]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/irqchip/irq-gic-v3-its.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42
43 #include "irq-gic-common.h"
44
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
48
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
50
51 /*
52 * Collection structure - just an ID, and a redistributor address to
53 * ping. We use one per CPU as a bag of interrupts assigned to this
54 * CPU.
55 */
56 struct its_collection {
57 u64 target_address;
58 u16 col_id;
59 };
60
61 /*
62 * The ITS_BASER structure - contains memory information, cached
63 * value of BASER register configuration and ITS page size.
64 */
65 struct its_baser {
66 void *base;
67 u64 val;
68 u32 order;
69 u32 psz;
70 };
71
72 /*
73 * The ITS structure - contains most of the infrastructure, with the
74 * top-level MSI domain, the command queue, the collections, and the
75 * list of devices writing to it.
76 */
77 struct its_node {
78 raw_spinlock_t lock;
79 struct list_head entry;
80 void __iomem *base;
81 phys_addr_t phys_base;
82 struct its_cmd_block *cmd_base;
83 struct its_cmd_block *cmd_write;
84 struct its_baser tables[GITS_BASER_NR_REGS];
85 struct its_collection *collections;
86 struct list_head its_device_list;
87 u64 flags;
88 u32 ite_size;
89 u32 device_ids;
90 int numa_node;
91 };
92
93 #define ITS_ITT_ALIGN SZ_256
94
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
97
98 struct event_lpi_map {
99 unsigned long *lpi_map;
100 u16 *col_map;
101 irq_hw_number_t lpi_base;
102 int nr_lpis;
103 };
104
105 /*
106 * The ITS view of a device - belongs to an ITS, a collection, owns an
107 * interrupt translation table, and a list of interrupts.
108 */
109 struct its_device {
110 struct list_head entry;
111 struct its_node *its;
112 struct event_lpi_map event_map;
113 void *itt;
114 u32 nr_ites;
115 u32 device_id;
116 };
117
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122
123 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
125
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 u32 event)
128 {
129 struct its_node *its = its_dev->its;
130
131 return its->collections + its_dev->event_map.col_map[event];
132 }
133
134 /*
135 * ITS command descriptors - parameters to be encoded in a command
136 * block.
137 */
138 struct its_cmd_desc {
139 union {
140 struct {
141 struct its_device *dev;
142 u32 event_id;
143 } its_inv_cmd;
144
145 struct {
146 struct its_device *dev;
147 u32 event_id;
148 } its_int_cmd;
149
150 struct {
151 struct its_device *dev;
152 int valid;
153 } its_mapd_cmd;
154
155 struct {
156 struct its_collection *col;
157 int valid;
158 } its_mapc_cmd;
159
160 struct {
161 struct its_device *dev;
162 u32 phys_id;
163 u32 event_id;
164 } its_mapti_cmd;
165
166 struct {
167 struct its_device *dev;
168 struct its_collection *col;
169 u32 event_id;
170 } its_movi_cmd;
171
172 struct {
173 struct its_device *dev;
174 u32 event_id;
175 } its_discard_cmd;
176
177 struct {
178 struct its_collection *col;
179 } its_invall_cmd;
180 };
181 };
182
183 /*
184 * The ITS command block, which is what the ITS actually parses.
185 */
186 struct its_cmd_block {
187 u64 raw_cmd[4];
188 };
189
190 #define ITS_CMD_QUEUE_SZ SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 struct its_cmd_desc *);
195
196 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
197 {
198 u64 mask = GENMASK_ULL(h, l);
199 *raw_cmd &= ~mask;
200 *raw_cmd |= (val << l) & mask;
201 }
202
203 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
204 {
205 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
206 }
207
208 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
209 {
210 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
211 }
212
213 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
214 {
215 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
216 }
217
218 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
219 {
220 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
221 }
222
223 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
224 {
225 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
226 }
227
228 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
229 {
230 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8);
231 }
232
233 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
234 {
235 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
236 }
237
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16);
241 }
242
243 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
244 {
245 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
246 }
247
248 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
249 {
250 /* Let's fixup BE commands */
251 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
252 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
253 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
254 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
255 }
256
257 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
258 struct its_cmd_desc *desc)
259 {
260 unsigned long itt_addr;
261 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
262
263 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
264 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
265
266 its_encode_cmd(cmd, GITS_CMD_MAPD);
267 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
268 its_encode_size(cmd, size - 1);
269 its_encode_itt(cmd, itt_addr);
270 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
271
272 its_fixup_cmd(cmd);
273
274 return NULL;
275 }
276
277 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
278 struct its_cmd_desc *desc)
279 {
280 its_encode_cmd(cmd, GITS_CMD_MAPC);
281 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
282 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
283 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
284
285 its_fixup_cmd(cmd);
286
287 return desc->its_mapc_cmd.col;
288 }
289
290 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
291 struct its_cmd_desc *desc)
292 {
293 struct its_collection *col;
294
295 col = dev_event_to_col(desc->its_mapti_cmd.dev,
296 desc->its_mapti_cmd.event_id);
297
298 its_encode_cmd(cmd, GITS_CMD_MAPTI);
299 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
300 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
301 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
302 its_encode_collection(cmd, col->col_id);
303
304 its_fixup_cmd(cmd);
305
306 return col;
307 }
308
309 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
310 struct its_cmd_desc *desc)
311 {
312 struct its_collection *col;
313
314 col = dev_event_to_col(desc->its_movi_cmd.dev,
315 desc->its_movi_cmd.event_id);
316
317 its_encode_cmd(cmd, GITS_CMD_MOVI);
318 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
319 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
320 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
321
322 its_fixup_cmd(cmd);
323
324 return col;
325 }
326
327 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
328 struct its_cmd_desc *desc)
329 {
330 struct its_collection *col;
331
332 col = dev_event_to_col(desc->its_discard_cmd.dev,
333 desc->its_discard_cmd.event_id);
334
335 its_encode_cmd(cmd, GITS_CMD_DISCARD);
336 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
337 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
338
339 its_fixup_cmd(cmd);
340
341 return col;
342 }
343
344 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
345 struct its_cmd_desc *desc)
346 {
347 struct its_collection *col;
348
349 col = dev_event_to_col(desc->its_inv_cmd.dev,
350 desc->its_inv_cmd.event_id);
351
352 its_encode_cmd(cmd, GITS_CMD_INV);
353 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
354 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
355
356 its_fixup_cmd(cmd);
357
358 return col;
359 }
360
361 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
362 struct its_cmd_desc *desc)
363 {
364 its_encode_cmd(cmd, GITS_CMD_INVALL);
365 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
366
367 its_fixup_cmd(cmd);
368
369 return NULL;
370 }
371
372 static u64 its_cmd_ptr_to_offset(struct its_node *its,
373 struct its_cmd_block *ptr)
374 {
375 return (ptr - its->cmd_base) * sizeof(*ptr);
376 }
377
378 static int its_queue_full(struct its_node *its)
379 {
380 int widx;
381 int ridx;
382
383 widx = its->cmd_write - its->cmd_base;
384 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
385
386 /* This is incredibly unlikely to happen, unless the ITS locks up. */
387 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
388 return 1;
389
390 return 0;
391 }
392
393 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
394 {
395 struct its_cmd_block *cmd;
396 u32 count = 1000000; /* 1s! */
397
398 while (its_queue_full(its)) {
399 count--;
400 if (!count) {
401 pr_err_ratelimited("ITS queue not draining\n");
402 return NULL;
403 }
404 cpu_relax();
405 udelay(1);
406 }
407
408 cmd = its->cmd_write++;
409
410 /* Handle queue wrapping */
411 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
412 its->cmd_write = its->cmd_base;
413
414 /* Clear command */
415 cmd->raw_cmd[0] = 0;
416 cmd->raw_cmd[1] = 0;
417 cmd->raw_cmd[2] = 0;
418 cmd->raw_cmd[3] = 0;
419
420 return cmd;
421 }
422
423 static struct its_cmd_block *its_post_commands(struct its_node *its)
424 {
425 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
426
427 writel_relaxed(wr, its->base + GITS_CWRITER);
428
429 return its->cmd_write;
430 }
431
432 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
433 {
434 /*
435 * Make sure the commands written to memory are observable by
436 * the ITS.
437 */
438 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
439 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
440 else
441 dsb(ishst);
442 }
443
444 static void its_wait_for_range_completion(struct its_node *its,
445 struct its_cmd_block *from,
446 struct its_cmd_block *to)
447 {
448 u64 rd_idx, from_idx, to_idx;
449 u32 count = 1000000; /* 1s! */
450
451 from_idx = its_cmd_ptr_to_offset(its, from);
452 to_idx = its_cmd_ptr_to_offset(its, to);
453
454 while (1) {
455 rd_idx = readl_relaxed(its->base + GITS_CREADR);
456 if (rd_idx >= to_idx || rd_idx < from_idx)
457 break;
458
459 count--;
460 if (!count) {
461 pr_err_ratelimited("ITS queue timeout\n");
462 return;
463 }
464 cpu_relax();
465 udelay(1);
466 }
467 }
468
469 static void its_send_single_command(struct its_node *its,
470 its_cmd_builder_t builder,
471 struct its_cmd_desc *desc)
472 {
473 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
474 struct its_collection *sync_col;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&its->lock, flags);
478
479 cmd = its_allocate_entry(its);
480 if (!cmd) { /* We're soooooo screewed... */
481 pr_err_ratelimited("ITS can't allocate, dropping command\n");
482 raw_spin_unlock_irqrestore(&its->lock, flags);
483 return;
484 }
485 sync_col = builder(cmd, desc);
486 its_flush_cmd(its, cmd);
487
488 if (sync_col) {
489 sync_cmd = its_allocate_entry(its);
490 if (!sync_cmd) {
491 pr_err_ratelimited("ITS can't SYNC, skipping\n");
492 goto post;
493 }
494 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
495 its_encode_target(sync_cmd, sync_col->target_address);
496 its_fixup_cmd(sync_cmd);
497 its_flush_cmd(its, sync_cmd);
498 }
499
500 post:
501 next_cmd = its_post_commands(its);
502 raw_spin_unlock_irqrestore(&its->lock, flags);
503
504 its_wait_for_range_completion(its, cmd, next_cmd);
505 }
506
507 static void its_send_inv(struct its_device *dev, u32 event_id)
508 {
509 struct its_cmd_desc desc;
510
511 desc.its_inv_cmd.dev = dev;
512 desc.its_inv_cmd.event_id = event_id;
513
514 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
515 }
516
517 static void its_send_mapd(struct its_device *dev, int valid)
518 {
519 struct its_cmd_desc desc;
520
521 desc.its_mapd_cmd.dev = dev;
522 desc.its_mapd_cmd.valid = !!valid;
523
524 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
525 }
526
527 static void its_send_mapc(struct its_node *its, struct its_collection *col,
528 int valid)
529 {
530 struct its_cmd_desc desc;
531
532 desc.its_mapc_cmd.col = col;
533 desc.its_mapc_cmd.valid = !!valid;
534
535 its_send_single_command(its, its_build_mapc_cmd, &desc);
536 }
537
538 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
539 {
540 struct its_cmd_desc desc;
541
542 desc.its_mapti_cmd.dev = dev;
543 desc.its_mapti_cmd.phys_id = irq_id;
544 desc.its_mapti_cmd.event_id = id;
545
546 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
547 }
548
549 static void its_send_movi(struct its_device *dev,
550 struct its_collection *col, u32 id)
551 {
552 struct its_cmd_desc desc;
553
554 desc.its_movi_cmd.dev = dev;
555 desc.its_movi_cmd.col = col;
556 desc.its_movi_cmd.event_id = id;
557
558 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
559 }
560
561 static void its_send_discard(struct its_device *dev, u32 id)
562 {
563 struct its_cmd_desc desc;
564
565 desc.its_discard_cmd.dev = dev;
566 desc.its_discard_cmd.event_id = id;
567
568 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
569 }
570
571 static void its_send_invall(struct its_node *its, struct its_collection *col)
572 {
573 struct its_cmd_desc desc;
574
575 desc.its_invall_cmd.col = col;
576
577 its_send_single_command(its, its_build_invall_cmd, &desc);
578 }
579
580 /*
581 * irqchip functions - assumes MSI, mostly.
582 */
583
584 static inline u32 its_get_event_id(struct irq_data *d)
585 {
586 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
587 return d->hwirq - its_dev->event_map.lpi_base;
588 }
589
590 static void lpi_set_config(struct irq_data *d, bool enable)
591 {
592 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
593 irq_hw_number_t hwirq = d->hwirq;
594 u32 id = its_get_event_id(d);
595 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
596
597 if (enable)
598 *cfg |= LPI_PROP_ENABLED;
599 else
600 *cfg &= ~LPI_PROP_ENABLED;
601
602 /*
603 * Make the above write visible to the redistributors.
604 * And yes, we're flushing exactly: One. Single. Byte.
605 * Humpf...
606 */
607 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
608 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
609 else
610 dsb(ishst);
611 its_send_inv(its_dev, id);
612 }
613
614 static void its_mask_irq(struct irq_data *d)
615 {
616 lpi_set_config(d, false);
617 }
618
619 static void its_unmask_irq(struct irq_data *d)
620 {
621 lpi_set_config(d, true);
622 }
623
624 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
625 bool force)
626 {
627 unsigned int cpu;
628 const struct cpumask *cpu_mask = cpu_online_mask;
629 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
630 struct its_collection *target_col;
631 u32 id = its_get_event_id(d);
632
633 /* lpi cannot be routed to a redistributor that is on a foreign node */
634 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
635 if (its_dev->its->numa_node >= 0) {
636 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
637 if (!cpumask_intersects(mask_val, cpu_mask))
638 return -EINVAL;
639 }
640 }
641
642 cpu = cpumask_any_and(mask_val, cpu_mask);
643
644 if (cpu >= nr_cpu_ids)
645 return -EINVAL;
646
647 /* don't set the affinity when the target cpu is same as current one */
648 if (cpu != its_dev->event_map.col_map[id]) {
649 target_col = &its_dev->its->collections[cpu];
650 its_send_movi(its_dev, target_col, id);
651 its_dev->event_map.col_map[id] = cpu;
652 }
653
654 return IRQ_SET_MASK_OK_DONE;
655 }
656
657 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
658 {
659 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
660 struct its_node *its;
661 u64 addr;
662
663 its = its_dev->its;
664 addr = its->phys_base + GITS_TRANSLATER;
665
666 msg->address_lo = lower_32_bits(addr);
667 msg->address_hi = upper_32_bits(addr);
668 msg->data = its_get_event_id(d);
669
670 iommu_dma_map_msi_msg(d->irq, msg);
671 }
672
673 static struct irq_chip its_irq_chip = {
674 .name = "ITS",
675 .irq_mask = its_mask_irq,
676 .irq_unmask = its_unmask_irq,
677 .irq_eoi = irq_chip_eoi_parent,
678 .irq_set_affinity = its_set_affinity,
679 .irq_compose_msi_msg = its_irq_compose_msi_msg,
680 };
681
682 /*
683 * How we allocate LPIs:
684 *
685 * The GIC has id_bits bits for interrupt identifiers. From there, we
686 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
687 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
688 * bits to the right.
689 *
690 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
691 */
692 #define IRQS_PER_CHUNK_SHIFT 5
693 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
694 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
695
696 static unsigned long *lpi_bitmap;
697 static u32 lpi_chunks;
698 static u32 lpi_id_bits;
699 static DEFINE_SPINLOCK(lpi_lock);
700
701 static int its_lpi_to_chunk(int lpi)
702 {
703 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
704 }
705
706 static int its_chunk_to_lpi(int chunk)
707 {
708 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
709 }
710
711 static int __init its_lpi_init(u32 id_bits)
712 {
713 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
714
715 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
716 GFP_KERNEL);
717 if (!lpi_bitmap) {
718 lpi_chunks = 0;
719 return -ENOMEM;
720 }
721
722 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
723 return 0;
724 }
725
726 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
727 {
728 unsigned long *bitmap = NULL;
729 int chunk_id;
730 int nr_chunks;
731 int i;
732
733 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
734
735 spin_lock(&lpi_lock);
736
737 do {
738 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
739 0, nr_chunks, 0);
740 if (chunk_id < lpi_chunks)
741 break;
742
743 nr_chunks--;
744 } while (nr_chunks > 0);
745
746 if (!nr_chunks)
747 goto out;
748
749 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
750 GFP_ATOMIC);
751 if (!bitmap)
752 goto out;
753
754 for (i = 0; i < nr_chunks; i++)
755 set_bit(chunk_id + i, lpi_bitmap);
756
757 *base = its_chunk_to_lpi(chunk_id);
758 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
759
760 out:
761 spin_unlock(&lpi_lock);
762
763 if (!bitmap)
764 *base = *nr_ids = 0;
765
766 return bitmap;
767 }
768
769 static void its_lpi_free(struct event_lpi_map *map)
770 {
771 int base = map->lpi_base;
772 int nr_ids = map->nr_lpis;
773 int lpi;
774
775 spin_lock(&lpi_lock);
776
777 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
778 int chunk = its_lpi_to_chunk(lpi);
779 BUG_ON(chunk > lpi_chunks);
780 if (test_bit(chunk, lpi_bitmap)) {
781 clear_bit(chunk, lpi_bitmap);
782 } else {
783 pr_err("Bad LPI chunk %d\n", chunk);
784 }
785 }
786
787 spin_unlock(&lpi_lock);
788
789 kfree(map->lpi_map);
790 kfree(map->col_map);
791 }
792
793 /*
794 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
795 * deal with (one configuration byte per interrupt). PENDBASE has to
796 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
797 */
798 #define LPI_NRBITS lpi_id_bits
799 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
800 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
801
802 #define LPI_PROP_DEFAULT_PRIO 0xa0
803
804 static int __init its_alloc_lpi_tables(void)
805 {
806 phys_addr_t paddr;
807
808 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
809 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
810 get_order(LPI_PROPBASE_SZ));
811 if (!gic_rdists->prop_page) {
812 pr_err("Failed to allocate PROPBASE\n");
813 return -ENOMEM;
814 }
815
816 paddr = page_to_phys(gic_rdists->prop_page);
817 pr_info("GIC: using LPI property table @%pa\n", &paddr);
818
819 /* Priority 0xa0, Group-1, disabled */
820 memset(page_address(gic_rdists->prop_page),
821 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
822 LPI_PROPBASE_SZ);
823
824 /* Make sure the GIC will observe the written configuration */
825 gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
826
827 return its_lpi_init(lpi_id_bits);
828 }
829
830 static const char *its_base_type_string[] = {
831 [GITS_BASER_TYPE_DEVICE] = "Devices",
832 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
833 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
834 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
835 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
836 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
837 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
838 };
839
840 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
841 {
842 u32 idx = baser - its->tables;
843
844 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
845 }
846
847 static void its_write_baser(struct its_node *its, struct its_baser *baser,
848 u64 val)
849 {
850 u32 idx = baser - its->tables;
851
852 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
853 baser->val = its_read_baser(its, baser);
854 }
855
856 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
857 u64 cache, u64 shr, u32 psz, u32 order,
858 bool indirect)
859 {
860 u64 val = its_read_baser(its, baser);
861 u64 esz = GITS_BASER_ENTRY_SIZE(val);
862 u64 type = GITS_BASER_TYPE(val);
863 u32 alloc_pages;
864 void *base;
865 u64 tmp;
866
867 retry_alloc_baser:
868 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
869 if (alloc_pages > GITS_BASER_PAGES_MAX) {
870 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
871 &its->phys_base, its_base_type_string[type],
872 alloc_pages, GITS_BASER_PAGES_MAX);
873 alloc_pages = GITS_BASER_PAGES_MAX;
874 order = get_order(GITS_BASER_PAGES_MAX * psz);
875 }
876
877 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
878 if (!base)
879 return -ENOMEM;
880
881 retry_baser:
882 val = (virt_to_phys(base) |
883 (type << GITS_BASER_TYPE_SHIFT) |
884 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
885 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
886 cache |
887 shr |
888 GITS_BASER_VALID);
889
890 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
891
892 switch (psz) {
893 case SZ_4K:
894 val |= GITS_BASER_PAGE_SIZE_4K;
895 break;
896 case SZ_16K:
897 val |= GITS_BASER_PAGE_SIZE_16K;
898 break;
899 case SZ_64K:
900 val |= GITS_BASER_PAGE_SIZE_64K;
901 break;
902 }
903
904 its_write_baser(its, baser, val);
905 tmp = baser->val;
906
907 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
908 /*
909 * Shareability didn't stick. Just use
910 * whatever the read reported, which is likely
911 * to be the only thing this redistributor
912 * supports. If that's zero, make it
913 * non-cacheable as well.
914 */
915 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
916 if (!shr) {
917 cache = GITS_BASER_nC;
918 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
919 }
920 goto retry_baser;
921 }
922
923 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
924 /*
925 * Page size didn't stick. Let's try a smaller
926 * size and retry. If we reach 4K, then
927 * something is horribly wrong...
928 */
929 free_pages((unsigned long)base, order);
930 baser->base = NULL;
931
932 switch (psz) {
933 case SZ_16K:
934 psz = SZ_4K;
935 goto retry_alloc_baser;
936 case SZ_64K:
937 psz = SZ_16K;
938 goto retry_alloc_baser;
939 }
940 }
941
942 if (val != tmp) {
943 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
944 &its->phys_base, its_base_type_string[type],
945 val, tmp);
946 free_pages((unsigned long)base, order);
947 return -ENXIO;
948 }
949
950 baser->order = order;
951 baser->base = base;
952 baser->psz = psz;
953 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
954
955 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
956 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
957 its_base_type_string[type],
958 (unsigned long)virt_to_phys(base),
959 indirect ? "indirect" : "flat", (int)esz,
960 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
961
962 return 0;
963 }
964
965 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
966 u32 psz, u32 *order)
967 {
968 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
969 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
970 u32 ids = its->device_ids;
971 u32 new_order = *order;
972 bool indirect = false;
973
974 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
975 if ((esz << ids) > (psz * 2)) {
976 /*
977 * Find out whether hw supports a single or two-level table by
978 * table by reading bit at offset '62' after writing '1' to it.
979 */
980 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
981 indirect = !!(baser->val & GITS_BASER_INDIRECT);
982
983 if (indirect) {
984 /*
985 * The size of the lvl2 table is equal to ITS page size
986 * which is 'psz'. For computing lvl1 table size,
987 * subtract ID bits that sparse lvl2 table from 'ids'
988 * which is reported by ITS hardware times lvl1 table
989 * entry size.
990 */
991 ids -= ilog2(psz / (int)esz);
992 esz = GITS_LVL1_ENTRY_SIZE;
993 }
994 }
995
996 /*
997 * Allocate as many entries as required to fit the
998 * range of device IDs that the ITS can grok... The ID
999 * space being incredibly sparse, this results in a
1000 * massive waste of memory if two-level device table
1001 * feature is not supported by hardware.
1002 */
1003 new_order = max_t(u32, get_order(esz << ids), new_order);
1004 if (new_order >= MAX_ORDER) {
1005 new_order = MAX_ORDER - 1;
1006 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1007 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1008 &its->phys_base, its->device_ids, ids);
1009 }
1010
1011 *order = new_order;
1012
1013 return indirect;
1014 }
1015
1016 static void its_free_tables(struct its_node *its)
1017 {
1018 int i;
1019
1020 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1021 if (its->tables[i].base) {
1022 free_pages((unsigned long)its->tables[i].base,
1023 its->tables[i].order);
1024 its->tables[i].base = NULL;
1025 }
1026 }
1027 }
1028
1029 static int its_alloc_tables(struct its_node *its)
1030 {
1031 u64 typer = gic_read_typer(its->base + GITS_TYPER);
1032 u32 ids = GITS_TYPER_DEVBITS(typer);
1033 u64 shr = GITS_BASER_InnerShareable;
1034 u64 cache = GITS_BASER_RaWaWb;
1035 u32 psz = SZ_64K;
1036 int err, i;
1037
1038 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1039 /*
1040 * erratum 22375: only alloc 8MB table size
1041 * erratum 24313: ignore memory access type
1042 */
1043 cache = GITS_BASER_nCnB;
1044 ids = 0x14; /* 20 bits, 8MB */
1045 }
1046
1047 its->device_ids = ids;
1048
1049 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1050 struct its_baser *baser = its->tables + i;
1051 u64 val = its_read_baser(its, baser);
1052 u64 type = GITS_BASER_TYPE(val);
1053 u32 order = get_order(psz);
1054 bool indirect = false;
1055
1056 if (type == GITS_BASER_TYPE_NONE)
1057 continue;
1058
1059 if (type == GITS_BASER_TYPE_DEVICE)
1060 indirect = its_parse_baser_device(its, baser, psz, &order);
1061
1062 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1063 if (err < 0) {
1064 its_free_tables(its);
1065 return err;
1066 }
1067
1068 /* Update settings which will be used for next BASERn */
1069 psz = baser->psz;
1070 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1071 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1072 }
1073
1074 return 0;
1075 }
1076
1077 static int its_alloc_collections(struct its_node *its)
1078 {
1079 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1080 GFP_KERNEL);
1081 if (!its->collections)
1082 return -ENOMEM;
1083
1084 return 0;
1085 }
1086
1087 static void its_cpu_init_lpis(void)
1088 {
1089 void __iomem *rbase = gic_data_rdist_rd_base();
1090 struct page *pend_page;
1091 u64 val, tmp;
1092
1093 /* If we didn't allocate the pending table yet, do it now */
1094 pend_page = gic_data_rdist()->pend_page;
1095 if (!pend_page) {
1096 phys_addr_t paddr;
1097 /*
1098 * The pending pages have to be at least 64kB aligned,
1099 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1100 */
1101 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1102 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1103 if (!pend_page) {
1104 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1105 smp_processor_id());
1106 return;
1107 }
1108
1109 /* Make sure the GIC will observe the zero-ed page */
1110 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1111
1112 paddr = page_to_phys(pend_page);
1113 pr_info("CPU%d: using LPI pending table @%pa\n",
1114 smp_processor_id(), &paddr);
1115 gic_data_rdist()->pend_page = pend_page;
1116 }
1117
1118 /* Disable LPIs */
1119 val = readl_relaxed(rbase + GICR_CTLR);
1120 val &= ~GICR_CTLR_ENABLE_LPIS;
1121 writel_relaxed(val, rbase + GICR_CTLR);
1122
1123 /*
1124 * Make sure any change to the table is observable by the GIC.
1125 */
1126 dsb(sy);
1127
1128 /* set PROPBASE */
1129 val = (page_to_phys(gic_rdists->prop_page) |
1130 GICR_PROPBASER_InnerShareable |
1131 GICR_PROPBASER_RaWaWb |
1132 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1133
1134 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1135 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1136
1137 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1138 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1139 /*
1140 * The HW reports non-shareable, we must
1141 * remove the cacheability attributes as
1142 * well.
1143 */
1144 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1145 GICR_PROPBASER_CACHEABILITY_MASK);
1146 val |= GICR_PROPBASER_nC;
1147 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1148 }
1149 pr_info_once("GIC: using cache flushing for LPI property table\n");
1150 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1151 }
1152
1153 /* set PENDBASE */
1154 val = (page_to_phys(pend_page) |
1155 GICR_PENDBASER_InnerShareable |
1156 GICR_PENDBASER_RaWaWb);
1157
1158 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1159 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1160
1161 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1162 /*
1163 * The HW reports non-shareable, we must remove the
1164 * cacheability attributes as well.
1165 */
1166 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1167 GICR_PENDBASER_CACHEABILITY_MASK);
1168 val |= GICR_PENDBASER_nC;
1169 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1170 }
1171
1172 /* Enable LPIs */
1173 val = readl_relaxed(rbase + GICR_CTLR);
1174 val |= GICR_CTLR_ENABLE_LPIS;
1175 writel_relaxed(val, rbase + GICR_CTLR);
1176
1177 /* Make sure the GIC has seen the above */
1178 dsb(sy);
1179 }
1180
1181 static void its_cpu_init_collection(void)
1182 {
1183 struct its_node *its;
1184 int cpu;
1185
1186 spin_lock(&its_lock);
1187 cpu = smp_processor_id();
1188
1189 list_for_each_entry(its, &its_nodes, entry) {
1190 u64 target;
1191
1192 /* avoid cross node collections and its mapping */
1193 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1194 struct device_node *cpu_node;
1195
1196 cpu_node = of_get_cpu_node(cpu, NULL);
1197 if (its->numa_node != NUMA_NO_NODE &&
1198 its->numa_node != of_node_to_nid(cpu_node))
1199 continue;
1200 }
1201
1202 /*
1203 * We now have to bind each collection to its target
1204 * redistributor.
1205 */
1206 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1207 /*
1208 * This ITS wants the physical address of the
1209 * redistributor.
1210 */
1211 target = gic_data_rdist()->phys_base;
1212 } else {
1213 /*
1214 * This ITS wants a linear CPU number.
1215 */
1216 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1217 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1218 }
1219
1220 /* Perform collection mapping */
1221 its->collections[cpu].target_address = target;
1222 its->collections[cpu].col_id = cpu;
1223
1224 its_send_mapc(its, &its->collections[cpu], 1);
1225 its_send_invall(its, &its->collections[cpu]);
1226 }
1227
1228 spin_unlock(&its_lock);
1229 }
1230
1231 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1232 {
1233 struct its_device *its_dev = NULL, *tmp;
1234 unsigned long flags;
1235
1236 raw_spin_lock_irqsave(&its->lock, flags);
1237
1238 list_for_each_entry(tmp, &its->its_device_list, entry) {
1239 if (tmp->device_id == dev_id) {
1240 its_dev = tmp;
1241 break;
1242 }
1243 }
1244
1245 raw_spin_unlock_irqrestore(&its->lock, flags);
1246
1247 return its_dev;
1248 }
1249
1250 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1251 {
1252 int i;
1253
1254 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1255 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1256 return &its->tables[i];
1257 }
1258
1259 return NULL;
1260 }
1261
1262 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1263 {
1264 struct its_baser *baser;
1265 struct page *page;
1266 u32 esz, idx;
1267 __le64 *table;
1268
1269 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1270
1271 /* Don't allow device id that exceeds ITS hardware limit */
1272 if (!baser)
1273 return (ilog2(dev_id) < its->device_ids);
1274
1275 /* Don't allow device id that exceeds single, flat table limit */
1276 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1277 if (!(baser->val & GITS_BASER_INDIRECT))
1278 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1279
1280 /* Compute 1st level table index & check if that exceeds table limit */
1281 idx = dev_id >> ilog2(baser->psz / esz);
1282 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1283 return false;
1284
1285 table = baser->base;
1286
1287 /* Allocate memory for 2nd level table */
1288 if (!table[idx]) {
1289 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1290 if (!page)
1291 return false;
1292
1293 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1294 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1295 gic_flush_dcache_to_poc(page_address(page), baser->psz);
1296
1297 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1298
1299 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1300 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1301 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1302
1303 /* Ensure updated table contents are visible to ITS hardware */
1304 dsb(sy);
1305 }
1306
1307 return true;
1308 }
1309
1310 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1311 int nvecs)
1312 {
1313 struct its_device *dev;
1314 unsigned long *lpi_map;
1315 unsigned long flags;
1316 u16 *col_map = NULL;
1317 void *itt;
1318 int lpi_base;
1319 int nr_lpis;
1320 int nr_ites;
1321 int sz;
1322
1323 if (!its_alloc_device_table(its, dev_id))
1324 return NULL;
1325
1326 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1327 /*
1328 * At least one bit of EventID is being used, hence a minimum
1329 * of two entries. No, the architecture doesn't let you
1330 * express an ITT with a single entry.
1331 */
1332 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1333 sz = nr_ites * its->ite_size;
1334 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1335 itt = kzalloc(sz, GFP_KERNEL);
1336 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1337 if (lpi_map)
1338 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1339
1340 if (!dev || !itt || !lpi_map || !col_map) {
1341 kfree(dev);
1342 kfree(itt);
1343 kfree(lpi_map);
1344 kfree(col_map);
1345 return NULL;
1346 }
1347
1348 gic_flush_dcache_to_poc(itt, sz);
1349
1350 dev->its = its;
1351 dev->itt = itt;
1352 dev->nr_ites = nr_ites;
1353 dev->event_map.lpi_map = lpi_map;
1354 dev->event_map.col_map = col_map;
1355 dev->event_map.lpi_base = lpi_base;
1356 dev->event_map.nr_lpis = nr_lpis;
1357 dev->device_id = dev_id;
1358 INIT_LIST_HEAD(&dev->entry);
1359
1360 raw_spin_lock_irqsave(&its->lock, flags);
1361 list_add(&dev->entry, &its->its_device_list);
1362 raw_spin_unlock_irqrestore(&its->lock, flags);
1363
1364 /* Map device to its ITT */
1365 its_send_mapd(dev, 1);
1366
1367 return dev;
1368 }
1369
1370 static void its_free_device(struct its_device *its_dev)
1371 {
1372 unsigned long flags;
1373
1374 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1375 list_del(&its_dev->entry);
1376 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1377 kfree(its_dev->itt);
1378 kfree(its_dev);
1379 }
1380
1381 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1382 {
1383 int idx;
1384
1385 idx = find_first_zero_bit(dev->event_map.lpi_map,
1386 dev->event_map.nr_lpis);
1387 if (idx == dev->event_map.nr_lpis)
1388 return -ENOSPC;
1389
1390 *hwirq = dev->event_map.lpi_base + idx;
1391 set_bit(idx, dev->event_map.lpi_map);
1392
1393 return 0;
1394 }
1395
1396 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1397 int nvec, msi_alloc_info_t *info)
1398 {
1399 struct its_node *its;
1400 struct its_device *its_dev;
1401 struct msi_domain_info *msi_info;
1402 u32 dev_id;
1403
1404 /*
1405 * We ignore "dev" entierely, and rely on the dev_id that has
1406 * been passed via the scratchpad. This limits this domain's
1407 * usefulness to upper layers that definitely know that they
1408 * are built on top of the ITS.
1409 */
1410 dev_id = info->scratchpad[0].ul;
1411
1412 msi_info = msi_get_domain_info(domain);
1413 its = msi_info->data;
1414
1415 its_dev = its_find_device(its, dev_id);
1416 if (its_dev) {
1417 /*
1418 * We already have seen this ID, probably through
1419 * another alias (PCI bridge of some sort). No need to
1420 * create the device.
1421 */
1422 pr_debug("Reusing ITT for devID %x\n", dev_id);
1423 goto out;
1424 }
1425
1426 its_dev = its_create_device(its, dev_id, nvec);
1427 if (!its_dev)
1428 return -ENOMEM;
1429
1430 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1431 out:
1432 info->scratchpad[0].ptr = its_dev;
1433 return 0;
1434 }
1435
1436 static struct msi_domain_ops its_msi_domain_ops = {
1437 .msi_prepare = its_msi_prepare,
1438 };
1439
1440 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1441 unsigned int virq,
1442 irq_hw_number_t hwirq)
1443 {
1444 struct irq_fwspec fwspec;
1445
1446 if (irq_domain_get_of_node(domain->parent)) {
1447 fwspec.fwnode = domain->parent->fwnode;
1448 fwspec.param_count = 3;
1449 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1450 fwspec.param[1] = hwirq;
1451 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1452 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1453 fwspec.fwnode = domain->parent->fwnode;
1454 fwspec.param_count = 2;
1455 fwspec.param[0] = hwirq;
1456 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1457 } else {
1458 return -EINVAL;
1459 }
1460
1461 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1462 }
1463
1464 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1465 unsigned int nr_irqs, void *args)
1466 {
1467 msi_alloc_info_t *info = args;
1468 struct its_device *its_dev = info->scratchpad[0].ptr;
1469 irq_hw_number_t hwirq;
1470 int err;
1471 int i;
1472
1473 for (i = 0; i < nr_irqs; i++) {
1474 err = its_alloc_device_irq(its_dev, &hwirq);
1475 if (err)
1476 return err;
1477
1478 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1479 if (err)
1480 return err;
1481
1482 irq_domain_set_hwirq_and_chip(domain, virq + i,
1483 hwirq, &its_irq_chip, its_dev);
1484 pr_debug("ID:%d pID:%d vID:%d\n",
1485 (int)(hwirq - its_dev->event_map.lpi_base),
1486 (int) hwirq, virq + i);
1487 }
1488
1489 return 0;
1490 }
1491
1492 static void its_irq_domain_activate(struct irq_domain *domain,
1493 struct irq_data *d)
1494 {
1495 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496 u32 event = its_get_event_id(d);
1497 const struct cpumask *cpu_mask = cpu_online_mask;
1498
1499 /* get the cpu_mask of local node */
1500 if (its_dev->its->numa_node >= 0)
1501 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1502
1503 /* Bind the LPI to the first possible CPU */
1504 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1505
1506 /* Map the GIC IRQ and event to the device */
1507 its_send_mapti(its_dev, d->hwirq, event);
1508 }
1509
1510 static void its_irq_domain_deactivate(struct irq_domain *domain,
1511 struct irq_data *d)
1512 {
1513 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1514 u32 event = its_get_event_id(d);
1515
1516 /* Stop the delivery of interrupts */
1517 its_send_discard(its_dev, event);
1518 }
1519
1520 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1521 unsigned int nr_irqs)
1522 {
1523 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1524 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1525 int i;
1526
1527 for (i = 0; i < nr_irqs; i++) {
1528 struct irq_data *data = irq_domain_get_irq_data(domain,
1529 virq + i);
1530 u32 event = its_get_event_id(data);
1531
1532 /* Mark interrupt index as unused */
1533 clear_bit(event, its_dev->event_map.lpi_map);
1534
1535 /* Nuke the entry in the domain */
1536 irq_domain_reset_irq_data(data);
1537 }
1538
1539 /* If all interrupts have been freed, start mopping the floor */
1540 if (bitmap_empty(its_dev->event_map.lpi_map,
1541 its_dev->event_map.nr_lpis)) {
1542 its_lpi_free(&its_dev->event_map);
1543
1544 /* Unmap device/itt */
1545 its_send_mapd(its_dev, 0);
1546 its_free_device(its_dev);
1547 }
1548
1549 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1550 }
1551
1552 static const struct irq_domain_ops its_domain_ops = {
1553 .alloc = its_irq_domain_alloc,
1554 .free = its_irq_domain_free,
1555 .activate = its_irq_domain_activate,
1556 .deactivate = its_irq_domain_deactivate,
1557 };
1558
1559 static int its_force_quiescent(void __iomem *base)
1560 {
1561 u32 count = 1000000; /* 1s */
1562 u32 val;
1563
1564 val = readl_relaxed(base + GITS_CTLR);
1565 /*
1566 * GIC architecture specification requires the ITS to be both
1567 * disabled and quiescent for writes to GITS_BASER<n> or
1568 * GITS_CBASER to not have UNPREDICTABLE results.
1569 */
1570 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1571 return 0;
1572
1573 /* Disable the generation of all interrupts to this ITS */
1574 val &= ~GITS_CTLR_ENABLE;
1575 writel_relaxed(val, base + GITS_CTLR);
1576
1577 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1578 while (1) {
1579 val = readl_relaxed(base + GITS_CTLR);
1580 if (val & GITS_CTLR_QUIESCENT)
1581 return 0;
1582
1583 count--;
1584 if (!count)
1585 return -EBUSY;
1586
1587 cpu_relax();
1588 udelay(1);
1589 }
1590 }
1591
1592 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1593 {
1594 struct its_node *its = data;
1595
1596 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1597 }
1598
1599 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1600 {
1601 struct its_node *its = data;
1602
1603 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1604 }
1605
1606 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
1607 {
1608 struct its_node *its = data;
1609
1610 /* On QDF2400, the size of the ITE is 16Bytes */
1611 its->ite_size = 16;
1612 }
1613
1614 static const struct gic_quirk its_quirks[] = {
1615 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1616 {
1617 .desc = "ITS: Cavium errata 22375, 24313",
1618 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1619 .mask = 0xffff0fff,
1620 .init = its_enable_quirk_cavium_22375,
1621 },
1622 #endif
1623 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1624 {
1625 .desc = "ITS: Cavium erratum 23144",
1626 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1627 .mask = 0xffff0fff,
1628 .init = its_enable_quirk_cavium_23144,
1629 },
1630 #endif
1631 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
1632 {
1633 .desc = "ITS: QDF2400 erratum 0065",
1634 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
1635 .mask = 0xffffffff,
1636 .init = its_enable_quirk_qdf2400_e0065,
1637 },
1638 #endif
1639 {
1640 }
1641 };
1642
1643 static void its_enable_quirks(struct its_node *its)
1644 {
1645 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1646
1647 gic_enable_quirks(iidr, its_quirks, its);
1648 }
1649
1650 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1651 {
1652 struct irq_domain *inner_domain;
1653 struct msi_domain_info *info;
1654
1655 info = kzalloc(sizeof(*info), GFP_KERNEL);
1656 if (!info)
1657 return -ENOMEM;
1658
1659 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1660 if (!inner_domain) {
1661 kfree(info);
1662 return -ENOMEM;
1663 }
1664
1665 inner_domain->parent = its_parent;
1666 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
1667 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
1668 info->ops = &its_msi_domain_ops;
1669 info->data = its;
1670 inner_domain->host_data = info;
1671
1672 return 0;
1673 }
1674
1675 static int __init its_probe_one(struct resource *res,
1676 struct fwnode_handle *handle, int numa_node)
1677 {
1678 struct its_node *its;
1679 void __iomem *its_base;
1680 u32 val;
1681 u64 baser, tmp;
1682 int err;
1683
1684 its_base = ioremap(res->start, resource_size(res));
1685 if (!its_base) {
1686 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1687 return -ENOMEM;
1688 }
1689
1690 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1691 if (val != 0x30 && val != 0x40) {
1692 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1693 err = -ENODEV;
1694 goto out_unmap;
1695 }
1696
1697 err = its_force_quiescent(its_base);
1698 if (err) {
1699 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1700 goto out_unmap;
1701 }
1702
1703 pr_info("ITS %pR\n", res);
1704
1705 its = kzalloc(sizeof(*its), GFP_KERNEL);
1706 if (!its) {
1707 err = -ENOMEM;
1708 goto out_unmap;
1709 }
1710
1711 raw_spin_lock_init(&its->lock);
1712 INIT_LIST_HEAD(&its->entry);
1713 INIT_LIST_HEAD(&its->its_device_list);
1714 its->base = its_base;
1715 its->phys_base = res->start;
1716 its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1717 its->numa_node = numa_node;
1718
1719 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1720 get_order(ITS_CMD_QUEUE_SZ));
1721 if (!its->cmd_base) {
1722 err = -ENOMEM;
1723 goto out_free_its;
1724 }
1725 its->cmd_write = its->cmd_base;
1726
1727 its_enable_quirks(its);
1728
1729 err = its_alloc_tables(its);
1730 if (err)
1731 goto out_free_cmd;
1732
1733 err = its_alloc_collections(its);
1734 if (err)
1735 goto out_free_tables;
1736
1737 baser = (virt_to_phys(its->cmd_base) |
1738 GITS_CBASER_RaWaWb |
1739 GITS_CBASER_InnerShareable |
1740 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1741 GITS_CBASER_VALID);
1742
1743 gits_write_cbaser(baser, its->base + GITS_CBASER);
1744 tmp = gits_read_cbaser(its->base + GITS_CBASER);
1745
1746 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1747 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1748 /*
1749 * The HW reports non-shareable, we must
1750 * remove the cacheability attributes as
1751 * well.
1752 */
1753 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1754 GITS_CBASER_CACHEABILITY_MASK);
1755 baser |= GITS_CBASER_nC;
1756 gits_write_cbaser(baser, its->base + GITS_CBASER);
1757 }
1758 pr_info("ITS: using cache flushing for cmd queue\n");
1759 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1760 }
1761
1762 gits_write_cwriter(0, its->base + GITS_CWRITER);
1763 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1764
1765 err = its_init_domain(handle, its);
1766 if (err)
1767 goto out_free_tables;
1768
1769 spin_lock(&its_lock);
1770 list_add(&its->entry, &its_nodes);
1771 spin_unlock(&its_lock);
1772
1773 return 0;
1774
1775 out_free_tables:
1776 its_free_tables(its);
1777 out_free_cmd:
1778 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
1779 out_free_its:
1780 kfree(its);
1781 out_unmap:
1782 iounmap(its_base);
1783 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1784 return err;
1785 }
1786
1787 static bool gic_rdists_supports_plpis(void)
1788 {
1789 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1790 }
1791
1792 int its_cpu_init(void)
1793 {
1794 if (!list_empty(&its_nodes)) {
1795 if (!gic_rdists_supports_plpis()) {
1796 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1797 return -ENXIO;
1798 }
1799 its_cpu_init_lpis();
1800 its_cpu_init_collection();
1801 }
1802
1803 return 0;
1804 }
1805
1806 static const struct of_device_id its_device_id[] = {
1807 { .compatible = "arm,gic-v3-its", },
1808 {},
1809 };
1810
1811 static int __init its_of_probe(struct device_node *node)
1812 {
1813 struct device_node *np;
1814 struct resource res;
1815
1816 for (np = of_find_matching_node(node, its_device_id); np;
1817 np = of_find_matching_node(np, its_device_id)) {
1818 if (!of_property_read_bool(np, "msi-controller")) {
1819 pr_warn("%s: no msi-controller property, ITS ignored\n",
1820 np->full_name);
1821 continue;
1822 }
1823
1824 if (of_address_to_resource(np, 0, &res)) {
1825 pr_warn("%s: no regs?\n", np->full_name);
1826 continue;
1827 }
1828
1829 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1830 }
1831 return 0;
1832 }
1833
1834 #ifdef CONFIG_ACPI
1835
1836 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1837
1838 #ifdef CONFIG_ACPI_NUMA
1839 struct its_srat_map {
1840 /* numa node id */
1841 u32 numa_node;
1842 /* GIC ITS ID */
1843 u32 its_id;
1844 };
1845
1846 static struct its_srat_map *its_srat_maps __initdata;
1847 static int its_in_srat __initdata;
1848
1849 static int __init acpi_get_its_numa_node(u32 its_id)
1850 {
1851 int i;
1852
1853 for (i = 0; i < its_in_srat; i++) {
1854 if (its_id == its_srat_maps[i].its_id)
1855 return its_srat_maps[i].numa_node;
1856 }
1857 return NUMA_NO_NODE;
1858 }
1859
1860 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
1861 const unsigned long end)
1862 {
1863 return 0;
1864 }
1865
1866 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
1867 const unsigned long end)
1868 {
1869 int node;
1870 struct acpi_srat_gic_its_affinity *its_affinity;
1871
1872 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
1873 if (!its_affinity)
1874 return -EINVAL;
1875
1876 if (its_affinity->header.length < sizeof(*its_affinity)) {
1877 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
1878 its_affinity->header.length);
1879 return -EINVAL;
1880 }
1881
1882 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
1883
1884 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
1885 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
1886 return 0;
1887 }
1888
1889 its_srat_maps[its_in_srat].numa_node = node;
1890 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
1891 its_in_srat++;
1892 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
1893 its_affinity->proximity_domain, its_affinity->its_id, node);
1894
1895 return 0;
1896 }
1897
1898 static void __init acpi_table_parse_srat_its(void)
1899 {
1900 int count;
1901
1902 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
1903 sizeof(struct acpi_table_srat),
1904 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
1905 gic_acpi_match_srat_its, 0);
1906 if (count <= 0)
1907 return;
1908
1909 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
1910 GFP_KERNEL);
1911 if (!its_srat_maps) {
1912 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
1913 return;
1914 }
1915
1916 acpi_table_parse_entries(ACPI_SIG_SRAT,
1917 sizeof(struct acpi_table_srat),
1918 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
1919 gic_acpi_parse_srat_its, 0);
1920 }
1921
1922 /* free the its_srat_maps after ITS probing */
1923 static void __init acpi_its_srat_maps_free(void)
1924 {
1925 kfree(its_srat_maps);
1926 }
1927 #else
1928 static void __init acpi_table_parse_srat_its(void) { }
1929 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
1930 static void __init acpi_its_srat_maps_free(void) { }
1931 #endif
1932
1933 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1934 const unsigned long end)
1935 {
1936 struct acpi_madt_generic_translator *its_entry;
1937 struct fwnode_handle *dom_handle;
1938 struct resource res;
1939 int err;
1940
1941 its_entry = (struct acpi_madt_generic_translator *)header;
1942 memset(&res, 0, sizeof(res));
1943 res.start = its_entry->base_address;
1944 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1945 res.flags = IORESOURCE_MEM;
1946
1947 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1948 if (!dom_handle) {
1949 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1950 &res.start);
1951 return -ENOMEM;
1952 }
1953
1954 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1955 if (err) {
1956 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1957 &res.start, its_entry->translation_id);
1958 goto dom_err;
1959 }
1960
1961 err = its_probe_one(&res, dom_handle,
1962 acpi_get_its_numa_node(its_entry->translation_id));
1963 if (!err)
1964 return 0;
1965
1966 iort_deregister_domain_token(its_entry->translation_id);
1967 dom_err:
1968 irq_domain_free_fwnode(dom_handle);
1969 return err;
1970 }
1971
1972 static void __init its_acpi_probe(void)
1973 {
1974 acpi_table_parse_srat_its();
1975 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1976 gic_acpi_parse_madt_its, 0);
1977 acpi_its_srat_maps_free();
1978 }
1979 #else
1980 static void __init its_acpi_probe(void) { }
1981 #endif
1982
1983 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1984 struct irq_domain *parent_domain)
1985 {
1986 struct device_node *of_node;
1987
1988 its_parent = parent_domain;
1989 of_node = to_of_node(handle);
1990 if (of_node)
1991 its_of_probe(of_node);
1992 else
1993 its_acpi_probe();
1994
1995 if (list_empty(&its_nodes)) {
1996 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1997 return -ENXIO;
1998 }
1999
2000 gic_rdists = rdists;
2001 return its_alloc_lpi_tables();
2002 }