]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/iommu.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #define pr_fmt(fmt) "iommu: " fmt
20
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/iommu.h>
29 #include <linux/idr.h>
30 #include <linux/notifier.h>
31 #include <linux/err.h>
32 #include <linux/pci.h>
33 #include <linux/bitops.h>
34 #include <linux/property.h>
35 #include <trace/events/iommu.h>
36
37 static struct kset *iommu_group_kset;
38 static DEFINE_IDA(iommu_group_ida);
39 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
40
41 struct iommu_callback_data {
42 const struct iommu_ops *ops;
43 };
44
45 struct iommu_group {
46 struct kobject kobj;
47 struct kobject *devices_kobj;
48 struct list_head devices;
49 struct mutex mutex;
50 struct blocking_notifier_head notifier;
51 void *iommu_data;
52 void (*iommu_data_release)(void *iommu_data);
53 char *name;
54 int id;
55 struct iommu_domain *default_domain;
56 struct iommu_domain *domain;
57 };
58
59 struct group_device {
60 struct list_head list;
61 struct device *dev;
62 char *name;
63 };
64
65 struct iommu_group_attribute {
66 struct attribute attr;
67 ssize_t (*show)(struct iommu_group *group, char *buf);
68 ssize_t (*store)(struct iommu_group *group,
69 const char *buf, size_t count);
70 };
71
72 static const char * const iommu_group_resv_type_string[] = {
73 [IOMMU_RESV_DIRECT] = "direct",
74 [IOMMU_RESV_RESERVED] = "reserved",
75 [IOMMU_RESV_MSI] = "msi",
76 [IOMMU_RESV_SW_MSI] = "msi",
77 };
78
79 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
80 struct iommu_group_attribute iommu_group_attr_##_name = \
81 __ATTR(_name, _mode, _show, _store)
82
83 #define to_iommu_group_attr(_attr) \
84 container_of(_attr, struct iommu_group_attribute, attr)
85 #define to_iommu_group(_kobj) \
86 container_of(_kobj, struct iommu_group, kobj)
87
88 static LIST_HEAD(iommu_device_list);
89 static DEFINE_SPINLOCK(iommu_device_lock);
90
91 int iommu_device_register(struct iommu_device *iommu)
92 {
93 spin_lock(&iommu_device_lock);
94 list_add_tail(&iommu->list, &iommu_device_list);
95 spin_unlock(&iommu_device_lock);
96
97 return 0;
98 }
99
100 void iommu_device_unregister(struct iommu_device *iommu)
101 {
102 spin_lock(&iommu_device_lock);
103 list_del(&iommu->list);
104 spin_unlock(&iommu_device_lock);
105 }
106
107 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
108 unsigned type);
109 static int __iommu_attach_device(struct iommu_domain *domain,
110 struct device *dev);
111 static int __iommu_attach_group(struct iommu_domain *domain,
112 struct iommu_group *group);
113 static void __iommu_detach_group(struct iommu_domain *domain,
114 struct iommu_group *group);
115
116 static int __init iommu_set_def_domain_type(char *str)
117 {
118 bool pt;
119
120 if (!str || strtobool(str, &pt))
121 return -EINVAL;
122
123 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
124 return 0;
125 }
126 early_param("iommu.passthrough", iommu_set_def_domain_type);
127
128 static ssize_t iommu_group_attr_show(struct kobject *kobj,
129 struct attribute *__attr, char *buf)
130 {
131 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
132 struct iommu_group *group = to_iommu_group(kobj);
133 ssize_t ret = -EIO;
134
135 if (attr->show)
136 ret = attr->show(group, buf);
137 return ret;
138 }
139
140 static ssize_t iommu_group_attr_store(struct kobject *kobj,
141 struct attribute *__attr,
142 const char *buf, size_t count)
143 {
144 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
145 struct iommu_group *group = to_iommu_group(kobj);
146 ssize_t ret = -EIO;
147
148 if (attr->store)
149 ret = attr->store(group, buf, count);
150 return ret;
151 }
152
153 static const struct sysfs_ops iommu_group_sysfs_ops = {
154 .show = iommu_group_attr_show,
155 .store = iommu_group_attr_store,
156 };
157
158 static int iommu_group_create_file(struct iommu_group *group,
159 struct iommu_group_attribute *attr)
160 {
161 return sysfs_create_file(&group->kobj, &attr->attr);
162 }
163
164 static void iommu_group_remove_file(struct iommu_group *group,
165 struct iommu_group_attribute *attr)
166 {
167 sysfs_remove_file(&group->kobj, &attr->attr);
168 }
169
170 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
171 {
172 return sprintf(buf, "%s\n", group->name);
173 }
174
175 /**
176 * iommu_insert_resv_region - Insert a new region in the
177 * list of reserved regions.
178 * @new: new region to insert
179 * @regions: list of regions
180 *
181 * The new element is sorted by address with respect to the other
182 * regions of the same type. In case it overlaps with another
183 * region of the same type, regions are merged. In case it
184 * overlaps with another region of different type, regions are
185 * not merged.
186 */
187 static int iommu_insert_resv_region(struct iommu_resv_region *new,
188 struct list_head *regions)
189 {
190 struct iommu_resv_region *region;
191 phys_addr_t start = new->start;
192 phys_addr_t end = new->start + new->length - 1;
193 struct list_head *pos = regions->next;
194
195 while (pos != regions) {
196 struct iommu_resv_region *entry =
197 list_entry(pos, struct iommu_resv_region, list);
198 phys_addr_t a = entry->start;
199 phys_addr_t b = entry->start + entry->length - 1;
200 int type = entry->type;
201
202 if (end < a) {
203 goto insert;
204 } else if (start > b) {
205 pos = pos->next;
206 } else if ((start >= a) && (end <= b)) {
207 if (new->type == type)
208 goto done;
209 else
210 pos = pos->next;
211 } else {
212 if (new->type == type) {
213 phys_addr_t new_start = min(a, start);
214 phys_addr_t new_end = max(b, end);
215
216 list_del(&entry->list);
217 entry->start = new_start;
218 entry->length = new_end - new_start + 1;
219 iommu_insert_resv_region(entry, regions);
220 } else {
221 pos = pos->next;
222 }
223 }
224 }
225 insert:
226 region = iommu_alloc_resv_region(new->start, new->length,
227 new->prot, new->type);
228 if (!region)
229 return -ENOMEM;
230
231 list_add_tail(&region->list, pos);
232 done:
233 return 0;
234 }
235
236 static int
237 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
238 struct list_head *group_resv_regions)
239 {
240 struct iommu_resv_region *entry;
241 int ret = 0;
242
243 list_for_each_entry(entry, dev_resv_regions, list) {
244 ret = iommu_insert_resv_region(entry, group_resv_regions);
245 if (ret)
246 break;
247 }
248 return ret;
249 }
250
251 int iommu_get_group_resv_regions(struct iommu_group *group,
252 struct list_head *head)
253 {
254 struct group_device *device;
255 int ret = 0;
256
257 mutex_lock(&group->mutex);
258 list_for_each_entry(device, &group->devices, list) {
259 struct list_head dev_resv_regions;
260
261 INIT_LIST_HEAD(&dev_resv_regions);
262 iommu_get_resv_regions(device->dev, &dev_resv_regions);
263 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
264 iommu_put_resv_regions(device->dev, &dev_resv_regions);
265 if (ret)
266 break;
267 }
268 mutex_unlock(&group->mutex);
269 return ret;
270 }
271 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
272
273 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
274 char *buf)
275 {
276 struct iommu_resv_region *region, *next;
277 struct list_head group_resv_regions;
278 char *str = buf;
279
280 INIT_LIST_HEAD(&group_resv_regions);
281 iommu_get_group_resv_regions(group, &group_resv_regions);
282
283 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
284 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
285 (long long int)region->start,
286 (long long int)(region->start +
287 region->length - 1),
288 iommu_group_resv_type_string[region->type]);
289 kfree(region);
290 }
291
292 return (str - buf);
293 }
294
295 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
296
297 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
298 iommu_group_show_resv_regions, NULL);
299
300 static void iommu_group_release(struct kobject *kobj)
301 {
302 struct iommu_group *group = to_iommu_group(kobj);
303
304 pr_debug("Releasing group %d\n", group->id);
305
306 if (group->iommu_data_release)
307 group->iommu_data_release(group->iommu_data);
308
309 ida_simple_remove(&iommu_group_ida, group->id);
310
311 if (group->default_domain)
312 iommu_domain_free(group->default_domain);
313
314 kfree(group->name);
315 kfree(group);
316 }
317
318 static struct kobj_type iommu_group_ktype = {
319 .sysfs_ops = &iommu_group_sysfs_ops,
320 .release = iommu_group_release,
321 };
322
323 /**
324 * iommu_group_alloc - Allocate a new group
325 * @name: Optional name to associate with group, visible in sysfs
326 *
327 * This function is called by an iommu driver to allocate a new iommu
328 * group. The iommu group represents the minimum granularity of the iommu.
329 * Upon successful return, the caller holds a reference to the supplied
330 * group in order to hold the group until devices are added. Use
331 * iommu_group_put() to release this extra reference count, allowing the
332 * group to be automatically reclaimed once it has no devices or external
333 * references.
334 */
335 struct iommu_group *iommu_group_alloc(void)
336 {
337 struct iommu_group *group;
338 int ret;
339
340 group = kzalloc(sizeof(*group), GFP_KERNEL);
341 if (!group)
342 return ERR_PTR(-ENOMEM);
343
344 group->kobj.kset = iommu_group_kset;
345 mutex_init(&group->mutex);
346 INIT_LIST_HEAD(&group->devices);
347 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
348
349 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
350 if (ret < 0) {
351 kfree(group);
352 return ERR_PTR(ret);
353 }
354 group->id = ret;
355
356 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
357 NULL, "%d", group->id);
358 if (ret) {
359 ida_simple_remove(&iommu_group_ida, group->id);
360 kfree(group);
361 return ERR_PTR(ret);
362 }
363
364 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
365 if (!group->devices_kobj) {
366 kobject_put(&group->kobj); /* triggers .release & free */
367 return ERR_PTR(-ENOMEM);
368 }
369
370 /*
371 * The devices_kobj holds a reference on the group kobject, so
372 * as long as that exists so will the group. We can therefore
373 * use the devices_kobj for reference counting.
374 */
375 kobject_put(&group->kobj);
376
377 ret = iommu_group_create_file(group,
378 &iommu_group_attr_reserved_regions);
379 if (ret)
380 return ERR_PTR(ret);
381
382 pr_debug("Allocated group %d\n", group->id);
383
384 return group;
385 }
386 EXPORT_SYMBOL_GPL(iommu_group_alloc);
387
388 struct iommu_group *iommu_group_get_by_id(int id)
389 {
390 struct kobject *group_kobj;
391 struct iommu_group *group;
392 const char *name;
393
394 if (!iommu_group_kset)
395 return NULL;
396
397 name = kasprintf(GFP_KERNEL, "%d", id);
398 if (!name)
399 return NULL;
400
401 group_kobj = kset_find_obj(iommu_group_kset, name);
402 kfree(name);
403
404 if (!group_kobj)
405 return NULL;
406
407 group = container_of(group_kobj, struct iommu_group, kobj);
408 BUG_ON(group->id != id);
409
410 kobject_get(group->devices_kobj);
411 kobject_put(&group->kobj);
412
413 return group;
414 }
415 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
416
417 /**
418 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
419 * @group: the group
420 *
421 * iommu drivers can store data in the group for use when doing iommu
422 * operations. This function provides a way to retrieve it. Caller
423 * should hold a group reference.
424 */
425 void *iommu_group_get_iommudata(struct iommu_group *group)
426 {
427 return group->iommu_data;
428 }
429 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
430
431 /**
432 * iommu_group_set_iommudata - set iommu_data for a group
433 * @group: the group
434 * @iommu_data: new data
435 * @release: release function for iommu_data
436 *
437 * iommu drivers can store data in the group for use when doing iommu
438 * operations. This function provides a way to set the data after
439 * the group has been allocated. Caller should hold a group reference.
440 */
441 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
442 void (*release)(void *iommu_data))
443 {
444 group->iommu_data = iommu_data;
445 group->iommu_data_release = release;
446 }
447 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
448
449 /**
450 * iommu_group_set_name - set name for a group
451 * @group: the group
452 * @name: name
453 *
454 * Allow iommu driver to set a name for a group. When set it will
455 * appear in a name attribute file under the group in sysfs.
456 */
457 int iommu_group_set_name(struct iommu_group *group, const char *name)
458 {
459 int ret;
460
461 if (group->name) {
462 iommu_group_remove_file(group, &iommu_group_attr_name);
463 kfree(group->name);
464 group->name = NULL;
465 if (!name)
466 return 0;
467 }
468
469 group->name = kstrdup(name, GFP_KERNEL);
470 if (!group->name)
471 return -ENOMEM;
472
473 ret = iommu_group_create_file(group, &iommu_group_attr_name);
474 if (ret) {
475 kfree(group->name);
476 group->name = NULL;
477 return ret;
478 }
479
480 return 0;
481 }
482 EXPORT_SYMBOL_GPL(iommu_group_set_name);
483
484 static int iommu_group_create_direct_mappings(struct iommu_group *group,
485 struct device *dev)
486 {
487 struct iommu_domain *domain = group->default_domain;
488 struct iommu_resv_region *entry;
489 struct list_head mappings;
490 unsigned long pg_size;
491 int ret = 0;
492
493 if (!domain || domain->type != IOMMU_DOMAIN_DMA)
494 return 0;
495
496 BUG_ON(!domain->pgsize_bitmap);
497
498 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
499 INIT_LIST_HEAD(&mappings);
500
501 iommu_get_resv_regions(dev, &mappings);
502
503 /* We need to consider overlapping regions for different devices */
504 list_for_each_entry(entry, &mappings, list) {
505 dma_addr_t start, end, addr;
506
507 if (domain->ops->apply_resv_region)
508 domain->ops->apply_resv_region(dev, domain, entry);
509
510 start = ALIGN(entry->start, pg_size);
511 end = ALIGN(entry->start + entry->length, pg_size);
512
513 if (entry->type != IOMMU_RESV_DIRECT)
514 continue;
515
516 for (addr = start; addr < end; addr += pg_size) {
517 phys_addr_t phys_addr;
518
519 phys_addr = iommu_iova_to_phys(domain, addr);
520 if (phys_addr)
521 continue;
522
523 ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
524 if (ret)
525 goto out;
526 }
527
528 }
529
530 out:
531 iommu_put_resv_regions(dev, &mappings);
532
533 return ret;
534 }
535
536 /**
537 * iommu_group_add_device - add a device to an iommu group
538 * @group: the group into which to add the device (reference should be held)
539 * @dev: the device
540 *
541 * This function is called by an iommu driver to add a device into a
542 * group. Adding a device increments the group reference count.
543 */
544 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
545 {
546 int ret, i = 0;
547 struct group_device *device;
548
549 device = kzalloc(sizeof(*device), GFP_KERNEL);
550 if (!device)
551 return -ENOMEM;
552
553 device->dev = dev;
554
555 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
556 if (ret)
557 goto err_free_device;
558
559 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
560 rename:
561 if (!device->name) {
562 ret = -ENOMEM;
563 goto err_remove_link;
564 }
565
566 ret = sysfs_create_link_nowarn(group->devices_kobj,
567 &dev->kobj, device->name);
568 if (ret) {
569 if (ret == -EEXIST && i >= 0) {
570 /*
571 * Account for the slim chance of collision
572 * and append an instance to the name.
573 */
574 kfree(device->name);
575 device->name = kasprintf(GFP_KERNEL, "%s.%d",
576 kobject_name(&dev->kobj), i++);
577 goto rename;
578 }
579 goto err_free_name;
580 }
581
582 kobject_get(group->devices_kobj);
583
584 dev->iommu_group = group;
585
586 iommu_group_create_direct_mappings(group, dev);
587
588 mutex_lock(&group->mutex);
589 list_add_tail(&device->list, &group->devices);
590 if (group->domain)
591 ret = __iommu_attach_device(group->domain, dev);
592 mutex_unlock(&group->mutex);
593 if (ret)
594 goto err_put_group;
595
596 /* Notify any listeners about change to group. */
597 blocking_notifier_call_chain(&group->notifier,
598 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
599
600 trace_add_device_to_group(group->id, dev);
601
602 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
603
604 return 0;
605
606 err_put_group:
607 mutex_lock(&group->mutex);
608 list_del(&device->list);
609 mutex_unlock(&group->mutex);
610 dev->iommu_group = NULL;
611 kobject_put(group->devices_kobj);
612 err_free_name:
613 kfree(device->name);
614 err_remove_link:
615 sysfs_remove_link(&dev->kobj, "iommu_group");
616 err_free_device:
617 kfree(device);
618 pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret);
619 return ret;
620 }
621 EXPORT_SYMBOL_GPL(iommu_group_add_device);
622
623 /**
624 * iommu_group_remove_device - remove a device from it's current group
625 * @dev: device to be removed
626 *
627 * This function is called by an iommu driver to remove the device from
628 * it's current group. This decrements the iommu group reference count.
629 */
630 void iommu_group_remove_device(struct device *dev)
631 {
632 struct iommu_group *group = dev->iommu_group;
633 struct group_device *tmp_device, *device = NULL;
634
635 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
636
637 /* Pre-notify listeners that a device is being removed. */
638 blocking_notifier_call_chain(&group->notifier,
639 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
640
641 mutex_lock(&group->mutex);
642 list_for_each_entry(tmp_device, &group->devices, list) {
643 if (tmp_device->dev == dev) {
644 device = tmp_device;
645 list_del(&device->list);
646 break;
647 }
648 }
649 mutex_unlock(&group->mutex);
650
651 if (!device)
652 return;
653
654 sysfs_remove_link(group->devices_kobj, device->name);
655 sysfs_remove_link(&dev->kobj, "iommu_group");
656
657 trace_remove_device_from_group(group->id, dev);
658
659 kfree(device->name);
660 kfree(device);
661 dev->iommu_group = NULL;
662 kobject_put(group->devices_kobj);
663 }
664 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
665
666 static int iommu_group_device_count(struct iommu_group *group)
667 {
668 struct group_device *entry;
669 int ret = 0;
670
671 list_for_each_entry(entry, &group->devices, list)
672 ret++;
673
674 return ret;
675 }
676
677 /**
678 * iommu_group_for_each_dev - iterate over each device in the group
679 * @group: the group
680 * @data: caller opaque data to be passed to callback function
681 * @fn: caller supplied callback function
682 *
683 * This function is called by group users to iterate over group devices.
684 * Callers should hold a reference count to the group during callback.
685 * The group->mutex is held across callbacks, which will block calls to
686 * iommu_group_add/remove_device.
687 */
688 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
689 int (*fn)(struct device *, void *))
690 {
691 struct group_device *device;
692 int ret = 0;
693
694 list_for_each_entry(device, &group->devices, list) {
695 ret = fn(device->dev, data);
696 if (ret)
697 break;
698 }
699 return ret;
700 }
701
702
703 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
704 int (*fn)(struct device *, void *))
705 {
706 int ret;
707
708 mutex_lock(&group->mutex);
709 ret = __iommu_group_for_each_dev(group, data, fn);
710 mutex_unlock(&group->mutex);
711
712 return ret;
713 }
714 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
715
716 /**
717 * iommu_group_get - Return the group for a device and increment reference
718 * @dev: get the group that this device belongs to
719 *
720 * This function is called by iommu drivers and users to get the group
721 * for the specified device. If found, the group is returned and the group
722 * reference in incremented, else NULL.
723 */
724 struct iommu_group *iommu_group_get(struct device *dev)
725 {
726 struct iommu_group *group = dev->iommu_group;
727
728 if (group)
729 kobject_get(group->devices_kobj);
730
731 return group;
732 }
733 EXPORT_SYMBOL_GPL(iommu_group_get);
734
735 /**
736 * iommu_group_ref_get - Increment reference on a group
737 * @group: the group to use, must not be NULL
738 *
739 * This function is called by iommu drivers to take additional references on an
740 * existing group. Returns the given group for convenience.
741 */
742 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
743 {
744 kobject_get(group->devices_kobj);
745 return group;
746 }
747
748 /**
749 * iommu_group_put - Decrement group reference
750 * @group: the group to use
751 *
752 * This function is called by iommu drivers and users to release the
753 * iommu group. Once the reference count is zero, the group is released.
754 */
755 void iommu_group_put(struct iommu_group *group)
756 {
757 if (group)
758 kobject_put(group->devices_kobj);
759 }
760 EXPORT_SYMBOL_GPL(iommu_group_put);
761
762 /**
763 * iommu_group_register_notifier - Register a notifier for group changes
764 * @group: the group to watch
765 * @nb: notifier block to signal
766 *
767 * This function allows iommu group users to track changes in a group.
768 * See include/linux/iommu.h for actions sent via this notifier. Caller
769 * should hold a reference to the group throughout notifier registration.
770 */
771 int iommu_group_register_notifier(struct iommu_group *group,
772 struct notifier_block *nb)
773 {
774 return blocking_notifier_chain_register(&group->notifier, nb);
775 }
776 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
777
778 /**
779 * iommu_group_unregister_notifier - Unregister a notifier
780 * @group: the group to watch
781 * @nb: notifier block to signal
782 *
783 * Unregister a previously registered group notifier block.
784 */
785 int iommu_group_unregister_notifier(struct iommu_group *group,
786 struct notifier_block *nb)
787 {
788 return blocking_notifier_chain_unregister(&group->notifier, nb);
789 }
790 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
791
792 /**
793 * iommu_group_id - Return ID for a group
794 * @group: the group to ID
795 *
796 * Return the unique ID for the group matching the sysfs group number.
797 */
798 int iommu_group_id(struct iommu_group *group)
799 {
800 return group->id;
801 }
802 EXPORT_SYMBOL_GPL(iommu_group_id);
803
804 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
805 unsigned long *devfns);
806
807 /*
808 * To consider a PCI device isolated, we require ACS to support Source
809 * Validation, Request Redirection, Completer Redirection, and Upstream
810 * Forwarding. This effectively means that devices cannot spoof their
811 * requester ID, requests and completions cannot be redirected, and all
812 * transactions are forwarded upstream, even as it passes through a
813 * bridge where the target device is downstream.
814 */
815 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
816
817 /*
818 * For multifunction devices which are not isolated from each other, find
819 * all the other non-isolated functions and look for existing groups. For
820 * each function, we also need to look for aliases to or from other devices
821 * that may already have a group.
822 */
823 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
824 unsigned long *devfns)
825 {
826 struct pci_dev *tmp = NULL;
827 struct iommu_group *group;
828
829 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
830 return NULL;
831
832 for_each_pci_dev(tmp) {
833 if (tmp == pdev || tmp->bus != pdev->bus ||
834 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
835 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
836 continue;
837
838 group = get_pci_alias_group(tmp, devfns);
839 if (group) {
840 pci_dev_put(tmp);
841 return group;
842 }
843 }
844
845 return NULL;
846 }
847
848 /*
849 * Look for aliases to or from the given device for existing groups. DMA
850 * aliases are only supported on the same bus, therefore the search
851 * space is quite small (especially since we're really only looking at pcie
852 * device, and therefore only expect multiple slots on the root complex or
853 * downstream switch ports). It's conceivable though that a pair of
854 * multifunction devices could have aliases between them that would cause a
855 * loop. To prevent this, we use a bitmap to track where we've been.
856 */
857 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
858 unsigned long *devfns)
859 {
860 struct pci_dev *tmp = NULL;
861 struct iommu_group *group;
862
863 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
864 return NULL;
865
866 group = iommu_group_get(&pdev->dev);
867 if (group)
868 return group;
869
870 for_each_pci_dev(tmp) {
871 if (tmp == pdev || tmp->bus != pdev->bus)
872 continue;
873
874 /* We alias them or they alias us */
875 if (pci_devs_are_dma_aliases(pdev, tmp)) {
876 group = get_pci_alias_group(tmp, devfns);
877 if (group) {
878 pci_dev_put(tmp);
879 return group;
880 }
881
882 group = get_pci_function_alias_group(tmp, devfns);
883 if (group) {
884 pci_dev_put(tmp);
885 return group;
886 }
887 }
888 }
889
890 return NULL;
891 }
892
893 struct group_for_pci_data {
894 struct pci_dev *pdev;
895 struct iommu_group *group;
896 };
897
898 /*
899 * DMA alias iterator callback, return the last seen device. Stop and return
900 * the IOMMU group if we find one along the way.
901 */
902 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
903 {
904 struct group_for_pci_data *data = opaque;
905
906 data->pdev = pdev;
907 data->group = iommu_group_get(&pdev->dev);
908
909 return data->group != NULL;
910 }
911
912 /*
913 * Generic device_group call-back function. It just allocates one
914 * iommu-group per device.
915 */
916 struct iommu_group *generic_device_group(struct device *dev)
917 {
918 struct iommu_group *group;
919
920 group = iommu_group_alloc();
921 if (IS_ERR(group))
922 return NULL;
923
924 return group;
925 }
926
927 /*
928 * Use standard PCI bus topology, isolation features, and DMA alias quirks
929 * to find or create an IOMMU group for a device.
930 */
931 struct iommu_group *pci_device_group(struct device *dev)
932 {
933 struct pci_dev *pdev = to_pci_dev(dev);
934 struct group_for_pci_data data;
935 struct pci_bus *bus;
936 struct iommu_group *group = NULL;
937 u64 devfns[4] = { 0 };
938
939 if (WARN_ON(!dev_is_pci(dev)))
940 return ERR_PTR(-EINVAL);
941
942 /*
943 * Find the upstream DMA alias for the device. A device must not
944 * be aliased due to topology in order to have its own IOMMU group.
945 * If we find an alias along the way that already belongs to a
946 * group, use it.
947 */
948 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
949 return data.group;
950
951 pdev = data.pdev;
952
953 /*
954 * Continue upstream from the point of minimum IOMMU granularity
955 * due to aliases to the point where devices are protected from
956 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
957 * group, use it.
958 */
959 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
960 if (!bus->self)
961 continue;
962
963 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
964 break;
965
966 pdev = bus->self;
967
968 group = iommu_group_get(&pdev->dev);
969 if (group)
970 return group;
971 }
972
973 /*
974 * Look for existing groups on device aliases. If we alias another
975 * device or another device aliases us, use the same group.
976 */
977 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
978 if (group)
979 return group;
980
981 /*
982 * Look for existing groups on non-isolated functions on the same
983 * slot and aliases of those funcions, if any. No need to clear
984 * the search bitmap, the tested devfns are still valid.
985 */
986 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
987 if (group)
988 return group;
989
990 /* No shared group found, allocate new */
991 group = iommu_group_alloc();
992 if (IS_ERR(group))
993 return NULL;
994
995 return group;
996 }
997
998 /**
999 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1000 * @dev: target device
1001 *
1002 * This function is intended to be called by IOMMU drivers and extended to
1003 * support common, bus-defined algorithms when determining or creating the
1004 * IOMMU group for a device. On success, the caller will hold a reference
1005 * to the returned IOMMU group, which will already include the provided
1006 * device. The reference should be released with iommu_group_put().
1007 */
1008 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1009 {
1010 const struct iommu_ops *ops = dev->bus->iommu_ops;
1011 struct iommu_group *group;
1012 int ret;
1013
1014 group = iommu_group_get(dev);
1015 if (group)
1016 return group;
1017
1018 group = ERR_PTR(-EINVAL);
1019
1020 if (ops && ops->device_group)
1021 group = ops->device_group(dev);
1022
1023 if (IS_ERR(group))
1024 return group;
1025
1026 /*
1027 * Try to allocate a default domain - needs support from the
1028 * IOMMU driver.
1029 */
1030 if (!group->default_domain) {
1031 struct iommu_domain *dom;
1032
1033 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1034 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1035 dev_warn(dev,
1036 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1037 iommu_def_domain_type);
1038 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1039 }
1040
1041 group->default_domain = dom;
1042 if (!group->domain)
1043 group->domain = dom;
1044 }
1045
1046 ret = iommu_group_add_device(group, dev);
1047 if (ret) {
1048 iommu_group_put(group);
1049 return ERR_PTR(ret);
1050 }
1051
1052 return group;
1053 }
1054
1055 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1056 {
1057 return group->default_domain;
1058 }
1059
1060 static int add_iommu_group(struct device *dev, void *data)
1061 {
1062 struct iommu_callback_data *cb = data;
1063 const struct iommu_ops *ops = cb->ops;
1064 int ret;
1065
1066 if (!ops->add_device)
1067 return 0;
1068
1069 WARN_ON(dev->iommu_group);
1070
1071 ret = ops->add_device(dev);
1072
1073 /*
1074 * We ignore -ENODEV errors for now, as they just mean that the
1075 * device is not translated by an IOMMU. We still care about
1076 * other errors and fail to initialize when they happen.
1077 */
1078 if (ret == -ENODEV)
1079 ret = 0;
1080
1081 return ret;
1082 }
1083
1084 static int remove_iommu_group(struct device *dev, void *data)
1085 {
1086 struct iommu_callback_data *cb = data;
1087 const struct iommu_ops *ops = cb->ops;
1088
1089 if (ops->remove_device && dev->iommu_group)
1090 ops->remove_device(dev);
1091
1092 return 0;
1093 }
1094
1095 static int iommu_bus_notifier(struct notifier_block *nb,
1096 unsigned long action, void *data)
1097 {
1098 struct device *dev = data;
1099 const struct iommu_ops *ops = dev->bus->iommu_ops;
1100 struct iommu_group *group;
1101 unsigned long group_action = 0;
1102
1103 /*
1104 * ADD/DEL call into iommu driver ops if provided, which may
1105 * result in ADD/DEL notifiers to group->notifier
1106 */
1107 if (action == BUS_NOTIFY_ADD_DEVICE) {
1108 if (ops->add_device) {
1109 int ret;
1110
1111 ret = ops->add_device(dev);
1112 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1113 }
1114 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1115 if (ops->remove_device && dev->iommu_group) {
1116 ops->remove_device(dev);
1117 return 0;
1118 }
1119 }
1120
1121 /*
1122 * Remaining BUS_NOTIFYs get filtered and republished to the
1123 * group, if anyone is listening
1124 */
1125 group = iommu_group_get(dev);
1126 if (!group)
1127 return 0;
1128
1129 switch (action) {
1130 case BUS_NOTIFY_BIND_DRIVER:
1131 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1132 break;
1133 case BUS_NOTIFY_BOUND_DRIVER:
1134 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1135 break;
1136 case BUS_NOTIFY_UNBIND_DRIVER:
1137 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1138 break;
1139 case BUS_NOTIFY_UNBOUND_DRIVER:
1140 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1141 break;
1142 }
1143
1144 if (group_action)
1145 blocking_notifier_call_chain(&group->notifier,
1146 group_action, dev);
1147
1148 iommu_group_put(group);
1149 return 0;
1150 }
1151
1152 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1153 {
1154 int err;
1155 struct notifier_block *nb;
1156 struct iommu_callback_data cb = {
1157 .ops = ops,
1158 };
1159
1160 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1161 if (!nb)
1162 return -ENOMEM;
1163
1164 nb->notifier_call = iommu_bus_notifier;
1165
1166 err = bus_register_notifier(bus, nb);
1167 if (err)
1168 goto out_free;
1169
1170 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1171 if (err)
1172 goto out_err;
1173
1174
1175 return 0;
1176
1177 out_err:
1178 /* Clean up */
1179 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1180 bus_unregister_notifier(bus, nb);
1181
1182 out_free:
1183 kfree(nb);
1184
1185 return err;
1186 }
1187
1188 /**
1189 * bus_set_iommu - set iommu-callbacks for the bus
1190 * @bus: bus.
1191 * @ops: the callbacks provided by the iommu-driver
1192 *
1193 * This function is called by an iommu driver to set the iommu methods
1194 * used for a particular bus. Drivers for devices on that bus can use
1195 * the iommu-api after these ops are registered.
1196 * This special function is needed because IOMMUs are usually devices on
1197 * the bus itself, so the iommu drivers are not initialized when the bus
1198 * is set up. With this function the iommu-driver can set the iommu-ops
1199 * afterwards.
1200 */
1201 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1202 {
1203 int err;
1204
1205 if (bus->iommu_ops != NULL)
1206 return -EBUSY;
1207
1208 bus->iommu_ops = ops;
1209
1210 /* Do IOMMU specific setup for this bus-type */
1211 err = iommu_bus_init(bus, ops);
1212 if (err)
1213 bus->iommu_ops = NULL;
1214
1215 return err;
1216 }
1217 EXPORT_SYMBOL_GPL(bus_set_iommu);
1218
1219 bool iommu_present(struct bus_type *bus)
1220 {
1221 return bus->iommu_ops != NULL;
1222 }
1223 EXPORT_SYMBOL_GPL(iommu_present);
1224
1225 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1226 {
1227 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1228 return false;
1229
1230 return bus->iommu_ops->capable(cap);
1231 }
1232 EXPORT_SYMBOL_GPL(iommu_capable);
1233
1234 /**
1235 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1236 * @domain: iommu domain
1237 * @handler: fault handler
1238 * @token: user data, will be passed back to the fault handler
1239 *
1240 * This function should be used by IOMMU users which want to be notified
1241 * whenever an IOMMU fault happens.
1242 *
1243 * The fault handler itself should return 0 on success, and an appropriate
1244 * error code otherwise.
1245 */
1246 void iommu_set_fault_handler(struct iommu_domain *domain,
1247 iommu_fault_handler_t handler,
1248 void *token)
1249 {
1250 BUG_ON(!domain);
1251
1252 domain->handler = handler;
1253 domain->handler_token = token;
1254 }
1255 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1256
1257 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1258 unsigned type)
1259 {
1260 struct iommu_domain *domain;
1261
1262 if (bus == NULL || bus->iommu_ops == NULL)
1263 return NULL;
1264
1265 domain = bus->iommu_ops->domain_alloc(type);
1266 if (!domain)
1267 return NULL;
1268
1269 domain->ops = bus->iommu_ops;
1270 domain->type = type;
1271 /* Assume all sizes by default; the driver may override this later */
1272 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1273
1274 return domain;
1275 }
1276
1277 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1278 {
1279 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1280 }
1281 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1282
1283 void iommu_domain_free(struct iommu_domain *domain)
1284 {
1285 domain->ops->domain_free(domain);
1286 }
1287 EXPORT_SYMBOL_GPL(iommu_domain_free);
1288
1289 static int __iommu_attach_device(struct iommu_domain *domain,
1290 struct device *dev)
1291 {
1292 int ret;
1293 if (unlikely(domain->ops->attach_dev == NULL))
1294 return -ENODEV;
1295
1296 ret = domain->ops->attach_dev(domain, dev);
1297 if (!ret)
1298 trace_attach_device_to_domain(dev);
1299 return ret;
1300 }
1301
1302 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1303 {
1304 struct iommu_group *group;
1305 int ret;
1306
1307 group = iommu_group_get(dev);
1308 /* FIXME: Remove this when groups a mandatory for iommu drivers */
1309 if (group == NULL)
1310 return __iommu_attach_device(domain, dev);
1311
1312 /*
1313 * We have a group - lock it to make sure the device-count doesn't
1314 * change while we are attaching
1315 */
1316 mutex_lock(&group->mutex);
1317 ret = -EINVAL;
1318 if (iommu_group_device_count(group) != 1)
1319 goto out_unlock;
1320
1321 ret = __iommu_attach_group(domain, group);
1322
1323 out_unlock:
1324 mutex_unlock(&group->mutex);
1325 iommu_group_put(group);
1326
1327 return ret;
1328 }
1329 EXPORT_SYMBOL_GPL(iommu_attach_device);
1330
1331 static void __iommu_detach_device(struct iommu_domain *domain,
1332 struct device *dev)
1333 {
1334 if (unlikely(domain->ops->detach_dev == NULL))
1335 return;
1336
1337 domain->ops->detach_dev(domain, dev);
1338 trace_detach_device_from_domain(dev);
1339 }
1340
1341 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1342 {
1343 struct iommu_group *group;
1344
1345 group = iommu_group_get(dev);
1346 /* FIXME: Remove this when groups a mandatory for iommu drivers */
1347 if (group == NULL)
1348 return __iommu_detach_device(domain, dev);
1349
1350 mutex_lock(&group->mutex);
1351 if (iommu_group_device_count(group) != 1) {
1352 WARN_ON(1);
1353 goto out_unlock;
1354 }
1355
1356 __iommu_detach_group(domain, group);
1357
1358 out_unlock:
1359 mutex_unlock(&group->mutex);
1360 iommu_group_put(group);
1361 }
1362 EXPORT_SYMBOL_GPL(iommu_detach_device);
1363
1364 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1365 {
1366 struct iommu_domain *domain;
1367 struct iommu_group *group;
1368
1369 group = iommu_group_get(dev);
1370 /* FIXME: Remove this when groups a mandatory for iommu drivers */
1371 if (group == NULL)
1372 return NULL;
1373
1374 domain = group->domain;
1375
1376 iommu_group_put(group);
1377
1378 return domain;
1379 }
1380 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1381
1382 /*
1383 * IOMMU groups are really the natrual working unit of the IOMMU, but
1384 * the IOMMU API works on domains and devices. Bridge that gap by
1385 * iterating over the devices in a group. Ideally we'd have a single
1386 * device which represents the requestor ID of the group, but we also
1387 * allow IOMMU drivers to create policy defined minimum sets, where
1388 * the physical hardware may be able to distiguish members, but we
1389 * wish to group them at a higher level (ex. untrusted multi-function
1390 * PCI devices). Thus we attach each device.
1391 */
1392 static int iommu_group_do_attach_device(struct device *dev, void *data)
1393 {
1394 struct iommu_domain *domain = data;
1395
1396 return __iommu_attach_device(domain, dev);
1397 }
1398
1399 static int __iommu_attach_group(struct iommu_domain *domain,
1400 struct iommu_group *group)
1401 {
1402 int ret;
1403
1404 if (group->default_domain && group->domain != group->default_domain)
1405 return -EBUSY;
1406
1407 ret = __iommu_group_for_each_dev(group, domain,
1408 iommu_group_do_attach_device);
1409 if (ret == 0)
1410 group->domain = domain;
1411
1412 return ret;
1413 }
1414
1415 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1416 {
1417 int ret;
1418
1419 mutex_lock(&group->mutex);
1420 ret = __iommu_attach_group(domain, group);
1421 mutex_unlock(&group->mutex);
1422
1423 return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(iommu_attach_group);
1426
1427 static int iommu_group_do_detach_device(struct device *dev, void *data)
1428 {
1429 struct iommu_domain *domain = data;
1430
1431 __iommu_detach_device(domain, dev);
1432
1433 return 0;
1434 }
1435
1436 static void __iommu_detach_group(struct iommu_domain *domain,
1437 struct iommu_group *group)
1438 {
1439 int ret;
1440
1441 if (!group->default_domain) {
1442 __iommu_group_for_each_dev(group, domain,
1443 iommu_group_do_detach_device);
1444 group->domain = NULL;
1445 return;
1446 }
1447
1448 if (group->domain == group->default_domain)
1449 return;
1450
1451 /* Detach by re-attaching to the default domain */
1452 ret = __iommu_group_for_each_dev(group, group->default_domain,
1453 iommu_group_do_attach_device);
1454 if (ret != 0)
1455 WARN_ON(1);
1456 else
1457 group->domain = group->default_domain;
1458 }
1459
1460 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1461 {
1462 mutex_lock(&group->mutex);
1463 __iommu_detach_group(domain, group);
1464 mutex_unlock(&group->mutex);
1465 }
1466 EXPORT_SYMBOL_GPL(iommu_detach_group);
1467
1468 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1469 {
1470 if (unlikely(domain->ops->iova_to_phys == NULL))
1471 return 0;
1472
1473 return domain->ops->iova_to_phys(domain, iova);
1474 }
1475 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1476
1477 static size_t iommu_pgsize(struct iommu_domain *domain,
1478 unsigned long addr_merge, size_t size)
1479 {
1480 unsigned int pgsize_idx;
1481 size_t pgsize;
1482
1483 /* Max page size that still fits into 'size' */
1484 pgsize_idx = __fls(size);
1485
1486 /* need to consider alignment requirements ? */
1487 if (likely(addr_merge)) {
1488 /* Max page size allowed by address */
1489 unsigned int align_pgsize_idx = __ffs(addr_merge);
1490 pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1491 }
1492
1493 /* build a mask of acceptable page sizes */
1494 pgsize = (1UL << (pgsize_idx + 1)) - 1;
1495
1496 /* throw away page sizes not supported by the hardware */
1497 pgsize &= domain->pgsize_bitmap;
1498
1499 /* make sure we're still sane */
1500 BUG_ON(!pgsize);
1501
1502 /* pick the biggest page */
1503 pgsize_idx = __fls(pgsize);
1504 pgsize = 1UL << pgsize_idx;
1505
1506 return pgsize;
1507 }
1508
1509 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1510 phys_addr_t paddr, size_t size, int prot)
1511 {
1512 unsigned long orig_iova = iova;
1513 unsigned int min_pagesz;
1514 size_t orig_size = size;
1515 phys_addr_t orig_paddr = paddr;
1516 int ret = 0;
1517
1518 if (unlikely(domain->ops->map == NULL ||
1519 domain->pgsize_bitmap == 0UL))
1520 return -ENODEV;
1521
1522 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1523 return -EINVAL;
1524
1525 /* find out the minimum page size supported */
1526 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1527
1528 /*
1529 * both the virtual address and the physical one, as well as
1530 * the size of the mapping, must be aligned (at least) to the
1531 * size of the smallest page supported by the hardware
1532 */
1533 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1534 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1535 iova, &paddr, size, min_pagesz);
1536 return -EINVAL;
1537 }
1538
1539 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1540
1541 while (size) {
1542 size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1543
1544 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1545 iova, &paddr, pgsize);
1546
1547 ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1548 if (ret)
1549 break;
1550
1551 iova += pgsize;
1552 paddr += pgsize;
1553 size -= pgsize;
1554 }
1555
1556 /* unroll mapping in case something went wrong */
1557 if (ret)
1558 iommu_unmap(domain, orig_iova, orig_size - size);
1559 else
1560 trace_map(orig_iova, orig_paddr, orig_size);
1561
1562 return ret;
1563 }
1564 EXPORT_SYMBOL_GPL(iommu_map);
1565
1566 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1567 {
1568 size_t unmapped_page, unmapped = 0;
1569 unsigned int min_pagesz;
1570 unsigned long orig_iova = iova;
1571
1572 if (unlikely(domain->ops->unmap == NULL ||
1573 domain->pgsize_bitmap == 0UL))
1574 return -ENODEV;
1575
1576 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1577 return -EINVAL;
1578
1579 /* find out the minimum page size supported */
1580 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1581
1582 /*
1583 * The virtual address, as well as the size of the mapping, must be
1584 * aligned (at least) to the size of the smallest page supported
1585 * by the hardware
1586 */
1587 if (!IS_ALIGNED(iova | size, min_pagesz)) {
1588 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1589 iova, size, min_pagesz);
1590 return -EINVAL;
1591 }
1592
1593 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1594
1595 /*
1596 * Keep iterating until we either unmap 'size' bytes (or more)
1597 * or we hit an area that isn't mapped.
1598 */
1599 while (unmapped < size) {
1600 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1601
1602 unmapped_page = domain->ops->unmap(domain, iova, pgsize);
1603 if (!unmapped_page)
1604 break;
1605
1606 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1607 iova, unmapped_page);
1608
1609 iova += unmapped_page;
1610 unmapped += unmapped_page;
1611 }
1612
1613 trace_unmap(orig_iova, size, unmapped);
1614 return unmapped;
1615 }
1616 EXPORT_SYMBOL_GPL(iommu_unmap);
1617
1618 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1619 struct scatterlist *sg, unsigned int nents, int prot)
1620 {
1621 struct scatterlist *s;
1622 size_t mapped = 0;
1623 unsigned int i, min_pagesz;
1624 int ret;
1625
1626 if (unlikely(domain->pgsize_bitmap == 0UL))
1627 return 0;
1628
1629 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1630
1631 for_each_sg(sg, s, nents, i) {
1632 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
1633
1634 /*
1635 * We are mapping on IOMMU page boundaries, so offset within
1636 * the page must be 0. However, the IOMMU may support pages
1637 * smaller than PAGE_SIZE, so s->offset may still represent
1638 * an offset of that boundary within the CPU page.
1639 */
1640 if (!IS_ALIGNED(s->offset, min_pagesz))
1641 goto out_err;
1642
1643 ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1644 if (ret)
1645 goto out_err;
1646
1647 mapped += s->length;
1648 }
1649
1650 return mapped;
1651
1652 out_err:
1653 /* undo mappings already done */
1654 iommu_unmap(domain, iova, mapped);
1655
1656 return 0;
1657
1658 }
1659 EXPORT_SYMBOL_GPL(default_iommu_map_sg);
1660
1661 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1662 phys_addr_t paddr, u64 size, int prot)
1663 {
1664 if (unlikely(domain->ops->domain_window_enable == NULL))
1665 return -ENODEV;
1666
1667 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1668 prot);
1669 }
1670 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1671
1672 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1673 {
1674 if (unlikely(domain->ops->domain_window_disable == NULL))
1675 return;
1676
1677 return domain->ops->domain_window_disable(domain, wnd_nr);
1678 }
1679 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1680
1681 /**
1682 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
1683 * @domain: the iommu domain where the fault has happened
1684 * @dev: the device where the fault has happened
1685 * @iova: the faulting address
1686 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
1687 *
1688 * This function should be called by the low-level IOMMU implementations
1689 * whenever IOMMU faults happen, to allow high-level users, that are
1690 * interested in such events, to know about them.
1691 *
1692 * This event may be useful for several possible use cases:
1693 * - mere logging of the event
1694 * - dynamic TLB/PTE loading
1695 * - if restarting of the faulting device is required
1696 *
1697 * Returns 0 on success and an appropriate error code otherwise (if dynamic
1698 * PTE/TLB loading will one day be supported, implementations will be able
1699 * to tell whether it succeeded or not according to this return value).
1700 *
1701 * Specifically, -ENOSYS is returned if a fault handler isn't installed
1702 * (though fault handlers can also return -ENOSYS, in case they want to
1703 * elicit the default behavior of the IOMMU drivers).
1704 */
1705 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
1706 unsigned long iova, int flags)
1707 {
1708 int ret = -ENOSYS;
1709
1710 /*
1711 * if upper layers showed interest and installed a fault handler,
1712 * invoke it.
1713 */
1714 if (domain->handler)
1715 ret = domain->handler(domain, dev, iova, flags,
1716 domain->handler_token);
1717
1718 trace_io_page_fault(dev, iova, flags);
1719 return ret;
1720 }
1721 EXPORT_SYMBOL_GPL(report_iommu_fault);
1722
1723 static int __init iommu_init(void)
1724 {
1725 iommu_group_kset = kset_create_and_add("iommu_groups",
1726 NULL, kernel_kobj);
1727 BUG_ON(!iommu_group_kset);
1728
1729 return 0;
1730 }
1731 core_initcall(iommu_init);
1732
1733 int iommu_domain_get_attr(struct iommu_domain *domain,
1734 enum iommu_attr attr, void *data)
1735 {
1736 struct iommu_domain_geometry *geometry;
1737 bool *paging;
1738 int ret = 0;
1739 u32 *count;
1740
1741 switch (attr) {
1742 case DOMAIN_ATTR_GEOMETRY:
1743 geometry = data;
1744 *geometry = domain->geometry;
1745
1746 break;
1747 case DOMAIN_ATTR_PAGING:
1748 paging = data;
1749 *paging = (domain->pgsize_bitmap != 0UL);
1750 break;
1751 case DOMAIN_ATTR_WINDOWS:
1752 count = data;
1753
1754 if (domain->ops->domain_get_windows != NULL)
1755 *count = domain->ops->domain_get_windows(domain);
1756 else
1757 ret = -ENODEV;
1758
1759 break;
1760 default:
1761 if (!domain->ops->domain_get_attr)
1762 return -EINVAL;
1763
1764 ret = domain->ops->domain_get_attr(domain, attr, data);
1765 }
1766
1767 return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1770
1771 int iommu_domain_set_attr(struct iommu_domain *domain,
1772 enum iommu_attr attr, void *data)
1773 {
1774 int ret = 0;
1775 u32 *count;
1776
1777 switch (attr) {
1778 case DOMAIN_ATTR_WINDOWS:
1779 count = data;
1780
1781 if (domain->ops->domain_set_windows != NULL)
1782 ret = domain->ops->domain_set_windows(domain, *count);
1783 else
1784 ret = -ENODEV;
1785
1786 break;
1787 default:
1788 if (domain->ops->domain_set_attr == NULL)
1789 return -EINVAL;
1790
1791 ret = domain->ops->domain_set_attr(domain, attr, data);
1792 }
1793
1794 return ret;
1795 }
1796 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1797
1798 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1799 {
1800 const struct iommu_ops *ops = dev->bus->iommu_ops;
1801
1802 if (ops && ops->get_resv_regions)
1803 ops->get_resv_regions(dev, list);
1804 }
1805
1806 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1807 {
1808 const struct iommu_ops *ops = dev->bus->iommu_ops;
1809
1810 if (ops && ops->put_resv_regions)
1811 ops->put_resv_regions(dev, list);
1812 }
1813
1814 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1815 size_t length, int prot,
1816 enum iommu_resv_type type)
1817 {
1818 struct iommu_resv_region *region;
1819
1820 region = kzalloc(sizeof(*region), GFP_KERNEL);
1821 if (!region)
1822 return NULL;
1823
1824 INIT_LIST_HEAD(&region->list);
1825 region->start = start;
1826 region->length = length;
1827 region->prot = prot;
1828 region->type = type;
1829 return region;
1830 }
1831
1832 /* Request that a device is direct mapped by the IOMMU */
1833 int iommu_request_dm_for_dev(struct device *dev)
1834 {
1835 struct iommu_domain *dm_domain;
1836 struct iommu_group *group;
1837 int ret;
1838
1839 /* Device must already be in a group before calling this function */
1840 group = iommu_group_get_for_dev(dev);
1841 if (IS_ERR(group))
1842 return PTR_ERR(group);
1843
1844 mutex_lock(&group->mutex);
1845
1846 /* Check if the default domain is already direct mapped */
1847 ret = 0;
1848 if (group->default_domain &&
1849 group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1850 goto out;
1851
1852 /* Don't change mappings of existing devices */
1853 ret = -EBUSY;
1854 if (iommu_group_device_count(group) != 1)
1855 goto out;
1856
1857 /* Allocate a direct mapped domain */
1858 ret = -ENOMEM;
1859 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1860 if (!dm_domain)
1861 goto out;
1862
1863 /* Attach the device to the domain */
1864 ret = __iommu_attach_group(dm_domain, group);
1865 if (ret) {
1866 iommu_domain_free(dm_domain);
1867 goto out;
1868 }
1869
1870 /* Make the direct mapped domain the default for this group */
1871 if (group->default_domain)
1872 iommu_domain_free(group->default_domain);
1873 group->default_domain = dm_domain;
1874
1875 pr_info("Using direct mapping for device %s\n", dev_name(dev));
1876
1877 ret = 0;
1878 out:
1879 mutex_unlock(&group->mutex);
1880 iommu_group_put(group);
1881
1882 return ret;
1883 }
1884
1885 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
1886 {
1887 const struct iommu_ops *ops = NULL;
1888 struct iommu_device *iommu;
1889
1890 spin_lock(&iommu_device_lock);
1891 list_for_each_entry(iommu, &iommu_device_list, list)
1892 if (iommu->fwnode == fwnode) {
1893 ops = iommu->ops;
1894 break;
1895 }
1896 spin_unlock(&iommu_device_lock);
1897 return ops;
1898 }
1899
1900 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1901 const struct iommu_ops *ops)
1902 {
1903 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1904
1905 if (fwspec)
1906 return ops == fwspec->ops ? 0 : -EINVAL;
1907
1908 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1909 if (!fwspec)
1910 return -ENOMEM;
1911
1912 of_node_get(to_of_node(iommu_fwnode));
1913 fwspec->iommu_fwnode = iommu_fwnode;
1914 fwspec->ops = ops;
1915 dev->iommu_fwspec = fwspec;
1916 return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
1919
1920 void iommu_fwspec_free(struct device *dev)
1921 {
1922 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1923
1924 if (fwspec) {
1925 fwnode_handle_put(fwspec->iommu_fwnode);
1926 kfree(fwspec);
1927 dev->iommu_fwspec = NULL;
1928 }
1929 }
1930 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
1931
1932 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
1933 {
1934 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1935 size_t size;
1936 int i;
1937
1938 if (!fwspec)
1939 return -EINVAL;
1940
1941 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
1942 if (size > sizeof(*fwspec)) {
1943 fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL);
1944 if (!fwspec)
1945 return -ENOMEM;
1946
1947 dev->iommu_fwspec = fwspec;
1948 }
1949
1950 for (i = 0; i < num_ids; i++)
1951 fwspec->ids[fwspec->num_ids + i] = ids[i];
1952
1953 fwspec->num_ids += num_ids;
1954 return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);