]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/iommu/iommu.c
Merge tag 'regmap-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-kernels.git] / drivers / iommu / iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/notifier.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/property.h>
26 #include <linux/fsl/mc.h>
27 #include <linux/module.h>
28 #include <linux/cc_platform.h>
29 #include <trace/events/iommu.h>
30
31 static struct kset *iommu_group_kset;
32 static DEFINE_IDA(iommu_group_ida);
33
34 static unsigned int iommu_def_domain_type __read_mostly;
35 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
36 static u32 iommu_cmd_line __read_mostly;
37
38 struct iommu_group {
39 struct kobject kobj;
40 struct kobject *devices_kobj;
41 struct list_head devices;
42 struct mutex mutex;
43 struct blocking_notifier_head notifier;
44 void *iommu_data;
45 void (*iommu_data_release)(void *iommu_data);
46 char *name;
47 int id;
48 struct iommu_domain *default_domain;
49 struct iommu_domain *domain;
50 struct list_head entry;
51 };
52
53 struct group_device {
54 struct list_head list;
55 struct device *dev;
56 char *name;
57 };
58
59 struct iommu_group_attribute {
60 struct attribute attr;
61 ssize_t (*show)(struct iommu_group *group, char *buf);
62 ssize_t (*store)(struct iommu_group *group,
63 const char *buf, size_t count);
64 };
65
66 static const char * const iommu_group_resv_type_string[] = {
67 [IOMMU_RESV_DIRECT] = "direct",
68 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
69 [IOMMU_RESV_RESERVED] = "reserved",
70 [IOMMU_RESV_MSI] = "msi",
71 [IOMMU_RESV_SW_MSI] = "msi",
72 };
73
74 #define IOMMU_CMD_LINE_DMA_API BIT(0)
75 #define IOMMU_CMD_LINE_STRICT BIT(1)
76
77 static int iommu_alloc_default_domain(struct iommu_group *group,
78 struct device *dev);
79 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
80 unsigned type);
81 static int __iommu_attach_device(struct iommu_domain *domain,
82 struct device *dev);
83 static int __iommu_attach_group(struct iommu_domain *domain,
84 struct iommu_group *group);
85 static void __iommu_detach_group(struct iommu_domain *domain,
86 struct iommu_group *group);
87 static int iommu_create_device_direct_mappings(struct iommu_group *group,
88 struct device *dev);
89 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
90 static ssize_t iommu_group_store_type(struct iommu_group *group,
91 const char *buf, size_t count);
92
93 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
94 struct iommu_group_attribute iommu_group_attr_##_name = \
95 __ATTR(_name, _mode, _show, _store)
96
97 #define to_iommu_group_attr(_attr) \
98 container_of(_attr, struct iommu_group_attribute, attr)
99 #define to_iommu_group(_kobj) \
100 container_of(_kobj, struct iommu_group, kobj)
101
102 static LIST_HEAD(iommu_device_list);
103 static DEFINE_SPINLOCK(iommu_device_lock);
104
105 /*
106 * Use a function instead of an array here because the domain-type is a
107 * bit-field, so an array would waste memory.
108 */
109 static const char *iommu_domain_type_str(unsigned int t)
110 {
111 switch (t) {
112 case IOMMU_DOMAIN_BLOCKED:
113 return "Blocked";
114 case IOMMU_DOMAIN_IDENTITY:
115 return "Passthrough";
116 case IOMMU_DOMAIN_UNMANAGED:
117 return "Unmanaged";
118 case IOMMU_DOMAIN_DMA:
119 case IOMMU_DOMAIN_DMA_FQ:
120 return "Translated";
121 default:
122 return "Unknown";
123 }
124 }
125
126 static int __init iommu_subsys_init(void)
127 {
128 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
129 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
130 iommu_set_default_passthrough(false);
131 else
132 iommu_set_default_translated(false);
133
134 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
135 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
136 iommu_set_default_translated(false);
137 }
138 }
139
140 if (!iommu_default_passthrough() && !iommu_dma_strict)
141 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
142
143 pr_info("Default domain type: %s %s\n",
144 iommu_domain_type_str(iommu_def_domain_type),
145 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
146 "(set via kernel command line)" : "");
147
148 if (!iommu_default_passthrough())
149 pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
150 iommu_dma_strict ? "strict" : "lazy",
151 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
152 "(set via kernel command line)" : "");
153
154 return 0;
155 }
156 subsys_initcall(iommu_subsys_init);
157
158 /**
159 * iommu_device_register() - Register an IOMMU hardware instance
160 * @iommu: IOMMU handle for the instance
161 * @ops: IOMMU ops to associate with the instance
162 * @hwdev: (optional) actual instance device, used for fwnode lookup
163 *
164 * Return: 0 on success, or an error.
165 */
166 int iommu_device_register(struct iommu_device *iommu,
167 const struct iommu_ops *ops, struct device *hwdev)
168 {
169 /* We need to be able to take module references appropriately */
170 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
171 return -EINVAL;
172
173 iommu->ops = ops;
174 if (hwdev)
175 iommu->fwnode = hwdev->fwnode;
176
177 spin_lock(&iommu_device_lock);
178 list_add_tail(&iommu->list, &iommu_device_list);
179 spin_unlock(&iommu_device_lock);
180 return 0;
181 }
182 EXPORT_SYMBOL_GPL(iommu_device_register);
183
184 void iommu_device_unregister(struct iommu_device *iommu)
185 {
186 spin_lock(&iommu_device_lock);
187 list_del(&iommu->list);
188 spin_unlock(&iommu_device_lock);
189 }
190 EXPORT_SYMBOL_GPL(iommu_device_unregister);
191
192 static struct dev_iommu *dev_iommu_get(struct device *dev)
193 {
194 struct dev_iommu *param = dev->iommu;
195
196 if (param)
197 return param;
198
199 param = kzalloc(sizeof(*param), GFP_KERNEL);
200 if (!param)
201 return NULL;
202
203 mutex_init(&param->lock);
204 dev->iommu = param;
205 return param;
206 }
207
208 static void dev_iommu_free(struct device *dev)
209 {
210 iommu_fwspec_free(dev);
211 kfree(dev->iommu);
212 dev->iommu = NULL;
213 }
214
215 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
216 {
217 const struct iommu_ops *ops = dev->bus->iommu_ops;
218 struct iommu_device *iommu_dev;
219 struct iommu_group *group;
220 int ret;
221
222 if (!ops)
223 return -ENODEV;
224
225 if (!dev_iommu_get(dev))
226 return -ENOMEM;
227
228 if (!try_module_get(ops->owner)) {
229 ret = -EINVAL;
230 goto err_free;
231 }
232
233 iommu_dev = ops->probe_device(dev);
234 if (IS_ERR(iommu_dev)) {
235 ret = PTR_ERR(iommu_dev);
236 goto out_module_put;
237 }
238
239 dev->iommu->iommu_dev = iommu_dev;
240
241 group = iommu_group_get_for_dev(dev);
242 if (IS_ERR(group)) {
243 ret = PTR_ERR(group);
244 goto out_release;
245 }
246 iommu_group_put(group);
247
248 if (group_list && !group->default_domain && list_empty(&group->entry))
249 list_add_tail(&group->entry, group_list);
250
251 iommu_device_link(iommu_dev, dev);
252
253 return 0;
254
255 out_release:
256 ops->release_device(dev);
257
258 out_module_put:
259 module_put(ops->owner);
260
261 err_free:
262 dev_iommu_free(dev);
263
264 return ret;
265 }
266
267 int iommu_probe_device(struct device *dev)
268 {
269 const struct iommu_ops *ops = dev->bus->iommu_ops;
270 struct iommu_group *group;
271 int ret;
272
273 ret = __iommu_probe_device(dev, NULL);
274 if (ret)
275 goto err_out;
276
277 group = iommu_group_get(dev);
278 if (!group) {
279 ret = -ENODEV;
280 goto err_release;
281 }
282
283 /*
284 * Try to allocate a default domain - needs support from the
285 * IOMMU driver. There are still some drivers which don't
286 * support default domains, so the return value is not yet
287 * checked.
288 */
289 mutex_lock(&group->mutex);
290 iommu_alloc_default_domain(group, dev);
291 mutex_unlock(&group->mutex);
292
293 if (group->default_domain) {
294 ret = __iommu_attach_device(group->default_domain, dev);
295 if (ret) {
296 iommu_group_put(group);
297 goto err_release;
298 }
299 }
300
301 iommu_create_device_direct_mappings(group, dev);
302
303 iommu_group_put(group);
304
305 if (ops->probe_finalize)
306 ops->probe_finalize(dev);
307
308 return 0;
309
310 err_release:
311 iommu_release_device(dev);
312
313 err_out:
314 return ret;
315
316 }
317
318 void iommu_release_device(struct device *dev)
319 {
320 const struct iommu_ops *ops = dev->bus->iommu_ops;
321
322 if (!dev->iommu)
323 return;
324
325 iommu_device_unlink(dev->iommu->iommu_dev, dev);
326
327 ops->release_device(dev);
328
329 iommu_group_remove_device(dev);
330 module_put(ops->owner);
331 dev_iommu_free(dev);
332 }
333
334 static int __init iommu_set_def_domain_type(char *str)
335 {
336 bool pt;
337 int ret;
338
339 ret = kstrtobool(str, &pt);
340 if (ret)
341 return ret;
342
343 if (pt)
344 iommu_set_default_passthrough(true);
345 else
346 iommu_set_default_translated(true);
347
348 return 0;
349 }
350 early_param("iommu.passthrough", iommu_set_def_domain_type);
351
352 static int __init iommu_dma_setup(char *str)
353 {
354 int ret = kstrtobool(str, &iommu_dma_strict);
355
356 if (!ret)
357 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
358 return ret;
359 }
360 early_param("iommu.strict", iommu_dma_setup);
361
362 void iommu_set_dma_strict(void)
363 {
364 iommu_dma_strict = true;
365 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
366 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
367 }
368
369 static ssize_t iommu_group_attr_show(struct kobject *kobj,
370 struct attribute *__attr, char *buf)
371 {
372 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
373 struct iommu_group *group = to_iommu_group(kobj);
374 ssize_t ret = -EIO;
375
376 if (attr->show)
377 ret = attr->show(group, buf);
378 return ret;
379 }
380
381 static ssize_t iommu_group_attr_store(struct kobject *kobj,
382 struct attribute *__attr,
383 const char *buf, size_t count)
384 {
385 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
386 struct iommu_group *group = to_iommu_group(kobj);
387 ssize_t ret = -EIO;
388
389 if (attr->store)
390 ret = attr->store(group, buf, count);
391 return ret;
392 }
393
394 static const struct sysfs_ops iommu_group_sysfs_ops = {
395 .show = iommu_group_attr_show,
396 .store = iommu_group_attr_store,
397 };
398
399 static int iommu_group_create_file(struct iommu_group *group,
400 struct iommu_group_attribute *attr)
401 {
402 return sysfs_create_file(&group->kobj, &attr->attr);
403 }
404
405 static void iommu_group_remove_file(struct iommu_group *group,
406 struct iommu_group_attribute *attr)
407 {
408 sysfs_remove_file(&group->kobj, &attr->attr);
409 }
410
411 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
412 {
413 return sprintf(buf, "%s\n", group->name);
414 }
415
416 /**
417 * iommu_insert_resv_region - Insert a new region in the
418 * list of reserved regions.
419 * @new: new region to insert
420 * @regions: list of regions
421 *
422 * Elements are sorted by start address and overlapping segments
423 * of the same type are merged.
424 */
425 static int iommu_insert_resv_region(struct iommu_resv_region *new,
426 struct list_head *regions)
427 {
428 struct iommu_resv_region *iter, *tmp, *nr, *top;
429 LIST_HEAD(stack);
430
431 nr = iommu_alloc_resv_region(new->start, new->length,
432 new->prot, new->type);
433 if (!nr)
434 return -ENOMEM;
435
436 /* First add the new element based on start address sorting */
437 list_for_each_entry(iter, regions, list) {
438 if (nr->start < iter->start ||
439 (nr->start == iter->start && nr->type <= iter->type))
440 break;
441 }
442 list_add_tail(&nr->list, &iter->list);
443
444 /* Merge overlapping segments of type nr->type in @regions, if any */
445 list_for_each_entry_safe(iter, tmp, regions, list) {
446 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
447
448 /* no merge needed on elements of different types than @new */
449 if (iter->type != new->type) {
450 list_move_tail(&iter->list, &stack);
451 continue;
452 }
453
454 /* look for the last stack element of same type as @iter */
455 list_for_each_entry_reverse(top, &stack, list)
456 if (top->type == iter->type)
457 goto check_overlap;
458
459 list_move_tail(&iter->list, &stack);
460 continue;
461
462 check_overlap:
463 top_end = top->start + top->length - 1;
464
465 if (iter->start > top_end + 1) {
466 list_move_tail(&iter->list, &stack);
467 } else {
468 top->length = max(top_end, iter_end) - top->start + 1;
469 list_del(&iter->list);
470 kfree(iter);
471 }
472 }
473 list_splice(&stack, regions);
474 return 0;
475 }
476
477 static int
478 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
479 struct list_head *group_resv_regions)
480 {
481 struct iommu_resv_region *entry;
482 int ret = 0;
483
484 list_for_each_entry(entry, dev_resv_regions, list) {
485 ret = iommu_insert_resv_region(entry, group_resv_regions);
486 if (ret)
487 break;
488 }
489 return ret;
490 }
491
492 int iommu_get_group_resv_regions(struct iommu_group *group,
493 struct list_head *head)
494 {
495 struct group_device *device;
496 int ret = 0;
497
498 mutex_lock(&group->mutex);
499 list_for_each_entry(device, &group->devices, list) {
500 struct list_head dev_resv_regions;
501
502 INIT_LIST_HEAD(&dev_resv_regions);
503 iommu_get_resv_regions(device->dev, &dev_resv_regions);
504 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
505 iommu_put_resv_regions(device->dev, &dev_resv_regions);
506 if (ret)
507 break;
508 }
509 mutex_unlock(&group->mutex);
510 return ret;
511 }
512 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
513
514 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
515 char *buf)
516 {
517 struct iommu_resv_region *region, *next;
518 struct list_head group_resv_regions;
519 char *str = buf;
520
521 INIT_LIST_HEAD(&group_resv_regions);
522 iommu_get_group_resv_regions(group, &group_resv_regions);
523
524 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
525 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
526 (long long int)region->start,
527 (long long int)(region->start +
528 region->length - 1),
529 iommu_group_resv_type_string[region->type]);
530 kfree(region);
531 }
532
533 return (str - buf);
534 }
535
536 static ssize_t iommu_group_show_type(struct iommu_group *group,
537 char *buf)
538 {
539 char *type = "unknown\n";
540
541 mutex_lock(&group->mutex);
542 if (group->default_domain) {
543 switch (group->default_domain->type) {
544 case IOMMU_DOMAIN_BLOCKED:
545 type = "blocked\n";
546 break;
547 case IOMMU_DOMAIN_IDENTITY:
548 type = "identity\n";
549 break;
550 case IOMMU_DOMAIN_UNMANAGED:
551 type = "unmanaged\n";
552 break;
553 case IOMMU_DOMAIN_DMA:
554 type = "DMA\n";
555 break;
556 case IOMMU_DOMAIN_DMA_FQ:
557 type = "DMA-FQ\n";
558 break;
559 }
560 }
561 mutex_unlock(&group->mutex);
562 strcpy(buf, type);
563
564 return strlen(type);
565 }
566
567 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
568
569 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
570 iommu_group_show_resv_regions, NULL);
571
572 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
573 iommu_group_store_type);
574
575 static void iommu_group_release(struct kobject *kobj)
576 {
577 struct iommu_group *group = to_iommu_group(kobj);
578
579 pr_debug("Releasing group %d\n", group->id);
580
581 if (group->iommu_data_release)
582 group->iommu_data_release(group->iommu_data);
583
584 ida_simple_remove(&iommu_group_ida, group->id);
585
586 if (group->default_domain)
587 iommu_domain_free(group->default_domain);
588
589 kfree(group->name);
590 kfree(group);
591 }
592
593 static struct kobj_type iommu_group_ktype = {
594 .sysfs_ops = &iommu_group_sysfs_ops,
595 .release = iommu_group_release,
596 };
597
598 /**
599 * iommu_group_alloc - Allocate a new group
600 *
601 * This function is called by an iommu driver to allocate a new iommu
602 * group. The iommu group represents the minimum granularity of the iommu.
603 * Upon successful return, the caller holds a reference to the supplied
604 * group in order to hold the group until devices are added. Use
605 * iommu_group_put() to release this extra reference count, allowing the
606 * group to be automatically reclaimed once it has no devices or external
607 * references.
608 */
609 struct iommu_group *iommu_group_alloc(void)
610 {
611 struct iommu_group *group;
612 int ret;
613
614 group = kzalloc(sizeof(*group), GFP_KERNEL);
615 if (!group)
616 return ERR_PTR(-ENOMEM);
617
618 group->kobj.kset = iommu_group_kset;
619 mutex_init(&group->mutex);
620 INIT_LIST_HEAD(&group->devices);
621 INIT_LIST_HEAD(&group->entry);
622 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
623
624 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
625 if (ret < 0) {
626 kfree(group);
627 return ERR_PTR(ret);
628 }
629 group->id = ret;
630
631 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
632 NULL, "%d", group->id);
633 if (ret) {
634 ida_simple_remove(&iommu_group_ida, group->id);
635 kobject_put(&group->kobj);
636 return ERR_PTR(ret);
637 }
638
639 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
640 if (!group->devices_kobj) {
641 kobject_put(&group->kobj); /* triggers .release & free */
642 return ERR_PTR(-ENOMEM);
643 }
644
645 /*
646 * The devices_kobj holds a reference on the group kobject, so
647 * as long as that exists so will the group. We can therefore
648 * use the devices_kobj for reference counting.
649 */
650 kobject_put(&group->kobj);
651
652 ret = iommu_group_create_file(group,
653 &iommu_group_attr_reserved_regions);
654 if (ret)
655 return ERR_PTR(ret);
656
657 ret = iommu_group_create_file(group, &iommu_group_attr_type);
658 if (ret)
659 return ERR_PTR(ret);
660
661 pr_debug("Allocated group %d\n", group->id);
662
663 return group;
664 }
665 EXPORT_SYMBOL_GPL(iommu_group_alloc);
666
667 struct iommu_group *iommu_group_get_by_id(int id)
668 {
669 struct kobject *group_kobj;
670 struct iommu_group *group;
671 const char *name;
672
673 if (!iommu_group_kset)
674 return NULL;
675
676 name = kasprintf(GFP_KERNEL, "%d", id);
677 if (!name)
678 return NULL;
679
680 group_kobj = kset_find_obj(iommu_group_kset, name);
681 kfree(name);
682
683 if (!group_kobj)
684 return NULL;
685
686 group = container_of(group_kobj, struct iommu_group, kobj);
687 BUG_ON(group->id != id);
688
689 kobject_get(group->devices_kobj);
690 kobject_put(&group->kobj);
691
692 return group;
693 }
694 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
695
696 /**
697 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
698 * @group: the group
699 *
700 * iommu drivers can store data in the group for use when doing iommu
701 * operations. This function provides a way to retrieve it. Caller
702 * should hold a group reference.
703 */
704 void *iommu_group_get_iommudata(struct iommu_group *group)
705 {
706 return group->iommu_data;
707 }
708 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
709
710 /**
711 * iommu_group_set_iommudata - set iommu_data for a group
712 * @group: the group
713 * @iommu_data: new data
714 * @release: release function for iommu_data
715 *
716 * iommu drivers can store data in the group for use when doing iommu
717 * operations. This function provides a way to set the data after
718 * the group has been allocated. Caller should hold a group reference.
719 */
720 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
721 void (*release)(void *iommu_data))
722 {
723 group->iommu_data = iommu_data;
724 group->iommu_data_release = release;
725 }
726 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
727
728 /**
729 * iommu_group_set_name - set name for a group
730 * @group: the group
731 * @name: name
732 *
733 * Allow iommu driver to set a name for a group. When set it will
734 * appear in a name attribute file under the group in sysfs.
735 */
736 int iommu_group_set_name(struct iommu_group *group, const char *name)
737 {
738 int ret;
739
740 if (group->name) {
741 iommu_group_remove_file(group, &iommu_group_attr_name);
742 kfree(group->name);
743 group->name = NULL;
744 if (!name)
745 return 0;
746 }
747
748 group->name = kstrdup(name, GFP_KERNEL);
749 if (!group->name)
750 return -ENOMEM;
751
752 ret = iommu_group_create_file(group, &iommu_group_attr_name);
753 if (ret) {
754 kfree(group->name);
755 group->name = NULL;
756 return ret;
757 }
758
759 return 0;
760 }
761 EXPORT_SYMBOL_GPL(iommu_group_set_name);
762
763 static int iommu_create_device_direct_mappings(struct iommu_group *group,
764 struct device *dev)
765 {
766 struct iommu_domain *domain = group->default_domain;
767 struct iommu_resv_region *entry;
768 struct list_head mappings;
769 unsigned long pg_size;
770 int ret = 0;
771
772 if (!domain || !iommu_is_dma_domain(domain))
773 return 0;
774
775 BUG_ON(!domain->pgsize_bitmap);
776
777 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
778 INIT_LIST_HEAD(&mappings);
779
780 iommu_get_resv_regions(dev, &mappings);
781
782 /* We need to consider overlapping regions for different devices */
783 list_for_each_entry(entry, &mappings, list) {
784 dma_addr_t start, end, addr;
785 size_t map_size = 0;
786
787 if (domain->ops->apply_resv_region)
788 domain->ops->apply_resv_region(dev, domain, entry);
789
790 start = ALIGN(entry->start, pg_size);
791 end = ALIGN(entry->start + entry->length, pg_size);
792
793 if (entry->type != IOMMU_RESV_DIRECT &&
794 entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
795 continue;
796
797 for (addr = start; addr <= end; addr += pg_size) {
798 phys_addr_t phys_addr;
799
800 if (addr == end)
801 goto map_end;
802
803 phys_addr = iommu_iova_to_phys(domain, addr);
804 if (!phys_addr) {
805 map_size += pg_size;
806 continue;
807 }
808
809 map_end:
810 if (map_size) {
811 ret = iommu_map(domain, addr - map_size,
812 addr - map_size, map_size,
813 entry->prot);
814 if (ret)
815 goto out;
816 map_size = 0;
817 }
818 }
819
820 }
821
822 iommu_flush_iotlb_all(domain);
823
824 out:
825 iommu_put_resv_regions(dev, &mappings);
826
827 return ret;
828 }
829
830 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
831 struct device *dev)
832 {
833 if (domain->ops->is_attach_deferred)
834 return domain->ops->is_attach_deferred(domain, dev);
835
836 return false;
837 }
838
839 /**
840 * iommu_group_add_device - add a device to an iommu group
841 * @group: the group into which to add the device (reference should be held)
842 * @dev: the device
843 *
844 * This function is called by an iommu driver to add a device into a
845 * group. Adding a device increments the group reference count.
846 */
847 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
848 {
849 int ret, i = 0;
850 struct group_device *device;
851
852 device = kzalloc(sizeof(*device), GFP_KERNEL);
853 if (!device)
854 return -ENOMEM;
855
856 device->dev = dev;
857
858 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
859 if (ret)
860 goto err_free_device;
861
862 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
863 rename:
864 if (!device->name) {
865 ret = -ENOMEM;
866 goto err_remove_link;
867 }
868
869 ret = sysfs_create_link_nowarn(group->devices_kobj,
870 &dev->kobj, device->name);
871 if (ret) {
872 if (ret == -EEXIST && i >= 0) {
873 /*
874 * Account for the slim chance of collision
875 * and append an instance to the name.
876 */
877 kfree(device->name);
878 device->name = kasprintf(GFP_KERNEL, "%s.%d",
879 kobject_name(&dev->kobj), i++);
880 goto rename;
881 }
882 goto err_free_name;
883 }
884
885 kobject_get(group->devices_kobj);
886
887 dev->iommu_group = group;
888
889 mutex_lock(&group->mutex);
890 list_add_tail(&device->list, &group->devices);
891 if (group->domain && !iommu_is_attach_deferred(group->domain, dev))
892 ret = __iommu_attach_device(group->domain, dev);
893 mutex_unlock(&group->mutex);
894 if (ret)
895 goto err_put_group;
896
897 /* Notify any listeners about change to group. */
898 blocking_notifier_call_chain(&group->notifier,
899 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
900
901 trace_add_device_to_group(group->id, dev);
902
903 dev_info(dev, "Adding to iommu group %d\n", group->id);
904
905 return 0;
906
907 err_put_group:
908 mutex_lock(&group->mutex);
909 list_del(&device->list);
910 mutex_unlock(&group->mutex);
911 dev->iommu_group = NULL;
912 kobject_put(group->devices_kobj);
913 sysfs_remove_link(group->devices_kobj, device->name);
914 err_free_name:
915 kfree(device->name);
916 err_remove_link:
917 sysfs_remove_link(&dev->kobj, "iommu_group");
918 err_free_device:
919 kfree(device);
920 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
921 return ret;
922 }
923 EXPORT_SYMBOL_GPL(iommu_group_add_device);
924
925 /**
926 * iommu_group_remove_device - remove a device from it's current group
927 * @dev: device to be removed
928 *
929 * This function is called by an iommu driver to remove the device from
930 * it's current group. This decrements the iommu group reference count.
931 */
932 void iommu_group_remove_device(struct device *dev)
933 {
934 struct iommu_group *group = dev->iommu_group;
935 struct group_device *tmp_device, *device = NULL;
936
937 if (!group)
938 return;
939
940 dev_info(dev, "Removing from iommu group %d\n", group->id);
941
942 /* Pre-notify listeners that a device is being removed. */
943 blocking_notifier_call_chain(&group->notifier,
944 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
945
946 mutex_lock(&group->mutex);
947 list_for_each_entry(tmp_device, &group->devices, list) {
948 if (tmp_device->dev == dev) {
949 device = tmp_device;
950 list_del(&device->list);
951 break;
952 }
953 }
954 mutex_unlock(&group->mutex);
955
956 if (!device)
957 return;
958
959 sysfs_remove_link(group->devices_kobj, device->name);
960 sysfs_remove_link(&dev->kobj, "iommu_group");
961
962 trace_remove_device_from_group(group->id, dev);
963
964 kfree(device->name);
965 kfree(device);
966 dev->iommu_group = NULL;
967 kobject_put(group->devices_kobj);
968 }
969 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
970
971 static int iommu_group_device_count(struct iommu_group *group)
972 {
973 struct group_device *entry;
974 int ret = 0;
975
976 list_for_each_entry(entry, &group->devices, list)
977 ret++;
978
979 return ret;
980 }
981
982 /**
983 * iommu_group_for_each_dev - iterate over each device in the group
984 * @group: the group
985 * @data: caller opaque data to be passed to callback function
986 * @fn: caller supplied callback function
987 *
988 * This function is called by group users to iterate over group devices.
989 * Callers should hold a reference count to the group during callback.
990 * The group->mutex is held across callbacks, which will block calls to
991 * iommu_group_add/remove_device.
992 */
993 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
994 int (*fn)(struct device *, void *))
995 {
996 struct group_device *device;
997 int ret = 0;
998
999 list_for_each_entry(device, &group->devices, list) {
1000 ret = fn(device->dev, data);
1001 if (ret)
1002 break;
1003 }
1004 return ret;
1005 }
1006
1007
1008 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1009 int (*fn)(struct device *, void *))
1010 {
1011 int ret;
1012
1013 mutex_lock(&group->mutex);
1014 ret = __iommu_group_for_each_dev(group, data, fn);
1015 mutex_unlock(&group->mutex);
1016
1017 return ret;
1018 }
1019 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1020
1021 /**
1022 * iommu_group_get - Return the group for a device and increment reference
1023 * @dev: get the group that this device belongs to
1024 *
1025 * This function is called by iommu drivers and users to get the group
1026 * for the specified device. If found, the group is returned and the group
1027 * reference in incremented, else NULL.
1028 */
1029 struct iommu_group *iommu_group_get(struct device *dev)
1030 {
1031 struct iommu_group *group = dev->iommu_group;
1032
1033 if (group)
1034 kobject_get(group->devices_kobj);
1035
1036 return group;
1037 }
1038 EXPORT_SYMBOL_GPL(iommu_group_get);
1039
1040 /**
1041 * iommu_group_ref_get - Increment reference on a group
1042 * @group: the group to use, must not be NULL
1043 *
1044 * This function is called by iommu drivers to take additional references on an
1045 * existing group. Returns the given group for convenience.
1046 */
1047 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1048 {
1049 kobject_get(group->devices_kobj);
1050 return group;
1051 }
1052 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1053
1054 /**
1055 * iommu_group_put - Decrement group reference
1056 * @group: the group to use
1057 *
1058 * This function is called by iommu drivers and users to release the
1059 * iommu group. Once the reference count is zero, the group is released.
1060 */
1061 void iommu_group_put(struct iommu_group *group)
1062 {
1063 if (group)
1064 kobject_put(group->devices_kobj);
1065 }
1066 EXPORT_SYMBOL_GPL(iommu_group_put);
1067
1068 /**
1069 * iommu_group_register_notifier - Register a notifier for group changes
1070 * @group: the group to watch
1071 * @nb: notifier block to signal
1072 *
1073 * This function allows iommu group users to track changes in a group.
1074 * See include/linux/iommu.h for actions sent via this notifier. Caller
1075 * should hold a reference to the group throughout notifier registration.
1076 */
1077 int iommu_group_register_notifier(struct iommu_group *group,
1078 struct notifier_block *nb)
1079 {
1080 return blocking_notifier_chain_register(&group->notifier, nb);
1081 }
1082 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1083
1084 /**
1085 * iommu_group_unregister_notifier - Unregister a notifier
1086 * @group: the group to watch
1087 * @nb: notifier block to signal
1088 *
1089 * Unregister a previously registered group notifier block.
1090 */
1091 int iommu_group_unregister_notifier(struct iommu_group *group,
1092 struct notifier_block *nb)
1093 {
1094 return blocking_notifier_chain_unregister(&group->notifier, nb);
1095 }
1096 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1097
1098 /**
1099 * iommu_register_device_fault_handler() - Register a device fault handler
1100 * @dev: the device
1101 * @handler: the fault handler
1102 * @data: private data passed as argument to the handler
1103 *
1104 * When an IOMMU fault event is received, this handler gets called with the
1105 * fault event and data as argument. The handler should return 0 on success. If
1106 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1107 * complete the fault by calling iommu_page_response() with one of the following
1108 * response code:
1109 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1110 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1111 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1112 * page faults if possible.
1113 *
1114 * Return 0 if the fault handler was installed successfully, or an error.
1115 */
1116 int iommu_register_device_fault_handler(struct device *dev,
1117 iommu_dev_fault_handler_t handler,
1118 void *data)
1119 {
1120 struct dev_iommu *param = dev->iommu;
1121 int ret = 0;
1122
1123 if (!param)
1124 return -EINVAL;
1125
1126 mutex_lock(&param->lock);
1127 /* Only allow one fault handler registered for each device */
1128 if (param->fault_param) {
1129 ret = -EBUSY;
1130 goto done_unlock;
1131 }
1132
1133 get_device(dev);
1134 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1135 if (!param->fault_param) {
1136 put_device(dev);
1137 ret = -ENOMEM;
1138 goto done_unlock;
1139 }
1140 param->fault_param->handler = handler;
1141 param->fault_param->data = data;
1142 mutex_init(&param->fault_param->lock);
1143 INIT_LIST_HEAD(&param->fault_param->faults);
1144
1145 done_unlock:
1146 mutex_unlock(&param->lock);
1147
1148 return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1151
1152 /**
1153 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1154 * @dev: the device
1155 *
1156 * Remove the device fault handler installed with
1157 * iommu_register_device_fault_handler().
1158 *
1159 * Return 0 on success, or an error.
1160 */
1161 int iommu_unregister_device_fault_handler(struct device *dev)
1162 {
1163 struct dev_iommu *param = dev->iommu;
1164 int ret = 0;
1165
1166 if (!param)
1167 return -EINVAL;
1168
1169 mutex_lock(&param->lock);
1170
1171 if (!param->fault_param)
1172 goto unlock;
1173
1174 /* we cannot unregister handler if there are pending faults */
1175 if (!list_empty(&param->fault_param->faults)) {
1176 ret = -EBUSY;
1177 goto unlock;
1178 }
1179
1180 kfree(param->fault_param);
1181 param->fault_param = NULL;
1182 put_device(dev);
1183 unlock:
1184 mutex_unlock(&param->lock);
1185
1186 return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1189
1190 /**
1191 * iommu_report_device_fault() - Report fault event to device driver
1192 * @dev: the device
1193 * @evt: fault event data
1194 *
1195 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1196 * handler. When this function fails and the fault is recoverable, it is the
1197 * caller's responsibility to complete the fault.
1198 *
1199 * Return 0 on success, or an error.
1200 */
1201 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1202 {
1203 struct dev_iommu *param = dev->iommu;
1204 struct iommu_fault_event *evt_pending = NULL;
1205 struct iommu_fault_param *fparam;
1206 int ret = 0;
1207
1208 if (!param || !evt)
1209 return -EINVAL;
1210
1211 /* we only report device fault if there is a handler registered */
1212 mutex_lock(&param->lock);
1213 fparam = param->fault_param;
1214 if (!fparam || !fparam->handler) {
1215 ret = -EINVAL;
1216 goto done_unlock;
1217 }
1218
1219 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1220 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1221 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1222 GFP_KERNEL);
1223 if (!evt_pending) {
1224 ret = -ENOMEM;
1225 goto done_unlock;
1226 }
1227 mutex_lock(&fparam->lock);
1228 list_add_tail(&evt_pending->list, &fparam->faults);
1229 mutex_unlock(&fparam->lock);
1230 }
1231
1232 ret = fparam->handler(&evt->fault, fparam->data);
1233 if (ret && evt_pending) {
1234 mutex_lock(&fparam->lock);
1235 list_del(&evt_pending->list);
1236 mutex_unlock(&fparam->lock);
1237 kfree(evt_pending);
1238 }
1239 done_unlock:
1240 mutex_unlock(&param->lock);
1241 return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1244
1245 int iommu_page_response(struct device *dev,
1246 struct iommu_page_response *msg)
1247 {
1248 bool needs_pasid;
1249 int ret = -EINVAL;
1250 struct iommu_fault_event *evt;
1251 struct iommu_fault_page_request *prm;
1252 struct dev_iommu *param = dev->iommu;
1253 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1254 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1255
1256 if (!domain || !domain->ops->page_response)
1257 return -ENODEV;
1258
1259 if (!param || !param->fault_param)
1260 return -EINVAL;
1261
1262 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1263 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1264 return -EINVAL;
1265
1266 /* Only send response if there is a fault report pending */
1267 mutex_lock(&param->fault_param->lock);
1268 if (list_empty(&param->fault_param->faults)) {
1269 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1270 goto done_unlock;
1271 }
1272 /*
1273 * Check if we have a matching page request pending to respond,
1274 * otherwise return -EINVAL
1275 */
1276 list_for_each_entry(evt, &param->fault_param->faults, list) {
1277 prm = &evt->fault.prm;
1278 if (prm->grpid != msg->grpid)
1279 continue;
1280
1281 /*
1282 * If the PASID is required, the corresponding request is
1283 * matched using the group ID, the PASID valid bit and the PASID
1284 * value. Otherwise only the group ID matches request and
1285 * response.
1286 */
1287 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1288 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1289 continue;
1290
1291 if (!needs_pasid && has_pasid) {
1292 /* No big deal, just clear it. */
1293 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1294 msg->pasid = 0;
1295 }
1296
1297 ret = domain->ops->page_response(dev, evt, msg);
1298 list_del(&evt->list);
1299 kfree(evt);
1300 break;
1301 }
1302
1303 done_unlock:
1304 mutex_unlock(&param->fault_param->lock);
1305 return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(iommu_page_response);
1308
1309 /**
1310 * iommu_group_id - Return ID for a group
1311 * @group: the group to ID
1312 *
1313 * Return the unique ID for the group matching the sysfs group number.
1314 */
1315 int iommu_group_id(struct iommu_group *group)
1316 {
1317 return group->id;
1318 }
1319 EXPORT_SYMBOL_GPL(iommu_group_id);
1320
1321 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1322 unsigned long *devfns);
1323
1324 /*
1325 * To consider a PCI device isolated, we require ACS to support Source
1326 * Validation, Request Redirection, Completer Redirection, and Upstream
1327 * Forwarding. This effectively means that devices cannot spoof their
1328 * requester ID, requests and completions cannot be redirected, and all
1329 * transactions are forwarded upstream, even as it passes through a
1330 * bridge where the target device is downstream.
1331 */
1332 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1333
1334 /*
1335 * For multifunction devices which are not isolated from each other, find
1336 * all the other non-isolated functions and look for existing groups. For
1337 * each function, we also need to look for aliases to or from other devices
1338 * that may already have a group.
1339 */
1340 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1341 unsigned long *devfns)
1342 {
1343 struct pci_dev *tmp = NULL;
1344 struct iommu_group *group;
1345
1346 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1347 return NULL;
1348
1349 for_each_pci_dev(tmp) {
1350 if (tmp == pdev || tmp->bus != pdev->bus ||
1351 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1352 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1353 continue;
1354
1355 group = get_pci_alias_group(tmp, devfns);
1356 if (group) {
1357 pci_dev_put(tmp);
1358 return group;
1359 }
1360 }
1361
1362 return NULL;
1363 }
1364
1365 /*
1366 * Look for aliases to or from the given device for existing groups. DMA
1367 * aliases are only supported on the same bus, therefore the search
1368 * space is quite small (especially since we're really only looking at pcie
1369 * device, and therefore only expect multiple slots on the root complex or
1370 * downstream switch ports). It's conceivable though that a pair of
1371 * multifunction devices could have aliases between them that would cause a
1372 * loop. To prevent this, we use a bitmap to track where we've been.
1373 */
1374 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1375 unsigned long *devfns)
1376 {
1377 struct pci_dev *tmp = NULL;
1378 struct iommu_group *group;
1379
1380 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1381 return NULL;
1382
1383 group = iommu_group_get(&pdev->dev);
1384 if (group)
1385 return group;
1386
1387 for_each_pci_dev(tmp) {
1388 if (tmp == pdev || tmp->bus != pdev->bus)
1389 continue;
1390
1391 /* We alias them or they alias us */
1392 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1393 group = get_pci_alias_group(tmp, devfns);
1394 if (group) {
1395 pci_dev_put(tmp);
1396 return group;
1397 }
1398
1399 group = get_pci_function_alias_group(tmp, devfns);
1400 if (group) {
1401 pci_dev_put(tmp);
1402 return group;
1403 }
1404 }
1405 }
1406
1407 return NULL;
1408 }
1409
1410 struct group_for_pci_data {
1411 struct pci_dev *pdev;
1412 struct iommu_group *group;
1413 };
1414
1415 /*
1416 * DMA alias iterator callback, return the last seen device. Stop and return
1417 * the IOMMU group if we find one along the way.
1418 */
1419 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1420 {
1421 struct group_for_pci_data *data = opaque;
1422
1423 data->pdev = pdev;
1424 data->group = iommu_group_get(&pdev->dev);
1425
1426 return data->group != NULL;
1427 }
1428
1429 /*
1430 * Generic device_group call-back function. It just allocates one
1431 * iommu-group per device.
1432 */
1433 struct iommu_group *generic_device_group(struct device *dev)
1434 {
1435 return iommu_group_alloc();
1436 }
1437 EXPORT_SYMBOL_GPL(generic_device_group);
1438
1439 /*
1440 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1441 * to find or create an IOMMU group for a device.
1442 */
1443 struct iommu_group *pci_device_group(struct device *dev)
1444 {
1445 struct pci_dev *pdev = to_pci_dev(dev);
1446 struct group_for_pci_data data;
1447 struct pci_bus *bus;
1448 struct iommu_group *group = NULL;
1449 u64 devfns[4] = { 0 };
1450
1451 if (WARN_ON(!dev_is_pci(dev)))
1452 return ERR_PTR(-EINVAL);
1453
1454 /*
1455 * Find the upstream DMA alias for the device. A device must not
1456 * be aliased due to topology in order to have its own IOMMU group.
1457 * If we find an alias along the way that already belongs to a
1458 * group, use it.
1459 */
1460 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1461 return data.group;
1462
1463 pdev = data.pdev;
1464
1465 /*
1466 * Continue upstream from the point of minimum IOMMU granularity
1467 * due to aliases to the point where devices are protected from
1468 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1469 * group, use it.
1470 */
1471 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1472 if (!bus->self)
1473 continue;
1474
1475 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1476 break;
1477
1478 pdev = bus->self;
1479
1480 group = iommu_group_get(&pdev->dev);
1481 if (group)
1482 return group;
1483 }
1484
1485 /*
1486 * Look for existing groups on device aliases. If we alias another
1487 * device or another device aliases us, use the same group.
1488 */
1489 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1490 if (group)
1491 return group;
1492
1493 /*
1494 * Look for existing groups on non-isolated functions on the same
1495 * slot and aliases of those funcions, if any. No need to clear
1496 * the search bitmap, the tested devfns are still valid.
1497 */
1498 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1499 if (group)
1500 return group;
1501
1502 /* No shared group found, allocate new */
1503 return iommu_group_alloc();
1504 }
1505 EXPORT_SYMBOL_GPL(pci_device_group);
1506
1507 /* Get the IOMMU group for device on fsl-mc bus */
1508 struct iommu_group *fsl_mc_device_group(struct device *dev)
1509 {
1510 struct device *cont_dev = fsl_mc_cont_dev(dev);
1511 struct iommu_group *group;
1512
1513 group = iommu_group_get(cont_dev);
1514 if (!group)
1515 group = iommu_group_alloc();
1516 return group;
1517 }
1518 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1519
1520 static int iommu_get_def_domain_type(struct device *dev)
1521 {
1522 const struct iommu_ops *ops = dev->bus->iommu_ops;
1523
1524 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1525 return IOMMU_DOMAIN_DMA;
1526
1527 if (ops->def_domain_type)
1528 return ops->def_domain_type(dev);
1529
1530 return 0;
1531 }
1532
1533 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1534 struct iommu_group *group,
1535 unsigned int type)
1536 {
1537 struct iommu_domain *dom;
1538
1539 dom = __iommu_domain_alloc(bus, type);
1540 if (!dom && type != IOMMU_DOMAIN_DMA) {
1541 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1542 if (dom)
1543 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1544 type, group->name);
1545 }
1546
1547 if (!dom)
1548 return -ENOMEM;
1549
1550 group->default_domain = dom;
1551 if (!group->domain)
1552 group->domain = dom;
1553 return 0;
1554 }
1555
1556 static int iommu_alloc_default_domain(struct iommu_group *group,
1557 struct device *dev)
1558 {
1559 unsigned int type;
1560
1561 if (group->default_domain)
1562 return 0;
1563
1564 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1565
1566 return iommu_group_alloc_default_domain(dev->bus, group, type);
1567 }
1568
1569 /**
1570 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1571 * @dev: target device
1572 *
1573 * This function is intended to be called by IOMMU drivers and extended to
1574 * support common, bus-defined algorithms when determining or creating the
1575 * IOMMU group for a device. On success, the caller will hold a reference
1576 * to the returned IOMMU group, which will already include the provided
1577 * device. The reference should be released with iommu_group_put().
1578 */
1579 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1580 {
1581 const struct iommu_ops *ops = dev->bus->iommu_ops;
1582 struct iommu_group *group;
1583 int ret;
1584
1585 group = iommu_group_get(dev);
1586 if (group)
1587 return group;
1588
1589 if (!ops)
1590 return ERR_PTR(-EINVAL);
1591
1592 group = ops->device_group(dev);
1593 if (WARN_ON_ONCE(group == NULL))
1594 return ERR_PTR(-EINVAL);
1595
1596 if (IS_ERR(group))
1597 return group;
1598
1599 ret = iommu_group_add_device(group, dev);
1600 if (ret)
1601 goto out_put_group;
1602
1603 return group;
1604
1605 out_put_group:
1606 iommu_group_put(group);
1607
1608 return ERR_PTR(ret);
1609 }
1610
1611 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1612 {
1613 return group->default_domain;
1614 }
1615
1616 static int probe_iommu_group(struct device *dev, void *data)
1617 {
1618 struct list_head *group_list = data;
1619 struct iommu_group *group;
1620 int ret;
1621
1622 /* Device is probed already if in a group */
1623 group = iommu_group_get(dev);
1624 if (group) {
1625 iommu_group_put(group);
1626 return 0;
1627 }
1628
1629 ret = __iommu_probe_device(dev, group_list);
1630 if (ret == -ENODEV)
1631 ret = 0;
1632
1633 return ret;
1634 }
1635
1636 static int remove_iommu_group(struct device *dev, void *data)
1637 {
1638 iommu_release_device(dev);
1639
1640 return 0;
1641 }
1642
1643 static int iommu_bus_notifier(struct notifier_block *nb,
1644 unsigned long action, void *data)
1645 {
1646 unsigned long group_action = 0;
1647 struct device *dev = data;
1648 struct iommu_group *group;
1649
1650 /*
1651 * ADD/DEL call into iommu driver ops if provided, which may
1652 * result in ADD/DEL notifiers to group->notifier
1653 */
1654 if (action == BUS_NOTIFY_ADD_DEVICE) {
1655 int ret;
1656
1657 ret = iommu_probe_device(dev);
1658 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1659 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1660 iommu_release_device(dev);
1661 return NOTIFY_OK;
1662 }
1663
1664 /*
1665 * Remaining BUS_NOTIFYs get filtered and republished to the
1666 * group, if anyone is listening
1667 */
1668 group = iommu_group_get(dev);
1669 if (!group)
1670 return 0;
1671
1672 switch (action) {
1673 case BUS_NOTIFY_BIND_DRIVER:
1674 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1675 break;
1676 case BUS_NOTIFY_BOUND_DRIVER:
1677 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1678 break;
1679 case BUS_NOTIFY_UNBIND_DRIVER:
1680 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1681 break;
1682 case BUS_NOTIFY_UNBOUND_DRIVER:
1683 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1684 break;
1685 }
1686
1687 if (group_action)
1688 blocking_notifier_call_chain(&group->notifier,
1689 group_action, dev);
1690
1691 iommu_group_put(group);
1692 return 0;
1693 }
1694
1695 struct __group_domain_type {
1696 struct device *dev;
1697 unsigned int type;
1698 };
1699
1700 static int probe_get_default_domain_type(struct device *dev, void *data)
1701 {
1702 struct __group_domain_type *gtype = data;
1703 unsigned int type = iommu_get_def_domain_type(dev);
1704
1705 if (type) {
1706 if (gtype->type && gtype->type != type) {
1707 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1708 iommu_domain_type_str(type),
1709 dev_name(gtype->dev),
1710 iommu_domain_type_str(gtype->type));
1711 gtype->type = 0;
1712 }
1713
1714 if (!gtype->dev) {
1715 gtype->dev = dev;
1716 gtype->type = type;
1717 }
1718 }
1719
1720 return 0;
1721 }
1722
1723 static void probe_alloc_default_domain(struct bus_type *bus,
1724 struct iommu_group *group)
1725 {
1726 struct __group_domain_type gtype;
1727
1728 memset(&gtype, 0, sizeof(gtype));
1729
1730 /* Ask for default domain requirements of all devices in the group */
1731 __iommu_group_for_each_dev(group, &gtype,
1732 probe_get_default_domain_type);
1733
1734 if (!gtype.type)
1735 gtype.type = iommu_def_domain_type;
1736
1737 iommu_group_alloc_default_domain(bus, group, gtype.type);
1738
1739 }
1740
1741 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1742 {
1743 struct iommu_domain *domain = data;
1744 int ret = 0;
1745
1746 if (!iommu_is_attach_deferred(domain, dev))
1747 ret = __iommu_attach_device(domain, dev);
1748
1749 return ret;
1750 }
1751
1752 static int __iommu_group_dma_attach(struct iommu_group *group)
1753 {
1754 return __iommu_group_for_each_dev(group, group->default_domain,
1755 iommu_group_do_dma_attach);
1756 }
1757
1758 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1759 {
1760 struct iommu_domain *domain = data;
1761
1762 if (domain->ops->probe_finalize)
1763 domain->ops->probe_finalize(dev);
1764
1765 return 0;
1766 }
1767
1768 static void __iommu_group_dma_finalize(struct iommu_group *group)
1769 {
1770 __iommu_group_for_each_dev(group, group->default_domain,
1771 iommu_group_do_probe_finalize);
1772 }
1773
1774 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1775 {
1776 struct iommu_group *group = data;
1777
1778 iommu_create_device_direct_mappings(group, dev);
1779
1780 return 0;
1781 }
1782
1783 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1784 {
1785 return __iommu_group_for_each_dev(group, group,
1786 iommu_do_create_direct_mappings);
1787 }
1788
1789 int bus_iommu_probe(struct bus_type *bus)
1790 {
1791 struct iommu_group *group, *next;
1792 LIST_HEAD(group_list);
1793 int ret;
1794
1795 /*
1796 * This code-path does not allocate the default domain when
1797 * creating the iommu group, so do it after the groups are
1798 * created.
1799 */
1800 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1801 if (ret)
1802 return ret;
1803
1804 list_for_each_entry_safe(group, next, &group_list, entry) {
1805 /* Remove item from the list */
1806 list_del_init(&group->entry);
1807
1808 mutex_lock(&group->mutex);
1809
1810 /* Try to allocate default domain */
1811 probe_alloc_default_domain(bus, group);
1812
1813 if (!group->default_domain) {
1814 mutex_unlock(&group->mutex);
1815 continue;
1816 }
1817
1818 iommu_group_create_direct_mappings(group);
1819
1820 ret = __iommu_group_dma_attach(group);
1821
1822 mutex_unlock(&group->mutex);
1823
1824 if (ret)
1825 break;
1826
1827 __iommu_group_dma_finalize(group);
1828 }
1829
1830 return ret;
1831 }
1832
1833 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1834 {
1835 struct notifier_block *nb;
1836 int err;
1837
1838 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1839 if (!nb)
1840 return -ENOMEM;
1841
1842 nb->notifier_call = iommu_bus_notifier;
1843
1844 err = bus_register_notifier(bus, nb);
1845 if (err)
1846 goto out_free;
1847
1848 err = bus_iommu_probe(bus);
1849 if (err)
1850 goto out_err;
1851
1852
1853 return 0;
1854
1855 out_err:
1856 /* Clean up */
1857 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1858 bus_unregister_notifier(bus, nb);
1859
1860 out_free:
1861 kfree(nb);
1862
1863 return err;
1864 }
1865
1866 /**
1867 * bus_set_iommu - set iommu-callbacks for the bus
1868 * @bus: bus.
1869 * @ops: the callbacks provided by the iommu-driver
1870 *
1871 * This function is called by an iommu driver to set the iommu methods
1872 * used for a particular bus. Drivers for devices on that bus can use
1873 * the iommu-api after these ops are registered.
1874 * This special function is needed because IOMMUs are usually devices on
1875 * the bus itself, so the iommu drivers are not initialized when the bus
1876 * is set up. With this function the iommu-driver can set the iommu-ops
1877 * afterwards.
1878 */
1879 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1880 {
1881 int err;
1882
1883 if (ops == NULL) {
1884 bus->iommu_ops = NULL;
1885 return 0;
1886 }
1887
1888 if (bus->iommu_ops != NULL)
1889 return -EBUSY;
1890
1891 bus->iommu_ops = ops;
1892
1893 /* Do IOMMU specific setup for this bus-type */
1894 err = iommu_bus_init(bus, ops);
1895 if (err)
1896 bus->iommu_ops = NULL;
1897
1898 return err;
1899 }
1900 EXPORT_SYMBOL_GPL(bus_set_iommu);
1901
1902 bool iommu_present(struct bus_type *bus)
1903 {
1904 return bus->iommu_ops != NULL;
1905 }
1906 EXPORT_SYMBOL_GPL(iommu_present);
1907
1908 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1909 {
1910 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1911 return false;
1912
1913 return bus->iommu_ops->capable(cap);
1914 }
1915 EXPORT_SYMBOL_GPL(iommu_capable);
1916
1917 /**
1918 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1919 * @domain: iommu domain
1920 * @handler: fault handler
1921 * @token: user data, will be passed back to the fault handler
1922 *
1923 * This function should be used by IOMMU users which want to be notified
1924 * whenever an IOMMU fault happens.
1925 *
1926 * The fault handler itself should return 0 on success, and an appropriate
1927 * error code otherwise.
1928 */
1929 void iommu_set_fault_handler(struct iommu_domain *domain,
1930 iommu_fault_handler_t handler,
1931 void *token)
1932 {
1933 BUG_ON(!domain);
1934
1935 domain->handler = handler;
1936 domain->handler_token = token;
1937 }
1938 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1939
1940 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1941 unsigned type)
1942 {
1943 struct iommu_domain *domain;
1944
1945 if (bus == NULL || bus->iommu_ops == NULL)
1946 return NULL;
1947
1948 domain = bus->iommu_ops->domain_alloc(type);
1949 if (!domain)
1950 return NULL;
1951
1952 domain->ops = bus->iommu_ops;
1953 domain->type = type;
1954 /* Assume all sizes by default; the driver may override this later */
1955 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1956
1957 /* Temporarily avoid -EEXIST while drivers still get their own cookies */
1958 if (iommu_is_dma_domain(domain) && !domain->iova_cookie && iommu_get_dma_cookie(domain)) {
1959 iommu_domain_free(domain);
1960 domain = NULL;
1961 }
1962 return domain;
1963 }
1964
1965 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1966 {
1967 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1968 }
1969 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1970
1971 void iommu_domain_free(struct iommu_domain *domain)
1972 {
1973 iommu_put_dma_cookie(domain);
1974 domain->ops->domain_free(domain);
1975 }
1976 EXPORT_SYMBOL_GPL(iommu_domain_free);
1977
1978 static int __iommu_attach_device(struct iommu_domain *domain,
1979 struct device *dev)
1980 {
1981 int ret;
1982
1983 if (unlikely(domain->ops->attach_dev == NULL))
1984 return -ENODEV;
1985
1986 ret = domain->ops->attach_dev(domain, dev);
1987 if (!ret)
1988 trace_attach_device_to_domain(dev);
1989 return ret;
1990 }
1991
1992 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1993 {
1994 struct iommu_group *group;
1995 int ret;
1996
1997 group = iommu_group_get(dev);
1998 if (!group)
1999 return -ENODEV;
2000
2001 /*
2002 * Lock the group to make sure the device-count doesn't
2003 * change while we are attaching
2004 */
2005 mutex_lock(&group->mutex);
2006 ret = -EINVAL;
2007 if (iommu_group_device_count(group) != 1)
2008 goto out_unlock;
2009
2010 ret = __iommu_attach_group(domain, group);
2011
2012 out_unlock:
2013 mutex_unlock(&group->mutex);
2014 iommu_group_put(group);
2015
2016 return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(iommu_attach_device);
2019
2020 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2021 {
2022 const struct iommu_ops *ops = domain->ops;
2023
2024 if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev))
2025 return __iommu_attach_device(domain, dev);
2026
2027 return 0;
2028 }
2029
2030 /*
2031 * Check flags and other user provided data for valid combinations. We also
2032 * make sure no reserved fields or unused flags are set. This is to ensure
2033 * not breaking userspace in the future when these fields or flags are used.
2034 */
2035 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
2036 {
2037 u32 mask;
2038 int i;
2039
2040 if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
2041 return -EINVAL;
2042
2043 mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
2044 if (info->cache & ~mask)
2045 return -EINVAL;
2046
2047 if (info->granularity >= IOMMU_INV_GRANU_NR)
2048 return -EINVAL;
2049
2050 switch (info->granularity) {
2051 case IOMMU_INV_GRANU_ADDR:
2052 if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
2053 return -EINVAL;
2054
2055 mask = IOMMU_INV_ADDR_FLAGS_PASID |
2056 IOMMU_INV_ADDR_FLAGS_ARCHID |
2057 IOMMU_INV_ADDR_FLAGS_LEAF;
2058
2059 if (info->granu.addr_info.flags & ~mask)
2060 return -EINVAL;
2061 break;
2062 case IOMMU_INV_GRANU_PASID:
2063 mask = IOMMU_INV_PASID_FLAGS_PASID |
2064 IOMMU_INV_PASID_FLAGS_ARCHID;
2065 if (info->granu.pasid_info.flags & ~mask)
2066 return -EINVAL;
2067
2068 break;
2069 case IOMMU_INV_GRANU_DOMAIN:
2070 if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2071 return -EINVAL;
2072 break;
2073 default:
2074 return -EINVAL;
2075 }
2076
2077 /* Check reserved padding fields */
2078 for (i = 0; i < sizeof(info->padding); i++) {
2079 if (info->padding[i])
2080 return -EINVAL;
2081 }
2082
2083 return 0;
2084 }
2085
2086 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2087 void __user *uinfo)
2088 {
2089 struct iommu_cache_invalidate_info inv_info = { 0 };
2090 u32 minsz;
2091 int ret;
2092
2093 if (unlikely(!domain->ops->cache_invalidate))
2094 return -ENODEV;
2095
2096 /*
2097 * No new spaces can be added before the variable sized union, the
2098 * minimum size is the offset to the union.
2099 */
2100 minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2101
2102 /* Copy minsz from user to get flags and argsz */
2103 if (copy_from_user(&inv_info, uinfo, minsz))
2104 return -EFAULT;
2105
2106 /* Fields before the variable size union are mandatory */
2107 if (inv_info.argsz < minsz)
2108 return -EINVAL;
2109
2110 /* PASID and address granu require additional info beyond minsz */
2111 if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2112 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2113 return -EINVAL;
2114
2115 if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2116 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2117 return -EINVAL;
2118
2119 /*
2120 * User might be using a newer UAPI header which has a larger data
2121 * size, we shall support the existing flags within the current
2122 * size. Copy the remaining user data _after_ minsz but not more
2123 * than the current kernel supported size.
2124 */
2125 if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2126 min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2127 return -EFAULT;
2128
2129 /* Now the argsz is validated, check the content */
2130 ret = iommu_check_cache_invl_data(&inv_info);
2131 if (ret)
2132 return ret;
2133
2134 return domain->ops->cache_invalidate(domain, dev, &inv_info);
2135 }
2136 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2137
2138 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2139 {
2140 u64 mask;
2141 int i;
2142
2143 if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2144 return -EINVAL;
2145
2146 /* Check the range of supported formats */
2147 if (data->format >= IOMMU_PASID_FORMAT_LAST)
2148 return -EINVAL;
2149
2150 /* Check all flags */
2151 mask = IOMMU_SVA_GPASID_VAL;
2152 if (data->flags & ~mask)
2153 return -EINVAL;
2154
2155 /* Check reserved padding fields */
2156 for (i = 0; i < sizeof(data->padding); i++) {
2157 if (data->padding[i])
2158 return -EINVAL;
2159 }
2160
2161 return 0;
2162 }
2163
2164 static int iommu_sva_prepare_bind_data(void __user *udata,
2165 struct iommu_gpasid_bind_data *data)
2166 {
2167 u32 minsz;
2168
2169 /*
2170 * No new spaces can be added before the variable sized union, the
2171 * minimum size is the offset to the union.
2172 */
2173 minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2174
2175 /* Copy minsz from user to get flags and argsz */
2176 if (copy_from_user(data, udata, minsz))
2177 return -EFAULT;
2178
2179 /* Fields before the variable size union are mandatory */
2180 if (data->argsz < minsz)
2181 return -EINVAL;
2182 /*
2183 * User might be using a newer UAPI header, we shall let IOMMU vendor
2184 * driver decide on what size it needs. Since the guest PASID bind data
2185 * can be vendor specific, larger argsz could be the result of extension
2186 * for one vendor but it should not affect another vendor.
2187 * Copy the remaining user data _after_ minsz
2188 */
2189 if (copy_from_user((void *)data + minsz, udata + minsz,
2190 min_t(u32, data->argsz, sizeof(*data)) - minsz))
2191 return -EFAULT;
2192
2193 return iommu_check_bind_data(data);
2194 }
2195
2196 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2197 void __user *udata)
2198 {
2199 struct iommu_gpasid_bind_data data = { 0 };
2200 int ret;
2201
2202 if (unlikely(!domain->ops->sva_bind_gpasid))
2203 return -ENODEV;
2204
2205 ret = iommu_sva_prepare_bind_data(udata, &data);
2206 if (ret)
2207 return ret;
2208
2209 return domain->ops->sva_bind_gpasid(domain, dev, &data);
2210 }
2211 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2212
2213 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2214 ioasid_t pasid)
2215 {
2216 if (unlikely(!domain->ops->sva_unbind_gpasid))
2217 return -ENODEV;
2218
2219 return domain->ops->sva_unbind_gpasid(dev, pasid);
2220 }
2221 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2222
2223 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2224 void __user *udata)
2225 {
2226 struct iommu_gpasid_bind_data data = { 0 };
2227 int ret;
2228
2229 if (unlikely(!domain->ops->sva_bind_gpasid))
2230 return -ENODEV;
2231
2232 ret = iommu_sva_prepare_bind_data(udata, &data);
2233 if (ret)
2234 return ret;
2235
2236 return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2237 }
2238 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2239
2240 static void __iommu_detach_device(struct iommu_domain *domain,
2241 struct device *dev)
2242 {
2243 if (iommu_is_attach_deferred(domain, dev))
2244 return;
2245
2246 if (unlikely(domain->ops->detach_dev == NULL))
2247 return;
2248
2249 domain->ops->detach_dev(domain, dev);
2250 trace_detach_device_from_domain(dev);
2251 }
2252
2253 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2254 {
2255 struct iommu_group *group;
2256
2257 group = iommu_group_get(dev);
2258 if (!group)
2259 return;
2260
2261 mutex_lock(&group->mutex);
2262 if (iommu_group_device_count(group) != 1) {
2263 WARN_ON(1);
2264 goto out_unlock;
2265 }
2266
2267 __iommu_detach_group(domain, group);
2268
2269 out_unlock:
2270 mutex_unlock(&group->mutex);
2271 iommu_group_put(group);
2272 }
2273 EXPORT_SYMBOL_GPL(iommu_detach_device);
2274
2275 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2276 {
2277 struct iommu_domain *domain;
2278 struct iommu_group *group;
2279
2280 group = iommu_group_get(dev);
2281 if (!group)
2282 return NULL;
2283
2284 domain = group->domain;
2285
2286 iommu_group_put(group);
2287
2288 return domain;
2289 }
2290 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2291
2292 /*
2293 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2294 * guarantees that the group and its default domain are valid and correct.
2295 */
2296 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2297 {
2298 return dev->iommu_group->default_domain;
2299 }
2300
2301 /*
2302 * IOMMU groups are really the natural working unit of the IOMMU, but
2303 * the IOMMU API works on domains and devices. Bridge that gap by
2304 * iterating over the devices in a group. Ideally we'd have a single
2305 * device which represents the requestor ID of the group, but we also
2306 * allow IOMMU drivers to create policy defined minimum sets, where
2307 * the physical hardware may be able to distiguish members, but we
2308 * wish to group them at a higher level (ex. untrusted multi-function
2309 * PCI devices). Thus we attach each device.
2310 */
2311 static int iommu_group_do_attach_device(struct device *dev, void *data)
2312 {
2313 struct iommu_domain *domain = data;
2314
2315 return __iommu_attach_device(domain, dev);
2316 }
2317
2318 static int __iommu_attach_group(struct iommu_domain *domain,
2319 struct iommu_group *group)
2320 {
2321 int ret;
2322
2323 if (group->default_domain && group->domain != group->default_domain)
2324 return -EBUSY;
2325
2326 ret = __iommu_group_for_each_dev(group, domain,
2327 iommu_group_do_attach_device);
2328 if (ret == 0)
2329 group->domain = domain;
2330
2331 return ret;
2332 }
2333
2334 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2335 {
2336 int ret;
2337
2338 mutex_lock(&group->mutex);
2339 ret = __iommu_attach_group(domain, group);
2340 mutex_unlock(&group->mutex);
2341
2342 return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(iommu_attach_group);
2345
2346 static int iommu_group_do_detach_device(struct device *dev, void *data)
2347 {
2348 struct iommu_domain *domain = data;
2349
2350 __iommu_detach_device(domain, dev);
2351
2352 return 0;
2353 }
2354
2355 static void __iommu_detach_group(struct iommu_domain *domain,
2356 struct iommu_group *group)
2357 {
2358 int ret;
2359
2360 if (!group->default_domain) {
2361 __iommu_group_for_each_dev(group, domain,
2362 iommu_group_do_detach_device);
2363 group->domain = NULL;
2364 return;
2365 }
2366
2367 if (group->domain == group->default_domain)
2368 return;
2369
2370 /* Detach by re-attaching to the default domain */
2371 ret = __iommu_group_for_each_dev(group, group->default_domain,
2372 iommu_group_do_attach_device);
2373 if (ret != 0)
2374 WARN_ON(1);
2375 else
2376 group->domain = group->default_domain;
2377 }
2378
2379 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2380 {
2381 mutex_lock(&group->mutex);
2382 __iommu_detach_group(domain, group);
2383 mutex_unlock(&group->mutex);
2384 }
2385 EXPORT_SYMBOL_GPL(iommu_detach_group);
2386
2387 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2388 {
2389 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2390 return iova;
2391
2392 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2393 return 0;
2394
2395 return domain->ops->iova_to_phys(domain, iova);
2396 }
2397 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2398
2399 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2400 phys_addr_t paddr, size_t size, size_t *count)
2401 {
2402 unsigned int pgsize_idx, pgsize_idx_next;
2403 unsigned long pgsizes;
2404 size_t offset, pgsize, pgsize_next;
2405 unsigned long addr_merge = paddr | iova;
2406
2407 /* Page sizes supported by the hardware and small enough for @size */
2408 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2409
2410 /* Constrain the page sizes further based on the maximum alignment */
2411 if (likely(addr_merge))
2412 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2413
2414 /* Make sure we have at least one suitable page size */
2415 BUG_ON(!pgsizes);
2416
2417 /* Pick the biggest page size remaining */
2418 pgsize_idx = __fls(pgsizes);
2419 pgsize = BIT(pgsize_idx);
2420 if (!count)
2421 return pgsize;
2422
2423 /* Find the next biggest support page size, if it exists */
2424 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2425 if (!pgsizes)
2426 goto out_set_count;
2427
2428 pgsize_idx_next = __ffs(pgsizes);
2429 pgsize_next = BIT(pgsize_idx_next);
2430
2431 /*
2432 * There's no point trying a bigger page size unless the virtual
2433 * and physical addresses are similarly offset within the larger page.
2434 */
2435 if ((iova ^ paddr) & (pgsize_next - 1))
2436 goto out_set_count;
2437
2438 /* Calculate the offset to the next page size alignment boundary */
2439 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2440
2441 /*
2442 * If size is big enough to accommodate the larger page, reduce
2443 * the number of smaller pages.
2444 */
2445 if (offset + pgsize_next <= size)
2446 size = offset;
2447
2448 out_set_count:
2449 *count = size >> pgsize_idx;
2450 return pgsize;
2451 }
2452
2453 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2454 phys_addr_t paddr, size_t size, int prot,
2455 gfp_t gfp, size_t *mapped)
2456 {
2457 const struct iommu_ops *ops = domain->ops;
2458 size_t pgsize, count;
2459 int ret;
2460
2461 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2462
2463 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2464 iova, &paddr, pgsize, count);
2465
2466 if (ops->map_pages) {
2467 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2468 gfp, mapped);
2469 } else {
2470 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2471 *mapped = ret ? 0 : pgsize;
2472 }
2473
2474 return ret;
2475 }
2476
2477 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2478 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2479 {
2480 const struct iommu_ops *ops = domain->ops;
2481 unsigned long orig_iova = iova;
2482 unsigned int min_pagesz;
2483 size_t orig_size = size;
2484 phys_addr_t orig_paddr = paddr;
2485 int ret = 0;
2486
2487 if (unlikely(!(ops->map || ops->map_pages) ||
2488 domain->pgsize_bitmap == 0UL))
2489 return -ENODEV;
2490
2491 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2492 return -EINVAL;
2493
2494 /* find out the minimum page size supported */
2495 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2496
2497 /*
2498 * both the virtual address and the physical one, as well as
2499 * the size of the mapping, must be aligned (at least) to the
2500 * size of the smallest page supported by the hardware
2501 */
2502 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2503 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2504 iova, &paddr, size, min_pagesz);
2505 return -EINVAL;
2506 }
2507
2508 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2509
2510 while (size) {
2511 size_t mapped = 0;
2512
2513 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2514 &mapped);
2515 /*
2516 * Some pages may have been mapped, even if an error occurred,
2517 * so we should account for those so they can be unmapped.
2518 */
2519 size -= mapped;
2520
2521 if (ret)
2522 break;
2523
2524 iova += mapped;
2525 paddr += mapped;
2526 }
2527
2528 /* unroll mapping in case something went wrong */
2529 if (ret)
2530 iommu_unmap(domain, orig_iova, orig_size - size);
2531 else
2532 trace_map(orig_iova, orig_paddr, orig_size);
2533
2534 return ret;
2535 }
2536
2537 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2538 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2539 {
2540 const struct iommu_ops *ops = domain->ops;
2541 int ret;
2542
2543 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2544 if (ret == 0 && ops->iotlb_sync_map)
2545 ops->iotlb_sync_map(domain, iova, size);
2546
2547 return ret;
2548 }
2549
2550 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2551 phys_addr_t paddr, size_t size, int prot)
2552 {
2553 might_sleep();
2554 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2555 }
2556 EXPORT_SYMBOL_GPL(iommu_map);
2557
2558 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2559 phys_addr_t paddr, size_t size, int prot)
2560 {
2561 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2562 }
2563 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2564
2565 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2566 unsigned long iova, size_t size,
2567 struct iommu_iotlb_gather *iotlb_gather)
2568 {
2569 const struct iommu_ops *ops = domain->ops;
2570 size_t pgsize, count;
2571
2572 pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2573 return ops->unmap_pages ?
2574 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2575 ops->unmap(domain, iova, pgsize, iotlb_gather);
2576 }
2577
2578 static size_t __iommu_unmap(struct iommu_domain *domain,
2579 unsigned long iova, size_t size,
2580 struct iommu_iotlb_gather *iotlb_gather)
2581 {
2582 const struct iommu_ops *ops = domain->ops;
2583 size_t unmapped_page, unmapped = 0;
2584 unsigned long orig_iova = iova;
2585 unsigned int min_pagesz;
2586
2587 if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2588 domain->pgsize_bitmap == 0UL))
2589 return 0;
2590
2591 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2592 return 0;
2593
2594 /* find out the minimum page size supported */
2595 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2596
2597 /*
2598 * The virtual address, as well as the size of the mapping, must be
2599 * aligned (at least) to the size of the smallest page supported
2600 * by the hardware
2601 */
2602 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2603 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2604 iova, size, min_pagesz);
2605 return 0;
2606 }
2607
2608 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2609
2610 /*
2611 * Keep iterating until we either unmap 'size' bytes (or more)
2612 * or we hit an area that isn't mapped.
2613 */
2614 while (unmapped < size) {
2615 unmapped_page = __iommu_unmap_pages(domain, iova,
2616 size - unmapped,
2617 iotlb_gather);
2618 if (!unmapped_page)
2619 break;
2620
2621 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2622 iova, unmapped_page);
2623
2624 iova += unmapped_page;
2625 unmapped += unmapped_page;
2626 }
2627
2628 trace_unmap(orig_iova, size, unmapped);
2629 return unmapped;
2630 }
2631
2632 size_t iommu_unmap(struct iommu_domain *domain,
2633 unsigned long iova, size_t size)
2634 {
2635 struct iommu_iotlb_gather iotlb_gather;
2636 size_t ret;
2637
2638 iommu_iotlb_gather_init(&iotlb_gather);
2639 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2640 iommu_iotlb_sync(domain, &iotlb_gather);
2641
2642 return ret;
2643 }
2644 EXPORT_SYMBOL_GPL(iommu_unmap);
2645
2646 size_t iommu_unmap_fast(struct iommu_domain *domain,
2647 unsigned long iova, size_t size,
2648 struct iommu_iotlb_gather *iotlb_gather)
2649 {
2650 return __iommu_unmap(domain, iova, size, iotlb_gather);
2651 }
2652 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2653
2654 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2655 struct scatterlist *sg, unsigned int nents, int prot,
2656 gfp_t gfp)
2657 {
2658 const struct iommu_ops *ops = domain->ops;
2659 size_t len = 0, mapped = 0;
2660 phys_addr_t start;
2661 unsigned int i = 0;
2662 int ret;
2663
2664 while (i <= nents) {
2665 phys_addr_t s_phys = sg_phys(sg);
2666
2667 if (len && s_phys != start + len) {
2668 ret = __iommu_map(domain, iova + mapped, start,
2669 len, prot, gfp);
2670
2671 if (ret)
2672 goto out_err;
2673
2674 mapped += len;
2675 len = 0;
2676 }
2677
2678 if (len) {
2679 len += sg->length;
2680 } else {
2681 len = sg->length;
2682 start = s_phys;
2683 }
2684
2685 if (++i < nents)
2686 sg = sg_next(sg);
2687 }
2688
2689 if (ops->iotlb_sync_map)
2690 ops->iotlb_sync_map(domain, iova, mapped);
2691 return mapped;
2692
2693 out_err:
2694 /* undo mappings already done */
2695 iommu_unmap(domain, iova, mapped);
2696
2697 return ret;
2698 }
2699
2700 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2701 struct scatterlist *sg, unsigned int nents, int prot)
2702 {
2703 might_sleep();
2704 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2705 }
2706 EXPORT_SYMBOL_GPL(iommu_map_sg);
2707
2708 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2709 struct scatterlist *sg, unsigned int nents, int prot)
2710 {
2711 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2712 }
2713
2714 /**
2715 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2716 * @domain: the iommu domain where the fault has happened
2717 * @dev: the device where the fault has happened
2718 * @iova: the faulting address
2719 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2720 *
2721 * This function should be called by the low-level IOMMU implementations
2722 * whenever IOMMU faults happen, to allow high-level users, that are
2723 * interested in such events, to know about them.
2724 *
2725 * This event may be useful for several possible use cases:
2726 * - mere logging of the event
2727 * - dynamic TLB/PTE loading
2728 * - if restarting of the faulting device is required
2729 *
2730 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2731 * PTE/TLB loading will one day be supported, implementations will be able
2732 * to tell whether it succeeded or not according to this return value).
2733 *
2734 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2735 * (though fault handlers can also return -ENOSYS, in case they want to
2736 * elicit the default behavior of the IOMMU drivers).
2737 */
2738 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2739 unsigned long iova, int flags)
2740 {
2741 int ret = -ENOSYS;
2742
2743 /*
2744 * if upper layers showed interest and installed a fault handler,
2745 * invoke it.
2746 */
2747 if (domain->handler)
2748 ret = domain->handler(domain, dev, iova, flags,
2749 domain->handler_token);
2750
2751 trace_io_page_fault(dev, iova, flags);
2752 return ret;
2753 }
2754 EXPORT_SYMBOL_GPL(report_iommu_fault);
2755
2756 static int __init iommu_init(void)
2757 {
2758 iommu_group_kset = kset_create_and_add("iommu_groups",
2759 NULL, kernel_kobj);
2760 BUG_ON(!iommu_group_kset);
2761
2762 iommu_debugfs_setup();
2763
2764 return 0;
2765 }
2766 core_initcall(iommu_init);
2767
2768 int iommu_enable_nesting(struct iommu_domain *domain)
2769 {
2770 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2771 return -EINVAL;
2772 if (!domain->ops->enable_nesting)
2773 return -EINVAL;
2774 return domain->ops->enable_nesting(domain);
2775 }
2776 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2777
2778 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2779 unsigned long quirk)
2780 {
2781 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2782 return -EINVAL;
2783 if (!domain->ops->set_pgtable_quirks)
2784 return -EINVAL;
2785 return domain->ops->set_pgtable_quirks(domain, quirk);
2786 }
2787 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2788
2789 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2790 {
2791 const struct iommu_ops *ops = dev->bus->iommu_ops;
2792
2793 if (ops && ops->get_resv_regions)
2794 ops->get_resv_regions(dev, list);
2795 }
2796
2797 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2798 {
2799 const struct iommu_ops *ops = dev->bus->iommu_ops;
2800
2801 if (ops && ops->put_resv_regions)
2802 ops->put_resv_regions(dev, list);
2803 }
2804
2805 /**
2806 * generic_iommu_put_resv_regions - Reserved region driver helper
2807 * @dev: device for which to free reserved regions
2808 * @list: reserved region list for device
2809 *
2810 * IOMMU drivers can use this to implement their .put_resv_regions() callback
2811 * for simple reservations. Memory allocated for each reserved region will be
2812 * freed. If an IOMMU driver allocates additional resources per region, it is
2813 * going to have to implement a custom callback.
2814 */
2815 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2816 {
2817 struct iommu_resv_region *entry, *next;
2818
2819 list_for_each_entry_safe(entry, next, list, list)
2820 kfree(entry);
2821 }
2822 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2823
2824 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2825 size_t length, int prot,
2826 enum iommu_resv_type type)
2827 {
2828 struct iommu_resv_region *region;
2829
2830 region = kzalloc(sizeof(*region), GFP_KERNEL);
2831 if (!region)
2832 return NULL;
2833
2834 INIT_LIST_HEAD(&region->list);
2835 region->start = start;
2836 region->length = length;
2837 region->prot = prot;
2838 region->type = type;
2839 return region;
2840 }
2841 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2842
2843 void iommu_set_default_passthrough(bool cmd_line)
2844 {
2845 if (cmd_line)
2846 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2847 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2848 }
2849
2850 void iommu_set_default_translated(bool cmd_line)
2851 {
2852 if (cmd_line)
2853 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2854 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2855 }
2856
2857 bool iommu_default_passthrough(void)
2858 {
2859 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2860 }
2861 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2862
2863 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2864 {
2865 const struct iommu_ops *ops = NULL;
2866 struct iommu_device *iommu;
2867
2868 spin_lock(&iommu_device_lock);
2869 list_for_each_entry(iommu, &iommu_device_list, list)
2870 if (iommu->fwnode == fwnode) {
2871 ops = iommu->ops;
2872 break;
2873 }
2874 spin_unlock(&iommu_device_lock);
2875 return ops;
2876 }
2877
2878 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2879 const struct iommu_ops *ops)
2880 {
2881 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2882
2883 if (fwspec)
2884 return ops == fwspec->ops ? 0 : -EINVAL;
2885
2886 if (!dev_iommu_get(dev))
2887 return -ENOMEM;
2888
2889 /* Preallocate for the overwhelmingly common case of 1 ID */
2890 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2891 if (!fwspec)
2892 return -ENOMEM;
2893
2894 of_node_get(to_of_node(iommu_fwnode));
2895 fwspec->iommu_fwnode = iommu_fwnode;
2896 fwspec->ops = ops;
2897 dev_iommu_fwspec_set(dev, fwspec);
2898 return 0;
2899 }
2900 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2901
2902 void iommu_fwspec_free(struct device *dev)
2903 {
2904 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2905
2906 if (fwspec) {
2907 fwnode_handle_put(fwspec->iommu_fwnode);
2908 kfree(fwspec);
2909 dev_iommu_fwspec_set(dev, NULL);
2910 }
2911 }
2912 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2913
2914 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2915 {
2916 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2917 int i, new_num;
2918
2919 if (!fwspec)
2920 return -EINVAL;
2921
2922 new_num = fwspec->num_ids + num_ids;
2923 if (new_num > 1) {
2924 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2925 GFP_KERNEL);
2926 if (!fwspec)
2927 return -ENOMEM;
2928
2929 dev_iommu_fwspec_set(dev, fwspec);
2930 }
2931
2932 for (i = 0; i < num_ids; i++)
2933 fwspec->ids[fwspec->num_ids + i] = ids[i];
2934
2935 fwspec->num_ids = new_num;
2936 return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2939
2940 /*
2941 * Per device IOMMU features.
2942 */
2943 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2944 {
2945 if (dev->iommu && dev->iommu->iommu_dev) {
2946 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2947
2948 if (ops->dev_enable_feat)
2949 return ops->dev_enable_feat(dev, feat);
2950 }
2951
2952 return -ENODEV;
2953 }
2954 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2955
2956 /*
2957 * The device drivers should do the necessary cleanups before calling this.
2958 * For example, before disabling the aux-domain feature, the device driver
2959 * should detach all aux-domains. Otherwise, this will return -EBUSY.
2960 */
2961 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2962 {
2963 if (dev->iommu && dev->iommu->iommu_dev) {
2964 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2965
2966 if (ops->dev_disable_feat)
2967 return ops->dev_disable_feat(dev, feat);
2968 }
2969
2970 return -EBUSY;
2971 }
2972 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2973
2974 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2975 {
2976 if (dev->iommu && dev->iommu->iommu_dev) {
2977 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2978
2979 if (ops->dev_feat_enabled)
2980 return ops->dev_feat_enabled(dev, feat);
2981 }
2982
2983 return false;
2984 }
2985 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2986
2987 /*
2988 * Aux-domain specific attach/detach.
2989 *
2990 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2991 * true. Also, as long as domains are attached to a device through this
2992 * interface, any tries to call iommu_attach_device() should fail
2993 * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2994 * This should make us safe against a device being attached to a guest as a
2995 * whole while there are still pasid users on it (aux and sva).
2996 */
2997 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2998 {
2999 int ret = -ENODEV;
3000
3001 if (domain->ops->aux_attach_dev)
3002 ret = domain->ops->aux_attach_dev(domain, dev);
3003
3004 if (!ret)
3005 trace_attach_device_to_domain(dev);
3006
3007 return ret;
3008 }
3009 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
3010
3011 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
3012 {
3013 if (domain->ops->aux_detach_dev) {
3014 domain->ops->aux_detach_dev(domain, dev);
3015 trace_detach_device_from_domain(dev);
3016 }
3017 }
3018 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
3019
3020 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
3021 {
3022 int ret = -ENODEV;
3023
3024 if (domain->ops->aux_get_pasid)
3025 ret = domain->ops->aux_get_pasid(domain, dev);
3026
3027 return ret;
3028 }
3029 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
3030
3031 /**
3032 * iommu_sva_bind_device() - Bind a process address space to a device
3033 * @dev: the device
3034 * @mm: the mm to bind, caller must hold a reference to it
3035 *
3036 * Create a bond between device and address space, allowing the device to access
3037 * the mm using the returned PASID. If a bond already exists between @device and
3038 * @mm, it is returned and an additional reference is taken. Caller must call
3039 * iommu_sva_unbind_device() to release each reference.
3040 *
3041 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
3042 * initialize the required SVA features.
3043 *
3044 * On error, returns an ERR_PTR value.
3045 */
3046 struct iommu_sva *
3047 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
3048 {
3049 struct iommu_group *group;
3050 struct iommu_sva *handle = ERR_PTR(-EINVAL);
3051 const struct iommu_ops *ops = dev->bus->iommu_ops;
3052
3053 if (!ops || !ops->sva_bind)
3054 return ERR_PTR(-ENODEV);
3055
3056 group = iommu_group_get(dev);
3057 if (!group)
3058 return ERR_PTR(-ENODEV);
3059
3060 /* Ensure device count and domain don't change while we're binding */
3061 mutex_lock(&group->mutex);
3062
3063 /*
3064 * To keep things simple, SVA currently doesn't support IOMMU groups
3065 * with more than one device. Existing SVA-capable systems are not
3066 * affected by the problems that required IOMMU groups (lack of ACS
3067 * isolation, device ID aliasing and other hardware issues).
3068 */
3069 if (iommu_group_device_count(group) != 1)
3070 goto out_unlock;
3071
3072 handle = ops->sva_bind(dev, mm, drvdata);
3073
3074 out_unlock:
3075 mutex_unlock(&group->mutex);
3076 iommu_group_put(group);
3077
3078 return handle;
3079 }
3080 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3081
3082 /**
3083 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3084 * @handle: the handle returned by iommu_sva_bind_device()
3085 *
3086 * Put reference to a bond between device and address space. The device should
3087 * not be issuing any more transaction for this PASID. All outstanding page
3088 * requests for this PASID must have been flushed to the IOMMU.
3089 */
3090 void iommu_sva_unbind_device(struct iommu_sva *handle)
3091 {
3092 struct iommu_group *group;
3093 struct device *dev = handle->dev;
3094 const struct iommu_ops *ops = dev->bus->iommu_ops;
3095
3096 if (!ops || !ops->sva_unbind)
3097 return;
3098
3099 group = iommu_group_get(dev);
3100 if (!group)
3101 return;
3102
3103 mutex_lock(&group->mutex);
3104 ops->sva_unbind(handle);
3105 mutex_unlock(&group->mutex);
3106
3107 iommu_group_put(group);
3108 }
3109 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3110
3111 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3112 {
3113 const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3114
3115 if (!ops || !ops->sva_get_pasid)
3116 return IOMMU_PASID_INVALID;
3117
3118 return ops->sva_get_pasid(handle);
3119 }
3120 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3121
3122 /*
3123 * Changes the default domain of an iommu group that has *only* one device
3124 *
3125 * @group: The group for which the default domain should be changed
3126 * @prev_dev: The device in the group (this is used to make sure that the device
3127 * hasn't changed after the caller has called this function)
3128 * @type: The type of the new default domain that gets associated with the group
3129 *
3130 * Returns 0 on success and error code on failure
3131 *
3132 * Note:
3133 * 1. Presently, this function is called only when user requests to change the
3134 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
3135 * Please take a closer look if intended to use for other purposes.
3136 */
3137 static int iommu_change_dev_def_domain(struct iommu_group *group,
3138 struct device *prev_dev, int type)
3139 {
3140 struct iommu_domain *prev_dom;
3141 struct group_device *grp_dev;
3142 int ret, dev_def_dom;
3143 struct device *dev;
3144
3145 mutex_lock(&group->mutex);
3146
3147 if (group->default_domain != group->domain) {
3148 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
3149 ret = -EBUSY;
3150 goto out;
3151 }
3152
3153 /*
3154 * iommu group wasn't locked while acquiring device lock in
3155 * iommu_group_store_type(). So, make sure that the device count hasn't
3156 * changed while acquiring device lock.
3157 *
3158 * Changing default domain of an iommu group with two or more devices
3159 * isn't supported because there could be a potential deadlock. Consider
3160 * the following scenario. T1 is trying to acquire device locks of all
3161 * the devices in the group and before it could acquire all of them,
3162 * there could be another thread T2 (from different sub-system and use
3163 * case) that has already acquired some of the device locks and might be
3164 * waiting for T1 to release other device locks.
3165 */
3166 if (iommu_group_device_count(group) != 1) {
3167 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
3168 ret = -EINVAL;
3169 goto out;
3170 }
3171
3172 /* Since group has only one device */
3173 grp_dev = list_first_entry(&group->devices, struct group_device, list);
3174 dev = grp_dev->dev;
3175
3176 if (prev_dev != dev) {
3177 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
3178 ret = -EBUSY;
3179 goto out;
3180 }
3181
3182 prev_dom = group->default_domain;
3183 if (!prev_dom) {
3184 ret = -EINVAL;
3185 goto out;
3186 }
3187
3188 dev_def_dom = iommu_get_def_domain_type(dev);
3189 if (!type) {
3190 /*
3191 * If the user hasn't requested any specific type of domain and
3192 * if the device supports both the domains, then default to the
3193 * domain the device was booted with
3194 */
3195 type = dev_def_dom ? : iommu_def_domain_type;
3196 } else if (dev_def_dom && type != dev_def_dom) {
3197 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
3198 iommu_domain_type_str(type));
3199 ret = -EINVAL;
3200 goto out;
3201 }
3202
3203 /*
3204 * Switch to a new domain only if the requested domain type is different
3205 * from the existing default domain type
3206 */
3207 if (prev_dom->type == type) {
3208 ret = 0;
3209 goto out;
3210 }
3211
3212 /* We can bring up a flush queue without tearing down the domain */
3213 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
3214 ret = iommu_dma_init_fq(prev_dom);
3215 if (!ret)
3216 prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
3217 goto out;
3218 }
3219
3220 /* Sets group->default_domain to the newly allocated domain */
3221 ret = iommu_group_alloc_default_domain(dev->bus, group, type);
3222 if (ret)
3223 goto out;
3224
3225 ret = iommu_create_device_direct_mappings(group, dev);
3226 if (ret)
3227 goto free_new_domain;
3228
3229 ret = __iommu_attach_device(group->default_domain, dev);
3230 if (ret)
3231 goto free_new_domain;
3232
3233 group->domain = group->default_domain;
3234
3235 /*
3236 * Release the mutex here because ops->probe_finalize() call-back of
3237 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3238 * in-turn might call back into IOMMU core code, where it tries to take
3239 * group->mutex, resulting in a deadlock.
3240 */
3241 mutex_unlock(&group->mutex);
3242
3243 /* Make sure dma_ops is appropriatley set */
3244 iommu_group_do_probe_finalize(dev, group->default_domain);
3245 iommu_domain_free(prev_dom);
3246 return 0;
3247
3248 free_new_domain:
3249 iommu_domain_free(group->default_domain);
3250 group->default_domain = prev_dom;
3251 group->domain = prev_dom;
3252
3253 out:
3254 mutex_unlock(&group->mutex);
3255
3256 return ret;
3257 }
3258
3259 /*
3260 * Changing the default domain through sysfs requires the users to unbind the
3261 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3262 * transition. Return failure if this isn't met.
3263 *
3264 * We need to consider the race between this and the device release path.
3265 * device_lock(dev) is used here to guarantee that the device release path
3266 * will not be entered at the same time.
3267 */
3268 static ssize_t iommu_group_store_type(struct iommu_group *group,
3269 const char *buf, size_t count)
3270 {
3271 struct group_device *grp_dev;
3272 struct device *dev;
3273 int ret, req_type;
3274
3275 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3276 return -EACCES;
3277
3278 if (WARN_ON(!group))
3279 return -EINVAL;
3280
3281 if (sysfs_streq(buf, "identity"))
3282 req_type = IOMMU_DOMAIN_IDENTITY;
3283 else if (sysfs_streq(buf, "DMA"))
3284 req_type = IOMMU_DOMAIN_DMA;
3285 else if (sysfs_streq(buf, "DMA-FQ"))
3286 req_type = IOMMU_DOMAIN_DMA_FQ;
3287 else if (sysfs_streq(buf, "auto"))
3288 req_type = 0;
3289 else
3290 return -EINVAL;
3291
3292 /*
3293 * Lock/Unlock the group mutex here before device lock to
3294 * 1. Make sure that the iommu group has only one device (this is a
3295 * prerequisite for step 2)
3296 * 2. Get struct *dev which is needed to lock device
3297 */
3298 mutex_lock(&group->mutex);
3299 if (iommu_group_device_count(group) != 1) {
3300 mutex_unlock(&group->mutex);
3301 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3302 return -EINVAL;
3303 }
3304
3305 /* Since group has only one device */
3306 grp_dev = list_first_entry(&group->devices, struct group_device, list);
3307 dev = grp_dev->dev;
3308 get_device(dev);
3309
3310 /*
3311 * Don't hold the group mutex because taking group mutex first and then
3312 * the device lock could potentially cause a deadlock as below. Assume
3313 * two threads T1 and T2. T1 is trying to change default domain of an
3314 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3315 * of a PCIe device which is in the same iommu group. T1 takes group
3316 * mutex and before it could take device lock assume T2 has taken device
3317 * lock and is yet to take group mutex. Now, both the threads will be
3318 * waiting for the other thread to release lock. Below, lock order was
3319 * suggested.
3320 * device_lock(dev);
3321 * mutex_lock(&group->mutex);
3322 * iommu_change_dev_def_domain();
3323 * mutex_unlock(&group->mutex);
3324 * device_unlock(dev);
3325 *
3326 * [1] Typical device release path
3327 * device_lock() from device/driver core code
3328 * -> bus_notifier()
3329 * -> iommu_bus_notifier()
3330 * -> iommu_release_device()
3331 * -> ops->release_device() vendor driver calls back iommu core code
3332 * -> mutex_lock() from iommu core code
3333 */
3334 mutex_unlock(&group->mutex);
3335
3336 /* Check if the device in the group still has a driver bound to it */
3337 device_lock(dev);
3338 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3339 group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3340 pr_err_ratelimited("Device is still bound to driver\n");
3341 ret = -EBUSY;
3342 goto out;
3343 }
3344
3345 ret = iommu_change_dev_def_domain(group, dev, req_type);
3346 ret = ret ?: count;
3347
3348 out:
3349 device_unlock(dev);
3350 put_device(dev);
3351
3352 return ret;
3353 }