]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/iommu/intel_irq_remapping.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-eoan-kernel.git] / drivers / iommu / intel_irq_remapping.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 #include <asm/msidef.h>
23
24 #include "irq_remapping.h"
25
26 enum irq_mode {
27 IRQ_REMAPPING,
28 IRQ_POSTING,
29 };
30
31 struct ioapic_scope {
32 struct intel_iommu *iommu;
33 unsigned int id;
34 unsigned int bus; /* PCI bus number */
35 unsigned int devfn; /* PCI devfn number */
36 };
37
38 struct hpet_scope {
39 struct intel_iommu *iommu;
40 u8 id;
41 unsigned int bus;
42 unsigned int devfn;
43 };
44
45 struct irq_2_iommu {
46 struct intel_iommu *iommu;
47 u16 irte_index;
48 u16 sub_handle;
49 u8 irte_mask;
50 enum irq_mode mode;
51 };
52
53 struct intel_ir_data {
54 struct irq_2_iommu irq_2_iommu;
55 struct irte irte_entry;
56 union {
57 struct msi_msg msi_entry;
58 };
59 };
60
61 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63
64 static int __read_mostly eim_mode;
65 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
66 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
67
68 /*
69 * Lock ordering:
70 * ->dmar_global_lock
71 * ->irq_2_ir_lock
72 * ->qi->q_lock
73 * ->iommu->register_lock
74 * Note:
75 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
76 * in single-threaded environment with interrupt disabled, so no need to tabke
77 * the dmar_global_lock.
78 */
79 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
80 static const struct irq_domain_ops intel_ir_domain_ops;
81
82 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
83 static int __init parse_ioapics_under_ir(void);
84
85 static bool ir_pre_enabled(struct intel_iommu *iommu)
86 {
87 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
88 }
89
90 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
91 {
92 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
93 }
94
95 static void init_ir_status(struct intel_iommu *iommu)
96 {
97 u32 gsts;
98
99 gsts = readl(iommu->reg + DMAR_GSTS_REG);
100 if (gsts & DMA_GSTS_IRES)
101 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
102 }
103
104 static int alloc_irte(struct intel_iommu *iommu,
105 struct irq_2_iommu *irq_iommu, u16 count)
106 {
107 struct ir_table *table = iommu->ir_table;
108 unsigned int mask = 0;
109 unsigned long flags;
110 int index;
111
112 if (!count || !irq_iommu)
113 return -1;
114
115 if (count > 1) {
116 count = __roundup_pow_of_two(count);
117 mask = ilog2(count);
118 }
119
120 if (mask > ecap_max_handle_mask(iommu->ecap)) {
121 pr_err("Requested mask %x exceeds the max invalidation handle"
122 " mask value %Lx\n", mask,
123 ecap_max_handle_mask(iommu->ecap));
124 return -1;
125 }
126
127 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 index = bitmap_find_free_region(table->bitmap,
129 INTR_REMAP_TABLE_ENTRIES, mask);
130 if (index < 0) {
131 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
132 } else {
133 irq_iommu->iommu = iommu;
134 irq_iommu->irte_index = index;
135 irq_iommu->sub_handle = 0;
136 irq_iommu->irte_mask = mask;
137 irq_iommu->mode = IRQ_REMAPPING;
138 }
139 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
140
141 return index;
142 }
143
144 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
145 {
146 struct qi_desc desc;
147
148 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
149 | QI_IEC_SELECTIVE;
150 desc.qw1 = 0;
151 desc.qw2 = 0;
152 desc.qw3 = 0;
153
154 return qi_submit_sync(&desc, iommu);
155 }
156
157 static int modify_irte(struct irq_2_iommu *irq_iommu,
158 struct irte *irte_modified)
159 {
160 struct intel_iommu *iommu;
161 unsigned long flags;
162 struct irte *irte;
163 int rc, index;
164
165 if (!irq_iommu)
166 return -1;
167
168 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
169
170 iommu = irq_iommu->iommu;
171
172 index = irq_iommu->irte_index + irq_iommu->sub_handle;
173 irte = &iommu->ir_table->base[index];
174
175 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
176 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
177 bool ret;
178
179 ret = cmpxchg_double(&irte->low, &irte->high,
180 irte->low, irte->high,
181 irte_modified->low, irte_modified->high);
182 /*
183 * We use cmpxchg16 to atomically update the 128-bit IRTE,
184 * and it cannot be updated by the hardware or other processors
185 * behind us, so the return value of cmpxchg16 should be the
186 * same as the old value.
187 */
188 WARN_ON(!ret);
189 } else
190 #endif
191 {
192 set_64bit(&irte->low, irte_modified->low);
193 set_64bit(&irte->high, irte_modified->high);
194 }
195 __iommu_flush_cache(iommu, irte, sizeof(*irte));
196
197 rc = qi_flush_iec(iommu, index, 0);
198
199 /* Update iommu mode according to the IRTE mode */
200 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
201 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
202
203 return rc;
204 }
205
206 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
207 {
208 int i;
209
210 for (i = 0; i < MAX_HPET_TBS; i++)
211 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
212 return ir_hpet[i].iommu;
213 return NULL;
214 }
215
216 static struct intel_iommu *map_ioapic_to_ir(int apic)
217 {
218 int i;
219
220 for (i = 0; i < MAX_IO_APICS; i++)
221 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
222 return ir_ioapic[i].iommu;
223 return NULL;
224 }
225
226 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
227 {
228 struct dmar_drhd_unit *drhd;
229
230 drhd = dmar_find_matched_drhd_unit(dev);
231 if (!drhd)
232 return NULL;
233
234 return drhd->iommu;
235 }
236
237 static int clear_entries(struct irq_2_iommu *irq_iommu)
238 {
239 struct irte *start, *entry, *end;
240 struct intel_iommu *iommu;
241 int index;
242
243 if (irq_iommu->sub_handle)
244 return 0;
245
246 iommu = irq_iommu->iommu;
247 index = irq_iommu->irte_index;
248
249 start = iommu->ir_table->base + index;
250 end = start + (1 << irq_iommu->irte_mask);
251
252 for (entry = start; entry < end; entry++) {
253 set_64bit(&entry->low, 0);
254 set_64bit(&entry->high, 0);
255 }
256 bitmap_release_region(iommu->ir_table->bitmap, index,
257 irq_iommu->irte_mask);
258
259 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
260 }
261
262 /*
263 * source validation type
264 */
265 #define SVT_NO_VERIFY 0x0 /* no verification is required */
266 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
267 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
268
269 /*
270 * source-id qualifier
271 */
272 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
273 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
274 * the third least significant bit
275 */
276 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
277 * the second and third least significant bits
278 */
279 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
280 * the least three significant bits
281 */
282
283 /*
284 * set SVT, SQ and SID fields of irte to verify
285 * source ids of interrupt requests
286 */
287 static void set_irte_sid(struct irte *irte, unsigned int svt,
288 unsigned int sq, unsigned int sid)
289 {
290 if (disable_sourceid_checking)
291 svt = SVT_NO_VERIFY;
292 irte->svt = svt;
293 irte->sq = sq;
294 irte->sid = sid;
295 }
296
297 /*
298 * Set an IRTE to match only the bus number. Interrupt requests that reference
299 * this IRTE must have a requester-id whose bus number is between or equal
300 * to the start_bus and end_bus arguments.
301 */
302 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
303 unsigned int end_bus)
304 {
305 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
306 (start_bus << 8) | end_bus);
307 }
308
309 static int set_ioapic_sid(struct irte *irte, int apic)
310 {
311 int i;
312 u16 sid = 0;
313
314 if (!irte)
315 return -1;
316
317 down_read(&dmar_global_lock);
318 for (i = 0; i < MAX_IO_APICS; i++) {
319 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
320 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
321 break;
322 }
323 }
324 up_read(&dmar_global_lock);
325
326 if (sid == 0) {
327 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
328 return -1;
329 }
330
331 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
332
333 return 0;
334 }
335
336 static int set_hpet_sid(struct irte *irte, u8 id)
337 {
338 int i;
339 u16 sid = 0;
340
341 if (!irte)
342 return -1;
343
344 down_read(&dmar_global_lock);
345 for (i = 0; i < MAX_HPET_TBS; i++) {
346 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
347 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
348 break;
349 }
350 }
351 up_read(&dmar_global_lock);
352
353 if (sid == 0) {
354 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
355 return -1;
356 }
357
358 /*
359 * Should really use SQ_ALL_16. Some platforms are broken.
360 * While we figure out the right quirks for these broken platforms, use
361 * SQ_13_IGNORE_3 for now.
362 */
363 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
364
365 return 0;
366 }
367
368 struct set_msi_sid_data {
369 struct pci_dev *pdev;
370 u16 alias;
371 int count;
372 int busmatch_count;
373 };
374
375 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
376 {
377 struct set_msi_sid_data *data = opaque;
378
379 data->pdev = pdev;
380 data->alias = alias;
381 data->count++;
382
383 if (PCI_BUS_NUM(alias) == pdev->bus->number)
384 data->busmatch_count++;
385
386 return 0;
387 }
388
389 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
390 {
391 struct set_msi_sid_data data;
392
393 if (!irte || !dev)
394 return -1;
395
396 data.count = 0;
397 data.busmatch_count = 0;
398 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
399
400 /*
401 * DMA alias provides us with a PCI device and alias. The only case
402 * where the it will return an alias on a different bus than the
403 * device is the case of a PCIe-to-PCI bridge, where the alias is for
404 * the subordinate bus. In this case we can only verify the bus.
405 *
406 * If there are multiple aliases, all with the same bus number,
407 * then all we can do is verify the bus. This is typical in NTB
408 * hardware which use proxy IDs where the device will generate traffic
409 * from multiple devfn numbers on the same bus.
410 *
411 * If the alias device is on a different bus than our source device
412 * then we have a topology based alias, use it.
413 *
414 * Otherwise, the alias is for a device DMA quirk and we cannot
415 * assume that MSI uses the same requester ID. Therefore use the
416 * original device.
417 */
418 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
419 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
420 dev->bus->number);
421 else if (data.count >= 2 && data.busmatch_count == data.count)
422 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
423 else if (data.pdev->bus->number != dev->bus->number)
424 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
425 else
426 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
427 pci_dev_id(dev));
428
429 return 0;
430 }
431
432 static int iommu_load_old_irte(struct intel_iommu *iommu)
433 {
434 struct irte *old_ir_table;
435 phys_addr_t irt_phys;
436 unsigned int i;
437 size_t size;
438 u64 irta;
439
440 /* Check whether the old ir-table has the same size as ours */
441 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
442 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
443 != INTR_REMAP_TABLE_REG_SIZE)
444 return -EINVAL;
445
446 irt_phys = irta & VTD_PAGE_MASK;
447 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
448
449 /* Map the old IR table */
450 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
451 if (!old_ir_table)
452 return -ENOMEM;
453
454 /* Copy data over */
455 memcpy(iommu->ir_table->base, old_ir_table, size);
456
457 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
458
459 /*
460 * Now check the table for used entries and mark those as
461 * allocated in the bitmap
462 */
463 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
464 if (iommu->ir_table->base[i].present)
465 bitmap_set(iommu->ir_table->bitmap, i, 1);
466 }
467
468 memunmap(old_ir_table);
469
470 return 0;
471 }
472
473
474 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
475 {
476 unsigned long flags;
477 u64 addr;
478 u32 sts;
479
480 addr = virt_to_phys((void *)iommu->ir_table->base);
481
482 raw_spin_lock_irqsave(&iommu->register_lock, flags);
483
484 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
485 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
486
487 /* Set interrupt-remapping table pointer */
488 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
489
490 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
491 readl, (sts & DMA_GSTS_IRTPS), sts);
492 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
493
494 /*
495 * Global invalidation of interrupt entry cache to make sure the
496 * hardware uses the new irq remapping table.
497 */
498 qi_global_iec(iommu);
499 }
500
501 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
502 {
503 unsigned long flags;
504 u32 sts;
505
506 raw_spin_lock_irqsave(&iommu->register_lock, flags);
507
508 /* Enable interrupt-remapping */
509 iommu->gcmd |= DMA_GCMD_IRE;
510 iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */
511 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512
513 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
514 readl, (sts & DMA_GSTS_IRES), sts);
515
516 /*
517 * With CFI clear in the Global Command register, we should be
518 * protected from dangerous (i.e. compatibility) interrupts
519 * regardless of x2apic status. Check just to be sure.
520 */
521 if (sts & DMA_GSTS_CFIS)
522 WARN(1, KERN_WARNING
523 "Compatibility-format IRQs enabled despite intr remapping;\n"
524 "you are vulnerable to IRQ injection.\n");
525
526 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
527 }
528
529 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
530 {
531 struct ir_table *ir_table;
532 struct fwnode_handle *fn;
533 unsigned long *bitmap;
534 struct page *pages;
535
536 if (iommu->ir_table)
537 return 0;
538
539 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
540 if (!ir_table)
541 return -ENOMEM;
542
543 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
544 INTR_REMAP_PAGE_ORDER);
545 if (!pages) {
546 pr_err("IR%d: failed to allocate pages of order %d\n",
547 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
548 goto out_free_table;
549 }
550
551 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
552 if (bitmap == NULL) {
553 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
554 goto out_free_pages;
555 }
556
557 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
558 if (!fn)
559 goto out_free_bitmap;
560
561 iommu->ir_domain =
562 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
563 0, INTR_REMAP_TABLE_ENTRIES,
564 fn, &intel_ir_domain_ops,
565 iommu);
566 irq_domain_free_fwnode(fn);
567 if (!iommu->ir_domain) {
568 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
569 goto out_free_bitmap;
570 }
571 iommu->ir_msi_domain =
572 arch_create_remap_msi_irq_domain(iommu->ir_domain,
573 "INTEL-IR-MSI",
574 iommu->seq_id);
575
576 ir_table->base = page_address(pages);
577 ir_table->bitmap = bitmap;
578 iommu->ir_table = ir_table;
579
580 /*
581 * If the queued invalidation is already initialized,
582 * shouldn't disable it.
583 */
584 if (!iommu->qi) {
585 /*
586 * Clear previous faults.
587 */
588 dmar_fault(-1, iommu);
589 dmar_disable_qi(iommu);
590
591 if (dmar_enable_qi(iommu)) {
592 pr_err("Failed to enable queued invalidation\n");
593 goto out_free_bitmap;
594 }
595 }
596
597 init_ir_status(iommu);
598
599 if (ir_pre_enabled(iommu)) {
600 if (!is_kdump_kernel()) {
601 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
602 iommu->name);
603 clear_ir_pre_enabled(iommu);
604 iommu_disable_irq_remapping(iommu);
605 } else if (iommu_load_old_irte(iommu))
606 pr_err("Failed to copy IR table for %s from previous kernel\n",
607 iommu->name);
608 else
609 pr_info("Copied IR table for %s from previous kernel\n",
610 iommu->name);
611 }
612
613 iommu_set_irq_remapping(iommu, eim_mode);
614
615 return 0;
616
617 out_free_bitmap:
618 bitmap_free(bitmap);
619 out_free_pages:
620 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
621 out_free_table:
622 kfree(ir_table);
623
624 iommu->ir_table = NULL;
625
626 return -ENOMEM;
627 }
628
629 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
630 {
631 if (iommu && iommu->ir_table) {
632 if (iommu->ir_msi_domain) {
633 irq_domain_remove(iommu->ir_msi_domain);
634 iommu->ir_msi_domain = NULL;
635 }
636 if (iommu->ir_domain) {
637 irq_domain_remove(iommu->ir_domain);
638 iommu->ir_domain = NULL;
639 }
640 free_pages((unsigned long)iommu->ir_table->base,
641 INTR_REMAP_PAGE_ORDER);
642 bitmap_free(iommu->ir_table->bitmap);
643 kfree(iommu->ir_table);
644 iommu->ir_table = NULL;
645 }
646 }
647
648 /*
649 * Disable Interrupt Remapping.
650 */
651 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
652 {
653 unsigned long flags;
654 u32 sts;
655
656 if (!ecap_ir_support(iommu->ecap))
657 return;
658
659 /*
660 * global invalidation of interrupt entry cache before disabling
661 * interrupt-remapping.
662 */
663 qi_global_iec(iommu);
664
665 raw_spin_lock_irqsave(&iommu->register_lock, flags);
666
667 sts = readl(iommu->reg + DMAR_GSTS_REG);
668 if (!(sts & DMA_GSTS_IRES))
669 goto end;
670
671 iommu->gcmd &= ~DMA_GCMD_IRE;
672 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
673
674 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
675 readl, !(sts & DMA_GSTS_IRES), sts);
676
677 end:
678 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
679 }
680
681 static int __init dmar_x2apic_optout(void)
682 {
683 struct acpi_table_dmar *dmar;
684 dmar = (struct acpi_table_dmar *)dmar_tbl;
685 if (!dmar || no_x2apic_optout)
686 return 0;
687 return dmar->flags & DMAR_X2APIC_OPT_OUT;
688 }
689
690 static void __init intel_cleanup_irq_remapping(void)
691 {
692 struct dmar_drhd_unit *drhd;
693 struct intel_iommu *iommu;
694
695 for_each_iommu(iommu, drhd) {
696 if (ecap_ir_support(iommu->ecap)) {
697 iommu_disable_irq_remapping(iommu);
698 intel_teardown_irq_remapping(iommu);
699 }
700 }
701
702 if (x2apic_supported())
703 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
704 }
705
706 static int __init intel_prepare_irq_remapping(void)
707 {
708 struct dmar_drhd_unit *drhd;
709 struct intel_iommu *iommu;
710 int eim = 0;
711
712 if (irq_remap_broken) {
713 pr_warn("This system BIOS has enabled interrupt remapping\n"
714 "on a chipset that contains an erratum making that\n"
715 "feature unstable. To maintain system stability\n"
716 "interrupt remapping is being disabled. Please\n"
717 "contact your BIOS vendor for an update\n");
718 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
719 return -ENODEV;
720 }
721
722 if (dmar_table_init() < 0)
723 return -ENODEV;
724
725 if (!dmar_ir_support())
726 return -ENODEV;
727
728 if (parse_ioapics_under_ir()) {
729 pr_info("Not enabling interrupt remapping\n");
730 goto error;
731 }
732
733 /* First make sure all IOMMUs support IRQ remapping */
734 for_each_iommu(iommu, drhd)
735 if (!ecap_ir_support(iommu->ecap))
736 goto error;
737
738 /* Detect remapping mode: lapic or x2apic */
739 if (x2apic_supported()) {
740 eim = !dmar_x2apic_optout();
741 if (!eim) {
742 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
743 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
744 }
745 }
746
747 for_each_iommu(iommu, drhd) {
748 if (eim && !ecap_eim_support(iommu->ecap)) {
749 pr_info("%s does not support EIM\n", iommu->name);
750 eim = 0;
751 }
752 }
753
754 eim_mode = eim;
755 if (eim)
756 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
757
758 /* Do the initializations early */
759 for_each_iommu(iommu, drhd) {
760 if (intel_setup_irq_remapping(iommu)) {
761 pr_err("Failed to setup irq remapping for %s\n",
762 iommu->name);
763 goto error;
764 }
765 }
766
767 return 0;
768
769 error:
770 intel_cleanup_irq_remapping();
771 return -ENODEV;
772 }
773
774 /*
775 * Set Posted-Interrupts capability.
776 */
777 static inline void set_irq_posting_cap(void)
778 {
779 struct dmar_drhd_unit *drhd;
780 struct intel_iommu *iommu;
781
782 if (!disable_irq_post) {
783 /*
784 * If IRTE is in posted format, the 'pda' field goes across the
785 * 64-bit boundary, we need use cmpxchg16b to atomically update
786 * it. We only expose posted-interrupt when X86_FEATURE_CX16
787 * is supported. Actually, hardware platforms supporting PI
788 * should have X86_FEATURE_CX16 support, this has been confirmed
789 * with Intel hardware guys.
790 */
791 if (boot_cpu_has(X86_FEATURE_CX16))
792 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
793
794 for_each_iommu(iommu, drhd)
795 if (!cap_pi_support(iommu->cap)) {
796 intel_irq_remap_ops.capability &=
797 ~(1 << IRQ_POSTING_CAP);
798 break;
799 }
800 }
801 }
802
803 static int __init intel_enable_irq_remapping(void)
804 {
805 struct dmar_drhd_unit *drhd;
806 struct intel_iommu *iommu;
807 bool setup = false;
808
809 /*
810 * Setup Interrupt-remapping for all the DRHD's now.
811 */
812 for_each_iommu(iommu, drhd) {
813 if (!ir_pre_enabled(iommu))
814 iommu_enable_irq_remapping(iommu);
815 setup = true;
816 }
817
818 if (!setup)
819 goto error;
820
821 irq_remapping_enabled = 1;
822
823 set_irq_posting_cap();
824
825 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
826
827 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
828
829 error:
830 intel_cleanup_irq_remapping();
831 return -1;
832 }
833
834 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
835 struct intel_iommu *iommu,
836 struct acpi_dmar_hardware_unit *drhd)
837 {
838 struct acpi_dmar_pci_path *path;
839 u8 bus;
840 int count, free = -1;
841
842 bus = scope->bus;
843 path = (struct acpi_dmar_pci_path *)(scope + 1);
844 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
845 / sizeof(struct acpi_dmar_pci_path);
846
847 while (--count > 0) {
848 /*
849 * Access PCI directly due to the PCI
850 * subsystem isn't initialized yet.
851 */
852 bus = read_pci_config_byte(bus, path->device, path->function,
853 PCI_SECONDARY_BUS);
854 path++;
855 }
856
857 for (count = 0; count < MAX_HPET_TBS; count++) {
858 if (ir_hpet[count].iommu == iommu &&
859 ir_hpet[count].id == scope->enumeration_id)
860 return 0;
861 else if (ir_hpet[count].iommu == NULL && free == -1)
862 free = count;
863 }
864 if (free == -1) {
865 pr_warn("Exceeded Max HPET blocks\n");
866 return -ENOSPC;
867 }
868
869 ir_hpet[free].iommu = iommu;
870 ir_hpet[free].id = scope->enumeration_id;
871 ir_hpet[free].bus = bus;
872 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
873 pr_info("HPET id %d under DRHD base 0x%Lx\n",
874 scope->enumeration_id, drhd->address);
875
876 return 0;
877 }
878
879 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
880 struct intel_iommu *iommu,
881 struct acpi_dmar_hardware_unit *drhd)
882 {
883 struct acpi_dmar_pci_path *path;
884 u8 bus;
885 int count, free = -1;
886
887 bus = scope->bus;
888 path = (struct acpi_dmar_pci_path *)(scope + 1);
889 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
890 / sizeof(struct acpi_dmar_pci_path);
891
892 while (--count > 0) {
893 /*
894 * Access PCI directly due to the PCI
895 * subsystem isn't initialized yet.
896 */
897 bus = read_pci_config_byte(bus, path->device, path->function,
898 PCI_SECONDARY_BUS);
899 path++;
900 }
901
902 for (count = 0; count < MAX_IO_APICS; count++) {
903 if (ir_ioapic[count].iommu == iommu &&
904 ir_ioapic[count].id == scope->enumeration_id)
905 return 0;
906 else if (ir_ioapic[count].iommu == NULL && free == -1)
907 free = count;
908 }
909 if (free == -1) {
910 pr_warn("Exceeded Max IO APICS\n");
911 return -ENOSPC;
912 }
913
914 ir_ioapic[free].bus = bus;
915 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
916 ir_ioapic[free].iommu = iommu;
917 ir_ioapic[free].id = scope->enumeration_id;
918 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
919 scope->enumeration_id, drhd->address, iommu->seq_id);
920
921 return 0;
922 }
923
924 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
925 struct intel_iommu *iommu)
926 {
927 int ret = 0;
928 struct acpi_dmar_hardware_unit *drhd;
929 struct acpi_dmar_device_scope *scope;
930 void *start, *end;
931
932 drhd = (struct acpi_dmar_hardware_unit *)header;
933 start = (void *)(drhd + 1);
934 end = ((void *)drhd) + header->length;
935
936 while (start < end && ret == 0) {
937 scope = start;
938 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
939 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
940 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
941 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
942 start += scope->length;
943 }
944
945 return ret;
946 }
947
948 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
949 {
950 int i;
951
952 for (i = 0; i < MAX_HPET_TBS; i++)
953 if (ir_hpet[i].iommu == iommu)
954 ir_hpet[i].iommu = NULL;
955
956 for (i = 0; i < MAX_IO_APICS; i++)
957 if (ir_ioapic[i].iommu == iommu)
958 ir_ioapic[i].iommu = NULL;
959 }
960
961 /*
962 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
963 * hardware unit.
964 */
965 static int __init parse_ioapics_under_ir(void)
966 {
967 struct dmar_drhd_unit *drhd;
968 struct intel_iommu *iommu;
969 bool ir_supported = false;
970 int ioapic_idx;
971
972 for_each_iommu(iommu, drhd) {
973 int ret;
974
975 if (!ecap_ir_support(iommu->ecap))
976 continue;
977
978 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
979 if (ret)
980 return ret;
981
982 ir_supported = true;
983 }
984
985 if (!ir_supported)
986 return -ENODEV;
987
988 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
989 int ioapic_id = mpc_ioapic_id(ioapic_idx);
990 if (!map_ioapic_to_ir(ioapic_id)) {
991 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
992 "interrupt remapping will be disabled\n",
993 ioapic_id);
994 return -1;
995 }
996 }
997
998 return 0;
999 }
1000
1001 static int __init ir_dev_scope_init(void)
1002 {
1003 int ret;
1004
1005 if (!irq_remapping_enabled)
1006 return 0;
1007
1008 down_write(&dmar_global_lock);
1009 ret = dmar_dev_scope_init();
1010 up_write(&dmar_global_lock);
1011
1012 return ret;
1013 }
1014 rootfs_initcall(ir_dev_scope_init);
1015
1016 static void disable_irq_remapping(void)
1017 {
1018 struct dmar_drhd_unit *drhd;
1019 struct intel_iommu *iommu = NULL;
1020
1021 /*
1022 * Disable Interrupt-remapping for all the DRHD's now.
1023 */
1024 for_each_iommu(iommu, drhd) {
1025 if (!ecap_ir_support(iommu->ecap))
1026 continue;
1027
1028 iommu_disable_irq_remapping(iommu);
1029 }
1030
1031 /*
1032 * Clear Posted-Interrupts capability.
1033 */
1034 if (!disable_irq_post)
1035 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1036 }
1037
1038 static int reenable_irq_remapping(int eim)
1039 {
1040 struct dmar_drhd_unit *drhd;
1041 bool setup = false;
1042 struct intel_iommu *iommu = NULL;
1043
1044 for_each_iommu(iommu, drhd)
1045 if (iommu->qi)
1046 dmar_reenable_qi(iommu);
1047
1048 /*
1049 * Setup Interrupt-remapping for all the DRHD's now.
1050 */
1051 for_each_iommu(iommu, drhd) {
1052 if (!ecap_ir_support(iommu->ecap))
1053 continue;
1054
1055 /* Set up interrupt remapping for iommu.*/
1056 iommu_set_irq_remapping(iommu, eim);
1057 iommu_enable_irq_remapping(iommu);
1058 setup = true;
1059 }
1060
1061 if (!setup)
1062 goto error;
1063
1064 set_irq_posting_cap();
1065
1066 return 0;
1067
1068 error:
1069 /*
1070 * handle error condition gracefully here!
1071 */
1072 return -1;
1073 }
1074
1075 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1076 {
1077 memset(irte, 0, sizeof(*irte));
1078
1079 irte->present = 1;
1080 irte->dst_mode = apic->irq_dest_mode;
1081 /*
1082 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1083 * actual level or edge trigger will be setup in the IO-APIC
1084 * RTE. This will help simplify level triggered irq migration.
1085 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1086 * irq migration in the presence of interrupt-remapping.
1087 */
1088 irte->trigger_mode = 0;
1089 irte->dlvry_mode = apic->irq_delivery_mode;
1090 irte->vector = vector;
1091 irte->dest_id = IRTE_DEST(dest);
1092 irte->redir_hint = 1;
1093 }
1094
1095 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1096 {
1097 struct intel_iommu *iommu = NULL;
1098
1099 if (!info)
1100 return NULL;
1101
1102 switch (info->type) {
1103 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1104 iommu = map_ioapic_to_ir(info->ioapic_id);
1105 break;
1106 case X86_IRQ_ALLOC_TYPE_HPET:
1107 iommu = map_hpet_to_ir(info->hpet_id);
1108 break;
1109 case X86_IRQ_ALLOC_TYPE_MSI:
1110 case X86_IRQ_ALLOC_TYPE_MSIX:
1111 iommu = map_dev_to_ir(info->msi_dev);
1112 break;
1113 default:
1114 BUG_ON(1);
1115 break;
1116 }
1117
1118 return iommu ? iommu->ir_domain : NULL;
1119 }
1120
1121 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1122 {
1123 struct intel_iommu *iommu;
1124
1125 if (!info)
1126 return NULL;
1127
1128 switch (info->type) {
1129 case X86_IRQ_ALLOC_TYPE_MSI:
1130 case X86_IRQ_ALLOC_TYPE_MSIX:
1131 iommu = map_dev_to_ir(info->msi_dev);
1132 if (iommu)
1133 return iommu->ir_msi_domain;
1134 break;
1135 default:
1136 break;
1137 }
1138
1139 return NULL;
1140 }
1141
1142 struct irq_remap_ops intel_irq_remap_ops = {
1143 .prepare = intel_prepare_irq_remapping,
1144 .enable = intel_enable_irq_remapping,
1145 .disable = disable_irq_remapping,
1146 .reenable = reenable_irq_remapping,
1147 .enable_faulting = enable_drhd_fault_handling,
1148 .get_ir_irq_domain = intel_get_ir_irq_domain,
1149 .get_irq_domain = intel_get_irq_domain,
1150 };
1151
1152 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1153 {
1154 struct intel_ir_data *ir_data = irqd->chip_data;
1155 struct irte *irte = &ir_data->irte_entry;
1156 struct irq_cfg *cfg = irqd_cfg(irqd);
1157
1158 /*
1159 * Atomically updates the IRTE with the new destination, vector
1160 * and flushes the interrupt entry cache.
1161 */
1162 irte->vector = cfg->vector;
1163 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1164
1165 /* Update the hardware only if the interrupt is in remapped mode. */
1166 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1167 modify_irte(&ir_data->irq_2_iommu, irte);
1168 }
1169
1170 /*
1171 * Migrate the IO-APIC irq in the presence of intr-remapping.
1172 *
1173 * For both level and edge triggered, irq migration is a simple atomic
1174 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1175 *
1176 * For level triggered, we eliminate the io-apic RTE modification (with the
1177 * updated vector information), by using a virtual vector (io-apic pin number).
1178 * Real vector that is used for interrupting cpu will be coming from
1179 * the interrupt-remapping table entry.
1180 *
1181 * As the migration is a simple atomic update of IRTE, the same mechanism
1182 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1183 */
1184 static int
1185 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1186 bool force)
1187 {
1188 struct irq_data *parent = data->parent_data;
1189 struct irq_cfg *cfg = irqd_cfg(data);
1190 int ret;
1191
1192 ret = parent->chip->irq_set_affinity(parent, mask, force);
1193 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1194 return ret;
1195
1196 intel_ir_reconfigure_irte(data, false);
1197 /*
1198 * After this point, all the interrupts will start arriving
1199 * at the new destination. So, time to cleanup the previous
1200 * vector allocation.
1201 */
1202 send_cleanup_vector(cfg);
1203
1204 return IRQ_SET_MASK_OK_DONE;
1205 }
1206
1207 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1208 struct msi_msg *msg)
1209 {
1210 struct intel_ir_data *ir_data = irq_data->chip_data;
1211
1212 *msg = ir_data->msi_entry;
1213 }
1214
1215 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1216 {
1217 struct intel_ir_data *ir_data = data->chip_data;
1218 struct vcpu_data *vcpu_pi_info = info;
1219
1220 /* stop posting interrupts, back to remapping mode */
1221 if (!vcpu_pi_info) {
1222 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1223 } else {
1224 struct irte irte_pi;
1225
1226 /*
1227 * We are not caching the posted interrupt entry. We
1228 * copy the data from the remapped entry and modify
1229 * the fields which are relevant for posted mode. The
1230 * cached remapped entry is used for switching back to
1231 * remapped mode.
1232 */
1233 memset(&irte_pi, 0, sizeof(irte_pi));
1234 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1235
1236 /* Update the posted mode fields */
1237 irte_pi.p_pst = 1;
1238 irte_pi.p_urgent = 0;
1239 irte_pi.p_vector = vcpu_pi_info->vector;
1240 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1241 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1242 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1243 ~(-1UL << PDA_HIGH_BIT);
1244
1245 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1246 }
1247
1248 return 0;
1249 }
1250
1251 static struct irq_chip intel_ir_chip = {
1252 .name = "INTEL-IR",
1253 .irq_ack = apic_ack_irq,
1254 .irq_set_affinity = intel_ir_set_affinity,
1255 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1256 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1257 };
1258
1259 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1260 struct irq_cfg *irq_cfg,
1261 struct irq_alloc_info *info,
1262 int index, int sub_handle)
1263 {
1264 struct IR_IO_APIC_route_entry *entry;
1265 struct irte *irte = &data->irte_entry;
1266 struct msi_msg *msg = &data->msi_entry;
1267
1268 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1269 switch (info->type) {
1270 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1271 /* Set source-id of interrupt request */
1272 set_ioapic_sid(irte, info->ioapic_id);
1273 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1274 info->ioapic_id, irte->present, irte->fpd,
1275 irte->dst_mode, irte->redir_hint,
1276 irte->trigger_mode, irte->dlvry_mode,
1277 irte->avail, irte->vector, irte->dest_id,
1278 irte->sid, irte->sq, irte->svt);
1279
1280 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1281 info->ioapic_entry = NULL;
1282 memset(entry, 0, sizeof(*entry));
1283 entry->index2 = (index >> 15) & 0x1;
1284 entry->zero = 0;
1285 entry->format = 1;
1286 entry->index = (index & 0x7fff);
1287 /*
1288 * IO-APIC RTE will be configured with virtual vector.
1289 * irq handler will do the explicit EOI to the io-apic.
1290 */
1291 entry->vector = info->ioapic_pin;
1292 entry->mask = 0; /* enable IRQ */
1293 entry->trigger = info->ioapic_trigger;
1294 entry->polarity = info->ioapic_polarity;
1295 if (info->ioapic_trigger)
1296 entry->mask = 1; /* Mask level triggered irqs. */
1297 break;
1298
1299 case X86_IRQ_ALLOC_TYPE_HPET:
1300 case X86_IRQ_ALLOC_TYPE_MSI:
1301 case X86_IRQ_ALLOC_TYPE_MSIX:
1302 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1303 set_hpet_sid(irte, info->hpet_id);
1304 else
1305 set_msi_sid(irte, info->msi_dev);
1306
1307 msg->address_hi = MSI_ADDR_BASE_HI;
1308 msg->data = sub_handle;
1309 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1310 MSI_ADDR_IR_SHV |
1311 MSI_ADDR_IR_INDEX1(index) |
1312 MSI_ADDR_IR_INDEX2(index);
1313 break;
1314
1315 default:
1316 BUG_ON(1);
1317 break;
1318 }
1319 }
1320
1321 static void intel_free_irq_resources(struct irq_domain *domain,
1322 unsigned int virq, unsigned int nr_irqs)
1323 {
1324 struct irq_data *irq_data;
1325 struct intel_ir_data *data;
1326 struct irq_2_iommu *irq_iommu;
1327 unsigned long flags;
1328 int i;
1329 for (i = 0; i < nr_irqs; i++) {
1330 irq_data = irq_domain_get_irq_data(domain, virq + i);
1331 if (irq_data && irq_data->chip_data) {
1332 data = irq_data->chip_data;
1333 irq_iommu = &data->irq_2_iommu;
1334 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1335 clear_entries(irq_iommu);
1336 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1337 irq_domain_reset_irq_data(irq_data);
1338 kfree(data);
1339 }
1340 }
1341 }
1342
1343 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1344 unsigned int virq, unsigned int nr_irqs,
1345 void *arg)
1346 {
1347 struct intel_iommu *iommu = domain->host_data;
1348 struct irq_alloc_info *info = arg;
1349 struct intel_ir_data *data, *ird;
1350 struct irq_data *irq_data;
1351 struct irq_cfg *irq_cfg;
1352 int i, ret, index;
1353
1354 if (!info || !iommu)
1355 return -EINVAL;
1356 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1357 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1358 return -EINVAL;
1359
1360 /*
1361 * With IRQ remapping enabled, don't need contiguous CPU vectors
1362 * to support multiple MSI interrupts.
1363 */
1364 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1365 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1366
1367 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1368 if (ret < 0)
1369 return ret;
1370
1371 ret = -ENOMEM;
1372 data = kzalloc(sizeof(*data), GFP_KERNEL);
1373 if (!data)
1374 goto out_free_parent;
1375
1376 down_read(&dmar_global_lock);
1377 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1378 up_read(&dmar_global_lock);
1379 if (index < 0) {
1380 pr_warn("Failed to allocate IRTE\n");
1381 kfree(data);
1382 goto out_free_parent;
1383 }
1384
1385 for (i = 0; i < nr_irqs; i++) {
1386 irq_data = irq_domain_get_irq_data(domain, virq + i);
1387 irq_cfg = irqd_cfg(irq_data);
1388 if (!irq_data || !irq_cfg) {
1389 ret = -EINVAL;
1390 goto out_free_data;
1391 }
1392
1393 if (i > 0) {
1394 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1395 if (!ird)
1396 goto out_free_data;
1397 /* Initialize the common data */
1398 ird->irq_2_iommu = data->irq_2_iommu;
1399 ird->irq_2_iommu.sub_handle = i;
1400 } else {
1401 ird = data;
1402 }
1403
1404 irq_data->hwirq = (index << 16) + i;
1405 irq_data->chip_data = ird;
1406 irq_data->chip = &intel_ir_chip;
1407 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1408 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1409 }
1410 return 0;
1411
1412 out_free_data:
1413 intel_free_irq_resources(domain, virq, i);
1414 out_free_parent:
1415 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1416 return ret;
1417 }
1418
1419 static void intel_irq_remapping_free(struct irq_domain *domain,
1420 unsigned int virq, unsigned int nr_irqs)
1421 {
1422 intel_free_irq_resources(domain, virq, nr_irqs);
1423 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1424 }
1425
1426 static int intel_irq_remapping_activate(struct irq_domain *domain,
1427 struct irq_data *irq_data, bool reserve)
1428 {
1429 intel_ir_reconfigure_irte(irq_data, true);
1430 return 0;
1431 }
1432
1433 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1434 struct irq_data *irq_data)
1435 {
1436 struct intel_ir_data *data = irq_data->chip_data;
1437 struct irte entry;
1438
1439 memset(&entry, 0, sizeof(entry));
1440 modify_irte(&data->irq_2_iommu, &entry);
1441 }
1442
1443 static const struct irq_domain_ops intel_ir_domain_ops = {
1444 .alloc = intel_irq_remapping_alloc,
1445 .free = intel_irq_remapping_free,
1446 .activate = intel_irq_remapping_activate,
1447 .deactivate = intel_irq_remapping_deactivate,
1448 };
1449
1450 /*
1451 * Support of Interrupt Remapping Unit Hotplug
1452 */
1453 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1454 {
1455 int ret;
1456 int eim = x2apic_enabled();
1457
1458 if (eim && !ecap_eim_support(iommu->ecap)) {
1459 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1460 iommu->reg_phys, iommu->ecap);
1461 return -ENODEV;
1462 }
1463
1464 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1465 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1466 iommu->reg_phys);
1467 return -ENODEV;
1468 }
1469
1470 /* TODO: check all IOAPICs are covered by IOMMU */
1471
1472 /* Setup Interrupt-remapping now. */
1473 ret = intel_setup_irq_remapping(iommu);
1474 if (ret) {
1475 pr_err("Failed to setup irq remapping for %s\n",
1476 iommu->name);
1477 intel_teardown_irq_remapping(iommu);
1478 ir_remove_ioapic_hpet_scope(iommu);
1479 } else {
1480 iommu_enable_irq_remapping(iommu);
1481 }
1482
1483 return ret;
1484 }
1485
1486 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1487 {
1488 int ret = 0;
1489 struct intel_iommu *iommu = dmaru->iommu;
1490
1491 if (!irq_remapping_enabled)
1492 return 0;
1493 if (iommu == NULL)
1494 return -EINVAL;
1495 if (!ecap_ir_support(iommu->ecap))
1496 return 0;
1497 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1498 !cap_pi_support(iommu->cap))
1499 return -EBUSY;
1500
1501 if (insert) {
1502 if (!iommu->ir_table)
1503 ret = dmar_ir_add(dmaru, iommu);
1504 } else {
1505 if (iommu->ir_table) {
1506 if (!bitmap_empty(iommu->ir_table->bitmap,
1507 INTR_REMAP_TABLE_ENTRIES)) {
1508 ret = -EBUSY;
1509 } else {
1510 iommu_disable_irq_remapping(iommu);
1511 intel_teardown_irq_remapping(iommu);
1512 ir_remove_ioapic_hpet_scope(iommu);
1513 }
1514 }
1515 }
1516
1517 return ret;
1518 }