]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/io-pgtable-arm-v7s.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / io-pgtable-arm-v7s.c
1 /*
2 * CPU-agnostic ARM page table allocator.
3 *
4 * ARMv7 Short-descriptor format, supporting
5 * - Basic memory attributes
6 * - Simplified access permissions (AP[2:1] model)
7 * - Backwards-compatible TEX remap
8 * - Large pages/supersections (if indicated by the caller)
9 *
10 * Not supporting:
11 * - Legacy access permissions (AP[2:0] model)
12 *
13 * Almost certainly never supporting:
14 * - PXN
15 * - Domains
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program. If not, see <http://www.gnu.org/licenses/>.
28 *
29 * Copyright (C) 2014-2015 ARM Limited
30 * Copyright (c) 2014-2015 MediaTek Inc.
31 */
32
33 #define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
34
35 #include <linux/dma-mapping.h>
36 #include <linux/gfp.h>
37 #include <linux/iommu.h>
38 #include <linux/kernel.h>
39 #include <linux/kmemleak.h>
40 #include <linux/sizes.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43
44 #include <asm/barrier.h>
45
46 #include "io-pgtable.h"
47
48 /* Struct accessors */
49 #define io_pgtable_to_data(x) \
50 container_of((x), struct arm_v7s_io_pgtable, iop)
51
52 #define io_pgtable_ops_to_data(x) \
53 io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
54
55 /*
56 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
57 * and 12 bits in a page. With some carefully-chosen coefficients we can
58 * hide the ugly inconsistencies behind these macros and at least let the
59 * rest of the code pretend to be somewhat sane.
60 */
61 #define ARM_V7S_ADDR_BITS 32
62 #define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
63 #define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
64 #define ARM_V7S_TABLE_SHIFT 10
65
66 #define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
67 #define ARM_V7S_TABLE_SIZE(lvl) \
68 (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
69
70 #define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
71 #define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
72 #define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
73 #define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
74 #define ARM_V7S_LVL_IDX(addr, lvl) ({ \
75 int _l = lvl; \
76 ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
77 })
78
79 /*
80 * Large page/supersection entries are effectively a block of 16 page/section
81 * entries, along the lines of the LPAE contiguous hint, but all with the
82 * same output address. For want of a better common name we'll call them
83 * "contiguous" versions of their respective page/section entries here, but
84 * noting the distinction (WRT to TLB maintenance) that they represent *one*
85 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
86 */
87 #define ARM_V7S_CONT_PAGES 16
88
89 /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
90 #define ARM_V7S_PTE_TYPE_TABLE 0x1
91 #define ARM_V7S_PTE_TYPE_PAGE 0x2
92 #define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
93
94 #define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
95 #define ARM_V7S_PTE_IS_TABLE(pte, lvl) (lvl == 1 && ((pte) & ARM_V7S_PTE_TYPE_TABLE))
96
97 /* Page table bits */
98 #define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
99 #define ARM_V7S_ATTR_B BIT(2)
100 #define ARM_V7S_ATTR_C BIT(3)
101 #define ARM_V7S_ATTR_NS_TABLE BIT(3)
102 #define ARM_V7S_ATTR_NS_SECTION BIT(19)
103
104 #define ARM_V7S_CONT_SECTION BIT(18)
105 #define ARM_V7S_CONT_PAGE_XN_SHIFT 15
106
107 /*
108 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
109 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
110 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
111 */
112 #define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
113
114 #define ARM_V7S_ATTR_MASK 0xff
115 #define ARM_V7S_ATTR_AP0 BIT(0)
116 #define ARM_V7S_ATTR_AP1 BIT(1)
117 #define ARM_V7S_ATTR_AP2 BIT(5)
118 #define ARM_V7S_ATTR_S BIT(6)
119 #define ARM_V7S_ATTR_NG BIT(7)
120 #define ARM_V7S_TEX_SHIFT 2
121 #define ARM_V7S_TEX_MASK 0x7
122 #define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
123
124 #define ARM_V7S_ATTR_MTK_4GB BIT(9) /* MTK extend it for 4GB mode */
125
126 /* *well, except for TEX on level 2 large pages, of course :( */
127 #define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
128 #define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
129
130 /* Simplified access permissions */
131 #define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
132 #define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
133 #define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
134
135 /* Register bits */
136 #define ARM_V7S_RGN_NC 0
137 #define ARM_V7S_RGN_WBWA 1
138 #define ARM_V7S_RGN_WT 2
139 #define ARM_V7S_RGN_WB 3
140
141 #define ARM_V7S_PRRR_TYPE_DEVICE 1
142 #define ARM_V7S_PRRR_TYPE_NORMAL 2
143 #define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
144 #define ARM_V7S_PRRR_DS0 BIT(16)
145 #define ARM_V7S_PRRR_DS1 BIT(17)
146 #define ARM_V7S_PRRR_NS0 BIT(18)
147 #define ARM_V7S_PRRR_NS1 BIT(19)
148 #define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
149
150 #define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
151 #define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
152
153 #define ARM_V7S_TTBR_S BIT(1)
154 #define ARM_V7S_TTBR_NOS BIT(5)
155 #define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
156 #define ARM_V7S_TTBR_IRGN_ATTR(attr) \
157 ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
158
159 #define ARM_V7S_TCR_PD1 BIT(5)
160
161 typedef u32 arm_v7s_iopte;
162
163 static bool selftest_running;
164
165 struct arm_v7s_io_pgtable {
166 struct io_pgtable iop;
167
168 arm_v7s_iopte *pgd;
169 struct kmem_cache *l2_tables;
170 };
171
172 static dma_addr_t __arm_v7s_dma_addr(void *pages)
173 {
174 return (dma_addr_t)virt_to_phys(pages);
175 }
176
177 static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl)
178 {
179 if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
180 pte &= ARM_V7S_TABLE_MASK;
181 else
182 pte &= ARM_V7S_LVL_MASK(lvl);
183 return phys_to_virt(pte);
184 }
185
186 static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
187 struct arm_v7s_io_pgtable *data)
188 {
189 struct device *dev = data->iop.cfg.iommu_dev;
190 dma_addr_t dma;
191 size_t size = ARM_V7S_TABLE_SIZE(lvl);
192 void *table = NULL;
193
194 if (lvl == 1)
195 table = (void *)__get_dma_pages(__GFP_ZERO, get_order(size));
196 else if (lvl == 2)
197 table = kmem_cache_zalloc(data->l2_tables, gfp | GFP_DMA);
198 if (table && !selftest_running) {
199 dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
200 if (dma_mapping_error(dev, dma))
201 goto out_free;
202 /*
203 * We depend on the IOMMU being able to work with any physical
204 * address directly, so if the DMA layer suggests otherwise by
205 * translating or truncating them, that bodes very badly...
206 */
207 if (dma != virt_to_phys(table))
208 goto out_unmap;
209 }
210 kmemleak_ignore(table);
211 return table;
212
213 out_unmap:
214 dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
215 dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
216 out_free:
217 if (lvl == 1)
218 free_pages((unsigned long)table, get_order(size));
219 else
220 kmem_cache_free(data->l2_tables, table);
221 return NULL;
222 }
223
224 static void __arm_v7s_free_table(void *table, int lvl,
225 struct arm_v7s_io_pgtable *data)
226 {
227 struct device *dev = data->iop.cfg.iommu_dev;
228 size_t size = ARM_V7S_TABLE_SIZE(lvl);
229
230 if (!selftest_running)
231 dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
232 DMA_TO_DEVICE);
233 if (lvl == 1)
234 free_pages((unsigned long)table, get_order(size));
235 else
236 kmem_cache_free(data->l2_tables, table);
237 }
238
239 static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
240 struct io_pgtable_cfg *cfg)
241 {
242 if (selftest_running)
243 return;
244
245 dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
246 num_entries * sizeof(*ptep), DMA_TO_DEVICE);
247 }
248 static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
249 int num_entries, struct io_pgtable_cfg *cfg)
250 {
251 int i;
252
253 for (i = 0; i < num_entries; i++)
254 ptep[i] = pte;
255
256 __arm_v7s_pte_sync(ptep, num_entries, cfg);
257 }
258
259 static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
260 struct io_pgtable_cfg *cfg)
261 {
262 bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
263 arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
264
265 if (!(prot & IOMMU_MMIO))
266 pte |= ARM_V7S_ATTR_TEX(1);
267 if (ap) {
268 pte |= ARM_V7S_PTE_AF;
269 if (!(prot & IOMMU_PRIV))
270 pte |= ARM_V7S_PTE_AP_UNPRIV;
271 if (!(prot & IOMMU_WRITE))
272 pte |= ARM_V7S_PTE_AP_RDONLY;
273 }
274 pte <<= ARM_V7S_ATTR_SHIFT(lvl);
275
276 if ((prot & IOMMU_NOEXEC) && ap)
277 pte |= ARM_V7S_ATTR_XN(lvl);
278 if (prot & IOMMU_MMIO)
279 pte |= ARM_V7S_ATTR_B;
280 else if (prot & IOMMU_CACHE)
281 pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
282
283 return pte;
284 }
285
286 static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
287 {
288 int prot = IOMMU_READ;
289 arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
290
291 if (!(attr & ARM_V7S_PTE_AP_RDONLY))
292 prot |= IOMMU_WRITE;
293 if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
294 prot |= IOMMU_PRIV;
295 if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
296 prot |= IOMMU_MMIO;
297 else if (pte & ARM_V7S_ATTR_C)
298 prot |= IOMMU_CACHE;
299 if (pte & ARM_V7S_ATTR_XN(lvl))
300 prot |= IOMMU_NOEXEC;
301
302 return prot;
303 }
304
305 static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
306 {
307 if (lvl == 1) {
308 pte |= ARM_V7S_CONT_SECTION;
309 } else if (lvl == 2) {
310 arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
311 arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
312
313 pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
314 pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
315 (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
316 ARM_V7S_PTE_TYPE_CONT_PAGE;
317 }
318 return pte;
319 }
320
321 static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
322 {
323 if (lvl == 1) {
324 pte &= ~ARM_V7S_CONT_SECTION;
325 } else if (lvl == 2) {
326 arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
327 arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
328 ARM_V7S_CONT_PAGE_TEX_SHIFT);
329
330 pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
331 pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
332 (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
333 ARM_V7S_PTE_TYPE_PAGE;
334 }
335 return pte;
336 }
337
338 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
339 {
340 if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
341 return pte & ARM_V7S_CONT_SECTION;
342 else if (lvl == 2)
343 return !(pte & ARM_V7S_PTE_TYPE_PAGE);
344 return false;
345 }
346
347 static int __arm_v7s_unmap(struct arm_v7s_io_pgtable *, unsigned long,
348 size_t, int, arm_v7s_iopte *);
349
350 static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
351 unsigned long iova, phys_addr_t paddr, int prot,
352 int lvl, int num_entries, arm_v7s_iopte *ptep)
353 {
354 struct io_pgtable_cfg *cfg = &data->iop.cfg;
355 arm_v7s_iopte pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
356 int i;
357
358 for (i = 0; i < num_entries; i++)
359 if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
360 /*
361 * We need to unmap and free the old table before
362 * overwriting it with a block entry.
363 */
364 arm_v7s_iopte *tblp;
365 size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
366
367 tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
368 if (WARN_ON(__arm_v7s_unmap(data, iova + i * sz,
369 sz, lvl, tblp) != sz))
370 return -EINVAL;
371 } else if (ptep[i]) {
372 /* We require an unmap first */
373 WARN_ON(!selftest_running);
374 return -EEXIST;
375 }
376
377 pte |= ARM_V7S_PTE_TYPE_PAGE;
378 if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
379 pte |= ARM_V7S_ATTR_NS_SECTION;
380
381 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB)
382 pte |= ARM_V7S_ATTR_MTK_4GB;
383
384 if (num_entries > 1)
385 pte = arm_v7s_pte_to_cont(pte, lvl);
386
387 pte |= paddr & ARM_V7S_LVL_MASK(lvl);
388
389 __arm_v7s_set_pte(ptep, pte, num_entries, cfg);
390 return 0;
391 }
392
393 static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
394 phys_addr_t paddr, size_t size, int prot,
395 int lvl, arm_v7s_iopte *ptep)
396 {
397 struct io_pgtable_cfg *cfg = &data->iop.cfg;
398 arm_v7s_iopte pte, *cptep;
399 int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
400
401 /* Find our entry at the current level */
402 ptep += ARM_V7S_LVL_IDX(iova, lvl);
403
404 /* If we can install a leaf entry at this level, then do so */
405 if (num_entries)
406 return arm_v7s_init_pte(data, iova, paddr, prot,
407 lvl, num_entries, ptep);
408
409 /* We can't allocate tables at the final level */
410 if (WARN_ON(lvl == 2))
411 return -EINVAL;
412
413 /* Grab a pointer to the next level */
414 pte = *ptep;
415 if (!pte) {
416 cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
417 if (!cptep)
418 return -ENOMEM;
419
420 pte = virt_to_phys(cptep) | ARM_V7S_PTE_TYPE_TABLE;
421 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
422 pte |= ARM_V7S_ATTR_NS_TABLE;
423
424 __arm_v7s_set_pte(ptep, pte, 1, cfg);
425 } else if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
426 cptep = iopte_deref(pte, lvl);
427 } else {
428 /* We require an unmap first */
429 WARN_ON(!selftest_running);
430 return -EEXIST;
431 }
432
433 /* Rinse, repeat */
434 return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
435 }
436
437 static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
438 phys_addr_t paddr, size_t size, int prot)
439 {
440 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
441 struct io_pgtable *iop = &data->iop;
442 int ret;
443
444 /* If no access, then nothing to do */
445 if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
446 return 0;
447
448 ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
449 /*
450 * Synchronise all PTE updates for the new mapping before there's
451 * a chance for anything to kick off a table walk for the new iova.
452 */
453 if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
454 io_pgtable_tlb_add_flush(iop, iova, size,
455 ARM_V7S_BLOCK_SIZE(2), false);
456 io_pgtable_tlb_sync(iop);
457 } else {
458 wmb();
459 }
460
461 return ret;
462 }
463
464 static void arm_v7s_free_pgtable(struct io_pgtable *iop)
465 {
466 struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
467 int i;
468
469 for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
470 arm_v7s_iopte pte = data->pgd[i];
471
472 if (ARM_V7S_PTE_IS_TABLE(pte, 1))
473 __arm_v7s_free_table(iopte_deref(pte, 1), 2, data);
474 }
475 __arm_v7s_free_table(data->pgd, 1, data);
476 kmem_cache_destroy(data->l2_tables);
477 kfree(data);
478 }
479
480 static void arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
481 unsigned long iova, int idx, int lvl,
482 arm_v7s_iopte *ptep)
483 {
484 struct io_pgtable *iop = &data->iop;
485 arm_v7s_iopte pte;
486 size_t size = ARM_V7S_BLOCK_SIZE(lvl);
487 int i;
488
489 ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
490 pte = arm_v7s_cont_to_pte(*ptep, lvl);
491 for (i = 0; i < ARM_V7S_CONT_PAGES; i++) {
492 ptep[i] = pte;
493 pte += size;
494 }
495
496 __arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
497
498 size *= ARM_V7S_CONT_PAGES;
499 io_pgtable_tlb_add_flush(iop, iova, size, size, true);
500 io_pgtable_tlb_sync(iop);
501 }
502
503 static int arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
504 unsigned long iova, size_t size,
505 arm_v7s_iopte *ptep)
506 {
507 unsigned long blk_start, blk_end, blk_size;
508 phys_addr_t blk_paddr;
509 arm_v7s_iopte table = 0;
510 int prot = arm_v7s_pte_to_prot(*ptep, 1);
511
512 blk_size = ARM_V7S_BLOCK_SIZE(1);
513 blk_start = iova & ARM_V7S_LVL_MASK(1);
514 blk_end = blk_start + ARM_V7S_BLOCK_SIZE(1);
515 blk_paddr = *ptep & ARM_V7S_LVL_MASK(1);
516
517 for (; blk_start < blk_end; blk_start += size, blk_paddr += size) {
518 arm_v7s_iopte *tablep;
519
520 /* Unmap! */
521 if (blk_start == iova)
522 continue;
523
524 /* __arm_v7s_map expects a pointer to the start of the table */
525 tablep = &table - ARM_V7S_LVL_IDX(blk_start, 1);
526 if (__arm_v7s_map(data, blk_start, blk_paddr, size, prot, 1,
527 tablep) < 0) {
528 if (table) {
529 /* Free the table we allocated */
530 tablep = iopte_deref(table, 1);
531 __arm_v7s_free_table(tablep, 2, data);
532 }
533 return 0; /* Bytes unmapped */
534 }
535 }
536
537 __arm_v7s_set_pte(ptep, table, 1, &data->iop.cfg);
538 iova &= ~(blk_size - 1);
539 io_pgtable_tlb_add_flush(&data->iop, iova, blk_size, blk_size, true);
540 return size;
541 }
542
543 static int __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
544 unsigned long iova, size_t size, int lvl,
545 arm_v7s_iopte *ptep)
546 {
547 arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
548 struct io_pgtable *iop = &data->iop;
549 int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
550
551 /* Something went horribly wrong and we ran out of page table */
552 if (WARN_ON(lvl > 2))
553 return 0;
554
555 idx = ARM_V7S_LVL_IDX(iova, lvl);
556 ptep += idx;
557 do {
558 if (WARN_ON(!ARM_V7S_PTE_IS_VALID(ptep[i])))
559 return 0;
560 pte[i] = ptep[i];
561 } while (++i < num_entries);
562
563 /*
564 * If we've hit a contiguous 'large page' entry at this level, it
565 * needs splitting first, unless we're unmapping the whole lot.
566 */
567 if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl))
568 arm_v7s_split_cont(data, iova, idx, lvl, ptep);
569
570 /* If the size matches this level, we're in the right place */
571 if (num_entries) {
572 size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
573
574 __arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
575
576 for (i = 0; i < num_entries; i++) {
577 if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
578 /* Also flush any partial walks */
579 io_pgtable_tlb_add_flush(iop, iova, blk_size,
580 ARM_V7S_BLOCK_SIZE(lvl + 1), false);
581 io_pgtable_tlb_sync(iop);
582 ptep = iopte_deref(pte[i], lvl);
583 __arm_v7s_free_table(ptep, lvl + 1, data);
584 } else {
585 io_pgtable_tlb_add_flush(iop, iova, blk_size,
586 blk_size, true);
587 }
588 iova += blk_size;
589 }
590 return size;
591 } else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
592 /*
593 * Insert a table at the next level to map the old region,
594 * minus the part we want to unmap
595 */
596 return arm_v7s_split_blk_unmap(data, iova, size, ptep);
597 }
598
599 /* Keep on walkin' */
600 ptep = iopte_deref(pte[0], lvl);
601 return __arm_v7s_unmap(data, iova, size, lvl + 1, ptep);
602 }
603
604 static int arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
605 size_t size)
606 {
607 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
608 size_t unmapped;
609
610 unmapped = __arm_v7s_unmap(data, iova, size, 1, data->pgd);
611 if (unmapped)
612 io_pgtable_tlb_sync(&data->iop);
613
614 return unmapped;
615 }
616
617 static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
618 unsigned long iova)
619 {
620 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
621 arm_v7s_iopte *ptep = data->pgd, pte;
622 int lvl = 0;
623 u32 mask;
624
625 do {
626 pte = ptep[ARM_V7S_LVL_IDX(iova, ++lvl)];
627 ptep = iopte_deref(pte, lvl);
628 } while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
629
630 if (!ARM_V7S_PTE_IS_VALID(pte))
631 return 0;
632
633 mask = ARM_V7S_LVL_MASK(lvl);
634 if (arm_v7s_pte_is_cont(pte, lvl))
635 mask *= ARM_V7S_CONT_PAGES;
636 return (pte & mask) | (iova & ~mask);
637 }
638
639 static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
640 void *cookie)
641 {
642 struct arm_v7s_io_pgtable *data;
643
644 #ifdef PHYS_OFFSET
645 if (upper_32_bits(PHYS_OFFSET))
646 return NULL;
647 #endif
648 if (cfg->ias > ARM_V7S_ADDR_BITS || cfg->oas > ARM_V7S_ADDR_BITS)
649 return NULL;
650
651 if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
652 IO_PGTABLE_QUIRK_NO_PERMS |
653 IO_PGTABLE_QUIRK_TLBI_ON_MAP |
654 IO_PGTABLE_QUIRK_ARM_MTK_4GB))
655 return NULL;
656
657 /* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
658 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB &&
659 !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
660 return NULL;
661
662 data = kmalloc(sizeof(*data), GFP_KERNEL);
663 if (!data)
664 return NULL;
665
666 data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
667 ARM_V7S_TABLE_SIZE(2),
668 ARM_V7S_TABLE_SIZE(2),
669 SLAB_CACHE_DMA, NULL);
670 if (!data->l2_tables)
671 goto out_free_data;
672
673 data->iop.ops = (struct io_pgtable_ops) {
674 .map = arm_v7s_map,
675 .unmap = arm_v7s_unmap,
676 .iova_to_phys = arm_v7s_iova_to_phys,
677 };
678
679 /* We have to do this early for __arm_v7s_alloc_table to work... */
680 data->iop.cfg = *cfg;
681
682 /*
683 * Unless the IOMMU driver indicates supersection support by
684 * having SZ_16M set in the initial bitmap, they won't be used.
685 */
686 cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
687
688 /* TCR: T0SZ=0, disable TTBR1 */
689 cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;
690
691 /*
692 * TEX remap: the indices used map to the closest equivalent types
693 * under the non-TEX-remap interpretation of those attribute bits,
694 * excepting various implementation-defined aspects of shareability.
695 */
696 cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
697 ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
698 ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
699 ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
700 ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
701 cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
702 ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
703
704 /* Looking good; allocate a pgd */
705 data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
706 if (!data->pgd)
707 goto out_free_data;
708
709 /* Ensure the empty pgd is visible before any actual TTBR write */
710 wmb();
711
712 /* TTBRs */
713 cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
714 ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
715 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
716 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA);
717 cfg->arm_v7s_cfg.ttbr[1] = 0;
718 return &data->iop;
719
720 out_free_data:
721 kmem_cache_destroy(data->l2_tables);
722 kfree(data);
723 return NULL;
724 }
725
726 struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
727 .alloc = arm_v7s_alloc_pgtable,
728 .free = arm_v7s_free_pgtable,
729 };
730
731 #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
732
733 static struct io_pgtable_cfg *cfg_cookie;
734
735 static void dummy_tlb_flush_all(void *cookie)
736 {
737 WARN_ON(cookie != cfg_cookie);
738 }
739
740 static void dummy_tlb_add_flush(unsigned long iova, size_t size,
741 size_t granule, bool leaf, void *cookie)
742 {
743 WARN_ON(cookie != cfg_cookie);
744 WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
745 }
746
747 static void dummy_tlb_sync(void *cookie)
748 {
749 WARN_ON(cookie != cfg_cookie);
750 }
751
752 static struct iommu_gather_ops dummy_tlb_ops = {
753 .tlb_flush_all = dummy_tlb_flush_all,
754 .tlb_add_flush = dummy_tlb_add_flush,
755 .tlb_sync = dummy_tlb_sync,
756 };
757
758 #define __FAIL(ops) ({ \
759 WARN(1, "selftest: test failed\n"); \
760 selftest_running = false; \
761 -EFAULT; \
762 })
763
764 static int __init arm_v7s_do_selftests(void)
765 {
766 struct io_pgtable_ops *ops;
767 struct io_pgtable_cfg cfg = {
768 .tlb = &dummy_tlb_ops,
769 .oas = 32,
770 .ias = 32,
771 .quirks = IO_PGTABLE_QUIRK_ARM_NS,
772 .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
773 };
774 unsigned int iova, size, iova_start;
775 unsigned int i, loopnr = 0;
776
777 selftest_running = true;
778
779 cfg_cookie = &cfg;
780
781 ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
782 if (!ops) {
783 pr_err("selftest: failed to allocate io pgtable ops\n");
784 return -EINVAL;
785 }
786
787 /*
788 * Initial sanity checks.
789 * Empty page tables shouldn't provide any translations.
790 */
791 if (ops->iova_to_phys(ops, 42))
792 return __FAIL(ops);
793
794 if (ops->iova_to_phys(ops, SZ_1G + 42))
795 return __FAIL(ops);
796
797 if (ops->iova_to_phys(ops, SZ_2G + 42))
798 return __FAIL(ops);
799
800 /*
801 * Distinct mappings of different granule sizes.
802 */
803 iova = 0;
804 for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
805 size = 1UL << i;
806 if (ops->map(ops, iova, iova, size, IOMMU_READ |
807 IOMMU_WRITE |
808 IOMMU_NOEXEC |
809 IOMMU_CACHE))
810 return __FAIL(ops);
811
812 /* Overlapping mappings */
813 if (!ops->map(ops, iova, iova + size, size,
814 IOMMU_READ | IOMMU_NOEXEC))
815 return __FAIL(ops);
816
817 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
818 return __FAIL(ops);
819
820 iova += SZ_16M;
821 loopnr++;
822 }
823
824 /* Partial unmap */
825 i = 1;
826 size = 1UL << __ffs(cfg.pgsize_bitmap);
827 while (i < loopnr) {
828 iova_start = i * SZ_16M;
829 if (ops->unmap(ops, iova_start + size, size) != size)
830 return __FAIL(ops);
831
832 /* Remap of partial unmap */
833 if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
834 return __FAIL(ops);
835
836 if (ops->iova_to_phys(ops, iova_start + size + 42)
837 != (size + 42))
838 return __FAIL(ops);
839 i++;
840 }
841
842 /* Full unmap */
843 iova = 0;
844 i = find_first_bit(&cfg.pgsize_bitmap, BITS_PER_LONG);
845 while (i != BITS_PER_LONG) {
846 size = 1UL << i;
847
848 if (ops->unmap(ops, iova, size) != size)
849 return __FAIL(ops);
850
851 if (ops->iova_to_phys(ops, iova + 42))
852 return __FAIL(ops);
853
854 /* Remap full block */
855 if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
856 return __FAIL(ops);
857
858 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
859 return __FAIL(ops);
860
861 iova += SZ_16M;
862 i++;
863 i = find_next_bit(&cfg.pgsize_bitmap, BITS_PER_LONG, i);
864 }
865
866 free_io_pgtable_ops(ops);
867
868 selftest_running = false;
869
870 pr_info("self test ok\n");
871 return 0;
872 }
873 subsys_initcall(arm_v7s_do_selftests);
874 #endif