]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/io-pgtable-arm-v7s.c
UBUNTU: [Config] CONFIG_TEE=m
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / io-pgtable-arm-v7s.c
1 /*
2 * CPU-agnostic ARM page table allocator.
3 *
4 * ARMv7 Short-descriptor format, supporting
5 * - Basic memory attributes
6 * - Simplified access permissions (AP[2:1] model)
7 * - Backwards-compatible TEX remap
8 * - Large pages/supersections (if indicated by the caller)
9 *
10 * Not supporting:
11 * - Legacy access permissions (AP[2:0] model)
12 *
13 * Almost certainly never supporting:
14 * - PXN
15 * - Domains
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program. If not, see <http://www.gnu.org/licenses/>.
28 *
29 * Copyright (C) 2014-2015 ARM Limited
30 * Copyright (c) 2014-2015 MediaTek Inc.
31 */
32
33 #define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
34
35 #include <linux/atomic.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/gfp.h>
38 #include <linux/iommu.h>
39 #include <linux/kernel.h>
40 #include <linux/kmemleak.h>
41 #include <linux/sizes.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/types.h>
45
46 #include <asm/barrier.h>
47
48 #include "io-pgtable.h"
49
50 /* Struct accessors */
51 #define io_pgtable_to_data(x) \
52 container_of((x), struct arm_v7s_io_pgtable, iop)
53
54 #define io_pgtable_ops_to_data(x) \
55 io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
56
57 /*
58 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
59 * and 12 bits in a page. With some carefully-chosen coefficients we can
60 * hide the ugly inconsistencies behind these macros and at least let the
61 * rest of the code pretend to be somewhat sane.
62 */
63 #define ARM_V7S_ADDR_BITS 32
64 #define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
65 #define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
66 #define ARM_V7S_TABLE_SHIFT 10
67
68 #define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
69 #define ARM_V7S_TABLE_SIZE(lvl) \
70 (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
71
72 #define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
73 #define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
74 #define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
75 #define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
76 #define ARM_V7S_LVL_IDX(addr, lvl) ({ \
77 int _l = lvl; \
78 ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
79 })
80
81 /*
82 * Large page/supersection entries are effectively a block of 16 page/section
83 * entries, along the lines of the LPAE contiguous hint, but all with the
84 * same output address. For want of a better common name we'll call them
85 * "contiguous" versions of their respective page/section entries here, but
86 * noting the distinction (WRT to TLB maintenance) that they represent *one*
87 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
88 */
89 #define ARM_V7S_CONT_PAGES 16
90
91 /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
92 #define ARM_V7S_PTE_TYPE_TABLE 0x1
93 #define ARM_V7S_PTE_TYPE_PAGE 0x2
94 #define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
95
96 #define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
97 #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
98 ((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
99
100 /* Page table bits */
101 #define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
102 #define ARM_V7S_ATTR_B BIT(2)
103 #define ARM_V7S_ATTR_C BIT(3)
104 #define ARM_V7S_ATTR_NS_TABLE BIT(3)
105 #define ARM_V7S_ATTR_NS_SECTION BIT(19)
106
107 #define ARM_V7S_CONT_SECTION BIT(18)
108 #define ARM_V7S_CONT_PAGE_XN_SHIFT 15
109
110 /*
111 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
112 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
113 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
114 */
115 #define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
116
117 #define ARM_V7S_ATTR_MASK 0xff
118 #define ARM_V7S_ATTR_AP0 BIT(0)
119 #define ARM_V7S_ATTR_AP1 BIT(1)
120 #define ARM_V7S_ATTR_AP2 BIT(5)
121 #define ARM_V7S_ATTR_S BIT(6)
122 #define ARM_V7S_ATTR_NG BIT(7)
123 #define ARM_V7S_TEX_SHIFT 2
124 #define ARM_V7S_TEX_MASK 0x7
125 #define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
126
127 #define ARM_V7S_ATTR_MTK_4GB BIT(9) /* MTK extend it for 4GB mode */
128
129 /* *well, except for TEX on level 2 large pages, of course :( */
130 #define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
131 #define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
132
133 /* Simplified access permissions */
134 #define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
135 #define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
136 #define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
137
138 /* Register bits */
139 #define ARM_V7S_RGN_NC 0
140 #define ARM_V7S_RGN_WBWA 1
141 #define ARM_V7S_RGN_WT 2
142 #define ARM_V7S_RGN_WB 3
143
144 #define ARM_V7S_PRRR_TYPE_DEVICE 1
145 #define ARM_V7S_PRRR_TYPE_NORMAL 2
146 #define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
147 #define ARM_V7S_PRRR_DS0 BIT(16)
148 #define ARM_V7S_PRRR_DS1 BIT(17)
149 #define ARM_V7S_PRRR_NS0 BIT(18)
150 #define ARM_V7S_PRRR_NS1 BIT(19)
151 #define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
152
153 #define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
154 #define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
155
156 #define ARM_V7S_TTBR_S BIT(1)
157 #define ARM_V7S_TTBR_NOS BIT(5)
158 #define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
159 #define ARM_V7S_TTBR_IRGN_ATTR(attr) \
160 ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
161
162 #define ARM_V7S_TCR_PD1 BIT(5)
163
164 typedef u32 arm_v7s_iopte;
165
166 static bool selftest_running;
167
168 struct arm_v7s_io_pgtable {
169 struct io_pgtable iop;
170
171 arm_v7s_iopte *pgd;
172 struct kmem_cache *l2_tables;
173 spinlock_t split_lock;
174 };
175
176 static dma_addr_t __arm_v7s_dma_addr(void *pages)
177 {
178 return (dma_addr_t)virt_to_phys(pages);
179 }
180
181 static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl)
182 {
183 if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
184 pte &= ARM_V7S_TABLE_MASK;
185 else
186 pte &= ARM_V7S_LVL_MASK(lvl);
187 return phys_to_virt(pte);
188 }
189
190 static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
191 struct arm_v7s_io_pgtable *data)
192 {
193 struct io_pgtable_cfg *cfg = &data->iop.cfg;
194 struct device *dev = cfg->iommu_dev;
195 dma_addr_t dma;
196 size_t size = ARM_V7S_TABLE_SIZE(lvl);
197 void *table = NULL;
198
199 if (lvl == 1)
200 table = (void *)__get_dma_pages(__GFP_ZERO, get_order(size));
201 else if (lvl == 2)
202 table = kmem_cache_zalloc(data->l2_tables, gfp | GFP_DMA);
203 if (table && !(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)) {
204 dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
205 if (dma_mapping_error(dev, dma))
206 goto out_free;
207 /*
208 * We depend on the IOMMU being able to work with any physical
209 * address directly, so if the DMA layer suggests otherwise by
210 * translating or truncating them, that bodes very badly...
211 */
212 if (dma != virt_to_phys(table))
213 goto out_unmap;
214 }
215 kmemleak_ignore(table);
216 return table;
217
218 out_unmap:
219 dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
220 dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
221 out_free:
222 if (lvl == 1)
223 free_pages((unsigned long)table, get_order(size));
224 else
225 kmem_cache_free(data->l2_tables, table);
226 return NULL;
227 }
228
229 static void __arm_v7s_free_table(void *table, int lvl,
230 struct arm_v7s_io_pgtable *data)
231 {
232 struct io_pgtable_cfg *cfg = &data->iop.cfg;
233 struct device *dev = cfg->iommu_dev;
234 size_t size = ARM_V7S_TABLE_SIZE(lvl);
235
236 if (!(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA))
237 dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
238 DMA_TO_DEVICE);
239 if (lvl == 1)
240 free_pages((unsigned long)table, get_order(size));
241 else
242 kmem_cache_free(data->l2_tables, table);
243 }
244
245 static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
246 struct io_pgtable_cfg *cfg)
247 {
248 if (!(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA))
249 return;
250
251 dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
252 num_entries * sizeof(*ptep), DMA_TO_DEVICE);
253 }
254 static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
255 int num_entries, struct io_pgtable_cfg *cfg)
256 {
257 int i;
258
259 for (i = 0; i < num_entries; i++)
260 ptep[i] = pte;
261
262 __arm_v7s_pte_sync(ptep, num_entries, cfg);
263 }
264
265 static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
266 struct io_pgtable_cfg *cfg)
267 {
268 bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
269 arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
270
271 if (!(prot & IOMMU_MMIO))
272 pte |= ARM_V7S_ATTR_TEX(1);
273 if (ap) {
274 pte |= ARM_V7S_PTE_AF;
275 if (!(prot & IOMMU_PRIV))
276 pte |= ARM_V7S_PTE_AP_UNPRIV;
277 if (!(prot & IOMMU_WRITE))
278 pte |= ARM_V7S_PTE_AP_RDONLY;
279 }
280 pte <<= ARM_V7S_ATTR_SHIFT(lvl);
281
282 if ((prot & IOMMU_NOEXEC) && ap)
283 pte |= ARM_V7S_ATTR_XN(lvl);
284 if (prot & IOMMU_MMIO)
285 pte |= ARM_V7S_ATTR_B;
286 else if (prot & IOMMU_CACHE)
287 pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
288
289 pte |= ARM_V7S_PTE_TYPE_PAGE;
290 if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
291 pte |= ARM_V7S_ATTR_NS_SECTION;
292
293 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB)
294 pte |= ARM_V7S_ATTR_MTK_4GB;
295
296 return pte;
297 }
298
299 static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
300 {
301 int prot = IOMMU_READ;
302 arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
303
304 if (!(attr & ARM_V7S_PTE_AP_RDONLY))
305 prot |= IOMMU_WRITE;
306 if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
307 prot |= IOMMU_PRIV;
308 if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
309 prot |= IOMMU_MMIO;
310 else if (pte & ARM_V7S_ATTR_C)
311 prot |= IOMMU_CACHE;
312 if (pte & ARM_V7S_ATTR_XN(lvl))
313 prot |= IOMMU_NOEXEC;
314
315 return prot;
316 }
317
318 static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
319 {
320 if (lvl == 1) {
321 pte |= ARM_V7S_CONT_SECTION;
322 } else if (lvl == 2) {
323 arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
324 arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
325
326 pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
327 pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
328 (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
329 ARM_V7S_PTE_TYPE_CONT_PAGE;
330 }
331 return pte;
332 }
333
334 static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
335 {
336 if (lvl == 1) {
337 pte &= ~ARM_V7S_CONT_SECTION;
338 } else if (lvl == 2) {
339 arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
340 arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
341 ARM_V7S_CONT_PAGE_TEX_SHIFT);
342
343 pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
344 pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
345 (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
346 ARM_V7S_PTE_TYPE_PAGE;
347 }
348 return pte;
349 }
350
351 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
352 {
353 if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
354 return pte & ARM_V7S_CONT_SECTION;
355 else if (lvl == 2)
356 return !(pte & ARM_V7S_PTE_TYPE_PAGE);
357 return false;
358 }
359
360 static int __arm_v7s_unmap(struct arm_v7s_io_pgtable *, unsigned long,
361 size_t, int, arm_v7s_iopte *);
362
363 static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
364 unsigned long iova, phys_addr_t paddr, int prot,
365 int lvl, int num_entries, arm_v7s_iopte *ptep)
366 {
367 struct io_pgtable_cfg *cfg = &data->iop.cfg;
368 arm_v7s_iopte pte;
369 int i;
370
371 for (i = 0; i < num_entries; i++)
372 if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
373 /*
374 * We need to unmap and free the old table before
375 * overwriting it with a block entry.
376 */
377 arm_v7s_iopte *tblp;
378 size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
379
380 tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
381 if (WARN_ON(__arm_v7s_unmap(data, iova + i * sz,
382 sz, lvl, tblp) != sz))
383 return -EINVAL;
384 } else if (ptep[i]) {
385 /* We require an unmap first */
386 WARN_ON(!selftest_running);
387 return -EEXIST;
388 }
389
390 pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
391 if (num_entries > 1)
392 pte = arm_v7s_pte_to_cont(pte, lvl);
393
394 pte |= paddr & ARM_V7S_LVL_MASK(lvl);
395
396 __arm_v7s_set_pte(ptep, pte, num_entries, cfg);
397 return 0;
398 }
399
400 static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
401 arm_v7s_iopte *ptep,
402 arm_v7s_iopte curr,
403 struct io_pgtable_cfg *cfg)
404 {
405 arm_v7s_iopte old, new;
406
407 new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
408 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
409 new |= ARM_V7S_ATTR_NS_TABLE;
410
411 /*
412 * Ensure the table itself is visible before its PTE can be.
413 * Whilst we could get away with cmpxchg64_release below, this
414 * doesn't have any ordering semantics when !CONFIG_SMP.
415 */
416 dma_wmb();
417
418 old = cmpxchg_relaxed(ptep, curr, new);
419 __arm_v7s_pte_sync(ptep, 1, cfg);
420
421 return old;
422 }
423
424 static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
425 phys_addr_t paddr, size_t size, int prot,
426 int lvl, arm_v7s_iopte *ptep)
427 {
428 struct io_pgtable_cfg *cfg = &data->iop.cfg;
429 arm_v7s_iopte pte, *cptep;
430 int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
431
432 /* Find our entry at the current level */
433 ptep += ARM_V7S_LVL_IDX(iova, lvl);
434
435 /* If we can install a leaf entry at this level, then do so */
436 if (num_entries)
437 return arm_v7s_init_pte(data, iova, paddr, prot,
438 lvl, num_entries, ptep);
439
440 /* We can't allocate tables at the final level */
441 if (WARN_ON(lvl == 2))
442 return -EINVAL;
443
444 /* Grab a pointer to the next level */
445 pte = READ_ONCE(*ptep);
446 if (!pte) {
447 cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
448 if (!cptep)
449 return -ENOMEM;
450
451 pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
452 if (pte)
453 __arm_v7s_free_table(cptep, lvl + 1, data);
454 } else {
455 /* We've no easy way of knowing if it's synced yet, so... */
456 __arm_v7s_pte_sync(ptep, 1, cfg);
457 }
458
459 if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
460 cptep = iopte_deref(pte, lvl);
461 } else if (pte) {
462 /* We require an unmap first */
463 WARN_ON(!selftest_running);
464 return -EEXIST;
465 }
466
467 /* Rinse, repeat */
468 return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
469 }
470
471 static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
472 phys_addr_t paddr, size_t size, int prot)
473 {
474 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
475 struct io_pgtable *iop = &data->iop;
476 int ret;
477
478 /* If no access, then nothing to do */
479 if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
480 return 0;
481
482 if (WARN_ON(upper_32_bits(iova) || upper_32_bits(paddr)))
483 return -ERANGE;
484
485 ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
486 /*
487 * Synchronise all PTE updates for the new mapping before there's
488 * a chance for anything to kick off a table walk for the new iova.
489 */
490 if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
491 io_pgtable_tlb_add_flush(iop, iova, size,
492 ARM_V7S_BLOCK_SIZE(2), false);
493 io_pgtable_tlb_sync(iop);
494 } else {
495 wmb();
496 }
497
498 return ret;
499 }
500
501 static void arm_v7s_free_pgtable(struct io_pgtable *iop)
502 {
503 struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
504 int i;
505
506 for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
507 arm_v7s_iopte pte = data->pgd[i];
508
509 if (ARM_V7S_PTE_IS_TABLE(pte, 1))
510 __arm_v7s_free_table(iopte_deref(pte, 1), 2, data);
511 }
512 __arm_v7s_free_table(data->pgd, 1, data);
513 kmem_cache_destroy(data->l2_tables);
514 kfree(data);
515 }
516
517 static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
518 unsigned long iova, int idx, int lvl,
519 arm_v7s_iopte *ptep)
520 {
521 struct io_pgtable *iop = &data->iop;
522 arm_v7s_iopte pte;
523 size_t size = ARM_V7S_BLOCK_SIZE(lvl);
524 int i;
525
526 /* Check that we didn't lose a race to get the lock */
527 pte = *ptep;
528 if (!arm_v7s_pte_is_cont(pte, lvl))
529 return pte;
530
531 ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
532 pte = arm_v7s_cont_to_pte(pte, lvl);
533 for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
534 ptep[i] = pte + i * size;
535
536 __arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
537
538 size *= ARM_V7S_CONT_PAGES;
539 io_pgtable_tlb_add_flush(iop, iova, size, size, true);
540 io_pgtable_tlb_sync(iop);
541 return pte;
542 }
543
544 static int arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
545 unsigned long iova, size_t size,
546 arm_v7s_iopte blk_pte, arm_v7s_iopte *ptep)
547 {
548 struct io_pgtable_cfg *cfg = &data->iop.cfg;
549 arm_v7s_iopte pte, *tablep;
550 int i, unmap_idx, num_entries, num_ptes;
551
552 tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
553 if (!tablep)
554 return 0; /* Bytes unmapped */
555
556 num_ptes = ARM_V7S_PTES_PER_LVL(2);
557 num_entries = size >> ARM_V7S_LVL_SHIFT(2);
558 unmap_idx = ARM_V7S_LVL_IDX(iova, 2);
559
560 pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
561 if (num_entries > 1)
562 pte = arm_v7s_pte_to_cont(pte, 2);
563
564 for (i = 0; i < num_ptes; i += num_entries, pte += size) {
565 /* Unmap! */
566 if (i == unmap_idx)
567 continue;
568
569 __arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
570 }
571
572 pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
573 if (pte != blk_pte) {
574 __arm_v7s_free_table(tablep, 2, data);
575
576 if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
577 return 0;
578
579 tablep = iopte_deref(pte, 1);
580 return __arm_v7s_unmap(data, iova, size, 2, tablep);
581 }
582
583 io_pgtable_tlb_add_flush(&data->iop, iova, size, size, true);
584 return size;
585 }
586
587 static int __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
588 unsigned long iova, size_t size, int lvl,
589 arm_v7s_iopte *ptep)
590 {
591 arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
592 struct io_pgtable *iop = &data->iop;
593 int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
594
595 /* Something went horribly wrong and we ran out of page table */
596 if (WARN_ON(lvl > 2))
597 return 0;
598
599 idx = ARM_V7S_LVL_IDX(iova, lvl);
600 ptep += idx;
601 do {
602 pte[i] = READ_ONCE(ptep[i]);
603 if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
604 return 0;
605 } while (++i < num_entries);
606
607 /*
608 * If we've hit a contiguous 'large page' entry at this level, it
609 * needs splitting first, unless we're unmapping the whole lot.
610 *
611 * For splitting, we can't rewrite 16 PTEs atomically, and since we
612 * can't necessarily assume TEX remap we don't have a software bit to
613 * mark live entries being split. In practice (i.e. DMA API code), we
614 * will never be splitting large pages anyway, so just wrap this edge
615 * case in a lock for the sake of correctness and be done with it.
616 */
617 if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
618 unsigned long flags;
619
620 spin_lock_irqsave(&data->split_lock, flags);
621 pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
622 spin_unlock_irqrestore(&data->split_lock, flags);
623 }
624
625 /* If the size matches this level, we're in the right place */
626 if (num_entries) {
627 size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
628
629 __arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
630
631 for (i = 0; i < num_entries; i++) {
632 if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
633 /* Also flush any partial walks */
634 io_pgtable_tlb_add_flush(iop, iova, blk_size,
635 ARM_V7S_BLOCK_SIZE(lvl + 1), false);
636 io_pgtable_tlb_sync(iop);
637 ptep = iopte_deref(pte[i], lvl);
638 __arm_v7s_free_table(ptep, lvl + 1, data);
639 } else {
640 io_pgtable_tlb_add_flush(iop, iova, blk_size,
641 blk_size, true);
642 }
643 iova += blk_size;
644 }
645 return size;
646 } else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
647 /*
648 * Insert a table at the next level to map the old region,
649 * minus the part we want to unmap
650 */
651 return arm_v7s_split_blk_unmap(data, iova, size, pte[0], ptep);
652 }
653
654 /* Keep on walkin' */
655 ptep = iopte_deref(pte[0], lvl);
656 return __arm_v7s_unmap(data, iova, size, lvl + 1, ptep);
657 }
658
659 static int arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
660 size_t size)
661 {
662 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
663 size_t unmapped;
664
665 if (WARN_ON(upper_32_bits(iova)))
666 return 0;
667
668 unmapped = __arm_v7s_unmap(data, iova, size, 1, data->pgd);
669 if (unmapped)
670 io_pgtable_tlb_sync(&data->iop);
671
672 return unmapped;
673 }
674
675 static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
676 unsigned long iova)
677 {
678 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
679 arm_v7s_iopte *ptep = data->pgd, pte;
680 int lvl = 0;
681 u32 mask;
682
683 do {
684 ptep += ARM_V7S_LVL_IDX(iova, ++lvl);
685 pte = READ_ONCE(*ptep);
686 ptep = iopte_deref(pte, lvl);
687 } while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
688
689 if (!ARM_V7S_PTE_IS_VALID(pte))
690 return 0;
691
692 mask = ARM_V7S_LVL_MASK(lvl);
693 if (arm_v7s_pte_is_cont(pte, lvl))
694 mask *= ARM_V7S_CONT_PAGES;
695 return (pte & mask) | (iova & ~mask);
696 }
697
698 static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
699 void *cookie)
700 {
701 struct arm_v7s_io_pgtable *data;
702
703 #ifdef PHYS_OFFSET
704 if (upper_32_bits(PHYS_OFFSET))
705 return NULL;
706 #endif
707 if (cfg->ias > ARM_V7S_ADDR_BITS || cfg->oas > ARM_V7S_ADDR_BITS)
708 return NULL;
709
710 if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
711 IO_PGTABLE_QUIRK_NO_PERMS |
712 IO_PGTABLE_QUIRK_TLBI_ON_MAP |
713 IO_PGTABLE_QUIRK_ARM_MTK_4GB |
714 IO_PGTABLE_QUIRK_NO_DMA))
715 return NULL;
716
717 /* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
718 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB &&
719 !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
720 return NULL;
721
722 data = kmalloc(sizeof(*data), GFP_KERNEL);
723 if (!data)
724 return NULL;
725
726 spin_lock_init(&data->split_lock);
727 data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
728 ARM_V7S_TABLE_SIZE(2),
729 ARM_V7S_TABLE_SIZE(2),
730 SLAB_CACHE_DMA, NULL);
731 if (!data->l2_tables)
732 goto out_free_data;
733
734 data->iop.ops = (struct io_pgtable_ops) {
735 .map = arm_v7s_map,
736 .unmap = arm_v7s_unmap,
737 .iova_to_phys = arm_v7s_iova_to_phys,
738 };
739
740 /* We have to do this early for __arm_v7s_alloc_table to work... */
741 data->iop.cfg = *cfg;
742
743 /*
744 * Unless the IOMMU driver indicates supersection support by
745 * having SZ_16M set in the initial bitmap, they won't be used.
746 */
747 cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
748
749 /* TCR: T0SZ=0, disable TTBR1 */
750 cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;
751
752 /*
753 * TEX remap: the indices used map to the closest equivalent types
754 * under the non-TEX-remap interpretation of those attribute bits,
755 * excepting various implementation-defined aspects of shareability.
756 */
757 cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
758 ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
759 ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
760 ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
761 ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
762 cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
763 ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
764
765 /* Looking good; allocate a pgd */
766 data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
767 if (!data->pgd)
768 goto out_free_data;
769
770 /* Ensure the empty pgd is visible before any actual TTBR write */
771 wmb();
772
773 /* TTBRs */
774 cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
775 ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
776 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
777 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA);
778 cfg->arm_v7s_cfg.ttbr[1] = 0;
779 return &data->iop;
780
781 out_free_data:
782 kmem_cache_destroy(data->l2_tables);
783 kfree(data);
784 return NULL;
785 }
786
787 struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
788 .alloc = arm_v7s_alloc_pgtable,
789 .free = arm_v7s_free_pgtable,
790 };
791
792 #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
793
794 static struct io_pgtable_cfg *cfg_cookie;
795
796 static void dummy_tlb_flush_all(void *cookie)
797 {
798 WARN_ON(cookie != cfg_cookie);
799 }
800
801 static void dummy_tlb_add_flush(unsigned long iova, size_t size,
802 size_t granule, bool leaf, void *cookie)
803 {
804 WARN_ON(cookie != cfg_cookie);
805 WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
806 }
807
808 static void dummy_tlb_sync(void *cookie)
809 {
810 WARN_ON(cookie != cfg_cookie);
811 }
812
813 static const struct iommu_gather_ops dummy_tlb_ops = {
814 .tlb_flush_all = dummy_tlb_flush_all,
815 .tlb_add_flush = dummy_tlb_add_flush,
816 .tlb_sync = dummy_tlb_sync,
817 };
818
819 #define __FAIL(ops) ({ \
820 WARN(1, "selftest: test failed\n"); \
821 selftest_running = false; \
822 -EFAULT; \
823 })
824
825 static int __init arm_v7s_do_selftests(void)
826 {
827 struct io_pgtable_ops *ops;
828 struct io_pgtable_cfg cfg = {
829 .tlb = &dummy_tlb_ops,
830 .oas = 32,
831 .ias = 32,
832 .quirks = IO_PGTABLE_QUIRK_ARM_NS | IO_PGTABLE_QUIRK_NO_DMA,
833 .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
834 };
835 unsigned int iova, size, iova_start;
836 unsigned int i, loopnr = 0;
837
838 selftest_running = true;
839
840 cfg_cookie = &cfg;
841
842 ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
843 if (!ops) {
844 pr_err("selftest: failed to allocate io pgtable ops\n");
845 return -EINVAL;
846 }
847
848 /*
849 * Initial sanity checks.
850 * Empty page tables shouldn't provide any translations.
851 */
852 if (ops->iova_to_phys(ops, 42))
853 return __FAIL(ops);
854
855 if (ops->iova_to_phys(ops, SZ_1G + 42))
856 return __FAIL(ops);
857
858 if (ops->iova_to_phys(ops, SZ_2G + 42))
859 return __FAIL(ops);
860
861 /*
862 * Distinct mappings of different granule sizes.
863 */
864 iova = 0;
865 for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
866 size = 1UL << i;
867 if (ops->map(ops, iova, iova, size, IOMMU_READ |
868 IOMMU_WRITE |
869 IOMMU_NOEXEC |
870 IOMMU_CACHE))
871 return __FAIL(ops);
872
873 /* Overlapping mappings */
874 if (!ops->map(ops, iova, iova + size, size,
875 IOMMU_READ | IOMMU_NOEXEC))
876 return __FAIL(ops);
877
878 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
879 return __FAIL(ops);
880
881 iova += SZ_16M;
882 loopnr++;
883 }
884
885 /* Partial unmap */
886 i = 1;
887 size = 1UL << __ffs(cfg.pgsize_bitmap);
888 while (i < loopnr) {
889 iova_start = i * SZ_16M;
890 if (ops->unmap(ops, iova_start + size, size) != size)
891 return __FAIL(ops);
892
893 /* Remap of partial unmap */
894 if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
895 return __FAIL(ops);
896
897 if (ops->iova_to_phys(ops, iova_start + size + 42)
898 != (size + 42))
899 return __FAIL(ops);
900 i++;
901 }
902
903 /* Full unmap */
904 iova = 0;
905 i = find_first_bit(&cfg.pgsize_bitmap, BITS_PER_LONG);
906 while (i != BITS_PER_LONG) {
907 size = 1UL << i;
908
909 if (ops->unmap(ops, iova, size) != size)
910 return __FAIL(ops);
911
912 if (ops->iova_to_phys(ops, iova + 42))
913 return __FAIL(ops);
914
915 /* Remap full block */
916 if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
917 return __FAIL(ops);
918
919 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
920 return __FAIL(ops);
921
922 iova += SZ_16M;
923 i++;
924 i = find_next_bit(&cfg.pgsize_bitmap, BITS_PER_LONG, i);
925 }
926
927 free_io_pgtable_ops(ops);
928
929 selftest_running = false;
930
931 pr_info("self test ok\n");
932 return 0;
933 }
934 subsys_initcall(arm_v7s_do_selftests);
935 #endif