * source ids of interrupt requests
308 */
309 static void set_irte_sid(struct irte *irte, unsigned int svt,
310 unsigned int sq, unsigned int sid)
311 {
312 if (disable_sourceid_checking)
313 svt = SVT_NO_VERIFY;
314 irte->svt = svt;
315 irte->sq = sq;
316 irte->sid = sid;
317 }
318
319 static int set_ioapic_sid(struct irte *irte, int apic)
320 {
321 int i;
322 u16 sid = 0;
323
324 if (!irte)
325 return -1;
326
327 for (i = 0; i < MAX_IO_APICS; i++) {
328 if (ir_ioapic[i].id == apic) {
329 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
330 break;
331 }
332 }
333
334 if (sid == 0) {
335 pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic);
336 return -1;
337 }
338
339 set_irte_sid(irte, 1, 0, sid);
340
341 return 0;
342 }
343
344 static int set_hpet_sid(struct irte *irte, u8 id)
345 {
346 int i;
347 u16 sid = 0;
348
349 if (!irte)
350 return -1;
351
352 for (i = 0; i < MAX_HPET_TBS; i++) {
353 if (ir_hpet[i].id == id) {
354 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
355 break;
356 }
357 }
358
359 if (sid == 0) {
360 pr_warning("Failed to set source-id of HPET block (%d)\n", id);
361 return -1;
362 }
363
364 /*
365 * Should really use SQ_ALL_16. Some platforms are broken.
366 * While we figure out the right quirks for these broken platforms, use
367 * SQ_13_IGNORE_3 for now.
368 */
369 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
370
371 return 0;
372 }
373
374 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
375 {
376 struct pci_dev *bridge;
377
378 if (!irte || !dev)
379 return -1;
380
381 /* PCIe device or Root Complex integrated PCI device */
382 if (pci_is_pcie(dev) || !dev->bus->parent) {
383 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
384 (dev->bus->number << 8) | dev->devfn);
385 return 0;
386 }
387
388 bridge = pci_find_upstream_pcie_bridge(dev);
389 if (bridge) {
390 if (pci_is_pcie(bridge))/* this is a PCIe-to-PCI/PCIX bridge */
391 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
392 (bridge->bus->number << 8) | dev->bus->number);
393 else /* this is a legacy PCI bridge */
394 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
395 (bridge->bus->number << 8) | bridge->devfn);
396 }
397
398 return 0;
399 }
400
401 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
402 {
403 u64 addr;
404 u32 sts;
405 unsigned long flags;
406
407 addr = virt_to_phys((void *)iommu->ir_table->base);
408
409 raw_spin_lock_irqsave(&iommu->register_lock, flags);
410
411 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
412 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
413
414 /* Set interrupt-remapping table pointer */
415 iommu->gcmd |= DMA_GCMD_SIRTP;
416 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
417
418 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
419 readl, (sts & DMA_GSTS_IRTPS), sts);
420 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
421
422 /*
423 * global invalidation of interrupt entry cache before enabling
424 * interrupt-remapping.
425 */
426 qi_global_iec(iommu);
427
428 raw_spin_lock_irqsave(&iommu->register_lock, flags);
429
430 /* Enable interrupt-remapping */
431 iommu->gcmd |= DMA_GCMD_IRE;
432 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
433
434 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
435 readl, (sts & DMA_GSTS_IRES), sts);
436
437 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
438 }
439
440
441 static int intel_setup_irq_remapping(struct intel_iommu *iommu, int mode)
442 {
443 struct ir_table *ir_table;
444 struct page *pages;
445
446 ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
447 GFP_ATOMIC);
448
449 if (!iommu->ir_table)
450 return -ENOMEM;
451
452 pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
453 INTR_REMAP_PAGE_ORDER);
454
455 if (!pages) {
456 printk(KERN_ERR "failed to allocate pages of order %d\n",
457 INTR_REMAP_PAGE_ORDER);
458 kfree(iommu->ir_table);
459 return -ENOMEM;
460 }
461
462 ir_table->base = page_address(pages);
463
464 iommu_set_irq_remapping(iommu, mode);
465 return 0;
466 }
467
468 /*
469 * Disable Interrupt Remapping.
470 */
471 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
472 {
473 unsigned long flags;
474 u32 sts;
475
476 if (!ecap_ir_support(iommu->ecap))
477 return;
478
479 /*
480 * global invalidation of interrupt entry cache before disabling
481 * interrupt-remapping.
482 */
483 qi_global_iec(iommu);
484
485 raw_spin_lock_irqsave(&iommu->register_lock, flags);
486
487 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
488 if (!(sts & DMA_GSTS_IRES))
489 goto end;
490
491 iommu->gcmd &= ~DMA_GCMD_IRE;
492 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
493
494 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
495 readl, !(sts & DMA_GSTS_IRES), sts);
496
497 end:
498 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
499 }
500
501 static int __init dmar_x2apic_optout(void)
502 {
503 struct acpi_table_dmar *dmar;
504 dmar = (struct acpi_table_dmar *)dmar_tbl;
505 if (!dmar || no_x2apic_optout)
506 return 0;
507 return dmar->flags & DMAR_X2APIC_OPT_OUT;
508 }
509
510 static int __init intel_irq_remapping_supported(void)
511 {
512 struct dmar_drhd_unit *drhd;
513
514 if (disable_irq_remap)
515 return 0;
516
517 if (!dmar_ir_support())
518 return 0;
519
520 for_each_drhd_unit(drhd) {
521 struct intel_iommu *iommu = drhd->iommu;
522
523 if (!ecap_ir_support(iommu->ecap))
524 return 0;
525 }
526
527 return 1;
528 }
529
530 static int __init intel_enable_irq_remapping(void)
531 {
532 struct dmar_drhd_unit *drhd;
533 int setup = 0;
534 int eim = 0;
535
536 if (parse_ioapics_under_ir() != 1) {
537 printk(KERN_INFO "Not enable interrupt remapping\n");
538 return -1;
539 }
540
541 if (x2apic_supported()) {
542 eim = !dmar_x2apic_optout();
543 WARN(!eim, KERN_WARNING
544 "Your BIOS is broken and requested that x2apic be disabled\n"
545 "This will leave your machine vulnerable to irq-injection attacks\n"
546 "Use 'intremap=no_x2apic_optout' to override BIOS request\n");
547 }
548
549 for_each_drhd_unit(drhd) {
550 struct intel_iommu *iommu = drhd->iommu;
551
552 /*
553 * If the queued invalidation is already initialized,
554 * shouldn't disable it.
555 */
556 if (iommu->qi)
557 continue;
558
559 /*
560 * Clear previous faults.
561 */
562 dmar_fault(-1, iommu);
563
564 /*
565 * Disable intr remapping and queued invalidation, if already
566 * enabled prior to OS handover.
567 */
568 iommu_disable_irq_remapping(iommu);
569
570 dmar_disable_qi(iommu);
571 }
572
573 /*
574 * check for the Interrupt-remapping support
575 */
576 for_each_drhd_unit(drhd) {
577 struct intel_iommu *iommu = drhd->iommu;
578
579 if (!ecap_ir_support(iommu->ecap))
580 continue;
581
582 if (eim && !ecap_eim_support(iommu->ecap)) {
583 printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
584 " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
585 return -1;
586 }
587 }
588
589 /*
590 * Enable queued invalidation for all the DRHD's.
591 */
592 for_each_drhd_unit(drhd) {
593 int ret;
594 struct intel_iommu *iommu = drhd->iommu;
595 ret = dmar_enable_qi(iommu);
596
597 if (ret) {
598 printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
599 " invalidation, ecap %Lx, ret %d\n",
600 drhd->reg_base_addr, iommu->ecap, ret);
601 return -1;
602 }
603 }
604
605 /*
606 * Setup Interrupt-remapping for all the DRHD's now.
607 */
608 for_each_drhd_unit(drhd) {
609 struct intel_iommu *iommu = drhd->iommu;
610
611 if (!ecap_ir_support(iommu->ecap))
612 continue;
613
614 if (intel_setup_irq_remapping(iommu, eim))
615 goto error;
616
617 setup = 1;
618 }
619
620 if (!setup)
621 goto error;
622
623 irq_remapping_enabled = 1;
624
625 /*
626 * VT-d has a different layout for IO-APIC entries when
627 * interrupt remapping is enabled. So it needs a special routine
628 * to print IO-APIC entries for debugging purposes too.
629 */
630 x86_io_apic_ops.print_entries = intel_ir_io_apic_print_entries;
631
632 pr_info("Enabled IRQ remapping in %s mode\n", eim ? "x2apic" : "xapic");
633
634 return eim ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
635
636 error:
637 /*
638 * handle error condition gracefully here!
639 */
640 return -1;
641 }
642
643 static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
644 struct intel_iommu *iommu)
645 {
646 struct acpi_dmar_pci_path *path;
647 u8 bus;
648 int count;
649
650 bus = scope->bus;
651 path = (struct acpi_dmar_pci_path *)(scope + 1);
652 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
653 / sizeof(struct acpi_dmar_pci_path);
654
655 while (--count > 0) {
656 /*
657 * Access PCI directly due to the PCI
658 * subsystem isn't initialized yet.
659 */
660 bus = read_pci_config_byte(bus, path->dev, path->fn,
661 PCI_SECONDARY_BUS);
662 path++;
663 }
664 ir_hpet[ir_hpet_num].bus = bus;
665 ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->dev, path->fn);
666 ir_hpet[ir_hpet_num].iommu = iommu;
667 ir_hpet[ir_hpet_num].id = scope->enumeration_id;
668 ir_hpet_num++;
669 }
670
671 static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
672 struct intel_iommu *iommu)
673 {
674 struct acpi_dmar_pci_path *path;
675 u8 bus;
676 int count;
677
678 bus = scope->bus;
679 path = (struct acpi_dmar_pci_path *)(scope + 1);
680 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
681 / sizeof(struct acpi_dmar_pci_path);
682
683 while (--count > 0) {
684 /*
685 * Access PCI directly due to the PCI
686 * subsystem isn't initialized yet.
687 */
688 bus = read_pci_config_byte(bus, path->dev, path->fn,
689 PCI_SECONDARY_BUS);
690 path++;
691 }
692
693 ir_ioapic[ir_ioapic_num].bus = bus;
694 ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->dev, path->fn);
695 ir_ioapic[ir_ioapic_num].iommu = iommu;
696 ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
697 ir_ioapic_num++;
698 }
699
700 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
701 struct intel_iommu *iommu)
702 {
703 struct acpi_dmar_hardware_unit *drhd;
704 struct acpi_dmar_device_scope *scope;
705 void *start, *end;
706
707 drhd = (struct acpi_dmar_hardware_unit *)header;
708
709 start = (void *)(drhd + 1);
710 end = ((void *)drhd) + header->length;
711
712 while (start < end) {
713 scope = start;
714 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
715 if (ir_ioapic_num == MAX_IO_APICS) {
716 printk(KERN_WARNING "Exceeded Max IO APICS\n");
717 return -1;
718 }
719
720 printk(KERN_INFO "IOAPIC id %d under DRHD base "
721 " 0x%Lx IOMMU %d\n", scope->enumeration_id,
722 drhd->address, iommu->seq_id);
723
724 ir_parse_one_ioapic_scope(scope, iommu);
725 } else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) {
726 if (ir_hpet_num == MAX_HPET_TBS) {
727 printk(KERN_WARNING "Exceeded Max HPET blocks\n");
728 return -1;
729 }
730
731 printk(KERN_INFO "HPET id %d under DRHD base"
732 " 0x%Lx\n", scope->enumeration_id,
733 drhd->address);
734
735 ir_parse_one_hpet_scope(scope, iommu);
736 }
737 start += scope->length;
738 }
739
740 return 0;
741 }
742
743 /*
744 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
745 * hardware unit.
746 */
747 int __init parse_ioapics_under_ir(void)
748 {
749 struct dmar_drhd_unit *drhd;
750 int ir_supported = 0;
751 int ioapic_idx;
752
753 for_each_drhd_unit(drhd) {
754 struct intel_iommu *iommu = drhd->iommu;
755
756 if (ecap_ir_support(iommu->ecap)) {
757 if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu))
758 return -1;
759
760 ir_supported = 1;
761 }
762 }
763
764 if (!ir_supported)
765 return 0;
766
767 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
768 int ioapic_id = mpc_ioapic_id(ioapic_idx);
769 if (!map_ioapic_to_ir(ioapic_id)) {
770 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
771 "interrupt remapping will be disabled\n",
772 ioapic_id);
773 return -1;
774 }
775 }
776
777 return 1;
778 }
779
780 int __init ir_dev_scope_init(void)
781 {
782 if (!irq_remapping_enabled)
783 return 0;
784
785 return dmar_dev_scope_init();
786 }
787 rootfs_initcall(ir_dev_scope_init);
788
789 static void disable_irq_remapping(void)
790 {
791 struct dmar_drhd_unit *drhd;
792 struct intel_iommu *iommu = NULL;
793
794 /*
795 * Disable Interrupt-remapping for all the DRHD's now.
796 */
797 for_each_iommu(iommu, drhd) {
798 if (!ecap_ir_support(iommu->ecap))
799 continue;
800
801 iommu_disable_irq_remapping(iommu);
802 }
803 }
804
805 static int reenable_irq_remapping(int eim)
806 {
807 struct dmar_drhd_unit *drhd;
808 int setup = 0;
809 struct intel_iommu *iommu = NULL;
810
811 for_each_iommu(iommu, drhd)
812 if (iommu->qi)
813 dmar_reenable_qi(iommu);
814
815 /*
816 * Setup Interrupt-remapping for all the DRHD's now.
817 */
818 for_each_iommu(iommu, drhd) {
819 if (!ecap_ir_support(iommu->ecap))
820 continue;
821
822 /* Set up interrupt remapping for iommu.*/
823 iommu_set_irq_remapping(iommu, eim);
824 setup = 1;
825 }
826
827 if (!setup)
828 goto error;
829
830 return 0;
831
832 error:
833 /*
834 * handle error condition gracefully here!
835 */
836 return -1;
837 }
838
839 static void prepare_irte(struct irte *irte, int vector,
840 unsigned int dest)
841 {
842 memset(irte, 0, sizeof(*irte));
843
844 irte->present = 1;
845 irte->dst_mode = apic->irq_dest_mode;
846 /*
847 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
848 * actual level or edge trigger will be setup in the IO-APIC
849 * RTE. This will help simplify level triggered irq migration.
850 * For more details, see the comments (in io_apic.c) explainig IO-APIC
851 * irq migration in the presence of interrupt-remapping.
852 */
853 irte->trigger_mode = 0;
854 irte->dlvry_mode = apic->irq_delivery_mode;
855 irte->vector = vector;
856 irte->dest_id = IRTE_DEST(dest);
857 irte->redir_hint = 1;
858 }
859
860 static int intel_setup_ioapic_entry(int irq,
861 struct IO_APIC_route_entry *route_entry,
862 unsigned int destination, int vector,
863 struct io_apic_irq_attr *attr)
864 {
865 int ioapic_id = mpc_ioapic_id(attr->ioapic);
866 struct intel_iommu *iommu = map_ioapic_to_ir(ioapic_id);
867 struct IR_IO_APIC_route_entry *entry;
868 struct irte irte;
869 int index;
870
871 if (!iommu) {
872 pr_warn("No mapping iommu for ioapic %d\n", ioapic_id);
873 return -ENODEV;
874 }
875
876 entry = (struct IR_IO_APIC_route_entry *)route_entry;
877
878 index = alloc_irte(iommu, irq, 1);
879 if (index < 0) {
880 pr_warn("Failed to allocate IRTE for ioapic %d\n", ioapic_id);
881 return -ENOMEM;
882 }
883
884 prepare_irte(&irte, vector, destination);
885
886 /* Set source-id of interrupt request */
887 set_ioapic_sid(&irte, ioapic_id);
888
889 modify_irte(irq, &irte);
890
891 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
892 "Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
893 "Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
894 "Avail:%X Vector:%02X Dest:%08X "
895 "SID:%04X SQ:%X SVT:%X)\n",
896 attr->ioapic, irte.present, irte.fpd, irte.dst_mode,
897 irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
898 irte.avail, irte.vector, irte.dest_id,
899 irte.sid, irte.sq, irte.svt);
900
901 memset(entry, 0, sizeof(*entry));
902
903 entry->index2 = (index >> 15) & 0x1;
904 entry->zero = 0;
905 entry->format = 1;
906 entry->index = (index & 0x7fff);
907 /*
908 * IO-APIC RTE will be configured with virtual vector.
909 * irq handler will do the explicit EOI to the io-apic.
910 */
911 entry->vector = attr->ioapic_pin;
912 entry->mask = 0; /* enable IRQ */
913 entry->trigger = attr->trigger;
914 entry->polarity = attr->polarity;
915
916 /* Mask level triggered irqs.
917 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
918 */
919 if (attr->trigger)
920 entry->mask = 1;
921
922 return 0;
923 }
924
925 /*
926 * Migrate the IO-APIC irq in the presence of intr-remapping.
927 *
928 * For both level and edge triggered, irq migration is a simple atomic
929 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
930 *
931 * For level triggered, we eliminate the io-apic RTE modification (with the
932 * updated vector information), by using a virtual vector (io-apic pin number).
933 * Real vector that is used for interrupting cpu will be coming from
934 * the interrupt-remapping table entry.
935 *
936 * As the migration is a simple atomic update of IRTE, the same mechanism
937 * is used to migrate MSI irq's in the presence of interrupt-remapping.
938 */
939 static int
940 intel_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
941 bool force)
942 {
943 struct irq_cfg *cfg = data->chip_data;
944 unsigned int dest, irq = data->irq;
945 struct irte irte;
946 int err;
947
948 if (!config_enabled(CONFIG_SMP))
949 return -EINVAL;
950
951 if (!cpumask_intersects(mask, cpu_online_mask))
952 return -EINVAL;
953
954 if (get_irte(irq, &irte))
955 return -EBUSY;
956
957 err = assign_irq_vector(irq, cfg, mask);
958 if (err)
959 return err;
960
961 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
962 if (err) {
963 if (assign_irq_vector(irq, cfg, data->affinity))
964 pr_err("Failed to recover vector for irq %d\n", irq);
965 return err;
966 }
967
968 irte.vector = cfg->vector;
969 irte.dest_id = IRTE_DEST(dest);
970
971 /*
972 * Atomically updates the IRTE with the new destination, vector
973 * and flushes the interrupt entry cache.
974 */
975 modify_irte(irq, &irte);
976
977 /*
978 * After this point, all the interrupts will start arriving
979 * at the new destination. So, time to cleanup the previous
980 * vector allocation.
981 */
982 if (cfg->move_in_progress)
983 send_cleanup_vector(cfg);
984
985 cpumask_copy(data->affinity, mask);
986 return 0;
987 }
988
989 static void intel_compose_msi_msg(struct pci_dev *pdev,
990 unsigned int irq, unsigned int dest,
991 struct msi_msg *msg, u8 hpet_id)
992 {
993 struct irq_cfg *cfg;
994 struct irte irte;
995 u16 sub_handle = 0;
996 int ir_index;
997
998 cfg = irq_get_chip_data(irq);
999
1000 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
1001 BUG_ON(ir_index == -1);
1002
1003 prepare_irte(&irte, cfg->vector, dest);
1004
1005 /* Set source-id of interrupt request */
1006 if (pdev)
1007 set_msi_sid(&irte, pdev);
1008 else
1009 set_hpet_sid(&irte, hpet_id);
1010
1011 modify_irte(irq, &irte);
1012
1013 msg->address_hi = MSI_ADDR_BASE_HI;
1014 msg->data = sub_handle;
1015 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1016 MSI_ADDR_IR_SHV |
1017 MSI_ADDR_IR_INDEX1(ir_index) |
1018 MSI_ADDR_IR_INDEX2(ir_index);
1019 }
1020
1021 /*
1022 * Map the PCI dev to the corresponding remapping hardware unit
1023 * and allocate 'nvec' consecutive interrupt-remapping table entries
1024 * in it.
1025 */
1026 static int intel_msi_alloc_irq(struct pci_dev *dev, int irq, int nvec)
1027 {
1028 struct intel_iommu *iommu;
1029 int index;
1030
1031 iommu = map_dev_to_ir(dev);
1032 if (!iommu) {
1033 printk(KERN_ERR
1034 "Unable to map PCI %s to iommu\n", pci_name(dev));
1035 return -ENOENT;
1036 }
1037
1038 index = alloc_irte(iommu, irq, nvec);
1039 if (index < 0) {
1040 printk(KERN_ERR
1041 "Unable to allocate %d IRTE for PCI %s\n", nvec,
1042 pci_name(dev));
1043 return -ENOSPC;
1044 }
1045 return index;
1046 }
1047
1048 static int intel_msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
1049 int index, int sub_handle)
1050 {
1051 struct intel_iommu *iommu;
1052
1053 iommu = map_dev_to_ir(pdev);
1054 if (!iommu)
1055 return -ENOENT;
1056 /*
1057 * setup the mapping between the irq and the IRTE
1058 * base index, the sub_handle pointing to the
1059 * appropriate interrupt remap table entry.
1060 */
1061 set_irte_irq(irq, iommu, index, sub_handle);
1062
1063 return 0;
1064 }
1065
1066 static int intel_setup_hpet_msi(unsigned int irq, unsigned int id)
1067 {
1068 struct intel_iommu *iommu = map_hpet_to_ir(id);
1069 int index;
1070
1071 if (!iommu)
1072 return -1;
1073
1074 index = alloc_irte(iommu, irq, 1);
1075 if (index < 0)
1076 return -1;
1077
1078 return 0;
1079 }
1080
1081 struct irq_remap_ops intel_irq_remap_ops = {
1082 .supported = intel_irq_remapping_supported,
1083 .prepare = dmar_table_init,
1084 .enable = intel_enable_irq_remapping,
1085 .disable = disable_irq_remapping,
1086 .reenable = reenable_irq_remapping,
1087 .enable_faulting = enable_drhd_fault_handling,
1088 .setup_ioapic_entry = intel_setup_ioapic_entry,
1089 .set_affinity = intel_ioapic_set_affinity,
1090 .free_irq = free_irte,
1091 .compose_msi_msg = intel_compose_msi_msg,
1092 .msi_alloc_irq = intel_msi_alloc_irq,
1093 .msi_setup_irq = intel_msi_setup_irq,
1094 .setup_hpet_msi = intel_setup_hpet_msi,
1095 };