]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/iommu.c
Merge branch 'x86-xsave-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #define pr_fmt(fmt) "%s: " fmt, __func__
20
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/iommu.h>
29 #include <linux/idr.h>
30 #include <linux/notifier.h>
31 #include <linux/err.h>
32 #include <linux/pci.h>
33 #include <trace/events/iommu.h>
34
35 static struct kset *iommu_group_kset;
36 static struct ida iommu_group_ida;
37 static struct mutex iommu_group_mutex;
38
39 struct iommu_callback_data {
40 const struct iommu_ops *ops;
41 };
42
43 struct iommu_group {
44 struct kobject kobj;
45 struct kobject *devices_kobj;
46 struct list_head devices;
47 struct mutex mutex;
48 struct blocking_notifier_head notifier;
49 void *iommu_data;
50 void (*iommu_data_release)(void *iommu_data);
51 char *name;
52 int id;
53 };
54
55 struct iommu_device {
56 struct list_head list;
57 struct device *dev;
58 char *name;
59 };
60
61 struct iommu_group_attribute {
62 struct attribute attr;
63 ssize_t (*show)(struct iommu_group *group, char *buf);
64 ssize_t (*store)(struct iommu_group *group,
65 const char *buf, size_t count);
66 };
67
68 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
69 struct iommu_group_attribute iommu_group_attr_##_name = \
70 __ATTR(_name, _mode, _show, _store)
71
72 #define to_iommu_group_attr(_attr) \
73 container_of(_attr, struct iommu_group_attribute, attr)
74 #define to_iommu_group(_kobj) \
75 container_of(_kobj, struct iommu_group, kobj)
76
77 static ssize_t iommu_group_attr_show(struct kobject *kobj,
78 struct attribute *__attr, char *buf)
79 {
80 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
81 struct iommu_group *group = to_iommu_group(kobj);
82 ssize_t ret = -EIO;
83
84 if (attr->show)
85 ret = attr->show(group, buf);
86 return ret;
87 }
88
89 static ssize_t iommu_group_attr_store(struct kobject *kobj,
90 struct attribute *__attr,
91 const char *buf, size_t count)
92 {
93 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
94 struct iommu_group *group = to_iommu_group(kobj);
95 ssize_t ret = -EIO;
96
97 if (attr->store)
98 ret = attr->store(group, buf, count);
99 return ret;
100 }
101
102 static const struct sysfs_ops iommu_group_sysfs_ops = {
103 .show = iommu_group_attr_show,
104 .store = iommu_group_attr_store,
105 };
106
107 static int iommu_group_create_file(struct iommu_group *group,
108 struct iommu_group_attribute *attr)
109 {
110 return sysfs_create_file(&group->kobj, &attr->attr);
111 }
112
113 static void iommu_group_remove_file(struct iommu_group *group,
114 struct iommu_group_attribute *attr)
115 {
116 sysfs_remove_file(&group->kobj, &attr->attr);
117 }
118
119 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
120 {
121 return sprintf(buf, "%s\n", group->name);
122 }
123
124 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
125
126 static void iommu_group_release(struct kobject *kobj)
127 {
128 struct iommu_group *group = to_iommu_group(kobj);
129
130 if (group->iommu_data_release)
131 group->iommu_data_release(group->iommu_data);
132
133 mutex_lock(&iommu_group_mutex);
134 ida_remove(&iommu_group_ida, group->id);
135 mutex_unlock(&iommu_group_mutex);
136
137 kfree(group->name);
138 kfree(group);
139 }
140
141 static struct kobj_type iommu_group_ktype = {
142 .sysfs_ops = &iommu_group_sysfs_ops,
143 .release = iommu_group_release,
144 };
145
146 /**
147 * iommu_group_alloc - Allocate a new group
148 * @name: Optional name to associate with group, visible in sysfs
149 *
150 * This function is called by an iommu driver to allocate a new iommu
151 * group. The iommu group represents the minimum granularity of the iommu.
152 * Upon successful return, the caller holds a reference to the supplied
153 * group in order to hold the group until devices are added. Use
154 * iommu_group_put() to release this extra reference count, allowing the
155 * group to be automatically reclaimed once it has no devices or external
156 * references.
157 */
158 struct iommu_group *iommu_group_alloc(void)
159 {
160 struct iommu_group *group;
161 int ret;
162
163 group = kzalloc(sizeof(*group), GFP_KERNEL);
164 if (!group)
165 return ERR_PTR(-ENOMEM);
166
167 group->kobj.kset = iommu_group_kset;
168 mutex_init(&group->mutex);
169 INIT_LIST_HEAD(&group->devices);
170 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
171
172 mutex_lock(&iommu_group_mutex);
173
174 again:
175 if (unlikely(0 == ida_pre_get(&iommu_group_ida, GFP_KERNEL))) {
176 kfree(group);
177 mutex_unlock(&iommu_group_mutex);
178 return ERR_PTR(-ENOMEM);
179 }
180
181 if (-EAGAIN == ida_get_new(&iommu_group_ida, &group->id))
182 goto again;
183
184 mutex_unlock(&iommu_group_mutex);
185
186 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
187 NULL, "%d", group->id);
188 if (ret) {
189 mutex_lock(&iommu_group_mutex);
190 ida_remove(&iommu_group_ida, group->id);
191 mutex_unlock(&iommu_group_mutex);
192 kfree(group);
193 return ERR_PTR(ret);
194 }
195
196 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
197 if (!group->devices_kobj) {
198 kobject_put(&group->kobj); /* triggers .release & free */
199 return ERR_PTR(-ENOMEM);
200 }
201
202 /*
203 * The devices_kobj holds a reference on the group kobject, so
204 * as long as that exists so will the group. We can therefore
205 * use the devices_kobj for reference counting.
206 */
207 kobject_put(&group->kobj);
208
209 return group;
210 }
211 EXPORT_SYMBOL_GPL(iommu_group_alloc);
212
213 struct iommu_group *iommu_group_get_by_id(int id)
214 {
215 struct kobject *group_kobj;
216 struct iommu_group *group;
217 const char *name;
218
219 if (!iommu_group_kset)
220 return NULL;
221
222 name = kasprintf(GFP_KERNEL, "%d", id);
223 if (!name)
224 return NULL;
225
226 group_kobj = kset_find_obj(iommu_group_kset, name);
227 kfree(name);
228
229 if (!group_kobj)
230 return NULL;
231
232 group = container_of(group_kobj, struct iommu_group, kobj);
233 BUG_ON(group->id != id);
234
235 kobject_get(group->devices_kobj);
236 kobject_put(&group->kobj);
237
238 return group;
239 }
240 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
241
242 /**
243 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
244 * @group: the group
245 *
246 * iommu drivers can store data in the group for use when doing iommu
247 * operations. This function provides a way to retrieve it. Caller
248 * should hold a group reference.
249 */
250 void *iommu_group_get_iommudata(struct iommu_group *group)
251 {
252 return group->iommu_data;
253 }
254 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
255
256 /**
257 * iommu_group_set_iommudata - set iommu_data for a group
258 * @group: the group
259 * @iommu_data: new data
260 * @release: release function for iommu_data
261 *
262 * iommu drivers can store data in the group for use when doing iommu
263 * operations. This function provides a way to set the data after
264 * the group has been allocated. Caller should hold a group reference.
265 */
266 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
267 void (*release)(void *iommu_data))
268 {
269 group->iommu_data = iommu_data;
270 group->iommu_data_release = release;
271 }
272 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
273
274 /**
275 * iommu_group_set_name - set name for a group
276 * @group: the group
277 * @name: name
278 *
279 * Allow iommu driver to set a name for a group. When set it will
280 * appear in a name attribute file under the group in sysfs.
281 */
282 int iommu_group_set_name(struct iommu_group *group, const char *name)
283 {
284 int ret;
285
286 if (group->name) {
287 iommu_group_remove_file(group, &iommu_group_attr_name);
288 kfree(group->name);
289 group->name = NULL;
290 if (!name)
291 return 0;
292 }
293
294 group->name = kstrdup(name, GFP_KERNEL);
295 if (!group->name)
296 return -ENOMEM;
297
298 ret = iommu_group_create_file(group, &iommu_group_attr_name);
299 if (ret) {
300 kfree(group->name);
301 group->name = NULL;
302 return ret;
303 }
304
305 return 0;
306 }
307 EXPORT_SYMBOL_GPL(iommu_group_set_name);
308
309 /**
310 * iommu_group_add_device - add a device to an iommu group
311 * @group: the group into which to add the device (reference should be held)
312 * @dev: the device
313 *
314 * This function is called by an iommu driver to add a device into a
315 * group. Adding a device increments the group reference count.
316 */
317 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
318 {
319 int ret, i = 0;
320 struct iommu_device *device;
321
322 device = kzalloc(sizeof(*device), GFP_KERNEL);
323 if (!device)
324 return -ENOMEM;
325
326 device->dev = dev;
327
328 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
329 if (ret) {
330 kfree(device);
331 return ret;
332 }
333
334 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
335 rename:
336 if (!device->name) {
337 sysfs_remove_link(&dev->kobj, "iommu_group");
338 kfree(device);
339 return -ENOMEM;
340 }
341
342 ret = sysfs_create_link_nowarn(group->devices_kobj,
343 &dev->kobj, device->name);
344 if (ret) {
345 kfree(device->name);
346 if (ret == -EEXIST && i >= 0) {
347 /*
348 * Account for the slim chance of collision
349 * and append an instance to the name.
350 */
351 device->name = kasprintf(GFP_KERNEL, "%s.%d",
352 kobject_name(&dev->kobj), i++);
353 goto rename;
354 }
355
356 sysfs_remove_link(&dev->kobj, "iommu_group");
357 kfree(device);
358 return ret;
359 }
360
361 kobject_get(group->devices_kobj);
362
363 dev->iommu_group = group;
364
365 mutex_lock(&group->mutex);
366 list_add_tail(&device->list, &group->devices);
367 mutex_unlock(&group->mutex);
368
369 /* Notify any listeners about change to group. */
370 blocking_notifier_call_chain(&group->notifier,
371 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
372
373 trace_add_device_to_group(group->id, dev);
374 return 0;
375 }
376 EXPORT_SYMBOL_GPL(iommu_group_add_device);
377
378 /**
379 * iommu_group_remove_device - remove a device from it's current group
380 * @dev: device to be removed
381 *
382 * This function is called by an iommu driver to remove the device from
383 * it's current group. This decrements the iommu group reference count.
384 */
385 void iommu_group_remove_device(struct device *dev)
386 {
387 struct iommu_group *group = dev->iommu_group;
388 struct iommu_device *tmp_device, *device = NULL;
389
390 /* Pre-notify listeners that a device is being removed. */
391 blocking_notifier_call_chain(&group->notifier,
392 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
393
394 mutex_lock(&group->mutex);
395 list_for_each_entry(tmp_device, &group->devices, list) {
396 if (tmp_device->dev == dev) {
397 device = tmp_device;
398 list_del(&device->list);
399 break;
400 }
401 }
402 mutex_unlock(&group->mutex);
403
404 if (!device)
405 return;
406
407 sysfs_remove_link(group->devices_kobj, device->name);
408 sysfs_remove_link(&dev->kobj, "iommu_group");
409
410 trace_remove_device_from_group(group->id, dev);
411
412 kfree(device->name);
413 kfree(device);
414 dev->iommu_group = NULL;
415 kobject_put(group->devices_kobj);
416 }
417 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
418
419 /**
420 * iommu_group_for_each_dev - iterate over each device in the group
421 * @group: the group
422 * @data: caller opaque data to be passed to callback function
423 * @fn: caller supplied callback function
424 *
425 * This function is called by group users to iterate over group devices.
426 * Callers should hold a reference count to the group during callback.
427 * The group->mutex is held across callbacks, which will block calls to
428 * iommu_group_add/remove_device.
429 */
430 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
431 int (*fn)(struct device *, void *))
432 {
433 struct iommu_device *device;
434 int ret = 0;
435
436 mutex_lock(&group->mutex);
437 list_for_each_entry(device, &group->devices, list) {
438 ret = fn(device->dev, data);
439 if (ret)
440 break;
441 }
442 mutex_unlock(&group->mutex);
443 return ret;
444 }
445 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
446
447 /**
448 * iommu_group_get - Return the group for a device and increment reference
449 * @dev: get the group that this device belongs to
450 *
451 * This function is called by iommu drivers and users to get the group
452 * for the specified device. If found, the group is returned and the group
453 * reference in incremented, else NULL.
454 */
455 struct iommu_group *iommu_group_get(struct device *dev)
456 {
457 struct iommu_group *group = dev->iommu_group;
458
459 if (group)
460 kobject_get(group->devices_kobj);
461
462 return group;
463 }
464 EXPORT_SYMBOL_GPL(iommu_group_get);
465
466 /**
467 * iommu_group_put - Decrement group reference
468 * @group: the group to use
469 *
470 * This function is called by iommu drivers and users to release the
471 * iommu group. Once the reference count is zero, the group is released.
472 */
473 void iommu_group_put(struct iommu_group *group)
474 {
475 if (group)
476 kobject_put(group->devices_kobj);
477 }
478 EXPORT_SYMBOL_GPL(iommu_group_put);
479
480 /**
481 * iommu_group_register_notifier - Register a notifier for group changes
482 * @group: the group to watch
483 * @nb: notifier block to signal
484 *
485 * This function allows iommu group users to track changes in a group.
486 * See include/linux/iommu.h for actions sent via this notifier. Caller
487 * should hold a reference to the group throughout notifier registration.
488 */
489 int iommu_group_register_notifier(struct iommu_group *group,
490 struct notifier_block *nb)
491 {
492 return blocking_notifier_chain_register(&group->notifier, nb);
493 }
494 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
495
496 /**
497 * iommu_group_unregister_notifier - Unregister a notifier
498 * @group: the group to watch
499 * @nb: notifier block to signal
500 *
501 * Unregister a previously registered group notifier block.
502 */
503 int iommu_group_unregister_notifier(struct iommu_group *group,
504 struct notifier_block *nb)
505 {
506 return blocking_notifier_chain_unregister(&group->notifier, nb);
507 }
508 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
509
510 /**
511 * iommu_group_id - Return ID for a group
512 * @group: the group to ID
513 *
514 * Return the unique ID for the group matching the sysfs group number.
515 */
516 int iommu_group_id(struct iommu_group *group)
517 {
518 return group->id;
519 }
520 EXPORT_SYMBOL_GPL(iommu_group_id);
521
522 /*
523 * To consider a PCI device isolated, we require ACS to support Source
524 * Validation, Request Redirection, Completer Redirection, and Upstream
525 * Forwarding. This effectively means that devices cannot spoof their
526 * requester ID, requests and completions cannot be redirected, and all
527 * transactions are forwarded upstream, even as it passes through a
528 * bridge where the target device is downstream.
529 */
530 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
531
532 struct group_for_pci_data {
533 struct pci_dev *pdev;
534 struct iommu_group *group;
535 };
536
537 /*
538 * DMA alias iterator callback, return the last seen device. Stop and return
539 * the IOMMU group if we find one along the way.
540 */
541 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
542 {
543 struct group_for_pci_data *data = opaque;
544
545 data->pdev = pdev;
546 data->group = iommu_group_get(&pdev->dev);
547
548 return data->group != NULL;
549 }
550
551 /*
552 * Use standard PCI bus topology, isolation features, and DMA alias quirks
553 * to find or create an IOMMU group for a device.
554 */
555 static struct iommu_group *iommu_group_get_for_pci_dev(struct pci_dev *pdev)
556 {
557 struct group_for_pci_data data;
558 struct pci_bus *bus;
559 struct iommu_group *group = NULL;
560 struct pci_dev *tmp;
561
562 /*
563 * Find the upstream DMA alias for the device. A device must not
564 * be aliased due to topology in order to have its own IOMMU group.
565 * If we find an alias along the way that already belongs to a
566 * group, use it.
567 */
568 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
569 return data.group;
570
571 pdev = data.pdev;
572
573 /*
574 * Continue upstream from the point of minimum IOMMU granularity
575 * due to aliases to the point where devices are protected from
576 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
577 * group, use it.
578 */
579 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
580 if (!bus->self)
581 continue;
582
583 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
584 break;
585
586 pdev = bus->self;
587
588 group = iommu_group_get(&pdev->dev);
589 if (group)
590 return group;
591 }
592
593 /*
594 * Next we need to consider DMA alias quirks. If one device aliases
595 * to another, they should be grouped together. It's theoretically
596 * possible that aliases could create chains of devices where each
597 * device aliases another device. If we then factor in multifunction
598 * ACS grouping requirements, each alias could incorporate a new slot
599 * with multiple functions, each with aliases. This is all extremely
600 * unlikely as DMA alias quirks are typically only used for PCIe
601 * devices where we usually have a single slot per bus. Furthermore,
602 * the alias quirk is usually to another function within the slot
603 * (and ACS multifunction is not supported) or to a different slot
604 * that doesn't physically exist. The likely scenario is therefore
605 * that everything on the bus gets grouped together. To reduce the
606 * problem space, share the IOMMU group for all devices on the bus
607 * if a DMA alias quirk is present on the bus.
608 */
609 tmp = NULL;
610 for_each_pci_dev(tmp) {
611 if (tmp->bus != pdev->bus ||
612 !(tmp->dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN))
613 continue;
614
615 pci_dev_put(tmp);
616 tmp = NULL;
617
618 /* We have an alias quirk, search for an existing group */
619 for_each_pci_dev(tmp) {
620 struct iommu_group *group_tmp;
621
622 if (tmp->bus != pdev->bus)
623 continue;
624
625 group_tmp = iommu_group_get(&tmp->dev);
626 if (!group) {
627 group = group_tmp;
628 continue;
629 }
630
631 if (group_tmp) {
632 WARN_ON(group != group_tmp);
633 iommu_group_put(group_tmp);
634 }
635 }
636
637 return group ? group : iommu_group_alloc();
638 }
639
640 /*
641 * Non-multifunction devices or multifunction devices supporting
642 * ACS get their own group.
643 */
644 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
645 return iommu_group_alloc();
646
647 /*
648 * Multifunction devices not supporting ACS share a group with other
649 * similar devices in the same slot.
650 */
651 tmp = NULL;
652 for_each_pci_dev(tmp) {
653 if (tmp == pdev || tmp->bus != pdev->bus ||
654 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
655 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
656 continue;
657
658 group = iommu_group_get(&tmp->dev);
659 if (group) {
660 pci_dev_put(tmp);
661 return group;
662 }
663 }
664
665 /* No shared group found, allocate new */
666 return iommu_group_alloc();
667 }
668
669 /**
670 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
671 * @dev: target device
672 *
673 * This function is intended to be called by IOMMU drivers and extended to
674 * support common, bus-defined algorithms when determining or creating the
675 * IOMMU group for a device. On success, the caller will hold a reference
676 * to the returned IOMMU group, which will already include the provided
677 * device. The reference should be released with iommu_group_put().
678 */
679 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
680 {
681 struct iommu_group *group = ERR_PTR(-EIO);
682 int ret;
683
684 group = iommu_group_get(dev);
685 if (group)
686 return group;
687
688 if (dev_is_pci(dev))
689 group = iommu_group_get_for_pci_dev(to_pci_dev(dev));
690
691 if (IS_ERR(group))
692 return group;
693
694 ret = iommu_group_add_device(group, dev);
695 if (ret) {
696 iommu_group_put(group);
697 return ERR_PTR(ret);
698 }
699
700 return group;
701 }
702
703 static int add_iommu_group(struct device *dev, void *data)
704 {
705 struct iommu_callback_data *cb = data;
706 const struct iommu_ops *ops = cb->ops;
707
708 if (!ops->add_device)
709 return -ENODEV;
710
711 WARN_ON(dev->iommu_group);
712
713 ops->add_device(dev);
714
715 return 0;
716 }
717
718 static int iommu_bus_notifier(struct notifier_block *nb,
719 unsigned long action, void *data)
720 {
721 struct device *dev = data;
722 const struct iommu_ops *ops = dev->bus->iommu_ops;
723 struct iommu_group *group;
724 unsigned long group_action = 0;
725
726 /*
727 * ADD/DEL call into iommu driver ops if provided, which may
728 * result in ADD/DEL notifiers to group->notifier
729 */
730 if (action == BUS_NOTIFY_ADD_DEVICE) {
731 if (ops->add_device)
732 return ops->add_device(dev);
733 } else if (action == BUS_NOTIFY_DEL_DEVICE) {
734 if (ops->remove_device && dev->iommu_group) {
735 ops->remove_device(dev);
736 return 0;
737 }
738 }
739
740 /*
741 * Remaining BUS_NOTIFYs get filtered and republished to the
742 * group, if anyone is listening
743 */
744 group = iommu_group_get(dev);
745 if (!group)
746 return 0;
747
748 switch (action) {
749 case BUS_NOTIFY_BIND_DRIVER:
750 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
751 break;
752 case BUS_NOTIFY_BOUND_DRIVER:
753 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
754 break;
755 case BUS_NOTIFY_UNBIND_DRIVER:
756 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
757 break;
758 case BUS_NOTIFY_UNBOUND_DRIVER:
759 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
760 break;
761 }
762
763 if (group_action)
764 blocking_notifier_call_chain(&group->notifier,
765 group_action, dev);
766
767 iommu_group_put(group);
768 return 0;
769 }
770
771 static struct notifier_block iommu_bus_nb = {
772 .notifier_call = iommu_bus_notifier,
773 };
774
775 static void iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
776 {
777 struct iommu_callback_data cb = {
778 .ops = ops,
779 };
780
781 bus_register_notifier(bus, &iommu_bus_nb);
782 bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
783 }
784
785 /**
786 * bus_set_iommu - set iommu-callbacks for the bus
787 * @bus: bus.
788 * @ops: the callbacks provided by the iommu-driver
789 *
790 * This function is called by an iommu driver to set the iommu methods
791 * used for a particular bus. Drivers for devices on that bus can use
792 * the iommu-api after these ops are registered.
793 * This special function is needed because IOMMUs are usually devices on
794 * the bus itself, so the iommu drivers are not initialized when the bus
795 * is set up. With this function the iommu-driver can set the iommu-ops
796 * afterwards.
797 */
798 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
799 {
800 if (bus->iommu_ops != NULL)
801 return -EBUSY;
802
803 bus->iommu_ops = ops;
804
805 /* Do IOMMU specific setup for this bus-type */
806 iommu_bus_init(bus, ops);
807
808 return 0;
809 }
810 EXPORT_SYMBOL_GPL(bus_set_iommu);
811
812 bool iommu_present(struct bus_type *bus)
813 {
814 return bus->iommu_ops != NULL;
815 }
816 EXPORT_SYMBOL_GPL(iommu_present);
817
818 /**
819 * iommu_set_fault_handler() - set a fault handler for an iommu domain
820 * @domain: iommu domain
821 * @handler: fault handler
822 * @token: user data, will be passed back to the fault handler
823 *
824 * This function should be used by IOMMU users which want to be notified
825 * whenever an IOMMU fault happens.
826 *
827 * The fault handler itself should return 0 on success, and an appropriate
828 * error code otherwise.
829 */
830 void iommu_set_fault_handler(struct iommu_domain *domain,
831 iommu_fault_handler_t handler,
832 void *token)
833 {
834 BUG_ON(!domain);
835
836 domain->handler = handler;
837 domain->handler_token = token;
838 }
839 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
840
841 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
842 {
843 struct iommu_domain *domain;
844 int ret;
845
846 if (bus == NULL || bus->iommu_ops == NULL)
847 return NULL;
848
849 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
850 if (!domain)
851 return NULL;
852
853 domain->ops = bus->iommu_ops;
854
855 ret = domain->ops->domain_init(domain);
856 if (ret)
857 goto out_free;
858
859 return domain;
860
861 out_free:
862 kfree(domain);
863
864 return NULL;
865 }
866 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
867
868 void iommu_domain_free(struct iommu_domain *domain)
869 {
870 if (likely(domain->ops->domain_destroy != NULL))
871 domain->ops->domain_destroy(domain);
872
873 kfree(domain);
874 }
875 EXPORT_SYMBOL_GPL(iommu_domain_free);
876
877 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
878 {
879 int ret;
880 if (unlikely(domain->ops->attach_dev == NULL))
881 return -ENODEV;
882
883 ret = domain->ops->attach_dev(domain, dev);
884 if (!ret)
885 trace_attach_device_to_domain(dev);
886 return ret;
887 }
888 EXPORT_SYMBOL_GPL(iommu_attach_device);
889
890 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
891 {
892 if (unlikely(domain->ops->detach_dev == NULL))
893 return;
894
895 domain->ops->detach_dev(domain, dev);
896 trace_detach_device_from_domain(dev);
897 }
898 EXPORT_SYMBOL_GPL(iommu_detach_device);
899
900 /*
901 * IOMMU groups are really the natrual working unit of the IOMMU, but
902 * the IOMMU API works on domains and devices. Bridge that gap by
903 * iterating over the devices in a group. Ideally we'd have a single
904 * device which represents the requestor ID of the group, but we also
905 * allow IOMMU drivers to create policy defined minimum sets, where
906 * the physical hardware may be able to distiguish members, but we
907 * wish to group them at a higher level (ex. untrusted multi-function
908 * PCI devices). Thus we attach each device.
909 */
910 static int iommu_group_do_attach_device(struct device *dev, void *data)
911 {
912 struct iommu_domain *domain = data;
913
914 return iommu_attach_device(domain, dev);
915 }
916
917 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
918 {
919 return iommu_group_for_each_dev(group, domain,
920 iommu_group_do_attach_device);
921 }
922 EXPORT_SYMBOL_GPL(iommu_attach_group);
923
924 static int iommu_group_do_detach_device(struct device *dev, void *data)
925 {
926 struct iommu_domain *domain = data;
927
928 iommu_detach_device(domain, dev);
929
930 return 0;
931 }
932
933 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
934 {
935 iommu_group_for_each_dev(group, domain, iommu_group_do_detach_device);
936 }
937 EXPORT_SYMBOL_GPL(iommu_detach_group);
938
939 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
940 {
941 if (unlikely(domain->ops->iova_to_phys == NULL))
942 return 0;
943
944 return domain->ops->iova_to_phys(domain, iova);
945 }
946 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
947
948 int iommu_domain_has_cap(struct iommu_domain *domain,
949 unsigned long cap)
950 {
951 if (unlikely(domain->ops->domain_has_cap == NULL))
952 return 0;
953
954 return domain->ops->domain_has_cap(domain, cap);
955 }
956 EXPORT_SYMBOL_GPL(iommu_domain_has_cap);
957
958 static size_t iommu_pgsize(struct iommu_domain *domain,
959 unsigned long addr_merge, size_t size)
960 {
961 unsigned int pgsize_idx;
962 size_t pgsize;
963
964 /* Max page size that still fits into 'size' */
965 pgsize_idx = __fls(size);
966
967 /* need to consider alignment requirements ? */
968 if (likely(addr_merge)) {
969 /* Max page size allowed by address */
970 unsigned int align_pgsize_idx = __ffs(addr_merge);
971 pgsize_idx = min(pgsize_idx, align_pgsize_idx);
972 }
973
974 /* build a mask of acceptable page sizes */
975 pgsize = (1UL << (pgsize_idx + 1)) - 1;
976
977 /* throw away page sizes not supported by the hardware */
978 pgsize &= domain->ops->pgsize_bitmap;
979
980 /* make sure we're still sane */
981 BUG_ON(!pgsize);
982
983 /* pick the biggest page */
984 pgsize_idx = __fls(pgsize);
985 pgsize = 1UL << pgsize_idx;
986
987 return pgsize;
988 }
989
990 int iommu_map(struct iommu_domain *domain, unsigned long iova,
991 phys_addr_t paddr, size_t size, int prot)
992 {
993 unsigned long orig_iova = iova;
994 unsigned int min_pagesz;
995 size_t orig_size = size;
996 int ret = 0;
997
998 if (unlikely(domain->ops->unmap == NULL ||
999 domain->ops->pgsize_bitmap == 0UL))
1000 return -ENODEV;
1001
1002 /* find out the minimum page size supported */
1003 min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap);
1004
1005 /*
1006 * both the virtual address and the physical one, as well as
1007 * the size of the mapping, must be aligned (at least) to the
1008 * size of the smallest page supported by the hardware
1009 */
1010 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1011 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1012 iova, &paddr, size, min_pagesz);
1013 return -EINVAL;
1014 }
1015
1016 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1017
1018 while (size) {
1019 size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1020
1021 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1022 iova, &paddr, pgsize);
1023
1024 ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1025 if (ret)
1026 break;
1027
1028 iova += pgsize;
1029 paddr += pgsize;
1030 size -= pgsize;
1031 }
1032
1033 /* unroll mapping in case something went wrong */
1034 if (ret)
1035 iommu_unmap(domain, orig_iova, orig_size - size);
1036 else
1037 trace_map(iova, paddr, size);
1038
1039 return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(iommu_map);
1042
1043 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1044 {
1045 size_t unmapped_page, unmapped = 0;
1046 unsigned int min_pagesz;
1047
1048 if (unlikely(domain->ops->unmap == NULL ||
1049 domain->ops->pgsize_bitmap == 0UL))
1050 return -ENODEV;
1051
1052 /* find out the minimum page size supported */
1053 min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap);
1054
1055 /*
1056 * The virtual address, as well as the size of the mapping, must be
1057 * aligned (at least) to the size of the smallest page supported
1058 * by the hardware
1059 */
1060 if (!IS_ALIGNED(iova | size, min_pagesz)) {
1061 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1062 iova, size, min_pagesz);
1063 return -EINVAL;
1064 }
1065
1066 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1067
1068 /*
1069 * Keep iterating until we either unmap 'size' bytes (or more)
1070 * or we hit an area that isn't mapped.
1071 */
1072 while (unmapped < size) {
1073 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1074
1075 unmapped_page = domain->ops->unmap(domain, iova, pgsize);
1076 if (!unmapped_page)
1077 break;
1078
1079 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1080 iova, unmapped_page);
1081
1082 iova += unmapped_page;
1083 unmapped += unmapped_page;
1084 }
1085
1086 trace_unmap(iova, 0, size);
1087 return unmapped;
1088 }
1089 EXPORT_SYMBOL_GPL(iommu_unmap);
1090
1091
1092 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1093 phys_addr_t paddr, u64 size, int prot)
1094 {
1095 if (unlikely(domain->ops->domain_window_enable == NULL))
1096 return -ENODEV;
1097
1098 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1099 prot);
1100 }
1101 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1102
1103 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1104 {
1105 if (unlikely(domain->ops->domain_window_disable == NULL))
1106 return;
1107
1108 return domain->ops->domain_window_disable(domain, wnd_nr);
1109 }
1110 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1111
1112 static int __init iommu_init(void)
1113 {
1114 iommu_group_kset = kset_create_and_add("iommu_groups",
1115 NULL, kernel_kobj);
1116 ida_init(&iommu_group_ida);
1117 mutex_init(&iommu_group_mutex);
1118
1119 BUG_ON(!iommu_group_kset);
1120
1121 return 0;
1122 }
1123 arch_initcall(iommu_init);
1124
1125 int iommu_domain_get_attr(struct iommu_domain *domain,
1126 enum iommu_attr attr, void *data)
1127 {
1128 struct iommu_domain_geometry *geometry;
1129 bool *paging;
1130 int ret = 0;
1131 u32 *count;
1132
1133 switch (attr) {
1134 case DOMAIN_ATTR_GEOMETRY:
1135 geometry = data;
1136 *geometry = domain->geometry;
1137
1138 break;
1139 case DOMAIN_ATTR_PAGING:
1140 paging = data;
1141 *paging = (domain->ops->pgsize_bitmap != 0UL);
1142 break;
1143 case DOMAIN_ATTR_WINDOWS:
1144 count = data;
1145
1146 if (domain->ops->domain_get_windows != NULL)
1147 *count = domain->ops->domain_get_windows(domain);
1148 else
1149 ret = -ENODEV;
1150
1151 break;
1152 default:
1153 if (!domain->ops->domain_get_attr)
1154 return -EINVAL;
1155
1156 ret = domain->ops->domain_get_attr(domain, attr, data);
1157 }
1158
1159 return ret;
1160 }
1161 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1162
1163 int iommu_domain_set_attr(struct iommu_domain *domain,
1164 enum iommu_attr attr, void *data)
1165 {
1166 int ret = 0;
1167 u32 *count;
1168
1169 switch (attr) {
1170 case DOMAIN_ATTR_WINDOWS:
1171 count = data;
1172
1173 if (domain->ops->domain_set_windows != NULL)
1174 ret = domain->ops->domain_set_windows(domain, *count);
1175 else
1176 ret = -ENODEV;
1177
1178 break;
1179 default:
1180 if (domain->ops->domain_set_attr == NULL)
1181 return -EINVAL;
1182
1183 ret = domain->ops->domain_set_attr(domain, attr, data);
1184 }
1185
1186 return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);