]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/iommu/iommu.c
iommu: Remove device link to group on failure
[mirror_ubuntu-hirsute-kernel.git] / drivers / iommu / iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <trace/events/iommu.h>
26
27 static struct kset *iommu_group_kset;
28 static DEFINE_IDA(iommu_group_ida);
29
30 static unsigned int iommu_def_domain_type __read_mostly;
31 static bool iommu_dma_strict __read_mostly = true;
32 static u32 iommu_cmd_line __read_mostly;
33
34 struct iommu_group {
35 struct kobject kobj;
36 struct kobject *devices_kobj;
37 struct list_head devices;
38 struct mutex mutex;
39 struct blocking_notifier_head notifier;
40 void *iommu_data;
41 void (*iommu_data_release)(void *iommu_data);
42 char *name;
43 int id;
44 struct iommu_domain *default_domain;
45 struct iommu_domain *domain;
46 };
47
48 struct group_device {
49 struct list_head list;
50 struct device *dev;
51 char *name;
52 };
53
54 struct iommu_group_attribute {
55 struct attribute attr;
56 ssize_t (*show)(struct iommu_group *group, char *buf);
57 ssize_t (*store)(struct iommu_group *group,
58 const char *buf, size_t count);
59 };
60
61 static const char * const iommu_group_resv_type_string[] = {
62 [IOMMU_RESV_DIRECT] = "direct",
63 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
64 [IOMMU_RESV_RESERVED] = "reserved",
65 [IOMMU_RESV_MSI] = "msi",
66 [IOMMU_RESV_SW_MSI] = "msi",
67 };
68
69 #define IOMMU_CMD_LINE_DMA_API BIT(0)
70
71 static void iommu_set_cmd_line_dma_api(void)
72 {
73 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
74 }
75
76 static bool iommu_cmd_line_dma_api(void)
77 {
78 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API);
79 }
80
81 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
82 struct iommu_group_attribute iommu_group_attr_##_name = \
83 __ATTR(_name, _mode, _show, _store)
84
85 #define to_iommu_group_attr(_attr) \
86 container_of(_attr, struct iommu_group_attribute, attr)
87 #define to_iommu_group(_kobj) \
88 container_of(_kobj, struct iommu_group, kobj)
89
90 static LIST_HEAD(iommu_device_list);
91 static DEFINE_SPINLOCK(iommu_device_lock);
92
93 /*
94 * Use a function instead of an array here because the domain-type is a
95 * bit-field, so an array would waste memory.
96 */
97 static const char *iommu_domain_type_str(unsigned int t)
98 {
99 switch (t) {
100 case IOMMU_DOMAIN_BLOCKED:
101 return "Blocked";
102 case IOMMU_DOMAIN_IDENTITY:
103 return "Passthrough";
104 case IOMMU_DOMAIN_UNMANAGED:
105 return "Unmanaged";
106 case IOMMU_DOMAIN_DMA:
107 return "Translated";
108 default:
109 return "Unknown";
110 }
111 }
112
113 static int __init iommu_subsys_init(void)
114 {
115 bool cmd_line = iommu_cmd_line_dma_api();
116
117 if (!cmd_line) {
118 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
119 iommu_set_default_passthrough(false);
120 else
121 iommu_set_default_translated(false);
122
123 if (iommu_default_passthrough() && mem_encrypt_active()) {
124 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
125 iommu_set_default_translated(false);
126 }
127 }
128
129 pr_info("Default domain type: %s %s\n",
130 iommu_domain_type_str(iommu_def_domain_type),
131 cmd_line ? "(set via kernel command line)" : "");
132
133 return 0;
134 }
135 subsys_initcall(iommu_subsys_init);
136
137 int iommu_device_register(struct iommu_device *iommu)
138 {
139 spin_lock(&iommu_device_lock);
140 list_add_tail(&iommu->list, &iommu_device_list);
141 spin_unlock(&iommu_device_lock);
142 return 0;
143 }
144
145 void iommu_device_unregister(struct iommu_device *iommu)
146 {
147 spin_lock(&iommu_device_lock);
148 list_del(&iommu->list);
149 spin_unlock(&iommu_device_lock);
150 }
151
152 static struct iommu_param *iommu_get_dev_param(struct device *dev)
153 {
154 struct iommu_param *param = dev->iommu_param;
155
156 if (param)
157 return param;
158
159 param = kzalloc(sizeof(*param), GFP_KERNEL);
160 if (!param)
161 return NULL;
162
163 mutex_init(&param->lock);
164 dev->iommu_param = param;
165 return param;
166 }
167
168 static void iommu_free_dev_param(struct device *dev)
169 {
170 kfree(dev->iommu_param);
171 dev->iommu_param = NULL;
172 }
173
174 int iommu_probe_device(struct device *dev)
175 {
176 const struct iommu_ops *ops = dev->bus->iommu_ops;
177 int ret;
178
179 WARN_ON(dev->iommu_group);
180 if (!ops)
181 return -EINVAL;
182
183 if (!iommu_get_dev_param(dev))
184 return -ENOMEM;
185
186 ret = ops->add_device(dev);
187 if (ret)
188 iommu_free_dev_param(dev);
189
190 return ret;
191 }
192
193 void iommu_release_device(struct device *dev)
194 {
195 const struct iommu_ops *ops = dev->bus->iommu_ops;
196
197 if (dev->iommu_group)
198 ops->remove_device(dev);
199
200 iommu_free_dev_param(dev);
201 }
202
203 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
204 unsigned type);
205 static int __iommu_attach_device(struct iommu_domain *domain,
206 struct device *dev);
207 static int __iommu_attach_group(struct iommu_domain *domain,
208 struct iommu_group *group);
209 static void __iommu_detach_group(struct iommu_domain *domain,
210 struct iommu_group *group);
211
212 static int __init iommu_set_def_domain_type(char *str)
213 {
214 bool pt;
215 int ret;
216
217 ret = kstrtobool(str, &pt);
218 if (ret)
219 return ret;
220
221 if (pt)
222 iommu_set_default_passthrough(true);
223 else
224 iommu_set_default_translated(true);
225
226 return 0;
227 }
228 early_param("iommu.passthrough", iommu_set_def_domain_type);
229
230 static int __init iommu_dma_setup(char *str)
231 {
232 return kstrtobool(str, &iommu_dma_strict);
233 }
234 early_param("iommu.strict", iommu_dma_setup);
235
236 static ssize_t iommu_group_attr_show(struct kobject *kobj,
237 struct attribute *__attr, char *buf)
238 {
239 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
240 struct iommu_group *group = to_iommu_group(kobj);
241 ssize_t ret = -EIO;
242
243 if (attr->show)
244 ret = attr->show(group, buf);
245 return ret;
246 }
247
248 static ssize_t iommu_group_attr_store(struct kobject *kobj,
249 struct attribute *__attr,
250 const char *buf, size_t count)
251 {
252 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
253 struct iommu_group *group = to_iommu_group(kobj);
254 ssize_t ret = -EIO;
255
256 if (attr->store)
257 ret = attr->store(group, buf, count);
258 return ret;
259 }
260
261 static const struct sysfs_ops iommu_group_sysfs_ops = {
262 .show = iommu_group_attr_show,
263 .store = iommu_group_attr_store,
264 };
265
266 static int iommu_group_create_file(struct iommu_group *group,
267 struct iommu_group_attribute *attr)
268 {
269 return sysfs_create_file(&group->kobj, &attr->attr);
270 }
271
272 static void iommu_group_remove_file(struct iommu_group *group,
273 struct iommu_group_attribute *attr)
274 {
275 sysfs_remove_file(&group->kobj, &attr->attr);
276 }
277
278 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
279 {
280 return sprintf(buf, "%s\n", group->name);
281 }
282
283 /**
284 * iommu_insert_resv_region - Insert a new region in the
285 * list of reserved regions.
286 * @new: new region to insert
287 * @regions: list of regions
288 *
289 * Elements are sorted by start address and overlapping segments
290 * of the same type are merged.
291 */
292 int iommu_insert_resv_region(struct iommu_resv_region *new,
293 struct list_head *regions)
294 {
295 struct iommu_resv_region *iter, *tmp, *nr, *top;
296 LIST_HEAD(stack);
297
298 nr = iommu_alloc_resv_region(new->start, new->length,
299 new->prot, new->type);
300 if (!nr)
301 return -ENOMEM;
302
303 /* First add the new element based on start address sorting */
304 list_for_each_entry(iter, regions, list) {
305 if (nr->start < iter->start ||
306 (nr->start == iter->start && nr->type <= iter->type))
307 break;
308 }
309 list_add_tail(&nr->list, &iter->list);
310
311 /* Merge overlapping segments of type nr->type in @regions, if any */
312 list_for_each_entry_safe(iter, tmp, regions, list) {
313 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
314
315 /* no merge needed on elements of different types than @new */
316 if (iter->type != new->type) {
317 list_move_tail(&iter->list, &stack);
318 continue;
319 }
320
321 /* look for the last stack element of same type as @iter */
322 list_for_each_entry_reverse(top, &stack, list)
323 if (top->type == iter->type)
324 goto check_overlap;
325
326 list_move_tail(&iter->list, &stack);
327 continue;
328
329 check_overlap:
330 top_end = top->start + top->length - 1;
331
332 if (iter->start > top_end + 1) {
333 list_move_tail(&iter->list, &stack);
334 } else {
335 top->length = max(top_end, iter_end) - top->start + 1;
336 list_del(&iter->list);
337 kfree(iter);
338 }
339 }
340 list_splice(&stack, regions);
341 return 0;
342 }
343
344 static int
345 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
346 struct list_head *group_resv_regions)
347 {
348 struct iommu_resv_region *entry;
349 int ret = 0;
350
351 list_for_each_entry(entry, dev_resv_regions, list) {
352 ret = iommu_insert_resv_region(entry, group_resv_regions);
353 if (ret)
354 break;
355 }
356 return ret;
357 }
358
359 int iommu_get_group_resv_regions(struct iommu_group *group,
360 struct list_head *head)
361 {
362 struct group_device *device;
363 int ret = 0;
364
365 mutex_lock(&group->mutex);
366 list_for_each_entry(device, &group->devices, list) {
367 struct list_head dev_resv_regions;
368
369 INIT_LIST_HEAD(&dev_resv_regions);
370 iommu_get_resv_regions(device->dev, &dev_resv_regions);
371 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
372 iommu_put_resv_regions(device->dev, &dev_resv_regions);
373 if (ret)
374 break;
375 }
376 mutex_unlock(&group->mutex);
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
380
381 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
382 char *buf)
383 {
384 struct iommu_resv_region *region, *next;
385 struct list_head group_resv_regions;
386 char *str = buf;
387
388 INIT_LIST_HEAD(&group_resv_regions);
389 iommu_get_group_resv_regions(group, &group_resv_regions);
390
391 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
392 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
393 (long long int)region->start,
394 (long long int)(region->start +
395 region->length - 1),
396 iommu_group_resv_type_string[region->type]);
397 kfree(region);
398 }
399
400 return (str - buf);
401 }
402
403 static ssize_t iommu_group_show_type(struct iommu_group *group,
404 char *buf)
405 {
406 char *type = "unknown\n";
407
408 if (group->default_domain) {
409 switch (group->default_domain->type) {
410 case IOMMU_DOMAIN_BLOCKED:
411 type = "blocked\n";
412 break;
413 case IOMMU_DOMAIN_IDENTITY:
414 type = "identity\n";
415 break;
416 case IOMMU_DOMAIN_UNMANAGED:
417 type = "unmanaged\n";
418 break;
419 case IOMMU_DOMAIN_DMA:
420 type = "DMA\n";
421 break;
422 }
423 }
424 strcpy(buf, type);
425
426 return strlen(type);
427 }
428
429 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
430
431 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
432 iommu_group_show_resv_regions, NULL);
433
434 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
435
436 static void iommu_group_release(struct kobject *kobj)
437 {
438 struct iommu_group *group = to_iommu_group(kobj);
439
440 pr_debug("Releasing group %d\n", group->id);
441
442 if (group->iommu_data_release)
443 group->iommu_data_release(group->iommu_data);
444
445 ida_simple_remove(&iommu_group_ida, group->id);
446
447 if (group->default_domain)
448 iommu_domain_free(group->default_domain);
449
450 kfree(group->name);
451 kfree(group);
452 }
453
454 static struct kobj_type iommu_group_ktype = {
455 .sysfs_ops = &iommu_group_sysfs_ops,
456 .release = iommu_group_release,
457 };
458
459 /**
460 * iommu_group_alloc - Allocate a new group
461 *
462 * This function is called by an iommu driver to allocate a new iommu
463 * group. The iommu group represents the minimum granularity of the iommu.
464 * Upon successful return, the caller holds a reference to the supplied
465 * group in order to hold the group until devices are added. Use
466 * iommu_group_put() to release this extra reference count, allowing the
467 * group to be automatically reclaimed once it has no devices or external
468 * references.
469 */
470 struct iommu_group *iommu_group_alloc(void)
471 {
472 struct iommu_group *group;
473 int ret;
474
475 group = kzalloc(sizeof(*group), GFP_KERNEL);
476 if (!group)
477 return ERR_PTR(-ENOMEM);
478
479 group->kobj.kset = iommu_group_kset;
480 mutex_init(&group->mutex);
481 INIT_LIST_HEAD(&group->devices);
482 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
483
484 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
485 if (ret < 0) {
486 kfree(group);
487 return ERR_PTR(ret);
488 }
489 group->id = ret;
490
491 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
492 NULL, "%d", group->id);
493 if (ret) {
494 ida_simple_remove(&iommu_group_ida, group->id);
495 kfree(group);
496 return ERR_PTR(ret);
497 }
498
499 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
500 if (!group->devices_kobj) {
501 kobject_put(&group->kobj); /* triggers .release & free */
502 return ERR_PTR(-ENOMEM);
503 }
504
505 /*
506 * The devices_kobj holds a reference on the group kobject, so
507 * as long as that exists so will the group. We can therefore
508 * use the devices_kobj for reference counting.
509 */
510 kobject_put(&group->kobj);
511
512 ret = iommu_group_create_file(group,
513 &iommu_group_attr_reserved_regions);
514 if (ret)
515 return ERR_PTR(ret);
516
517 ret = iommu_group_create_file(group, &iommu_group_attr_type);
518 if (ret)
519 return ERR_PTR(ret);
520
521 pr_debug("Allocated group %d\n", group->id);
522
523 return group;
524 }
525 EXPORT_SYMBOL_GPL(iommu_group_alloc);
526
527 struct iommu_group *iommu_group_get_by_id(int id)
528 {
529 struct kobject *group_kobj;
530 struct iommu_group *group;
531 const char *name;
532
533 if (!iommu_group_kset)
534 return NULL;
535
536 name = kasprintf(GFP_KERNEL, "%d", id);
537 if (!name)
538 return NULL;
539
540 group_kobj = kset_find_obj(iommu_group_kset, name);
541 kfree(name);
542
543 if (!group_kobj)
544 return NULL;
545
546 group = container_of(group_kobj, struct iommu_group, kobj);
547 BUG_ON(group->id != id);
548
549 kobject_get(group->devices_kobj);
550 kobject_put(&group->kobj);
551
552 return group;
553 }
554 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
555
556 /**
557 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
558 * @group: the group
559 *
560 * iommu drivers can store data in the group for use when doing iommu
561 * operations. This function provides a way to retrieve it. Caller
562 * should hold a group reference.
563 */
564 void *iommu_group_get_iommudata(struct iommu_group *group)
565 {
566 return group->iommu_data;
567 }
568 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
569
570 /**
571 * iommu_group_set_iommudata - set iommu_data for a group
572 * @group: the group
573 * @iommu_data: new data
574 * @release: release function for iommu_data
575 *
576 * iommu drivers can store data in the group for use when doing iommu
577 * operations. This function provides a way to set the data after
578 * the group has been allocated. Caller should hold a group reference.
579 */
580 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
581 void (*release)(void *iommu_data))
582 {
583 group->iommu_data = iommu_data;
584 group->iommu_data_release = release;
585 }
586 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
587
588 /**
589 * iommu_group_set_name - set name for a group
590 * @group: the group
591 * @name: name
592 *
593 * Allow iommu driver to set a name for a group. When set it will
594 * appear in a name attribute file under the group in sysfs.
595 */
596 int iommu_group_set_name(struct iommu_group *group, const char *name)
597 {
598 int ret;
599
600 if (group->name) {
601 iommu_group_remove_file(group, &iommu_group_attr_name);
602 kfree(group->name);
603 group->name = NULL;
604 if (!name)
605 return 0;
606 }
607
608 group->name = kstrdup(name, GFP_KERNEL);
609 if (!group->name)
610 return -ENOMEM;
611
612 ret = iommu_group_create_file(group, &iommu_group_attr_name);
613 if (ret) {
614 kfree(group->name);
615 group->name = NULL;
616 return ret;
617 }
618
619 return 0;
620 }
621 EXPORT_SYMBOL_GPL(iommu_group_set_name);
622
623 static int iommu_group_create_direct_mappings(struct iommu_group *group,
624 struct device *dev)
625 {
626 struct iommu_domain *domain = group->default_domain;
627 struct iommu_resv_region *entry;
628 struct list_head mappings;
629 unsigned long pg_size;
630 int ret = 0;
631
632 if (!domain || domain->type != IOMMU_DOMAIN_DMA)
633 return 0;
634
635 BUG_ON(!domain->pgsize_bitmap);
636
637 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
638 INIT_LIST_HEAD(&mappings);
639
640 iommu_get_resv_regions(dev, &mappings);
641
642 /* We need to consider overlapping regions for different devices */
643 list_for_each_entry(entry, &mappings, list) {
644 dma_addr_t start, end, addr;
645
646 if (domain->ops->apply_resv_region)
647 domain->ops->apply_resv_region(dev, domain, entry);
648
649 start = ALIGN(entry->start, pg_size);
650 end = ALIGN(entry->start + entry->length, pg_size);
651
652 if (entry->type != IOMMU_RESV_DIRECT &&
653 entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
654 continue;
655
656 for (addr = start; addr < end; addr += pg_size) {
657 phys_addr_t phys_addr;
658
659 phys_addr = iommu_iova_to_phys(domain, addr);
660 if (phys_addr)
661 continue;
662
663 ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
664 if (ret)
665 goto out;
666 }
667
668 }
669
670 iommu_flush_tlb_all(domain);
671
672 out:
673 iommu_put_resv_regions(dev, &mappings);
674
675 return ret;
676 }
677
678 /**
679 * iommu_group_add_device - add a device to an iommu group
680 * @group: the group into which to add the device (reference should be held)
681 * @dev: the device
682 *
683 * This function is called by an iommu driver to add a device into a
684 * group. Adding a device increments the group reference count.
685 */
686 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
687 {
688 int ret, i = 0;
689 struct group_device *device;
690
691 device = kzalloc(sizeof(*device), GFP_KERNEL);
692 if (!device)
693 return -ENOMEM;
694
695 device->dev = dev;
696
697 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
698 if (ret)
699 goto err_free_device;
700
701 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
702 rename:
703 if (!device->name) {
704 ret = -ENOMEM;
705 goto err_remove_link;
706 }
707
708 ret = sysfs_create_link_nowarn(group->devices_kobj,
709 &dev->kobj, device->name);
710 if (ret) {
711 if (ret == -EEXIST && i >= 0) {
712 /*
713 * Account for the slim chance of collision
714 * and append an instance to the name.
715 */
716 kfree(device->name);
717 device->name = kasprintf(GFP_KERNEL, "%s.%d",
718 kobject_name(&dev->kobj), i++);
719 goto rename;
720 }
721 goto err_free_name;
722 }
723
724 kobject_get(group->devices_kobj);
725
726 dev->iommu_group = group;
727
728 iommu_group_create_direct_mappings(group, dev);
729
730 mutex_lock(&group->mutex);
731 list_add_tail(&device->list, &group->devices);
732 if (group->domain)
733 ret = __iommu_attach_device(group->domain, dev);
734 mutex_unlock(&group->mutex);
735 if (ret)
736 goto err_put_group;
737
738 /* Notify any listeners about change to group. */
739 blocking_notifier_call_chain(&group->notifier,
740 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
741
742 trace_add_device_to_group(group->id, dev);
743
744 dev_info(dev, "Adding to iommu group %d\n", group->id);
745
746 return 0;
747
748 err_put_group:
749 mutex_lock(&group->mutex);
750 list_del(&device->list);
751 mutex_unlock(&group->mutex);
752 dev->iommu_group = NULL;
753 kobject_put(group->devices_kobj);
754 sysfs_remove_link(group->devices_kobj, device->name);
755 err_free_name:
756 kfree(device->name);
757 err_remove_link:
758 sysfs_remove_link(&dev->kobj, "iommu_group");
759 err_free_device:
760 kfree(device);
761 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
762 return ret;
763 }
764 EXPORT_SYMBOL_GPL(iommu_group_add_device);
765
766 /**
767 * iommu_group_remove_device - remove a device from it's current group
768 * @dev: device to be removed
769 *
770 * This function is called by an iommu driver to remove the device from
771 * it's current group. This decrements the iommu group reference count.
772 */
773 void iommu_group_remove_device(struct device *dev)
774 {
775 struct iommu_group *group = dev->iommu_group;
776 struct group_device *tmp_device, *device = NULL;
777
778 dev_info(dev, "Removing from iommu group %d\n", group->id);
779
780 /* Pre-notify listeners that a device is being removed. */
781 blocking_notifier_call_chain(&group->notifier,
782 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
783
784 mutex_lock(&group->mutex);
785 list_for_each_entry(tmp_device, &group->devices, list) {
786 if (tmp_device->dev == dev) {
787 device = tmp_device;
788 list_del(&device->list);
789 break;
790 }
791 }
792 mutex_unlock(&group->mutex);
793
794 if (!device)
795 return;
796
797 sysfs_remove_link(group->devices_kobj, device->name);
798 sysfs_remove_link(&dev->kobj, "iommu_group");
799
800 trace_remove_device_from_group(group->id, dev);
801
802 kfree(device->name);
803 kfree(device);
804 dev->iommu_group = NULL;
805 kobject_put(group->devices_kobj);
806 }
807 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
808
809 static int iommu_group_device_count(struct iommu_group *group)
810 {
811 struct group_device *entry;
812 int ret = 0;
813
814 list_for_each_entry(entry, &group->devices, list)
815 ret++;
816
817 return ret;
818 }
819
820 /**
821 * iommu_group_for_each_dev - iterate over each device in the group
822 * @group: the group
823 * @data: caller opaque data to be passed to callback function
824 * @fn: caller supplied callback function
825 *
826 * This function is called by group users to iterate over group devices.
827 * Callers should hold a reference count to the group during callback.
828 * The group->mutex is held across callbacks, which will block calls to
829 * iommu_group_add/remove_device.
830 */
831 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
832 int (*fn)(struct device *, void *))
833 {
834 struct group_device *device;
835 int ret = 0;
836
837 list_for_each_entry(device, &group->devices, list) {
838 ret = fn(device->dev, data);
839 if (ret)
840 break;
841 }
842 return ret;
843 }
844
845
846 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
847 int (*fn)(struct device *, void *))
848 {
849 int ret;
850
851 mutex_lock(&group->mutex);
852 ret = __iommu_group_for_each_dev(group, data, fn);
853 mutex_unlock(&group->mutex);
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
858
859 /**
860 * iommu_group_get - Return the group for a device and increment reference
861 * @dev: get the group that this device belongs to
862 *
863 * This function is called by iommu drivers and users to get the group
864 * for the specified device. If found, the group is returned and the group
865 * reference in incremented, else NULL.
866 */
867 struct iommu_group *iommu_group_get(struct device *dev)
868 {
869 struct iommu_group *group = dev->iommu_group;
870
871 if (group)
872 kobject_get(group->devices_kobj);
873
874 return group;
875 }
876 EXPORT_SYMBOL_GPL(iommu_group_get);
877
878 /**
879 * iommu_group_ref_get - Increment reference on a group
880 * @group: the group to use, must not be NULL
881 *
882 * This function is called by iommu drivers to take additional references on an
883 * existing group. Returns the given group for convenience.
884 */
885 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
886 {
887 kobject_get(group->devices_kobj);
888 return group;
889 }
890
891 /**
892 * iommu_group_put - Decrement group reference
893 * @group: the group to use
894 *
895 * This function is called by iommu drivers and users to release the
896 * iommu group. Once the reference count is zero, the group is released.
897 */
898 void iommu_group_put(struct iommu_group *group)
899 {
900 if (group)
901 kobject_put(group->devices_kobj);
902 }
903 EXPORT_SYMBOL_GPL(iommu_group_put);
904
905 /**
906 * iommu_group_register_notifier - Register a notifier for group changes
907 * @group: the group to watch
908 * @nb: notifier block to signal
909 *
910 * This function allows iommu group users to track changes in a group.
911 * See include/linux/iommu.h for actions sent via this notifier. Caller
912 * should hold a reference to the group throughout notifier registration.
913 */
914 int iommu_group_register_notifier(struct iommu_group *group,
915 struct notifier_block *nb)
916 {
917 return blocking_notifier_chain_register(&group->notifier, nb);
918 }
919 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
920
921 /**
922 * iommu_group_unregister_notifier - Unregister a notifier
923 * @group: the group to watch
924 * @nb: notifier block to signal
925 *
926 * Unregister a previously registered group notifier block.
927 */
928 int iommu_group_unregister_notifier(struct iommu_group *group,
929 struct notifier_block *nb)
930 {
931 return blocking_notifier_chain_unregister(&group->notifier, nb);
932 }
933 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
934
935 /**
936 * iommu_register_device_fault_handler() - Register a device fault handler
937 * @dev: the device
938 * @handler: the fault handler
939 * @data: private data passed as argument to the handler
940 *
941 * When an IOMMU fault event is received, this handler gets called with the
942 * fault event and data as argument. The handler should return 0 on success. If
943 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
944 * complete the fault by calling iommu_page_response() with one of the following
945 * response code:
946 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
947 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
948 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
949 * page faults if possible.
950 *
951 * Return 0 if the fault handler was installed successfully, or an error.
952 */
953 int iommu_register_device_fault_handler(struct device *dev,
954 iommu_dev_fault_handler_t handler,
955 void *data)
956 {
957 struct iommu_param *param = dev->iommu_param;
958 int ret = 0;
959
960 if (!param)
961 return -EINVAL;
962
963 mutex_lock(&param->lock);
964 /* Only allow one fault handler registered for each device */
965 if (param->fault_param) {
966 ret = -EBUSY;
967 goto done_unlock;
968 }
969
970 get_device(dev);
971 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
972 if (!param->fault_param) {
973 put_device(dev);
974 ret = -ENOMEM;
975 goto done_unlock;
976 }
977 param->fault_param->handler = handler;
978 param->fault_param->data = data;
979 mutex_init(&param->fault_param->lock);
980 INIT_LIST_HEAD(&param->fault_param->faults);
981
982 done_unlock:
983 mutex_unlock(&param->lock);
984
985 return ret;
986 }
987 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
988
989 /**
990 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
991 * @dev: the device
992 *
993 * Remove the device fault handler installed with
994 * iommu_register_device_fault_handler().
995 *
996 * Return 0 on success, or an error.
997 */
998 int iommu_unregister_device_fault_handler(struct device *dev)
999 {
1000 struct iommu_param *param = dev->iommu_param;
1001 int ret = 0;
1002
1003 if (!param)
1004 return -EINVAL;
1005
1006 mutex_lock(&param->lock);
1007
1008 if (!param->fault_param)
1009 goto unlock;
1010
1011 /* we cannot unregister handler if there are pending faults */
1012 if (!list_empty(&param->fault_param->faults)) {
1013 ret = -EBUSY;
1014 goto unlock;
1015 }
1016
1017 kfree(param->fault_param);
1018 param->fault_param = NULL;
1019 put_device(dev);
1020 unlock:
1021 mutex_unlock(&param->lock);
1022
1023 return ret;
1024 }
1025 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1026
1027 /**
1028 * iommu_report_device_fault() - Report fault event to device driver
1029 * @dev: the device
1030 * @evt: fault event data
1031 *
1032 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1033 * handler. When this function fails and the fault is recoverable, it is the
1034 * caller's responsibility to complete the fault.
1035 *
1036 * Return 0 on success, or an error.
1037 */
1038 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1039 {
1040 struct iommu_param *param = dev->iommu_param;
1041 struct iommu_fault_event *evt_pending = NULL;
1042 struct iommu_fault_param *fparam;
1043 int ret = 0;
1044
1045 if (!param || !evt)
1046 return -EINVAL;
1047
1048 /* we only report device fault if there is a handler registered */
1049 mutex_lock(&param->lock);
1050 fparam = param->fault_param;
1051 if (!fparam || !fparam->handler) {
1052 ret = -EINVAL;
1053 goto done_unlock;
1054 }
1055
1056 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1057 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1058 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1059 GFP_KERNEL);
1060 if (!evt_pending) {
1061 ret = -ENOMEM;
1062 goto done_unlock;
1063 }
1064 mutex_lock(&fparam->lock);
1065 list_add_tail(&evt_pending->list, &fparam->faults);
1066 mutex_unlock(&fparam->lock);
1067 }
1068
1069 ret = fparam->handler(&evt->fault, fparam->data);
1070 if (ret && evt_pending) {
1071 mutex_lock(&fparam->lock);
1072 list_del(&evt_pending->list);
1073 mutex_unlock(&fparam->lock);
1074 kfree(evt_pending);
1075 }
1076 done_unlock:
1077 mutex_unlock(&param->lock);
1078 return ret;
1079 }
1080 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1081
1082 int iommu_page_response(struct device *dev,
1083 struct iommu_page_response *msg)
1084 {
1085 bool pasid_valid;
1086 int ret = -EINVAL;
1087 struct iommu_fault_event *evt;
1088 struct iommu_fault_page_request *prm;
1089 struct iommu_param *param = dev->iommu_param;
1090 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1091
1092 if (!domain || !domain->ops->page_response)
1093 return -ENODEV;
1094
1095 if (!param || !param->fault_param)
1096 return -EINVAL;
1097
1098 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1099 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1100 return -EINVAL;
1101
1102 /* Only send response if there is a fault report pending */
1103 mutex_lock(&param->fault_param->lock);
1104 if (list_empty(&param->fault_param->faults)) {
1105 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1106 goto done_unlock;
1107 }
1108 /*
1109 * Check if we have a matching page request pending to respond,
1110 * otherwise return -EINVAL
1111 */
1112 list_for_each_entry(evt, &param->fault_param->faults, list) {
1113 prm = &evt->fault.prm;
1114 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1115
1116 if ((pasid_valid && prm->pasid != msg->pasid) ||
1117 prm->grpid != msg->grpid)
1118 continue;
1119
1120 /* Sanitize the reply */
1121 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0;
1122
1123 ret = domain->ops->page_response(dev, evt, msg);
1124 list_del(&evt->list);
1125 kfree(evt);
1126 break;
1127 }
1128
1129 done_unlock:
1130 mutex_unlock(&param->fault_param->lock);
1131 return ret;
1132 }
1133 EXPORT_SYMBOL_GPL(iommu_page_response);
1134
1135 /**
1136 * iommu_group_id - Return ID for a group
1137 * @group: the group to ID
1138 *
1139 * Return the unique ID for the group matching the sysfs group number.
1140 */
1141 int iommu_group_id(struct iommu_group *group)
1142 {
1143 return group->id;
1144 }
1145 EXPORT_SYMBOL_GPL(iommu_group_id);
1146
1147 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1148 unsigned long *devfns);
1149
1150 /*
1151 * To consider a PCI device isolated, we require ACS to support Source
1152 * Validation, Request Redirection, Completer Redirection, and Upstream
1153 * Forwarding. This effectively means that devices cannot spoof their
1154 * requester ID, requests and completions cannot be redirected, and all
1155 * transactions are forwarded upstream, even as it passes through a
1156 * bridge where the target device is downstream.
1157 */
1158 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1159
1160 /*
1161 * For multifunction devices which are not isolated from each other, find
1162 * all the other non-isolated functions and look for existing groups. For
1163 * each function, we also need to look for aliases to or from other devices
1164 * that may already have a group.
1165 */
1166 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1167 unsigned long *devfns)
1168 {
1169 struct pci_dev *tmp = NULL;
1170 struct iommu_group *group;
1171
1172 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1173 return NULL;
1174
1175 for_each_pci_dev(tmp) {
1176 if (tmp == pdev || tmp->bus != pdev->bus ||
1177 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1178 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1179 continue;
1180
1181 group = get_pci_alias_group(tmp, devfns);
1182 if (group) {
1183 pci_dev_put(tmp);
1184 return group;
1185 }
1186 }
1187
1188 return NULL;
1189 }
1190
1191 /*
1192 * Look for aliases to or from the given device for existing groups. DMA
1193 * aliases are only supported on the same bus, therefore the search
1194 * space is quite small (especially since we're really only looking at pcie
1195 * device, and therefore only expect multiple slots on the root complex or
1196 * downstream switch ports). It's conceivable though that a pair of
1197 * multifunction devices could have aliases between them that would cause a
1198 * loop. To prevent this, we use a bitmap to track where we've been.
1199 */
1200 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1201 unsigned long *devfns)
1202 {
1203 struct pci_dev *tmp = NULL;
1204 struct iommu_group *group;
1205
1206 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1207 return NULL;
1208
1209 group = iommu_group_get(&pdev->dev);
1210 if (group)
1211 return group;
1212
1213 for_each_pci_dev(tmp) {
1214 if (tmp == pdev || tmp->bus != pdev->bus)
1215 continue;
1216
1217 /* We alias them or they alias us */
1218 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1219 group = get_pci_alias_group(tmp, devfns);
1220 if (group) {
1221 pci_dev_put(tmp);
1222 return group;
1223 }
1224
1225 group = get_pci_function_alias_group(tmp, devfns);
1226 if (group) {
1227 pci_dev_put(tmp);
1228 return group;
1229 }
1230 }
1231 }
1232
1233 return NULL;
1234 }
1235
1236 struct group_for_pci_data {
1237 struct pci_dev *pdev;
1238 struct iommu_group *group;
1239 };
1240
1241 /*
1242 * DMA alias iterator callback, return the last seen device. Stop and return
1243 * the IOMMU group if we find one along the way.
1244 */
1245 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1246 {
1247 struct group_for_pci_data *data = opaque;
1248
1249 data->pdev = pdev;
1250 data->group = iommu_group_get(&pdev->dev);
1251
1252 return data->group != NULL;
1253 }
1254
1255 /*
1256 * Generic device_group call-back function. It just allocates one
1257 * iommu-group per device.
1258 */
1259 struct iommu_group *generic_device_group(struct device *dev)
1260 {
1261 return iommu_group_alloc();
1262 }
1263
1264 /*
1265 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1266 * to find or create an IOMMU group for a device.
1267 */
1268 struct iommu_group *pci_device_group(struct device *dev)
1269 {
1270 struct pci_dev *pdev = to_pci_dev(dev);
1271 struct group_for_pci_data data;
1272 struct pci_bus *bus;
1273 struct iommu_group *group = NULL;
1274 u64 devfns[4] = { 0 };
1275
1276 if (WARN_ON(!dev_is_pci(dev)))
1277 return ERR_PTR(-EINVAL);
1278
1279 /*
1280 * Find the upstream DMA alias for the device. A device must not
1281 * be aliased due to topology in order to have its own IOMMU group.
1282 * If we find an alias along the way that already belongs to a
1283 * group, use it.
1284 */
1285 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1286 return data.group;
1287
1288 pdev = data.pdev;
1289
1290 /*
1291 * Continue upstream from the point of minimum IOMMU granularity
1292 * due to aliases to the point where devices are protected from
1293 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1294 * group, use it.
1295 */
1296 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1297 if (!bus->self)
1298 continue;
1299
1300 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1301 break;
1302
1303 pdev = bus->self;
1304
1305 group = iommu_group_get(&pdev->dev);
1306 if (group)
1307 return group;
1308 }
1309
1310 /*
1311 * Look for existing groups on device aliases. If we alias another
1312 * device or another device aliases us, use the same group.
1313 */
1314 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1315 if (group)
1316 return group;
1317
1318 /*
1319 * Look for existing groups on non-isolated functions on the same
1320 * slot and aliases of those funcions, if any. No need to clear
1321 * the search bitmap, the tested devfns are still valid.
1322 */
1323 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1324 if (group)
1325 return group;
1326
1327 /* No shared group found, allocate new */
1328 return iommu_group_alloc();
1329 }
1330
1331 /* Get the IOMMU group for device on fsl-mc bus */
1332 struct iommu_group *fsl_mc_device_group(struct device *dev)
1333 {
1334 struct device *cont_dev = fsl_mc_cont_dev(dev);
1335 struct iommu_group *group;
1336
1337 group = iommu_group_get(cont_dev);
1338 if (!group)
1339 group = iommu_group_alloc();
1340 return group;
1341 }
1342
1343 /**
1344 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1345 * @dev: target device
1346 *
1347 * This function is intended to be called by IOMMU drivers and extended to
1348 * support common, bus-defined algorithms when determining or creating the
1349 * IOMMU group for a device. On success, the caller will hold a reference
1350 * to the returned IOMMU group, which will already include the provided
1351 * device. The reference should be released with iommu_group_put().
1352 */
1353 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1354 {
1355 const struct iommu_ops *ops = dev->bus->iommu_ops;
1356 struct iommu_group *group;
1357 int ret;
1358
1359 group = iommu_group_get(dev);
1360 if (group)
1361 return group;
1362
1363 if (!ops)
1364 return ERR_PTR(-EINVAL);
1365
1366 group = ops->device_group(dev);
1367 if (WARN_ON_ONCE(group == NULL))
1368 return ERR_PTR(-EINVAL);
1369
1370 if (IS_ERR(group))
1371 return group;
1372
1373 /*
1374 * Try to allocate a default domain - needs support from the
1375 * IOMMU driver.
1376 */
1377 if (!group->default_domain) {
1378 struct iommu_domain *dom;
1379
1380 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1381 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1382 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1383 if (dom) {
1384 dev_warn(dev,
1385 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1386 iommu_def_domain_type);
1387 }
1388 }
1389
1390 group->default_domain = dom;
1391 if (!group->domain)
1392 group->domain = dom;
1393
1394 if (dom && !iommu_dma_strict) {
1395 int attr = 1;
1396 iommu_domain_set_attr(dom,
1397 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1398 &attr);
1399 }
1400 }
1401
1402 ret = iommu_group_add_device(group, dev);
1403 if (ret) {
1404 iommu_group_put(group);
1405 return ERR_PTR(ret);
1406 }
1407
1408 return group;
1409 }
1410
1411 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1412 {
1413 return group->default_domain;
1414 }
1415
1416 static int add_iommu_group(struct device *dev, void *data)
1417 {
1418 int ret = iommu_probe_device(dev);
1419
1420 /*
1421 * We ignore -ENODEV errors for now, as they just mean that the
1422 * device is not translated by an IOMMU. We still care about
1423 * other errors and fail to initialize when they happen.
1424 */
1425 if (ret == -ENODEV)
1426 ret = 0;
1427
1428 return ret;
1429 }
1430
1431 static int remove_iommu_group(struct device *dev, void *data)
1432 {
1433 iommu_release_device(dev);
1434
1435 return 0;
1436 }
1437
1438 static int iommu_bus_notifier(struct notifier_block *nb,
1439 unsigned long action, void *data)
1440 {
1441 unsigned long group_action = 0;
1442 struct device *dev = data;
1443 struct iommu_group *group;
1444
1445 /*
1446 * ADD/DEL call into iommu driver ops if provided, which may
1447 * result in ADD/DEL notifiers to group->notifier
1448 */
1449 if (action == BUS_NOTIFY_ADD_DEVICE) {
1450 int ret;
1451
1452 ret = iommu_probe_device(dev);
1453 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1454 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1455 iommu_release_device(dev);
1456 return NOTIFY_OK;
1457 }
1458
1459 /*
1460 * Remaining BUS_NOTIFYs get filtered and republished to the
1461 * group, if anyone is listening
1462 */
1463 group = iommu_group_get(dev);
1464 if (!group)
1465 return 0;
1466
1467 switch (action) {
1468 case BUS_NOTIFY_BIND_DRIVER:
1469 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1470 break;
1471 case BUS_NOTIFY_BOUND_DRIVER:
1472 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1473 break;
1474 case BUS_NOTIFY_UNBIND_DRIVER:
1475 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1476 break;
1477 case BUS_NOTIFY_UNBOUND_DRIVER:
1478 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1479 break;
1480 }
1481
1482 if (group_action)
1483 blocking_notifier_call_chain(&group->notifier,
1484 group_action, dev);
1485
1486 iommu_group_put(group);
1487 return 0;
1488 }
1489
1490 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1491 {
1492 int err;
1493 struct notifier_block *nb;
1494
1495 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1496 if (!nb)
1497 return -ENOMEM;
1498
1499 nb->notifier_call = iommu_bus_notifier;
1500
1501 err = bus_register_notifier(bus, nb);
1502 if (err)
1503 goto out_free;
1504
1505 err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group);
1506 if (err)
1507 goto out_err;
1508
1509
1510 return 0;
1511
1512 out_err:
1513 /* Clean up */
1514 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1515 bus_unregister_notifier(bus, nb);
1516
1517 out_free:
1518 kfree(nb);
1519
1520 return err;
1521 }
1522
1523 /**
1524 * bus_set_iommu - set iommu-callbacks for the bus
1525 * @bus: bus.
1526 * @ops: the callbacks provided by the iommu-driver
1527 *
1528 * This function is called by an iommu driver to set the iommu methods
1529 * used for a particular bus. Drivers for devices on that bus can use
1530 * the iommu-api after these ops are registered.
1531 * This special function is needed because IOMMUs are usually devices on
1532 * the bus itself, so the iommu drivers are not initialized when the bus
1533 * is set up. With this function the iommu-driver can set the iommu-ops
1534 * afterwards.
1535 */
1536 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1537 {
1538 int err;
1539
1540 if (bus->iommu_ops != NULL)
1541 return -EBUSY;
1542
1543 bus->iommu_ops = ops;
1544
1545 /* Do IOMMU specific setup for this bus-type */
1546 err = iommu_bus_init(bus, ops);
1547 if (err)
1548 bus->iommu_ops = NULL;
1549
1550 return err;
1551 }
1552 EXPORT_SYMBOL_GPL(bus_set_iommu);
1553
1554 bool iommu_present(struct bus_type *bus)
1555 {
1556 return bus->iommu_ops != NULL;
1557 }
1558 EXPORT_SYMBOL_GPL(iommu_present);
1559
1560 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1561 {
1562 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1563 return false;
1564
1565 return bus->iommu_ops->capable(cap);
1566 }
1567 EXPORT_SYMBOL_GPL(iommu_capable);
1568
1569 /**
1570 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1571 * @domain: iommu domain
1572 * @handler: fault handler
1573 * @token: user data, will be passed back to the fault handler
1574 *
1575 * This function should be used by IOMMU users which want to be notified
1576 * whenever an IOMMU fault happens.
1577 *
1578 * The fault handler itself should return 0 on success, and an appropriate
1579 * error code otherwise.
1580 */
1581 void iommu_set_fault_handler(struct iommu_domain *domain,
1582 iommu_fault_handler_t handler,
1583 void *token)
1584 {
1585 BUG_ON(!domain);
1586
1587 domain->handler = handler;
1588 domain->handler_token = token;
1589 }
1590 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1591
1592 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1593 unsigned type)
1594 {
1595 struct iommu_domain *domain;
1596
1597 if (bus == NULL || bus->iommu_ops == NULL)
1598 return NULL;
1599
1600 domain = bus->iommu_ops->domain_alloc(type);
1601 if (!domain)
1602 return NULL;
1603
1604 domain->ops = bus->iommu_ops;
1605 domain->type = type;
1606 /* Assume all sizes by default; the driver may override this later */
1607 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1608
1609 return domain;
1610 }
1611
1612 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1613 {
1614 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1615 }
1616 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1617
1618 void iommu_domain_free(struct iommu_domain *domain)
1619 {
1620 domain->ops->domain_free(domain);
1621 }
1622 EXPORT_SYMBOL_GPL(iommu_domain_free);
1623
1624 static int __iommu_attach_device(struct iommu_domain *domain,
1625 struct device *dev)
1626 {
1627 int ret;
1628 if ((domain->ops->is_attach_deferred != NULL) &&
1629 domain->ops->is_attach_deferred(domain, dev))
1630 return 0;
1631
1632 if (unlikely(domain->ops->attach_dev == NULL))
1633 return -ENODEV;
1634
1635 ret = domain->ops->attach_dev(domain, dev);
1636 if (!ret)
1637 trace_attach_device_to_domain(dev);
1638 return ret;
1639 }
1640
1641 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1642 {
1643 struct iommu_group *group;
1644 int ret;
1645
1646 group = iommu_group_get(dev);
1647 if (!group)
1648 return -ENODEV;
1649
1650 /*
1651 * Lock the group to make sure the device-count doesn't
1652 * change while we are attaching
1653 */
1654 mutex_lock(&group->mutex);
1655 ret = -EINVAL;
1656 if (iommu_group_device_count(group) != 1)
1657 goto out_unlock;
1658
1659 ret = __iommu_attach_group(domain, group);
1660
1661 out_unlock:
1662 mutex_unlock(&group->mutex);
1663 iommu_group_put(group);
1664
1665 return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(iommu_attach_device);
1668
1669 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev,
1670 struct iommu_cache_invalidate_info *inv_info)
1671 {
1672 if (unlikely(!domain->ops->cache_invalidate))
1673 return -ENODEV;
1674
1675 return domain->ops->cache_invalidate(domain, dev, inv_info);
1676 }
1677 EXPORT_SYMBOL_GPL(iommu_cache_invalidate);
1678
1679 int iommu_sva_bind_gpasid(struct iommu_domain *domain,
1680 struct device *dev, struct iommu_gpasid_bind_data *data)
1681 {
1682 if (unlikely(!domain->ops->sva_bind_gpasid))
1683 return -ENODEV;
1684
1685 return domain->ops->sva_bind_gpasid(domain, dev, data);
1686 }
1687 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid);
1688
1689 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
1690 ioasid_t pasid)
1691 {
1692 if (unlikely(!domain->ops->sva_unbind_gpasid))
1693 return -ENODEV;
1694
1695 return domain->ops->sva_unbind_gpasid(dev, pasid);
1696 }
1697 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
1698
1699 static void __iommu_detach_device(struct iommu_domain *domain,
1700 struct device *dev)
1701 {
1702 if ((domain->ops->is_attach_deferred != NULL) &&
1703 domain->ops->is_attach_deferred(domain, dev))
1704 return;
1705
1706 if (unlikely(domain->ops->detach_dev == NULL))
1707 return;
1708
1709 domain->ops->detach_dev(domain, dev);
1710 trace_detach_device_from_domain(dev);
1711 }
1712
1713 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1714 {
1715 struct iommu_group *group;
1716
1717 group = iommu_group_get(dev);
1718 if (!group)
1719 return;
1720
1721 mutex_lock(&group->mutex);
1722 if (iommu_group_device_count(group) != 1) {
1723 WARN_ON(1);
1724 goto out_unlock;
1725 }
1726
1727 __iommu_detach_group(domain, group);
1728
1729 out_unlock:
1730 mutex_unlock(&group->mutex);
1731 iommu_group_put(group);
1732 }
1733 EXPORT_SYMBOL_GPL(iommu_detach_device);
1734
1735 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1736 {
1737 struct iommu_domain *domain;
1738 struct iommu_group *group;
1739
1740 group = iommu_group_get(dev);
1741 if (!group)
1742 return NULL;
1743
1744 domain = group->domain;
1745
1746 iommu_group_put(group);
1747
1748 return domain;
1749 }
1750 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1751
1752 /*
1753 * For IOMMU_DOMAIN_DMA implementations which already provide their own
1754 * guarantees that the group and its default domain are valid and correct.
1755 */
1756 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1757 {
1758 return dev->iommu_group->default_domain;
1759 }
1760
1761 /*
1762 * IOMMU groups are really the natural working unit of the IOMMU, but
1763 * the IOMMU API works on domains and devices. Bridge that gap by
1764 * iterating over the devices in a group. Ideally we'd have a single
1765 * device which represents the requestor ID of the group, but we also
1766 * allow IOMMU drivers to create policy defined minimum sets, where
1767 * the physical hardware may be able to distiguish members, but we
1768 * wish to group them at a higher level (ex. untrusted multi-function
1769 * PCI devices). Thus we attach each device.
1770 */
1771 static int iommu_group_do_attach_device(struct device *dev, void *data)
1772 {
1773 struct iommu_domain *domain = data;
1774
1775 return __iommu_attach_device(domain, dev);
1776 }
1777
1778 static int __iommu_attach_group(struct iommu_domain *domain,
1779 struct iommu_group *group)
1780 {
1781 int ret;
1782
1783 if (group->default_domain && group->domain != group->default_domain)
1784 return -EBUSY;
1785
1786 ret = __iommu_group_for_each_dev(group, domain,
1787 iommu_group_do_attach_device);
1788 if (ret == 0)
1789 group->domain = domain;
1790
1791 return ret;
1792 }
1793
1794 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1795 {
1796 int ret;
1797
1798 mutex_lock(&group->mutex);
1799 ret = __iommu_attach_group(domain, group);
1800 mutex_unlock(&group->mutex);
1801
1802 return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(iommu_attach_group);
1805
1806 static int iommu_group_do_detach_device(struct device *dev, void *data)
1807 {
1808 struct iommu_domain *domain = data;
1809
1810 __iommu_detach_device(domain, dev);
1811
1812 return 0;
1813 }
1814
1815 static void __iommu_detach_group(struct iommu_domain *domain,
1816 struct iommu_group *group)
1817 {
1818 int ret;
1819
1820 if (!group->default_domain) {
1821 __iommu_group_for_each_dev(group, domain,
1822 iommu_group_do_detach_device);
1823 group->domain = NULL;
1824 return;
1825 }
1826
1827 if (group->domain == group->default_domain)
1828 return;
1829
1830 /* Detach by re-attaching to the default domain */
1831 ret = __iommu_group_for_each_dev(group, group->default_domain,
1832 iommu_group_do_attach_device);
1833 if (ret != 0)
1834 WARN_ON(1);
1835 else
1836 group->domain = group->default_domain;
1837 }
1838
1839 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1840 {
1841 mutex_lock(&group->mutex);
1842 __iommu_detach_group(domain, group);
1843 mutex_unlock(&group->mutex);
1844 }
1845 EXPORT_SYMBOL_GPL(iommu_detach_group);
1846
1847 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1848 {
1849 if (unlikely(domain->ops->iova_to_phys == NULL))
1850 return 0;
1851
1852 return domain->ops->iova_to_phys(domain, iova);
1853 }
1854 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1855
1856 static size_t iommu_pgsize(struct iommu_domain *domain,
1857 unsigned long addr_merge, size_t size)
1858 {
1859 unsigned int pgsize_idx;
1860 size_t pgsize;
1861
1862 /* Max page size that still fits into 'size' */
1863 pgsize_idx = __fls(size);
1864
1865 /* need to consider alignment requirements ? */
1866 if (likely(addr_merge)) {
1867 /* Max page size allowed by address */
1868 unsigned int align_pgsize_idx = __ffs(addr_merge);
1869 pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1870 }
1871
1872 /* build a mask of acceptable page sizes */
1873 pgsize = (1UL << (pgsize_idx + 1)) - 1;
1874
1875 /* throw away page sizes not supported by the hardware */
1876 pgsize &= domain->pgsize_bitmap;
1877
1878 /* make sure we're still sane */
1879 BUG_ON(!pgsize);
1880
1881 /* pick the biggest page */
1882 pgsize_idx = __fls(pgsize);
1883 pgsize = 1UL << pgsize_idx;
1884
1885 return pgsize;
1886 }
1887
1888 int __iommu_map(struct iommu_domain *domain, unsigned long iova,
1889 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
1890 {
1891 const struct iommu_ops *ops = domain->ops;
1892 unsigned long orig_iova = iova;
1893 unsigned int min_pagesz;
1894 size_t orig_size = size;
1895 phys_addr_t orig_paddr = paddr;
1896 int ret = 0;
1897
1898 if (unlikely(ops->map == NULL ||
1899 domain->pgsize_bitmap == 0UL))
1900 return -ENODEV;
1901
1902 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1903 return -EINVAL;
1904
1905 /* find out the minimum page size supported */
1906 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1907
1908 /*
1909 * both the virtual address and the physical one, as well as
1910 * the size of the mapping, must be aligned (at least) to the
1911 * size of the smallest page supported by the hardware
1912 */
1913 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1914 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1915 iova, &paddr, size, min_pagesz);
1916 return -EINVAL;
1917 }
1918
1919 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1920
1921 while (size) {
1922 size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1923
1924 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1925 iova, &paddr, pgsize);
1926 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
1927
1928 if (ret)
1929 break;
1930
1931 iova += pgsize;
1932 paddr += pgsize;
1933 size -= pgsize;
1934 }
1935
1936 if (ops->iotlb_sync_map)
1937 ops->iotlb_sync_map(domain);
1938
1939 /* unroll mapping in case something went wrong */
1940 if (ret)
1941 iommu_unmap(domain, orig_iova, orig_size - size);
1942 else
1943 trace_map(orig_iova, orig_paddr, orig_size);
1944
1945 return ret;
1946 }
1947
1948 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1949 phys_addr_t paddr, size_t size, int prot)
1950 {
1951 might_sleep();
1952 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
1953 }
1954 EXPORT_SYMBOL_GPL(iommu_map);
1955
1956 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
1957 phys_addr_t paddr, size_t size, int prot)
1958 {
1959 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
1960 }
1961 EXPORT_SYMBOL_GPL(iommu_map_atomic);
1962
1963 static size_t __iommu_unmap(struct iommu_domain *domain,
1964 unsigned long iova, size_t size,
1965 struct iommu_iotlb_gather *iotlb_gather)
1966 {
1967 const struct iommu_ops *ops = domain->ops;
1968 size_t unmapped_page, unmapped = 0;
1969 unsigned long orig_iova = iova;
1970 unsigned int min_pagesz;
1971
1972 if (unlikely(ops->unmap == NULL ||
1973 domain->pgsize_bitmap == 0UL))
1974 return 0;
1975
1976 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1977 return 0;
1978
1979 /* find out the minimum page size supported */
1980 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1981
1982 /*
1983 * The virtual address, as well as the size of the mapping, must be
1984 * aligned (at least) to the size of the smallest page supported
1985 * by the hardware
1986 */
1987 if (!IS_ALIGNED(iova | size, min_pagesz)) {
1988 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1989 iova, size, min_pagesz);
1990 return 0;
1991 }
1992
1993 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1994
1995 /*
1996 * Keep iterating until we either unmap 'size' bytes (or more)
1997 * or we hit an area that isn't mapped.
1998 */
1999 while (unmapped < size) {
2000 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2001
2002 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2003 if (!unmapped_page)
2004 break;
2005
2006 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2007 iova, unmapped_page);
2008
2009 iova += unmapped_page;
2010 unmapped += unmapped_page;
2011 }
2012
2013 trace_unmap(orig_iova, size, unmapped);
2014 return unmapped;
2015 }
2016
2017 size_t iommu_unmap(struct iommu_domain *domain,
2018 unsigned long iova, size_t size)
2019 {
2020 struct iommu_iotlb_gather iotlb_gather;
2021 size_t ret;
2022
2023 iommu_iotlb_gather_init(&iotlb_gather);
2024 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2025 iommu_tlb_sync(domain, &iotlb_gather);
2026
2027 return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(iommu_unmap);
2030
2031 size_t iommu_unmap_fast(struct iommu_domain *domain,
2032 unsigned long iova, size_t size,
2033 struct iommu_iotlb_gather *iotlb_gather)
2034 {
2035 return __iommu_unmap(domain, iova, size, iotlb_gather);
2036 }
2037 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2038
2039 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2040 struct scatterlist *sg, unsigned int nents, int prot,
2041 gfp_t gfp)
2042 {
2043 size_t len = 0, mapped = 0;
2044 phys_addr_t start;
2045 unsigned int i = 0;
2046 int ret;
2047
2048 while (i <= nents) {
2049 phys_addr_t s_phys = sg_phys(sg);
2050
2051 if (len && s_phys != start + len) {
2052 ret = __iommu_map(domain, iova + mapped, start,
2053 len, prot, gfp);
2054
2055 if (ret)
2056 goto out_err;
2057
2058 mapped += len;
2059 len = 0;
2060 }
2061
2062 if (len) {
2063 len += sg->length;
2064 } else {
2065 len = sg->length;
2066 start = s_phys;
2067 }
2068
2069 if (++i < nents)
2070 sg = sg_next(sg);
2071 }
2072
2073 return mapped;
2074
2075 out_err:
2076 /* undo mappings already done */
2077 iommu_unmap(domain, iova, mapped);
2078
2079 return 0;
2080
2081 }
2082
2083 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2084 struct scatterlist *sg, unsigned int nents, int prot)
2085 {
2086 might_sleep();
2087 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2088 }
2089 EXPORT_SYMBOL_GPL(iommu_map_sg);
2090
2091 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2092 struct scatterlist *sg, unsigned int nents, int prot)
2093 {
2094 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2095 }
2096 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic);
2097
2098 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
2099 phys_addr_t paddr, u64 size, int prot)
2100 {
2101 if (unlikely(domain->ops->domain_window_enable == NULL))
2102 return -ENODEV;
2103
2104 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
2105 prot);
2106 }
2107 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
2108
2109 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
2110 {
2111 if (unlikely(domain->ops->domain_window_disable == NULL))
2112 return;
2113
2114 return domain->ops->domain_window_disable(domain, wnd_nr);
2115 }
2116 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
2117
2118 /**
2119 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2120 * @domain: the iommu domain where the fault has happened
2121 * @dev: the device where the fault has happened
2122 * @iova: the faulting address
2123 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2124 *
2125 * This function should be called by the low-level IOMMU implementations
2126 * whenever IOMMU faults happen, to allow high-level users, that are
2127 * interested in such events, to know about them.
2128 *
2129 * This event may be useful for several possible use cases:
2130 * - mere logging of the event
2131 * - dynamic TLB/PTE loading
2132 * - if restarting of the faulting device is required
2133 *
2134 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2135 * PTE/TLB loading will one day be supported, implementations will be able
2136 * to tell whether it succeeded or not according to this return value).
2137 *
2138 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2139 * (though fault handlers can also return -ENOSYS, in case they want to
2140 * elicit the default behavior of the IOMMU drivers).
2141 */
2142 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2143 unsigned long iova, int flags)
2144 {
2145 int ret = -ENOSYS;
2146
2147 /*
2148 * if upper layers showed interest and installed a fault handler,
2149 * invoke it.
2150 */
2151 if (domain->handler)
2152 ret = domain->handler(domain, dev, iova, flags,
2153 domain->handler_token);
2154
2155 trace_io_page_fault(dev, iova, flags);
2156 return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(report_iommu_fault);
2159
2160 static int __init iommu_init(void)
2161 {
2162 iommu_group_kset = kset_create_and_add("iommu_groups",
2163 NULL, kernel_kobj);
2164 BUG_ON(!iommu_group_kset);
2165
2166 iommu_debugfs_setup();
2167
2168 return 0;
2169 }
2170 core_initcall(iommu_init);
2171
2172 int iommu_domain_get_attr(struct iommu_domain *domain,
2173 enum iommu_attr attr, void *data)
2174 {
2175 struct iommu_domain_geometry *geometry;
2176 bool *paging;
2177 int ret = 0;
2178
2179 switch (attr) {
2180 case DOMAIN_ATTR_GEOMETRY:
2181 geometry = data;
2182 *geometry = domain->geometry;
2183
2184 break;
2185 case DOMAIN_ATTR_PAGING:
2186 paging = data;
2187 *paging = (domain->pgsize_bitmap != 0UL);
2188 break;
2189 default:
2190 if (!domain->ops->domain_get_attr)
2191 return -EINVAL;
2192
2193 ret = domain->ops->domain_get_attr(domain, attr, data);
2194 }
2195
2196 return ret;
2197 }
2198 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2199
2200 int iommu_domain_set_attr(struct iommu_domain *domain,
2201 enum iommu_attr attr, void *data)
2202 {
2203 int ret = 0;
2204
2205 switch (attr) {
2206 default:
2207 if (domain->ops->domain_set_attr == NULL)
2208 return -EINVAL;
2209
2210 ret = domain->ops->domain_set_attr(domain, attr, data);
2211 }
2212
2213 return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2216
2217 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2218 {
2219 const struct iommu_ops *ops = dev->bus->iommu_ops;
2220
2221 if (ops && ops->get_resv_regions)
2222 ops->get_resv_regions(dev, list);
2223 }
2224
2225 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2226 {
2227 const struct iommu_ops *ops = dev->bus->iommu_ops;
2228
2229 if (ops && ops->put_resv_regions)
2230 ops->put_resv_regions(dev, list);
2231 }
2232
2233 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2234 size_t length, int prot,
2235 enum iommu_resv_type type)
2236 {
2237 struct iommu_resv_region *region;
2238
2239 region = kzalloc(sizeof(*region), GFP_KERNEL);
2240 if (!region)
2241 return NULL;
2242
2243 INIT_LIST_HEAD(&region->list);
2244 region->start = start;
2245 region->length = length;
2246 region->prot = prot;
2247 region->type = type;
2248 return region;
2249 }
2250
2251 static int
2252 request_default_domain_for_dev(struct device *dev, unsigned long type)
2253 {
2254 struct iommu_domain *domain;
2255 struct iommu_group *group;
2256 int ret;
2257
2258 /* Device must already be in a group before calling this function */
2259 group = iommu_group_get(dev);
2260 if (!group)
2261 return -EINVAL;
2262
2263 mutex_lock(&group->mutex);
2264
2265 ret = 0;
2266 if (group->default_domain && group->default_domain->type == type)
2267 goto out;
2268
2269 /* Don't change mappings of existing devices */
2270 ret = -EBUSY;
2271 if (iommu_group_device_count(group) != 1)
2272 goto out;
2273
2274 ret = -ENOMEM;
2275 domain = __iommu_domain_alloc(dev->bus, type);
2276 if (!domain)
2277 goto out;
2278
2279 /* Attach the device to the domain */
2280 ret = __iommu_attach_group(domain, group);
2281 if (ret) {
2282 iommu_domain_free(domain);
2283 goto out;
2284 }
2285
2286 /* Make the domain the default for this group */
2287 if (group->default_domain)
2288 iommu_domain_free(group->default_domain);
2289 group->default_domain = domain;
2290
2291 iommu_group_create_direct_mappings(group, dev);
2292
2293 dev_info(dev, "Using iommu %s mapping\n",
2294 type == IOMMU_DOMAIN_DMA ? "dma" : "direct");
2295
2296 ret = 0;
2297 out:
2298 mutex_unlock(&group->mutex);
2299 iommu_group_put(group);
2300
2301 return ret;
2302 }
2303
2304 /* Request that a device is direct mapped by the IOMMU */
2305 int iommu_request_dm_for_dev(struct device *dev)
2306 {
2307 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY);
2308 }
2309
2310 /* Request that a device can't be direct mapped by the IOMMU */
2311 int iommu_request_dma_domain_for_dev(struct device *dev)
2312 {
2313 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA);
2314 }
2315
2316 void iommu_set_default_passthrough(bool cmd_line)
2317 {
2318 if (cmd_line)
2319 iommu_set_cmd_line_dma_api();
2320
2321 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2322 }
2323
2324 void iommu_set_default_translated(bool cmd_line)
2325 {
2326 if (cmd_line)
2327 iommu_set_cmd_line_dma_api();
2328
2329 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2330 }
2331
2332 bool iommu_default_passthrough(void)
2333 {
2334 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2335 }
2336 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2337
2338 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2339 {
2340 const struct iommu_ops *ops = NULL;
2341 struct iommu_device *iommu;
2342
2343 spin_lock(&iommu_device_lock);
2344 list_for_each_entry(iommu, &iommu_device_list, list)
2345 if (iommu->fwnode == fwnode) {
2346 ops = iommu->ops;
2347 break;
2348 }
2349 spin_unlock(&iommu_device_lock);
2350 return ops;
2351 }
2352
2353 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2354 const struct iommu_ops *ops)
2355 {
2356 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2357
2358 if (fwspec)
2359 return ops == fwspec->ops ? 0 : -EINVAL;
2360
2361 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
2362 if (!fwspec)
2363 return -ENOMEM;
2364
2365 of_node_get(to_of_node(iommu_fwnode));
2366 fwspec->iommu_fwnode = iommu_fwnode;
2367 fwspec->ops = ops;
2368 dev_iommu_fwspec_set(dev, fwspec);
2369 return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2372
2373 void iommu_fwspec_free(struct device *dev)
2374 {
2375 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2376
2377 if (fwspec) {
2378 fwnode_handle_put(fwspec->iommu_fwnode);
2379 kfree(fwspec);
2380 dev_iommu_fwspec_set(dev, NULL);
2381 }
2382 }
2383 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2384
2385 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2386 {
2387 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2388 size_t size;
2389 int i;
2390
2391 if (!fwspec)
2392 return -EINVAL;
2393
2394 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
2395 if (size > sizeof(*fwspec)) {
2396 fwspec = krealloc(fwspec, size, GFP_KERNEL);
2397 if (!fwspec)
2398 return -ENOMEM;
2399
2400 dev_iommu_fwspec_set(dev, fwspec);
2401 }
2402
2403 for (i = 0; i < num_ids; i++)
2404 fwspec->ids[fwspec->num_ids + i] = ids[i];
2405
2406 fwspec->num_ids += num_ids;
2407 return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2410
2411 /*
2412 * Per device IOMMU features.
2413 */
2414 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2415 {
2416 const struct iommu_ops *ops = dev->bus->iommu_ops;
2417
2418 if (ops && ops->dev_has_feat)
2419 return ops->dev_has_feat(dev, feat);
2420
2421 return false;
2422 }
2423 EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2424
2425 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2426 {
2427 const struct iommu_ops *ops = dev->bus->iommu_ops;
2428
2429 if (ops && ops->dev_enable_feat)
2430 return ops->dev_enable_feat(dev, feat);
2431
2432 return -ENODEV;
2433 }
2434 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2435
2436 /*
2437 * The device drivers should do the necessary cleanups before calling this.
2438 * For example, before disabling the aux-domain feature, the device driver
2439 * should detach all aux-domains. Otherwise, this will return -EBUSY.
2440 */
2441 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2442 {
2443 const struct iommu_ops *ops = dev->bus->iommu_ops;
2444
2445 if (ops && ops->dev_disable_feat)
2446 return ops->dev_disable_feat(dev, feat);
2447
2448 return -EBUSY;
2449 }
2450 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2451
2452 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2453 {
2454 const struct iommu_ops *ops = dev->bus->iommu_ops;
2455
2456 if (ops && ops->dev_feat_enabled)
2457 return ops->dev_feat_enabled(dev, feat);
2458
2459 return false;
2460 }
2461 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2462
2463 /*
2464 * Aux-domain specific attach/detach.
2465 *
2466 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2467 * true. Also, as long as domains are attached to a device through this
2468 * interface, any tries to call iommu_attach_device() should fail
2469 * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2470 * This should make us safe against a device being attached to a guest as a
2471 * whole while there are still pasid users on it (aux and sva).
2472 */
2473 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2474 {
2475 int ret = -ENODEV;
2476
2477 if (domain->ops->aux_attach_dev)
2478 ret = domain->ops->aux_attach_dev(domain, dev);
2479
2480 if (!ret)
2481 trace_attach_device_to_domain(dev);
2482
2483 return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2486
2487 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2488 {
2489 if (domain->ops->aux_detach_dev) {
2490 domain->ops->aux_detach_dev(domain, dev);
2491 trace_detach_device_from_domain(dev);
2492 }
2493 }
2494 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2495
2496 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2497 {
2498 int ret = -ENODEV;
2499
2500 if (domain->ops->aux_get_pasid)
2501 ret = domain->ops->aux_get_pasid(domain, dev);
2502
2503 return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2506
2507 /**
2508 * iommu_sva_bind_device() - Bind a process address space to a device
2509 * @dev: the device
2510 * @mm: the mm to bind, caller must hold a reference to it
2511 *
2512 * Create a bond between device and address space, allowing the device to access
2513 * the mm using the returned PASID. If a bond already exists between @device and
2514 * @mm, it is returned and an additional reference is taken. Caller must call
2515 * iommu_sva_unbind_device() to release each reference.
2516 *
2517 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2518 * initialize the required SVA features.
2519 *
2520 * On error, returns an ERR_PTR value.
2521 */
2522 struct iommu_sva *
2523 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2524 {
2525 struct iommu_group *group;
2526 struct iommu_sva *handle = ERR_PTR(-EINVAL);
2527 const struct iommu_ops *ops = dev->bus->iommu_ops;
2528
2529 if (!ops || !ops->sva_bind)
2530 return ERR_PTR(-ENODEV);
2531
2532 group = iommu_group_get(dev);
2533 if (!group)
2534 return ERR_PTR(-ENODEV);
2535
2536 /* Ensure device count and domain don't change while we're binding */
2537 mutex_lock(&group->mutex);
2538
2539 /*
2540 * To keep things simple, SVA currently doesn't support IOMMU groups
2541 * with more than one device. Existing SVA-capable systems are not
2542 * affected by the problems that required IOMMU groups (lack of ACS
2543 * isolation, device ID aliasing and other hardware issues).
2544 */
2545 if (iommu_group_device_count(group) != 1)
2546 goto out_unlock;
2547
2548 handle = ops->sva_bind(dev, mm, drvdata);
2549
2550 out_unlock:
2551 mutex_unlock(&group->mutex);
2552 iommu_group_put(group);
2553
2554 return handle;
2555 }
2556 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2557
2558 /**
2559 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2560 * @handle: the handle returned by iommu_sva_bind_device()
2561 *
2562 * Put reference to a bond between device and address space. The device should
2563 * not be issuing any more transaction for this PASID. All outstanding page
2564 * requests for this PASID must have been flushed to the IOMMU.
2565 *
2566 * Returns 0 on success, or an error value
2567 */
2568 void iommu_sva_unbind_device(struct iommu_sva *handle)
2569 {
2570 struct iommu_group *group;
2571 struct device *dev = handle->dev;
2572 const struct iommu_ops *ops = dev->bus->iommu_ops;
2573
2574 if (!ops || !ops->sva_unbind)
2575 return;
2576
2577 group = iommu_group_get(dev);
2578 if (!group)
2579 return;
2580
2581 mutex_lock(&group->mutex);
2582 ops->sva_unbind(handle);
2583 mutex_unlock(&group->mutex);
2584
2585 iommu_group_put(group);
2586 }
2587 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2588
2589 int iommu_sva_set_ops(struct iommu_sva *handle,
2590 const struct iommu_sva_ops *sva_ops)
2591 {
2592 if (handle->ops && handle->ops != sva_ops)
2593 return -EEXIST;
2594
2595 handle->ops = sva_ops;
2596 return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(iommu_sva_set_ops);
2599
2600 int iommu_sva_get_pasid(struct iommu_sva *handle)
2601 {
2602 const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
2603
2604 if (!ops || !ops->sva_get_pasid)
2605 return IOMMU_PASID_INVALID;
2606
2607 return ops->sva_get_pasid(handle);
2608 }
2609 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);