]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/ipmmu-vmsa.c
Merge tag 'leds_for_4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszews...
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / ipmmu-vmsa.c
1 /*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25
26 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
27 #include <asm/dma-iommu.h>
28 #include <asm/pgalloc.h>
29 #endif
30
31 #include "io-pgtable.h"
32
33 #define IPMMU_CTX_MAX 1
34
35 struct ipmmu_vmsa_device {
36 struct device *dev;
37 void __iomem *base;
38 struct list_head list;
39
40 unsigned int num_utlbs;
41 spinlock_t lock; /* Protects ctx and domains[] */
42 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
43 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
44
45 struct dma_iommu_mapping *mapping;
46 };
47
48 struct ipmmu_vmsa_domain {
49 struct ipmmu_vmsa_device *mmu;
50 struct iommu_domain io_domain;
51
52 struct io_pgtable_cfg cfg;
53 struct io_pgtable_ops *iop;
54
55 unsigned int context_id;
56 spinlock_t lock; /* Protects mappings */
57 };
58
59 struct ipmmu_vmsa_iommu_priv {
60 struct ipmmu_vmsa_device *mmu;
61 unsigned int *utlbs;
62 unsigned int num_utlbs;
63 struct device *dev;
64 struct list_head list;
65 };
66
67 static DEFINE_SPINLOCK(ipmmu_devices_lock);
68 static LIST_HEAD(ipmmu_devices);
69
70 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
71 {
72 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
73 }
74
75
76 static struct ipmmu_vmsa_iommu_priv *to_priv(struct device *dev)
77 {
78 #if defined(CONFIG_ARM)
79 return dev->archdata.iommu;
80 #else
81 return dev->iommu_fwspec->iommu_priv;
82 #endif
83 }
84 static void set_priv(struct device *dev, struct ipmmu_vmsa_iommu_priv *p)
85 {
86 #if defined(CONFIG_ARM)
87 dev->archdata.iommu = p;
88 #else
89 dev->iommu_fwspec->iommu_priv = p;
90 #endif
91 }
92
93 #define TLB_LOOP_TIMEOUT 100 /* 100us */
94
95 /* -----------------------------------------------------------------------------
96 * Registers Definition
97 */
98
99 #define IM_NS_ALIAS_OFFSET 0x800
100
101 #define IM_CTX_SIZE 0x40
102
103 #define IMCTR 0x0000
104 #define IMCTR_TRE (1 << 17)
105 #define IMCTR_AFE (1 << 16)
106 #define IMCTR_RTSEL_MASK (3 << 4)
107 #define IMCTR_RTSEL_SHIFT 4
108 #define IMCTR_TREN (1 << 3)
109 #define IMCTR_INTEN (1 << 2)
110 #define IMCTR_FLUSH (1 << 1)
111 #define IMCTR_MMUEN (1 << 0)
112
113 #define IMCAAR 0x0004
114
115 #define IMTTBCR 0x0008
116 #define IMTTBCR_EAE (1 << 31)
117 #define IMTTBCR_PMB (1 << 30)
118 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
119 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
120 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
121 #define IMTTBCR_SH1_MASK (3 << 28)
122 #define IMTTBCR_ORGN1_NC (0 << 26)
123 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
124 #define IMTTBCR_ORGN1_WT (2 << 26)
125 #define IMTTBCR_ORGN1_WB (3 << 26)
126 #define IMTTBCR_ORGN1_MASK (3 << 26)
127 #define IMTTBCR_IRGN1_NC (0 << 24)
128 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
129 #define IMTTBCR_IRGN1_WT (2 << 24)
130 #define IMTTBCR_IRGN1_WB (3 << 24)
131 #define IMTTBCR_IRGN1_MASK (3 << 24)
132 #define IMTTBCR_TSZ1_MASK (7 << 16)
133 #define IMTTBCR_TSZ1_SHIFT 16
134 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
135 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
136 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
137 #define IMTTBCR_SH0_MASK (3 << 12)
138 #define IMTTBCR_ORGN0_NC (0 << 10)
139 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
140 #define IMTTBCR_ORGN0_WT (2 << 10)
141 #define IMTTBCR_ORGN0_WB (3 << 10)
142 #define IMTTBCR_ORGN0_MASK (3 << 10)
143 #define IMTTBCR_IRGN0_NC (0 << 8)
144 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
145 #define IMTTBCR_IRGN0_WT (2 << 8)
146 #define IMTTBCR_IRGN0_WB (3 << 8)
147 #define IMTTBCR_IRGN0_MASK (3 << 8)
148 #define IMTTBCR_SL0_LVL_2 (0 << 4)
149 #define IMTTBCR_SL0_LVL_1 (1 << 4)
150 #define IMTTBCR_TSZ0_MASK (7 << 0)
151 #define IMTTBCR_TSZ0_SHIFT O
152
153 #define IMBUSCR 0x000c
154 #define IMBUSCR_DVM (1 << 2)
155 #define IMBUSCR_BUSSEL_SYS (0 << 0)
156 #define IMBUSCR_BUSSEL_CCI (1 << 0)
157 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
158 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
159 #define IMBUSCR_BUSSEL_MASK (3 << 0)
160
161 #define IMTTLBR0 0x0010
162 #define IMTTUBR0 0x0014
163 #define IMTTLBR1 0x0018
164 #define IMTTUBR1 0x001c
165
166 #define IMSTR 0x0020
167 #define IMSTR_ERRLVL_MASK (3 << 12)
168 #define IMSTR_ERRLVL_SHIFT 12
169 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
170 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
171 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
172 #define IMSTR_ERRCODE_MASK (7 << 8)
173 #define IMSTR_MHIT (1 << 4)
174 #define IMSTR_ABORT (1 << 2)
175 #define IMSTR_PF (1 << 1)
176 #define IMSTR_TF (1 << 0)
177
178 #define IMMAIR0 0x0028
179 #define IMMAIR1 0x002c
180 #define IMMAIR_ATTR_MASK 0xff
181 #define IMMAIR_ATTR_DEVICE 0x04
182 #define IMMAIR_ATTR_NC 0x44
183 #define IMMAIR_ATTR_WBRWA 0xff
184 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
185 #define IMMAIR_ATTR_IDX_NC 0
186 #define IMMAIR_ATTR_IDX_WBRWA 1
187 #define IMMAIR_ATTR_IDX_DEV 2
188
189 #define IMEAR 0x0030
190
191 #define IMPCTR 0x0200
192 #define IMPSTR 0x0208
193 #define IMPEAR 0x020c
194 #define IMPMBA(n) (0x0280 + ((n) * 4))
195 #define IMPMBD(n) (0x02c0 + ((n) * 4))
196
197 #define IMUCTR(n) (0x0300 + ((n) * 16))
198 #define IMUCTR_FIXADDEN (1 << 31)
199 #define IMUCTR_FIXADD_MASK (0xff << 16)
200 #define IMUCTR_FIXADD_SHIFT 16
201 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
202 #define IMUCTR_TTSEL_PMB (8 << 4)
203 #define IMUCTR_TTSEL_MASK (15 << 4)
204 #define IMUCTR_FLUSH (1 << 1)
205 #define IMUCTR_MMUEN (1 << 0)
206
207 #define IMUASID(n) (0x0308 + ((n) * 16))
208 #define IMUASID_ASID8_MASK (0xff << 8)
209 #define IMUASID_ASID8_SHIFT 8
210 #define IMUASID_ASID0_MASK (0xff << 0)
211 #define IMUASID_ASID0_SHIFT 0
212
213 /* -----------------------------------------------------------------------------
214 * Read/Write Access
215 */
216
217 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
218 {
219 return ioread32(mmu->base + offset);
220 }
221
222 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
223 u32 data)
224 {
225 iowrite32(data, mmu->base + offset);
226 }
227
228 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
229 {
230 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
231 }
232
233 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
234 u32 data)
235 {
236 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
237 }
238
239 /* -----------------------------------------------------------------------------
240 * TLB and microTLB Management
241 */
242
243 /* Wait for any pending TLB invalidations to complete */
244 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
245 {
246 unsigned int count = 0;
247
248 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
249 cpu_relax();
250 if (++count == TLB_LOOP_TIMEOUT) {
251 dev_err_ratelimited(domain->mmu->dev,
252 "TLB sync timed out -- MMU may be deadlocked\n");
253 return;
254 }
255 udelay(1);
256 }
257 }
258
259 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
260 {
261 u32 reg;
262
263 reg = ipmmu_ctx_read(domain, IMCTR);
264 reg |= IMCTR_FLUSH;
265 ipmmu_ctx_write(domain, IMCTR, reg);
266
267 ipmmu_tlb_sync(domain);
268 }
269
270 /*
271 * Enable MMU translation for the microTLB.
272 */
273 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
274 unsigned int utlb)
275 {
276 struct ipmmu_vmsa_device *mmu = domain->mmu;
277
278 /*
279 * TODO: Reference-count the microTLB as several bus masters can be
280 * connected to the same microTLB.
281 */
282
283 /* TODO: What should we set the ASID to ? */
284 ipmmu_write(mmu, IMUASID(utlb), 0);
285 /* TODO: Do we need to flush the microTLB ? */
286 ipmmu_write(mmu, IMUCTR(utlb),
287 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
288 IMUCTR_MMUEN);
289 }
290
291 /*
292 * Disable MMU translation for the microTLB.
293 */
294 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
295 unsigned int utlb)
296 {
297 struct ipmmu_vmsa_device *mmu = domain->mmu;
298
299 ipmmu_write(mmu, IMUCTR(utlb), 0);
300 }
301
302 static void ipmmu_tlb_flush_all(void *cookie)
303 {
304 struct ipmmu_vmsa_domain *domain = cookie;
305
306 ipmmu_tlb_invalidate(domain);
307 }
308
309 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
310 size_t granule, bool leaf, void *cookie)
311 {
312 /* The hardware doesn't support selective TLB flush. */
313 }
314
315 static struct iommu_gather_ops ipmmu_gather_ops = {
316 .tlb_flush_all = ipmmu_tlb_flush_all,
317 .tlb_add_flush = ipmmu_tlb_add_flush,
318 .tlb_sync = ipmmu_tlb_flush_all,
319 };
320
321 /* -----------------------------------------------------------------------------
322 * Domain/Context Management
323 */
324
325 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
326 struct ipmmu_vmsa_domain *domain)
327 {
328 unsigned long flags;
329 int ret;
330
331 spin_lock_irqsave(&mmu->lock, flags);
332
333 ret = find_first_zero_bit(mmu->ctx, IPMMU_CTX_MAX);
334 if (ret != IPMMU_CTX_MAX) {
335 mmu->domains[ret] = domain;
336 set_bit(ret, mmu->ctx);
337 }
338
339 spin_unlock_irqrestore(&mmu->lock, flags);
340
341 return ret;
342 }
343
344 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
345 {
346 u64 ttbr;
347 int ret;
348
349 /*
350 * Allocate the page table operations.
351 *
352 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
353 * access, Long-descriptor format" that the NStable bit being set in a
354 * table descriptor will result in the NStable and NS bits of all child
355 * entries being ignored and considered as being set. The IPMMU seems
356 * not to comply with this, as it generates a secure access page fault
357 * if any of the NStable and NS bits isn't set when running in
358 * non-secure mode.
359 */
360 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
361 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
362 domain->cfg.ias = 32;
363 domain->cfg.oas = 40;
364 domain->cfg.tlb = &ipmmu_gather_ops;
365 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
366 domain->io_domain.geometry.force_aperture = true;
367 /*
368 * TODO: Add support for coherent walk through CCI with DVM and remove
369 * cache handling. For now, delegate it to the io-pgtable code.
370 */
371 domain->cfg.iommu_dev = domain->mmu->dev;
372
373 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
374 domain);
375 if (!domain->iop)
376 return -EINVAL;
377
378 /*
379 * Find an unused context.
380 */
381 ret = ipmmu_domain_allocate_context(domain->mmu, domain);
382 if (ret == IPMMU_CTX_MAX) {
383 free_io_pgtable_ops(domain->iop);
384 return -EBUSY;
385 }
386
387 domain->context_id = ret;
388
389 /* TTBR0 */
390 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
391 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
392 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
393
394 /*
395 * TTBCR
396 * We use long descriptors with inner-shareable WBWA tables and allocate
397 * the whole 32-bit VA space to TTBR0.
398 */
399 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
400 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
401 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
402
403 /* MAIR0 */
404 ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
405
406 /* IMBUSCR */
407 ipmmu_ctx_write(domain, IMBUSCR,
408 ipmmu_ctx_read(domain, IMBUSCR) &
409 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
410
411 /*
412 * IMSTR
413 * Clear all interrupt flags.
414 */
415 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
416
417 /*
418 * IMCTR
419 * Enable the MMU and interrupt generation. The long-descriptor
420 * translation table format doesn't use TEX remapping. Don't enable AF
421 * software management as we have no use for it. Flush the TLB as
422 * required when modifying the context registers.
423 */
424 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
425
426 return 0;
427 }
428
429 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
430 unsigned int context_id)
431 {
432 unsigned long flags;
433
434 spin_lock_irqsave(&mmu->lock, flags);
435
436 clear_bit(context_id, mmu->ctx);
437 mmu->domains[context_id] = NULL;
438
439 spin_unlock_irqrestore(&mmu->lock, flags);
440 }
441
442 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
443 {
444 /*
445 * Disable the context. Flush the TLB as required when modifying the
446 * context registers.
447 *
448 * TODO: Is TLB flush really needed ?
449 */
450 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
451 ipmmu_tlb_sync(domain);
452 ipmmu_domain_free_context(domain->mmu, domain->context_id);
453 }
454
455 /* -----------------------------------------------------------------------------
456 * Fault Handling
457 */
458
459 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
460 {
461 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
462 struct ipmmu_vmsa_device *mmu = domain->mmu;
463 u32 status;
464 u32 iova;
465
466 status = ipmmu_ctx_read(domain, IMSTR);
467 if (!(status & err_mask))
468 return IRQ_NONE;
469
470 iova = ipmmu_ctx_read(domain, IMEAR);
471
472 /*
473 * Clear the error status flags. Unlike traditional interrupt flag
474 * registers that must be cleared by writing 1, this status register
475 * seems to require 0. The error address register must be read before,
476 * otherwise its value will be 0.
477 */
478 ipmmu_ctx_write(domain, IMSTR, 0);
479
480 /* Log fatal errors. */
481 if (status & IMSTR_MHIT)
482 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
483 iova);
484 if (status & IMSTR_ABORT)
485 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
486 iova);
487
488 if (!(status & (IMSTR_PF | IMSTR_TF)))
489 return IRQ_NONE;
490
491 /*
492 * Try to handle page faults and translation faults.
493 *
494 * TODO: We need to look up the faulty device based on the I/O VA. Use
495 * the IOMMU device for now.
496 */
497 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
498 return IRQ_HANDLED;
499
500 dev_err_ratelimited(mmu->dev,
501 "Unhandled fault: status 0x%08x iova 0x%08x\n",
502 status, iova);
503
504 return IRQ_HANDLED;
505 }
506
507 static irqreturn_t ipmmu_irq(int irq, void *dev)
508 {
509 struct ipmmu_vmsa_device *mmu = dev;
510 irqreturn_t status = IRQ_NONE;
511 unsigned int i;
512 unsigned long flags;
513
514 spin_lock_irqsave(&mmu->lock, flags);
515
516 /*
517 * Check interrupts for all active contexts.
518 */
519 for (i = 0; i < IPMMU_CTX_MAX; i++) {
520 if (!mmu->domains[i])
521 continue;
522 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
523 status = IRQ_HANDLED;
524 }
525
526 spin_unlock_irqrestore(&mmu->lock, flags);
527
528 return status;
529 }
530
531 /* -----------------------------------------------------------------------------
532 * IOMMU Operations
533 */
534
535 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
536 {
537 struct ipmmu_vmsa_domain *domain;
538
539 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
540 if (!domain)
541 return NULL;
542
543 spin_lock_init(&domain->lock);
544
545 return &domain->io_domain;
546 }
547
548 static void ipmmu_domain_free(struct iommu_domain *io_domain)
549 {
550 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
551
552 /*
553 * Free the domain resources. We assume that all devices have already
554 * been detached.
555 */
556 ipmmu_domain_destroy_context(domain);
557 free_io_pgtable_ops(domain->iop);
558 kfree(domain);
559 }
560
561 static int ipmmu_attach_device(struct iommu_domain *io_domain,
562 struct device *dev)
563 {
564 struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
565 struct ipmmu_vmsa_device *mmu = priv->mmu;
566 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
567 unsigned long flags;
568 unsigned int i;
569 int ret = 0;
570
571 if (!mmu) {
572 dev_err(dev, "Cannot attach to IPMMU\n");
573 return -ENXIO;
574 }
575
576 spin_lock_irqsave(&domain->lock, flags);
577
578 if (!domain->mmu) {
579 /* The domain hasn't been used yet, initialize it. */
580 domain->mmu = mmu;
581 ret = ipmmu_domain_init_context(domain);
582 } else if (domain->mmu != mmu) {
583 /*
584 * Something is wrong, we can't attach two devices using
585 * different IOMMUs to the same domain.
586 */
587 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
588 dev_name(mmu->dev), dev_name(domain->mmu->dev));
589 ret = -EINVAL;
590 } else
591 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
592
593 spin_unlock_irqrestore(&domain->lock, flags);
594
595 if (ret < 0)
596 return ret;
597
598 for (i = 0; i < priv->num_utlbs; ++i)
599 ipmmu_utlb_enable(domain, priv->utlbs[i]);
600
601 return 0;
602 }
603
604 static void ipmmu_detach_device(struct iommu_domain *io_domain,
605 struct device *dev)
606 {
607 struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
608 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
609 unsigned int i;
610
611 for (i = 0; i < priv->num_utlbs; ++i)
612 ipmmu_utlb_disable(domain, priv->utlbs[i]);
613
614 /*
615 * TODO: Optimize by disabling the context when no device is attached.
616 */
617 }
618
619 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
620 phys_addr_t paddr, size_t size, int prot)
621 {
622 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
623
624 if (!domain)
625 return -ENODEV;
626
627 return domain->iop->map(domain->iop, iova, paddr, size, prot);
628 }
629
630 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
631 size_t size)
632 {
633 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
634
635 return domain->iop->unmap(domain->iop, iova, size);
636 }
637
638 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
639 dma_addr_t iova)
640 {
641 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
642
643 /* TODO: Is locking needed ? */
644
645 return domain->iop->iova_to_phys(domain->iop, iova);
646 }
647
648 static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
649 unsigned int *utlbs, unsigned int num_utlbs)
650 {
651 unsigned int i;
652
653 for (i = 0; i < num_utlbs; ++i) {
654 struct of_phandle_args args;
655 int ret;
656
657 ret = of_parse_phandle_with_args(dev->of_node, "iommus",
658 "#iommu-cells", i, &args);
659 if (ret < 0)
660 return ret;
661
662 of_node_put(args.np);
663
664 if (args.np != mmu->dev->of_node || args.args_count != 1)
665 return -EINVAL;
666
667 utlbs[i] = args.args[0];
668 }
669
670 return 0;
671 }
672
673 static int ipmmu_init_platform_device(struct device *dev)
674 {
675 struct ipmmu_vmsa_iommu_priv *priv;
676 struct ipmmu_vmsa_device *mmu;
677 unsigned int *utlbs;
678 unsigned int i;
679 int num_utlbs;
680 int ret = -ENODEV;
681
682 /* Find the master corresponding to the device. */
683
684 num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus",
685 "#iommu-cells");
686 if (num_utlbs < 0)
687 return -ENODEV;
688
689 utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL);
690 if (!utlbs)
691 return -ENOMEM;
692
693 spin_lock(&ipmmu_devices_lock);
694
695 list_for_each_entry(mmu, &ipmmu_devices, list) {
696 ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs);
697 if (!ret) {
698 /*
699 * TODO Take a reference to the MMU to protect
700 * against device removal.
701 */
702 break;
703 }
704 }
705
706 spin_unlock(&ipmmu_devices_lock);
707
708 if (ret < 0)
709 goto error;
710
711 for (i = 0; i < num_utlbs; ++i) {
712 if (utlbs[i] >= mmu->num_utlbs) {
713 ret = -EINVAL;
714 goto error;
715 }
716 }
717
718 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
719 if (!priv) {
720 ret = -ENOMEM;
721 goto error;
722 }
723
724 priv->mmu = mmu;
725 priv->utlbs = utlbs;
726 priv->num_utlbs = num_utlbs;
727 priv->dev = dev;
728 set_priv(dev, priv);
729 return 0;
730
731 error:
732 kfree(utlbs);
733 return ret;
734 }
735
736 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
737
738 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
739 {
740 if (type != IOMMU_DOMAIN_UNMANAGED)
741 return NULL;
742
743 return __ipmmu_domain_alloc(type);
744 }
745
746 static int ipmmu_add_device(struct device *dev)
747 {
748 struct ipmmu_vmsa_device *mmu = NULL;
749 struct iommu_group *group;
750 int ret;
751
752 if (to_priv(dev)) {
753 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
754 dev_name(dev));
755 return -EINVAL;
756 }
757
758 /* Create a device group and add the device to it. */
759 group = iommu_group_alloc();
760 if (IS_ERR(group)) {
761 dev_err(dev, "Failed to allocate IOMMU group\n");
762 ret = PTR_ERR(group);
763 goto error;
764 }
765
766 ret = iommu_group_add_device(group, dev);
767 iommu_group_put(group);
768
769 if (ret < 0) {
770 dev_err(dev, "Failed to add device to IPMMU group\n");
771 group = NULL;
772 goto error;
773 }
774
775 ret = ipmmu_init_platform_device(dev);
776 if (ret < 0)
777 goto error;
778
779 /*
780 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
781 * VAs. This will allocate a corresponding IOMMU domain.
782 *
783 * TODO:
784 * - Create one mapping per context (TLB).
785 * - Make the mapping size configurable ? We currently use a 2GB mapping
786 * at a 1GB offset to ensure that NULL VAs will fault.
787 */
788 mmu = to_priv(dev)->mmu;
789 if (!mmu->mapping) {
790 struct dma_iommu_mapping *mapping;
791
792 mapping = arm_iommu_create_mapping(&platform_bus_type,
793 SZ_1G, SZ_2G);
794 if (IS_ERR(mapping)) {
795 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
796 ret = PTR_ERR(mapping);
797 goto error;
798 }
799
800 mmu->mapping = mapping;
801 }
802
803 /* Attach the ARM VA mapping to the device. */
804 ret = arm_iommu_attach_device(dev, mmu->mapping);
805 if (ret < 0) {
806 dev_err(dev, "Failed to attach device to VA mapping\n");
807 goto error;
808 }
809
810 return 0;
811
812 error:
813 if (mmu)
814 arm_iommu_release_mapping(mmu->mapping);
815
816 if (!IS_ERR_OR_NULL(group))
817 iommu_group_remove_device(dev);
818
819 kfree(to_priv(dev)->utlbs);
820 kfree(to_priv(dev));
821 set_priv(dev, NULL);
822
823 return ret;
824 }
825
826 static void ipmmu_remove_device(struct device *dev)
827 {
828 struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
829
830 arm_iommu_detach_device(dev);
831 iommu_group_remove_device(dev);
832
833 kfree(priv->utlbs);
834 kfree(priv);
835
836 set_priv(dev, NULL);
837 }
838
839 static const struct iommu_ops ipmmu_ops = {
840 .domain_alloc = ipmmu_domain_alloc,
841 .domain_free = ipmmu_domain_free,
842 .attach_dev = ipmmu_attach_device,
843 .detach_dev = ipmmu_detach_device,
844 .map = ipmmu_map,
845 .unmap = ipmmu_unmap,
846 .map_sg = default_iommu_map_sg,
847 .iova_to_phys = ipmmu_iova_to_phys,
848 .add_device = ipmmu_add_device,
849 .remove_device = ipmmu_remove_device,
850 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
851 };
852
853 #endif /* !CONFIG_ARM && CONFIG_IOMMU_DMA */
854
855 #ifdef CONFIG_IOMMU_DMA
856
857 static DEFINE_SPINLOCK(ipmmu_slave_devices_lock);
858 static LIST_HEAD(ipmmu_slave_devices);
859
860 static struct iommu_domain *ipmmu_domain_alloc_dma(unsigned type)
861 {
862 struct iommu_domain *io_domain = NULL;
863
864 switch (type) {
865 case IOMMU_DOMAIN_UNMANAGED:
866 io_domain = __ipmmu_domain_alloc(type);
867 break;
868
869 case IOMMU_DOMAIN_DMA:
870 io_domain = __ipmmu_domain_alloc(type);
871 if (io_domain)
872 iommu_get_dma_cookie(io_domain);
873 break;
874 }
875
876 return io_domain;
877 }
878
879 static void ipmmu_domain_free_dma(struct iommu_domain *io_domain)
880 {
881 switch (io_domain->type) {
882 case IOMMU_DOMAIN_DMA:
883 iommu_put_dma_cookie(io_domain);
884 /* fall-through */
885 default:
886 ipmmu_domain_free(io_domain);
887 break;
888 }
889 }
890
891 static int ipmmu_add_device_dma(struct device *dev)
892 {
893 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
894 struct iommu_group *group;
895
896 /*
897 * Only let through devices that have been verified in xlate()
898 * We may get called with dev->iommu_fwspec set to NULL.
899 */
900 if (!fwspec || !fwspec->iommu_priv)
901 return -ENODEV;
902
903 group = iommu_group_get_for_dev(dev);
904 if (IS_ERR(group))
905 return PTR_ERR(group);
906
907 spin_lock(&ipmmu_slave_devices_lock);
908 list_add(&to_priv(dev)->list, &ipmmu_slave_devices);
909 spin_unlock(&ipmmu_slave_devices_lock);
910 return 0;
911 }
912
913 static void ipmmu_remove_device_dma(struct device *dev)
914 {
915 struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
916
917 spin_lock(&ipmmu_slave_devices_lock);
918 list_del(&priv->list);
919 spin_unlock(&ipmmu_slave_devices_lock);
920
921 iommu_group_remove_device(dev);
922 }
923
924 static struct device *ipmmu_find_sibling_device(struct device *dev)
925 {
926 struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
927 struct ipmmu_vmsa_iommu_priv *sibling_priv = NULL;
928 bool found = false;
929
930 spin_lock(&ipmmu_slave_devices_lock);
931
932 list_for_each_entry(sibling_priv, &ipmmu_slave_devices, list) {
933 if (priv == sibling_priv)
934 continue;
935 if (sibling_priv->mmu == priv->mmu) {
936 found = true;
937 break;
938 }
939 }
940
941 spin_unlock(&ipmmu_slave_devices_lock);
942
943 return found ? sibling_priv->dev : NULL;
944 }
945
946 static struct iommu_group *ipmmu_find_group_dma(struct device *dev)
947 {
948 struct iommu_group *group;
949 struct device *sibling;
950
951 sibling = ipmmu_find_sibling_device(dev);
952 if (sibling)
953 group = iommu_group_get(sibling);
954 if (!sibling || IS_ERR(group))
955 group = generic_device_group(dev);
956
957 return group;
958 }
959
960 static int ipmmu_of_xlate_dma(struct device *dev,
961 struct of_phandle_args *spec)
962 {
963 /* If the IPMMU device is disabled in DT then return error
964 * to make sure the of_iommu code does not install ops
965 * even though the iommu device is disabled
966 */
967 if (!of_device_is_available(spec->np))
968 return -ENODEV;
969
970 return ipmmu_init_platform_device(dev);
971 }
972
973 static const struct iommu_ops ipmmu_ops = {
974 .domain_alloc = ipmmu_domain_alloc_dma,
975 .domain_free = ipmmu_domain_free_dma,
976 .attach_dev = ipmmu_attach_device,
977 .detach_dev = ipmmu_detach_device,
978 .map = ipmmu_map,
979 .unmap = ipmmu_unmap,
980 .map_sg = default_iommu_map_sg,
981 .iova_to_phys = ipmmu_iova_to_phys,
982 .add_device = ipmmu_add_device_dma,
983 .remove_device = ipmmu_remove_device_dma,
984 .device_group = ipmmu_find_group_dma,
985 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
986 .of_xlate = ipmmu_of_xlate_dma,
987 };
988
989 #endif /* CONFIG_IOMMU_DMA */
990
991 /* -----------------------------------------------------------------------------
992 * Probe/remove and init
993 */
994
995 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
996 {
997 unsigned int i;
998
999 /* Disable all contexts. */
1000 for (i = 0; i < 4; ++i)
1001 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1002 }
1003
1004 static int ipmmu_probe(struct platform_device *pdev)
1005 {
1006 struct ipmmu_vmsa_device *mmu;
1007 struct resource *res;
1008 int irq;
1009 int ret;
1010
1011 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1012 if (!mmu) {
1013 dev_err(&pdev->dev, "cannot allocate device data\n");
1014 return -ENOMEM;
1015 }
1016
1017 mmu->dev = &pdev->dev;
1018 mmu->num_utlbs = 32;
1019 spin_lock_init(&mmu->lock);
1020 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1021
1022 /* Map I/O memory and request IRQ. */
1023 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1024 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1025 if (IS_ERR(mmu->base))
1026 return PTR_ERR(mmu->base);
1027
1028 /*
1029 * The IPMMU has two register banks, for secure and non-secure modes.
1030 * The bank mapped at the beginning of the IPMMU address space
1031 * corresponds to the running mode of the CPU. When running in secure
1032 * mode the non-secure register bank is also available at an offset.
1033 *
1034 * Secure mode operation isn't clearly documented and is thus currently
1035 * not implemented in the driver. Furthermore, preliminary tests of
1036 * non-secure operation with the main register bank were not successful.
1037 * Offset the registers base unconditionally to point to the non-secure
1038 * alias space for now.
1039 */
1040 mmu->base += IM_NS_ALIAS_OFFSET;
1041
1042 irq = platform_get_irq(pdev, 0);
1043 if (irq < 0) {
1044 dev_err(&pdev->dev, "no IRQ found\n");
1045 return irq;
1046 }
1047
1048 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1049 dev_name(&pdev->dev), mmu);
1050 if (ret < 0) {
1051 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1052 return ret;
1053 }
1054
1055 ipmmu_device_reset(mmu);
1056
1057 /*
1058 * We can't create the ARM mapping here as it requires the bus to have
1059 * an IOMMU, which only happens when bus_set_iommu() is called in
1060 * ipmmu_init() after the probe function returns.
1061 */
1062
1063 spin_lock(&ipmmu_devices_lock);
1064 list_add(&mmu->list, &ipmmu_devices);
1065 spin_unlock(&ipmmu_devices_lock);
1066
1067 platform_set_drvdata(pdev, mmu);
1068
1069 return 0;
1070 }
1071
1072 static int ipmmu_remove(struct platform_device *pdev)
1073 {
1074 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1075
1076 spin_lock(&ipmmu_devices_lock);
1077 list_del(&mmu->list);
1078 spin_unlock(&ipmmu_devices_lock);
1079
1080 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1081 arm_iommu_release_mapping(mmu->mapping);
1082 #endif
1083
1084 ipmmu_device_reset(mmu);
1085
1086 return 0;
1087 }
1088
1089 static const struct of_device_id ipmmu_of_ids[] = {
1090 { .compatible = "renesas,ipmmu-vmsa", },
1091 { }
1092 };
1093
1094 static struct platform_driver ipmmu_driver = {
1095 .driver = {
1096 .name = "ipmmu-vmsa",
1097 .of_match_table = of_match_ptr(ipmmu_of_ids),
1098 },
1099 .probe = ipmmu_probe,
1100 .remove = ipmmu_remove,
1101 };
1102
1103 static int __init ipmmu_init(void)
1104 {
1105 int ret;
1106
1107 ret = platform_driver_register(&ipmmu_driver);
1108 if (ret < 0)
1109 return ret;
1110
1111 if (!iommu_present(&platform_bus_type))
1112 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1113
1114 return 0;
1115 }
1116
1117 static void __exit ipmmu_exit(void)
1118 {
1119 return platform_driver_unregister(&ipmmu_driver);
1120 }
1121
1122 subsys_initcall(ipmmu_init);
1123 module_exit(ipmmu_exit);
1124
1125 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1126 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1127 MODULE_LICENSE("GPL v2");