]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/irqchip/irq-gic-v3-its.c
iommu/vt-d: Don't over-free page table directories
[mirror_ubuntu-artful-kernel.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/acpi.h>
19 #include <linux/bitmap.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dma-iommu.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/acpi_iort.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42
43 #include "irq-gic-common.h"
44
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
48
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
50
51 /*
52 * Collection structure - just an ID, and a redistributor address to
53 * ping. We use one per CPU as a bag of interrupts assigned to this
54 * CPU.
55 */
56 struct its_collection {
57 u64 target_address;
58 u16 col_id;
59 };
60
61 /*
62 * The ITS_BASER structure - contains memory information, cached
63 * value of BASER register configuration and ITS page size.
64 */
65 struct its_baser {
66 void *base;
67 u64 val;
68 u32 order;
69 u32 psz;
70 };
71
72 /*
73 * The ITS structure - contains most of the infrastructure, with the
74 * top-level MSI domain, the command queue, the collections, and the
75 * list of devices writing to it.
76 */
77 struct its_node {
78 raw_spinlock_t lock;
79 struct list_head entry;
80 void __iomem *base;
81 phys_addr_t phys_base;
82 struct its_cmd_block *cmd_base;
83 struct its_cmd_block *cmd_write;
84 struct its_baser tables[GITS_BASER_NR_REGS];
85 struct its_collection *collections;
86 struct list_head its_device_list;
87 u64 flags;
88 u32 ite_size;
89 u32 device_ids;
90 int numa_node;
91 };
92
93 #define ITS_ITT_ALIGN SZ_256
94
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
97
98 struct event_lpi_map {
99 unsigned long *lpi_map;
100 u16 *col_map;
101 irq_hw_number_t lpi_base;
102 int nr_lpis;
103 };
104
105 /*
106 * The ITS view of a device - belongs to an ITS, a collection, owns an
107 * interrupt translation table, and a list of interrupts.
108 */
109 struct its_device {
110 struct list_head entry;
111 struct its_node *its;
112 struct event_lpi_map event_map;
113 void *itt;
114 u32 nr_ites;
115 u32 device_id;
116 };
117
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122
123 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
125
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 u32 event)
128 {
129 struct its_node *its = its_dev->its;
130
131 return its->collections + its_dev->event_map.col_map[event];
132 }
133
134 /*
135 * ITS command descriptors - parameters to be encoded in a command
136 * block.
137 */
138 struct its_cmd_desc {
139 union {
140 struct {
141 struct its_device *dev;
142 u32 event_id;
143 } its_inv_cmd;
144
145 struct {
146 struct its_device *dev;
147 u32 event_id;
148 } its_int_cmd;
149
150 struct {
151 struct its_device *dev;
152 int valid;
153 } its_mapd_cmd;
154
155 struct {
156 struct its_collection *col;
157 int valid;
158 } its_mapc_cmd;
159
160 struct {
161 struct its_device *dev;
162 u32 phys_id;
163 u32 event_id;
164 } its_mapvi_cmd;
165
166 struct {
167 struct its_device *dev;
168 struct its_collection *col;
169 u32 event_id;
170 } its_movi_cmd;
171
172 struct {
173 struct its_device *dev;
174 u32 event_id;
175 } its_discard_cmd;
176
177 struct {
178 struct its_collection *col;
179 } its_invall_cmd;
180 };
181 };
182
183 /*
184 * The ITS command block, which is what the ITS actually parses.
185 */
186 struct its_cmd_block {
187 u64 raw_cmd[4];
188 };
189
190 #define ITS_CMD_QUEUE_SZ SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 struct its_cmd_desc *);
195
196 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
197 {
198 cmd->raw_cmd[0] &= ~0xffULL;
199 cmd->raw_cmd[0] |= cmd_nr;
200 }
201
202 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
203 {
204 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
205 cmd->raw_cmd[0] |= ((u64)devid) << 32;
206 }
207
208 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
209 {
210 cmd->raw_cmd[1] &= ~0xffffffffULL;
211 cmd->raw_cmd[1] |= id;
212 }
213
214 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
215 {
216 cmd->raw_cmd[1] &= 0xffffffffULL;
217 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
218 }
219
220 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
221 {
222 cmd->raw_cmd[1] &= ~0x1fULL;
223 cmd->raw_cmd[1] |= size & 0x1f;
224 }
225
226 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
227 {
228 cmd->raw_cmd[2] &= ~0xffffffffffffULL;
229 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00ULL;
230 }
231
232 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
233 {
234 cmd->raw_cmd[2] &= ~(1ULL << 63);
235 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
236 }
237
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 cmd->raw_cmd[2] &= ~(0xffffffffULL << 16);
241 cmd->raw_cmd[2] |= (target_addr & (0xffffffffULL << 16));
242 }
243
244 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
245 {
246 cmd->raw_cmd[2] &= ~0xffffULL;
247 cmd->raw_cmd[2] |= col;
248 }
249
250 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
251 {
252 /* Let's fixup BE commands */
253 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
254 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
255 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
256 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
257 }
258
259 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
260 struct its_cmd_desc *desc)
261 {
262 unsigned long itt_addr;
263 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
264
265 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
266 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
267
268 its_encode_cmd(cmd, GITS_CMD_MAPD);
269 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
270 its_encode_size(cmd, size - 1);
271 its_encode_itt(cmd, itt_addr);
272 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
273
274 its_fixup_cmd(cmd);
275
276 return NULL;
277 }
278
279 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
280 struct its_cmd_desc *desc)
281 {
282 its_encode_cmd(cmd, GITS_CMD_MAPC);
283 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
284 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
285 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
286
287 its_fixup_cmd(cmd);
288
289 return desc->its_mapc_cmd.col;
290 }
291
292 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
293 struct its_cmd_desc *desc)
294 {
295 struct its_collection *col;
296
297 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
298 desc->its_mapvi_cmd.event_id);
299
300 its_encode_cmd(cmd, GITS_CMD_MAPVI);
301 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
302 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
303 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
304 its_encode_collection(cmd, col->col_id);
305
306 its_fixup_cmd(cmd);
307
308 return col;
309 }
310
311 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
312 struct its_cmd_desc *desc)
313 {
314 struct its_collection *col;
315
316 col = dev_event_to_col(desc->its_movi_cmd.dev,
317 desc->its_movi_cmd.event_id);
318
319 its_encode_cmd(cmd, GITS_CMD_MOVI);
320 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
321 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
322 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
323
324 its_fixup_cmd(cmd);
325
326 return col;
327 }
328
329 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
330 struct its_cmd_desc *desc)
331 {
332 struct its_collection *col;
333
334 col = dev_event_to_col(desc->its_discard_cmd.dev,
335 desc->its_discard_cmd.event_id);
336
337 its_encode_cmd(cmd, GITS_CMD_DISCARD);
338 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
339 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
340
341 its_fixup_cmd(cmd);
342
343 return col;
344 }
345
346 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
347 struct its_cmd_desc *desc)
348 {
349 struct its_collection *col;
350
351 col = dev_event_to_col(desc->its_inv_cmd.dev,
352 desc->its_inv_cmd.event_id);
353
354 its_encode_cmd(cmd, GITS_CMD_INV);
355 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
356 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
357
358 its_fixup_cmd(cmd);
359
360 return col;
361 }
362
363 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
364 struct its_cmd_desc *desc)
365 {
366 its_encode_cmd(cmd, GITS_CMD_INVALL);
367 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
368
369 its_fixup_cmd(cmd);
370
371 return NULL;
372 }
373
374 static u64 its_cmd_ptr_to_offset(struct its_node *its,
375 struct its_cmd_block *ptr)
376 {
377 return (ptr - its->cmd_base) * sizeof(*ptr);
378 }
379
380 static int its_queue_full(struct its_node *its)
381 {
382 int widx;
383 int ridx;
384
385 widx = its->cmd_write - its->cmd_base;
386 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
387
388 /* This is incredibly unlikely to happen, unless the ITS locks up. */
389 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
390 return 1;
391
392 return 0;
393 }
394
395 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
396 {
397 struct its_cmd_block *cmd;
398 u32 count = 1000000; /* 1s! */
399
400 while (its_queue_full(its)) {
401 count--;
402 if (!count) {
403 pr_err_ratelimited("ITS queue not draining\n");
404 return NULL;
405 }
406 cpu_relax();
407 udelay(1);
408 }
409
410 cmd = its->cmd_write++;
411
412 /* Handle queue wrapping */
413 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
414 its->cmd_write = its->cmd_base;
415
416 return cmd;
417 }
418
419 static struct its_cmd_block *its_post_commands(struct its_node *its)
420 {
421 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
422
423 writel_relaxed(wr, its->base + GITS_CWRITER);
424
425 return its->cmd_write;
426 }
427
428 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
429 {
430 /*
431 * Make sure the commands written to memory are observable by
432 * the ITS.
433 */
434 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
435 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
436 else
437 dsb(ishst);
438 }
439
440 static void its_wait_for_range_completion(struct its_node *its,
441 struct its_cmd_block *from,
442 struct its_cmd_block *to)
443 {
444 u64 rd_idx, from_idx, to_idx;
445 u32 count = 1000000; /* 1s! */
446
447 from_idx = its_cmd_ptr_to_offset(its, from);
448 to_idx = its_cmd_ptr_to_offset(its, to);
449
450 while (1) {
451 rd_idx = readl_relaxed(its->base + GITS_CREADR);
452 if (rd_idx >= to_idx || rd_idx < from_idx)
453 break;
454
455 count--;
456 if (!count) {
457 pr_err_ratelimited("ITS queue timeout\n");
458 return;
459 }
460 cpu_relax();
461 udelay(1);
462 }
463 }
464
465 static void its_send_single_command(struct its_node *its,
466 its_cmd_builder_t builder,
467 struct its_cmd_desc *desc)
468 {
469 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
470 struct its_collection *sync_col;
471 unsigned long flags;
472
473 raw_spin_lock_irqsave(&its->lock, flags);
474
475 cmd = its_allocate_entry(its);
476 if (!cmd) { /* We're soooooo screewed... */
477 pr_err_ratelimited("ITS can't allocate, dropping command\n");
478 raw_spin_unlock_irqrestore(&its->lock, flags);
479 return;
480 }
481 sync_col = builder(cmd, desc);
482 its_flush_cmd(its, cmd);
483
484 if (sync_col) {
485 sync_cmd = its_allocate_entry(its);
486 if (!sync_cmd) {
487 pr_err_ratelimited("ITS can't SYNC, skipping\n");
488 goto post;
489 }
490 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
491 its_encode_target(sync_cmd, sync_col->target_address);
492 its_fixup_cmd(sync_cmd);
493 its_flush_cmd(its, sync_cmd);
494 }
495
496 post:
497 next_cmd = its_post_commands(its);
498 raw_spin_unlock_irqrestore(&its->lock, flags);
499
500 its_wait_for_range_completion(its, cmd, next_cmd);
501 }
502
503 static void its_send_inv(struct its_device *dev, u32 event_id)
504 {
505 struct its_cmd_desc desc;
506
507 desc.its_inv_cmd.dev = dev;
508 desc.its_inv_cmd.event_id = event_id;
509
510 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
511 }
512
513 static void its_send_mapd(struct its_device *dev, int valid)
514 {
515 struct its_cmd_desc desc;
516
517 desc.its_mapd_cmd.dev = dev;
518 desc.its_mapd_cmd.valid = !!valid;
519
520 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
521 }
522
523 static void its_send_mapc(struct its_node *its, struct its_collection *col,
524 int valid)
525 {
526 struct its_cmd_desc desc;
527
528 desc.its_mapc_cmd.col = col;
529 desc.its_mapc_cmd.valid = !!valid;
530
531 its_send_single_command(its, its_build_mapc_cmd, &desc);
532 }
533
534 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
535 {
536 struct its_cmd_desc desc;
537
538 desc.its_mapvi_cmd.dev = dev;
539 desc.its_mapvi_cmd.phys_id = irq_id;
540 desc.its_mapvi_cmd.event_id = id;
541
542 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
543 }
544
545 static void its_send_movi(struct its_device *dev,
546 struct its_collection *col, u32 id)
547 {
548 struct its_cmd_desc desc;
549
550 desc.its_movi_cmd.dev = dev;
551 desc.its_movi_cmd.col = col;
552 desc.its_movi_cmd.event_id = id;
553
554 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
555 }
556
557 static void its_send_discard(struct its_device *dev, u32 id)
558 {
559 struct its_cmd_desc desc;
560
561 desc.its_discard_cmd.dev = dev;
562 desc.its_discard_cmd.event_id = id;
563
564 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
565 }
566
567 static void its_send_invall(struct its_node *its, struct its_collection *col)
568 {
569 struct its_cmd_desc desc;
570
571 desc.its_invall_cmd.col = col;
572
573 its_send_single_command(its, its_build_invall_cmd, &desc);
574 }
575
576 /*
577 * irqchip functions - assumes MSI, mostly.
578 */
579
580 static inline u32 its_get_event_id(struct irq_data *d)
581 {
582 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
583 return d->hwirq - its_dev->event_map.lpi_base;
584 }
585
586 static void lpi_set_config(struct irq_data *d, bool enable)
587 {
588 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
589 irq_hw_number_t hwirq = d->hwirq;
590 u32 id = its_get_event_id(d);
591 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
592
593 if (enable)
594 *cfg |= LPI_PROP_ENABLED;
595 else
596 *cfg &= ~LPI_PROP_ENABLED;
597
598 /*
599 * Make the above write visible to the redistributors.
600 * And yes, we're flushing exactly: One. Single. Byte.
601 * Humpf...
602 */
603 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
604 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
605 else
606 dsb(ishst);
607 its_send_inv(its_dev, id);
608 }
609
610 static void its_mask_irq(struct irq_data *d)
611 {
612 lpi_set_config(d, false);
613 }
614
615 static void its_unmask_irq(struct irq_data *d)
616 {
617 lpi_set_config(d, true);
618 }
619
620 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
621 bool force)
622 {
623 unsigned int cpu;
624 const struct cpumask *cpu_mask = cpu_online_mask;
625 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 struct its_collection *target_col;
627 u32 id = its_get_event_id(d);
628
629 /* lpi cannot be routed to a redistributor that is on a foreign node */
630 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
631 if (its_dev->its->numa_node >= 0) {
632 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
633 if (!cpumask_intersects(mask_val, cpu_mask))
634 return -EINVAL;
635 }
636 }
637
638 cpu = cpumask_any_and(mask_val, cpu_mask);
639
640 if (cpu >= nr_cpu_ids)
641 return -EINVAL;
642
643 target_col = &its_dev->its->collections[cpu];
644 its_send_movi(its_dev, target_col, id);
645 its_dev->event_map.col_map[id] = cpu;
646
647 return IRQ_SET_MASK_OK_DONE;
648 }
649
650 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
651 {
652 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
653 struct its_node *its;
654 u64 addr;
655
656 its = its_dev->its;
657 addr = its->phys_base + GITS_TRANSLATER;
658
659 msg->address_lo = lower_32_bits(addr);
660 msg->address_hi = upper_32_bits(addr);
661 msg->data = its_get_event_id(d);
662
663 iommu_dma_map_msi_msg(d->irq, msg);
664 }
665
666 static struct irq_chip its_irq_chip = {
667 .name = "ITS",
668 .irq_mask = its_mask_irq,
669 .irq_unmask = its_unmask_irq,
670 .irq_eoi = irq_chip_eoi_parent,
671 .irq_set_affinity = its_set_affinity,
672 .irq_compose_msi_msg = its_irq_compose_msi_msg,
673 };
674
675 /*
676 * How we allocate LPIs:
677 *
678 * The GIC has id_bits bits for interrupt identifiers. From there, we
679 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
680 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
681 * bits to the right.
682 *
683 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
684 */
685 #define IRQS_PER_CHUNK_SHIFT 5
686 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
687
688 static unsigned long *lpi_bitmap;
689 static u32 lpi_chunks;
690 static DEFINE_SPINLOCK(lpi_lock);
691
692 static int its_lpi_to_chunk(int lpi)
693 {
694 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
695 }
696
697 static int its_chunk_to_lpi(int chunk)
698 {
699 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
700 }
701
702 static int __init its_lpi_init(u32 id_bits)
703 {
704 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
705
706 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
707 GFP_KERNEL);
708 if (!lpi_bitmap) {
709 lpi_chunks = 0;
710 return -ENOMEM;
711 }
712
713 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
714 return 0;
715 }
716
717 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
718 {
719 unsigned long *bitmap = NULL;
720 int chunk_id;
721 int nr_chunks;
722 int i;
723
724 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
725
726 spin_lock(&lpi_lock);
727
728 do {
729 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
730 0, nr_chunks, 0);
731 if (chunk_id < lpi_chunks)
732 break;
733
734 nr_chunks--;
735 } while (nr_chunks > 0);
736
737 if (!nr_chunks)
738 goto out;
739
740 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
741 GFP_ATOMIC);
742 if (!bitmap)
743 goto out;
744
745 for (i = 0; i < nr_chunks; i++)
746 set_bit(chunk_id + i, lpi_bitmap);
747
748 *base = its_chunk_to_lpi(chunk_id);
749 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
750
751 out:
752 spin_unlock(&lpi_lock);
753
754 if (!bitmap)
755 *base = *nr_ids = 0;
756
757 return bitmap;
758 }
759
760 static void its_lpi_free(struct event_lpi_map *map)
761 {
762 int base = map->lpi_base;
763 int nr_ids = map->nr_lpis;
764 int lpi;
765
766 spin_lock(&lpi_lock);
767
768 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
769 int chunk = its_lpi_to_chunk(lpi);
770 BUG_ON(chunk > lpi_chunks);
771 if (test_bit(chunk, lpi_bitmap)) {
772 clear_bit(chunk, lpi_bitmap);
773 } else {
774 pr_err("Bad LPI chunk %d\n", chunk);
775 }
776 }
777
778 spin_unlock(&lpi_lock);
779
780 kfree(map->lpi_map);
781 kfree(map->col_map);
782 }
783
784 /*
785 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
786 * deal with (one configuration byte per interrupt). PENDBASE has to
787 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
788 */
789 #define LPI_PROPBASE_SZ SZ_64K
790 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
791
792 /*
793 * This is how many bits of ID we need, including the useless ones.
794 */
795 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
796
797 #define LPI_PROP_DEFAULT_PRIO 0xa0
798
799 static int __init its_alloc_lpi_tables(void)
800 {
801 phys_addr_t paddr;
802
803 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
804 get_order(LPI_PROPBASE_SZ));
805 if (!gic_rdists->prop_page) {
806 pr_err("Failed to allocate PROPBASE\n");
807 return -ENOMEM;
808 }
809
810 paddr = page_to_phys(gic_rdists->prop_page);
811 pr_info("GIC: using LPI property table @%pa\n", &paddr);
812
813 /* Priority 0xa0, Group-1, disabled */
814 memset(page_address(gic_rdists->prop_page),
815 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
816 LPI_PROPBASE_SZ);
817
818 /* Make sure the GIC will observe the written configuration */
819 gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
820
821 return 0;
822 }
823
824 static const char *its_base_type_string[] = {
825 [GITS_BASER_TYPE_DEVICE] = "Devices",
826 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
827 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
828 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
829 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
830 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
831 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
832 };
833
834 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
835 {
836 u32 idx = baser - its->tables;
837
838 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
839 }
840
841 static void its_write_baser(struct its_node *its, struct its_baser *baser,
842 u64 val)
843 {
844 u32 idx = baser - its->tables;
845
846 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
847 baser->val = its_read_baser(its, baser);
848 }
849
850 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
851 u64 cache, u64 shr, u32 psz, u32 order,
852 bool indirect)
853 {
854 u64 val = its_read_baser(its, baser);
855 u64 esz = GITS_BASER_ENTRY_SIZE(val);
856 u64 type = GITS_BASER_TYPE(val);
857 u32 alloc_pages;
858 void *base;
859 u64 tmp;
860
861 retry_alloc_baser:
862 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
863 if (alloc_pages > GITS_BASER_PAGES_MAX) {
864 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
865 &its->phys_base, its_base_type_string[type],
866 alloc_pages, GITS_BASER_PAGES_MAX);
867 alloc_pages = GITS_BASER_PAGES_MAX;
868 order = get_order(GITS_BASER_PAGES_MAX * psz);
869 }
870
871 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
872 if (!base)
873 return -ENOMEM;
874
875 retry_baser:
876 val = (virt_to_phys(base) |
877 (type << GITS_BASER_TYPE_SHIFT) |
878 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
879 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
880 cache |
881 shr |
882 GITS_BASER_VALID);
883
884 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
885
886 switch (psz) {
887 case SZ_4K:
888 val |= GITS_BASER_PAGE_SIZE_4K;
889 break;
890 case SZ_16K:
891 val |= GITS_BASER_PAGE_SIZE_16K;
892 break;
893 case SZ_64K:
894 val |= GITS_BASER_PAGE_SIZE_64K;
895 break;
896 }
897
898 its_write_baser(its, baser, val);
899 tmp = baser->val;
900
901 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
902 /*
903 * Shareability didn't stick. Just use
904 * whatever the read reported, which is likely
905 * to be the only thing this redistributor
906 * supports. If that's zero, make it
907 * non-cacheable as well.
908 */
909 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
910 if (!shr) {
911 cache = GITS_BASER_nC;
912 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
913 }
914 goto retry_baser;
915 }
916
917 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
918 /*
919 * Page size didn't stick. Let's try a smaller
920 * size and retry. If we reach 4K, then
921 * something is horribly wrong...
922 */
923 free_pages((unsigned long)base, order);
924 baser->base = NULL;
925
926 switch (psz) {
927 case SZ_16K:
928 psz = SZ_4K;
929 goto retry_alloc_baser;
930 case SZ_64K:
931 psz = SZ_16K;
932 goto retry_alloc_baser;
933 }
934 }
935
936 if (val != tmp) {
937 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
938 &its->phys_base, its_base_type_string[type],
939 val, tmp);
940 free_pages((unsigned long)base, order);
941 return -ENXIO;
942 }
943
944 baser->order = order;
945 baser->base = base;
946 baser->psz = psz;
947 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
948
949 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
950 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
951 its_base_type_string[type],
952 (unsigned long)virt_to_phys(base),
953 indirect ? "indirect" : "flat", (int)esz,
954 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
955
956 return 0;
957 }
958
959 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
960 u32 psz, u32 *order)
961 {
962 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
963 u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
964 u32 ids = its->device_ids;
965 u32 new_order = *order;
966 bool indirect = false;
967
968 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
969 if ((esz << ids) > (psz * 2)) {
970 /*
971 * Find out whether hw supports a single or two-level table by
972 * table by reading bit at offset '62' after writing '1' to it.
973 */
974 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
975 indirect = !!(baser->val & GITS_BASER_INDIRECT);
976
977 if (indirect) {
978 /*
979 * The size of the lvl2 table is equal to ITS page size
980 * which is 'psz'. For computing lvl1 table size,
981 * subtract ID bits that sparse lvl2 table from 'ids'
982 * which is reported by ITS hardware times lvl1 table
983 * entry size.
984 */
985 ids -= ilog2(psz / (int)esz);
986 esz = GITS_LVL1_ENTRY_SIZE;
987 }
988 }
989
990 /*
991 * Allocate as many entries as required to fit the
992 * range of device IDs that the ITS can grok... The ID
993 * space being incredibly sparse, this results in a
994 * massive waste of memory if two-level device table
995 * feature is not supported by hardware.
996 */
997 new_order = max_t(u32, get_order(esz << ids), new_order);
998 if (new_order >= MAX_ORDER) {
999 new_order = MAX_ORDER - 1;
1000 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1001 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1002 &its->phys_base, its->device_ids, ids);
1003 }
1004
1005 *order = new_order;
1006
1007 return indirect;
1008 }
1009
1010 static void its_free_tables(struct its_node *its)
1011 {
1012 int i;
1013
1014 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1015 if (its->tables[i].base) {
1016 free_pages((unsigned long)its->tables[i].base,
1017 its->tables[i].order);
1018 its->tables[i].base = NULL;
1019 }
1020 }
1021 }
1022
1023 static int its_alloc_tables(struct its_node *its)
1024 {
1025 u64 typer = gic_read_typer(its->base + GITS_TYPER);
1026 u32 ids = GITS_TYPER_DEVBITS(typer);
1027 u64 shr = GITS_BASER_InnerShareable;
1028 u64 cache = GITS_BASER_WaWb;
1029 u32 psz = SZ_64K;
1030 int err, i;
1031
1032 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1033 /*
1034 * erratum 22375: only alloc 8MB table size
1035 * erratum 24313: ignore memory access type
1036 */
1037 cache = GITS_BASER_nCnB;
1038 ids = 0x14; /* 20 bits, 8MB */
1039 }
1040
1041 its->device_ids = ids;
1042
1043 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1044 struct its_baser *baser = its->tables + i;
1045 u64 val = its_read_baser(its, baser);
1046 u64 type = GITS_BASER_TYPE(val);
1047 u32 order = get_order(psz);
1048 bool indirect = false;
1049
1050 if (type == GITS_BASER_TYPE_NONE)
1051 continue;
1052
1053 if (type == GITS_BASER_TYPE_DEVICE)
1054 indirect = its_parse_baser_device(its, baser, psz, &order);
1055
1056 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1057 if (err < 0) {
1058 its_free_tables(its);
1059 return err;
1060 }
1061
1062 /* Update settings which will be used for next BASERn */
1063 psz = baser->psz;
1064 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1065 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1066 }
1067
1068 return 0;
1069 }
1070
1071 static int its_alloc_collections(struct its_node *its)
1072 {
1073 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1074 GFP_KERNEL);
1075 if (!its->collections)
1076 return -ENOMEM;
1077
1078 return 0;
1079 }
1080
1081 static void its_cpu_init_lpis(void)
1082 {
1083 void __iomem *rbase = gic_data_rdist_rd_base();
1084 struct page *pend_page;
1085 u64 val, tmp;
1086
1087 /* If we didn't allocate the pending table yet, do it now */
1088 pend_page = gic_data_rdist()->pend_page;
1089 if (!pend_page) {
1090 phys_addr_t paddr;
1091 /*
1092 * The pending pages have to be at least 64kB aligned,
1093 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1094 */
1095 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1096 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1097 if (!pend_page) {
1098 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1099 smp_processor_id());
1100 return;
1101 }
1102
1103 /* Make sure the GIC will observe the zero-ed page */
1104 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1105
1106 paddr = page_to_phys(pend_page);
1107 pr_info("CPU%d: using LPI pending table @%pa\n",
1108 smp_processor_id(), &paddr);
1109 gic_data_rdist()->pend_page = pend_page;
1110 }
1111
1112 /* Disable LPIs */
1113 val = readl_relaxed(rbase + GICR_CTLR);
1114 val &= ~GICR_CTLR_ENABLE_LPIS;
1115 writel_relaxed(val, rbase + GICR_CTLR);
1116
1117 /*
1118 * Make sure any change to the table is observable by the GIC.
1119 */
1120 dsb(sy);
1121
1122 /* set PROPBASE */
1123 val = (page_to_phys(gic_rdists->prop_page) |
1124 GICR_PROPBASER_InnerShareable |
1125 GICR_PROPBASER_WaWb |
1126 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1127
1128 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1129 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1130
1131 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1132 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1133 /*
1134 * The HW reports non-shareable, we must
1135 * remove the cacheability attributes as
1136 * well.
1137 */
1138 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1139 GICR_PROPBASER_CACHEABILITY_MASK);
1140 val |= GICR_PROPBASER_nC;
1141 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1142 }
1143 pr_info_once("GIC: using cache flushing for LPI property table\n");
1144 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1145 }
1146
1147 /* set PENDBASE */
1148 val = (page_to_phys(pend_page) |
1149 GICR_PENDBASER_InnerShareable |
1150 GICR_PENDBASER_WaWb);
1151
1152 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1153 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1154
1155 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1156 /*
1157 * The HW reports non-shareable, we must remove the
1158 * cacheability attributes as well.
1159 */
1160 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1161 GICR_PENDBASER_CACHEABILITY_MASK);
1162 val |= GICR_PENDBASER_nC;
1163 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1164 }
1165
1166 /* Enable LPIs */
1167 val = readl_relaxed(rbase + GICR_CTLR);
1168 val |= GICR_CTLR_ENABLE_LPIS;
1169 writel_relaxed(val, rbase + GICR_CTLR);
1170
1171 /* Make sure the GIC has seen the above */
1172 dsb(sy);
1173 }
1174
1175 static void its_cpu_init_collection(void)
1176 {
1177 struct its_node *its;
1178 int cpu;
1179
1180 spin_lock(&its_lock);
1181 cpu = smp_processor_id();
1182
1183 list_for_each_entry(its, &its_nodes, entry) {
1184 u64 target;
1185
1186 /* avoid cross node collections and its mapping */
1187 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1188 struct device_node *cpu_node;
1189
1190 cpu_node = of_get_cpu_node(cpu, NULL);
1191 if (its->numa_node != NUMA_NO_NODE &&
1192 its->numa_node != of_node_to_nid(cpu_node))
1193 continue;
1194 }
1195
1196 /*
1197 * We now have to bind each collection to its target
1198 * redistributor.
1199 */
1200 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1201 /*
1202 * This ITS wants the physical address of the
1203 * redistributor.
1204 */
1205 target = gic_data_rdist()->phys_base;
1206 } else {
1207 /*
1208 * This ITS wants a linear CPU number.
1209 */
1210 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1211 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1212 }
1213
1214 /* Perform collection mapping */
1215 its->collections[cpu].target_address = target;
1216 its->collections[cpu].col_id = cpu;
1217
1218 its_send_mapc(its, &its->collections[cpu], 1);
1219 its_send_invall(its, &its->collections[cpu]);
1220 }
1221
1222 spin_unlock(&its_lock);
1223 }
1224
1225 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1226 {
1227 struct its_device *its_dev = NULL, *tmp;
1228 unsigned long flags;
1229
1230 raw_spin_lock_irqsave(&its->lock, flags);
1231
1232 list_for_each_entry(tmp, &its->its_device_list, entry) {
1233 if (tmp->device_id == dev_id) {
1234 its_dev = tmp;
1235 break;
1236 }
1237 }
1238
1239 raw_spin_unlock_irqrestore(&its->lock, flags);
1240
1241 return its_dev;
1242 }
1243
1244 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1245 {
1246 int i;
1247
1248 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1249 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1250 return &its->tables[i];
1251 }
1252
1253 return NULL;
1254 }
1255
1256 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1257 {
1258 struct its_baser *baser;
1259 struct page *page;
1260 u32 esz, idx;
1261 __le64 *table;
1262
1263 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1264
1265 /* Don't allow device id that exceeds ITS hardware limit */
1266 if (!baser)
1267 return (ilog2(dev_id) < its->device_ids);
1268
1269 /* Don't allow device id that exceeds single, flat table limit */
1270 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1271 if (!(baser->val & GITS_BASER_INDIRECT))
1272 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1273
1274 /* Compute 1st level table index & check if that exceeds table limit */
1275 idx = dev_id >> ilog2(baser->psz / esz);
1276 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1277 return false;
1278
1279 table = baser->base;
1280
1281 /* Allocate memory for 2nd level table */
1282 if (!table[idx]) {
1283 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1284 if (!page)
1285 return false;
1286
1287 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1288 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1289 gic_flush_dcache_to_poc(page_address(page), baser->psz);
1290
1291 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1292
1293 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1294 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1295 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1296
1297 /* Ensure updated table contents are visible to ITS hardware */
1298 dsb(sy);
1299 }
1300
1301 return true;
1302 }
1303
1304 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1305 int nvecs)
1306 {
1307 struct its_device *dev;
1308 unsigned long *lpi_map;
1309 unsigned long flags;
1310 u16 *col_map = NULL;
1311 void *itt;
1312 int lpi_base;
1313 int nr_lpis;
1314 int nr_ites;
1315 int sz;
1316
1317 if (!its_alloc_device_table(its, dev_id))
1318 return NULL;
1319
1320 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1321 /*
1322 * At least one bit of EventID is being used, hence a minimum
1323 * of two entries. No, the architecture doesn't let you
1324 * express an ITT with a single entry.
1325 */
1326 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1327 sz = nr_ites * its->ite_size;
1328 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1329 itt = kzalloc(sz, GFP_KERNEL);
1330 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1331 if (lpi_map)
1332 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1333
1334 if (!dev || !itt || !lpi_map || !col_map) {
1335 kfree(dev);
1336 kfree(itt);
1337 kfree(lpi_map);
1338 kfree(col_map);
1339 return NULL;
1340 }
1341
1342 gic_flush_dcache_to_poc(itt, sz);
1343
1344 dev->its = its;
1345 dev->itt = itt;
1346 dev->nr_ites = nr_ites;
1347 dev->event_map.lpi_map = lpi_map;
1348 dev->event_map.col_map = col_map;
1349 dev->event_map.lpi_base = lpi_base;
1350 dev->event_map.nr_lpis = nr_lpis;
1351 dev->device_id = dev_id;
1352 INIT_LIST_HEAD(&dev->entry);
1353
1354 raw_spin_lock_irqsave(&its->lock, flags);
1355 list_add(&dev->entry, &its->its_device_list);
1356 raw_spin_unlock_irqrestore(&its->lock, flags);
1357
1358 /* Map device to its ITT */
1359 its_send_mapd(dev, 1);
1360
1361 return dev;
1362 }
1363
1364 static void its_free_device(struct its_device *its_dev)
1365 {
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1369 list_del(&its_dev->entry);
1370 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1371 kfree(its_dev->itt);
1372 kfree(its_dev);
1373 }
1374
1375 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1376 {
1377 int idx;
1378
1379 idx = find_first_zero_bit(dev->event_map.lpi_map,
1380 dev->event_map.nr_lpis);
1381 if (idx == dev->event_map.nr_lpis)
1382 return -ENOSPC;
1383
1384 *hwirq = dev->event_map.lpi_base + idx;
1385 set_bit(idx, dev->event_map.lpi_map);
1386
1387 return 0;
1388 }
1389
1390 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1391 int nvec, msi_alloc_info_t *info)
1392 {
1393 struct its_node *its;
1394 struct its_device *its_dev;
1395 struct msi_domain_info *msi_info;
1396 u32 dev_id;
1397
1398 /*
1399 * We ignore "dev" entierely, and rely on the dev_id that has
1400 * been passed via the scratchpad. This limits this domain's
1401 * usefulness to upper layers that definitely know that they
1402 * are built on top of the ITS.
1403 */
1404 dev_id = info->scratchpad[0].ul;
1405
1406 msi_info = msi_get_domain_info(domain);
1407 its = msi_info->data;
1408
1409 its_dev = its_find_device(its, dev_id);
1410 if (its_dev) {
1411 /*
1412 * We already have seen this ID, probably through
1413 * another alias (PCI bridge of some sort). No need to
1414 * create the device.
1415 */
1416 pr_debug("Reusing ITT for devID %x\n", dev_id);
1417 goto out;
1418 }
1419
1420 its_dev = its_create_device(its, dev_id, nvec);
1421 if (!its_dev)
1422 return -ENOMEM;
1423
1424 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1425 out:
1426 info->scratchpad[0].ptr = its_dev;
1427 return 0;
1428 }
1429
1430 static struct msi_domain_ops its_msi_domain_ops = {
1431 .msi_prepare = its_msi_prepare,
1432 };
1433
1434 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1435 unsigned int virq,
1436 irq_hw_number_t hwirq)
1437 {
1438 struct irq_fwspec fwspec;
1439
1440 if (irq_domain_get_of_node(domain->parent)) {
1441 fwspec.fwnode = domain->parent->fwnode;
1442 fwspec.param_count = 3;
1443 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1444 fwspec.param[1] = hwirq;
1445 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1446 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1447 fwspec.fwnode = domain->parent->fwnode;
1448 fwspec.param_count = 2;
1449 fwspec.param[0] = hwirq;
1450 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1451 } else {
1452 return -EINVAL;
1453 }
1454
1455 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1456 }
1457
1458 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1459 unsigned int nr_irqs, void *args)
1460 {
1461 msi_alloc_info_t *info = args;
1462 struct its_device *its_dev = info->scratchpad[0].ptr;
1463 irq_hw_number_t hwirq;
1464 int err;
1465 int i;
1466
1467 for (i = 0; i < nr_irqs; i++) {
1468 err = its_alloc_device_irq(its_dev, &hwirq);
1469 if (err)
1470 return err;
1471
1472 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1473 if (err)
1474 return err;
1475
1476 irq_domain_set_hwirq_and_chip(domain, virq + i,
1477 hwirq, &its_irq_chip, its_dev);
1478 pr_debug("ID:%d pID:%d vID:%d\n",
1479 (int)(hwirq - its_dev->event_map.lpi_base),
1480 (int) hwirq, virq + i);
1481 }
1482
1483 return 0;
1484 }
1485
1486 static void its_irq_domain_activate(struct irq_domain *domain,
1487 struct irq_data *d)
1488 {
1489 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1490 u32 event = its_get_event_id(d);
1491 const struct cpumask *cpu_mask = cpu_online_mask;
1492
1493 /* get the cpu_mask of local node */
1494 if (its_dev->its->numa_node >= 0)
1495 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1496
1497 /* Bind the LPI to the first possible CPU */
1498 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1499
1500 /* Map the GIC IRQ and event to the device */
1501 its_send_mapvi(its_dev, d->hwirq, event);
1502 }
1503
1504 static void its_irq_domain_deactivate(struct irq_domain *domain,
1505 struct irq_data *d)
1506 {
1507 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1508 u32 event = its_get_event_id(d);
1509
1510 /* Stop the delivery of interrupts */
1511 its_send_discard(its_dev, event);
1512 }
1513
1514 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1515 unsigned int nr_irqs)
1516 {
1517 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1518 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519 int i;
1520
1521 for (i = 0; i < nr_irqs; i++) {
1522 struct irq_data *data = irq_domain_get_irq_data(domain,
1523 virq + i);
1524 u32 event = its_get_event_id(data);
1525
1526 /* Mark interrupt index as unused */
1527 clear_bit(event, its_dev->event_map.lpi_map);
1528
1529 /* Nuke the entry in the domain */
1530 irq_domain_reset_irq_data(data);
1531 }
1532
1533 /* If all interrupts have been freed, start mopping the floor */
1534 if (bitmap_empty(its_dev->event_map.lpi_map,
1535 its_dev->event_map.nr_lpis)) {
1536 its_lpi_free(&its_dev->event_map);
1537
1538 /* Unmap device/itt */
1539 its_send_mapd(its_dev, 0);
1540 its_free_device(its_dev);
1541 }
1542
1543 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1544 }
1545
1546 static const struct irq_domain_ops its_domain_ops = {
1547 .alloc = its_irq_domain_alloc,
1548 .free = its_irq_domain_free,
1549 .activate = its_irq_domain_activate,
1550 .deactivate = its_irq_domain_deactivate,
1551 };
1552
1553 static int its_force_quiescent(void __iomem *base)
1554 {
1555 u32 count = 1000000; /* 1s */
1556 u32 val;
1557
1558 val = readl_relaxed(base + GITS_CTLR);
1559 /*
1560 * GIC architecture specification requires the ITS to be both
1561 * disabled and quiescent for writes to GITS_BASER<n> or
1562 * GITS_CBASER to not have UNPREDICTABLE results.
1563 */
1564 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1565 return 0;
1566
1567 /* Disable the generation of all interrupts to this ITS */
1568 val &= ~GITS_CTLR_ENABLE;
1569 writel_relaxed(val, base + GITS_CTLR);
1570
1571 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1572 while (1) {
1573 val = readl_relaxed(base + GITS_CTLR);
1574 if (val & GITS_CTLR_QUIESCENT)
1575 return 0;
1576
1577 count--;
1578 if (!count)
1579 return -EBUSY;
1580
1581 cpu_relax();
1582 udelay(1);
1583 }
1584 }
1585
1586 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1587 {
1588 struct its_node *its = data;
1589
1590 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1591 }
1592
1593 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1594 {
1595 struct its_node *its = data;
1596
1597 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1598 }
1599
1600 static const struct gic_quirk its_quirks[] = {
1601 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1602 {
1603 .desc = "ITS: Cavium errata 22375, 24313",
1604 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1605 .mask = 0xffff0fff,
1606 .init = its_enable_quirk_cavium_22375,
1607 },
1608 #endif
1609 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1610 {
1611 .desc = "ITS: Cavium erratum 23144",
1612 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1613 .mask = 0xffff0fff,
1614 .init = its_enable_quirk_cavium_23144,
1615 },
1616 #endif
1617 {
1618 }
1619 };
1620
1621 static void its_enable_quirks(struct its_node *its)
1622 {
1623 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1624
1625 gic_enable_quirks(iidr, its_quirks, its);
1626 }
1627
1628 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1629 {
1630 struct irq_domain *inner_domain;
1631 struct msi_domain_info *info;
1632
1633 info = kzalloc(sizeof(*info), GFP_KERNEL);
1634 if (!info)
1635 return -ENOMEM;
1636
1637 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1638 if (!inner_domain) {
1639 kfree(info);
1640 return -ENOMEM;
1641 }
1642
1643 inner_domain->parent = its_parent;
1644 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1645 info->ops = &its_msi_domain_ops;
1646 info->data = its;
1647 inner_domain->host_data = info;
1648
1649 return 0;
1650 }
1651
1652 static int __init its_probe_one(struct resource *res,
1653 struct fwnode_handle *handle, int numa_node)
1654 {
1655 struct its_node *its;
1656 void __iomem *its_base;
1657 u32 val;
1658 u64 baser, tmp;
1659 int err;
1660
1661 its_base = ioremap(res->start, resource_size(res));
1662 if (!its_base) {
1663 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1664 return -ENOMEM;
1665 }
1666
1667 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1668 if (val != 0x30 && val != 0x40) {
1669 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1670 err = -ENODEV;
1671 goto out_unmap;
1672 }
1673
1674 err = its_force_quiescent(its_base);
1675 if (err) {
1676 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1677 goto out_unmap;
1678 }
1679
1680 pr_info("ITS %pR\n", res);
1681
1682 its = kzalloc(sizeof(*its), GFP_KERNEL);
1683 if (!its) {
1684 err = -ENOMEM;
1685 goto out_unmap;
1686 }
1687
1688 raw_spin_lock_init(&its->lock);
1689 INIT_LIST_HEAD(&its->entry);
1690 INIT_LIST_HEAD(&its->its_device_list);
1691 its->base = its_base;
1692 its->phys_base = res->start;
1693 its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1694 its->numa_node = numa_node;
1695
1696 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1697 if (!its->cmd_base) {
1698 err = -ENOMEM;
1699 goto out_free_its;
1700 }
1701 its->cmd_write = its->cmd_base;
1702
1703 its_enable_quirks(its);
1704
1705 err = its_alloc_tables(its);
1706 if (err)
1707 goto out_free_cmd;
1708
1709 err = its_alloc_collections(its);
1710 if (err)
1711 goto out_free_tables;
1712
1713 baser = (virt_to_phys(its->cmd_base) |
1714 GITS_CBASER_WaWb |
1715 GITS_CBASER_InnerShareable |
1716 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1717 GITS_CBASER_VALID);
1718
1719 gits_write_cbaser(baser, its->base + GITS_CBASER);
1720 tmp = gits_read_cbaser(its->base + GITS_CBASER);
1721
1722 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1723 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1724 /*
1725 * The HW reports non-shareable, we must
1726 * remove the cacheability attributes as
1727 * well.
1728 */
1729 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1730 GITS_CBASER_CACHEABILITY_MASK);
1731 baser |= GITS_CBASER_nC;
1732 gits_write_cbaser(baser, its->base + GITS_CBASER);
1733 }
1734 pr_info("ITS: using cache flushing for cmd queue\n");
1735 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1736 }
1737
1738 gits_write_cwriter(0, its->base + GITS_CWRITER);
1739 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1740
1741 err = its_init_domain(handle, its);
1742 if (err)
1743 goto out_free_tables;
1744
1745 spin_lock(&its_lock);
1746 list_add(&its->entry, &its_nodes);
1747 spin_unlock(&its_lock);
1748
1749 return 0;
1750
1751 out_free_tables:
1752 its_free_tables(its);
1753 out_free_cmd:
1754 kfree(its->cmd_base);
1755 out_free_its:
1756 kfree(its);
1757 out_unmap:
1758 iounmap(its_base);
1759 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1760 return err;
1761 }
1762
1763 static bool gic_rdists_supports_plpis(void)
1764 {
1765 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1766 }
1767
1768 int its_cpu_init(void)
1769 {
1770 if (!list_empty(&its_nodes)) {
1771 if (!gic_rdists_supports_plpis()) {
1772 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1773 return -ENXIO;
1774 }
1775 its_cpu_init_lpis();
1776 its_cpu_init_collection();
1777 }
1778
1779 return 0;
1780 }
1781
1782 static struct of_device_id its_device_id[] = {
1783 { .compatible = "arm,gic-v3-its", },
1784 {},
1785 };
1786
1787 static int __init its_of_probe(struct device_node *node)
1788 {
1789 struct device_node *np;
1790 struct resource res;
1791
1792 for (np = of_find_matching_node(node, its_device_id); np;
1793 np = of_find_matching_node(np, its_device_id)) {
1794 if (!of_property_read_bool(np, "msi-controller")) {
1795 pr_warn("%s: no msi-controller property, ITS ignored\n",
1796 np->full_name);
1797 continue;
1798 }
1799
1800 if (of_address_to_resource(np, 0, &res)) {
1801 pr_warn("%s: no regs?\n", np->full_name);
1802 continue;
1803 }
1804
1805 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1806 }
1807 return 0;
1808 }
1809
1810 #ifdef CONFIG_ACPI
1811
1812 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1813
1814 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1815 const unsigned long end)
1816 {
1817 struct acpi_madt_generic_translator *its_entry;
1818 struct fwnode_handle *dom_handle;
1819 struct resource res;
1820 int err;
1821
1822 its_entry = (struct acpi_madt_generic_translator *)header;
1823 memset(&res, 0, sizeof(res));
1824 res.start = its_entry->base_address;
1825 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1826 res.flags = IORESOURCE_MEM;
1827
1828 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1829 if (!dom_handle) {
1830 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1831 &res.start);
1832 return -ENOMEM;
1833 }
1834
1835 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1836 if (err) {
1837 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1838 &res.start, its_entry->translation_id);
1839 goto dom_err;
1840 }
1841
1842 err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1843 if (!err)
1844 return 0;
1845
1846 iort_deregister_domain_token(its_entry->translation_id);
1847 dom_err:
1848 irq_domain_free_fwnode(dom_handle);
1849 return err;
1850 }
1851
1852 static void __init its_acpi_probe(void)
1853 {
1854 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1855 gic_acpi_parse_madt_its, 0);
1856 }
1857 #else
1858 static void __init its_acpi_probe(void) { }
1859 #endif
1860
1861 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1862 struct irq_domain *parent_domain)
1863 {
1864 struct device_node *of_node;
1865
1866 its_parent = parent_domain;
1867 of_node = to_of_node(handle);
1868 if (of_node)
1869 its_of_probe(of_node);
1870 else
1871 its_acpi_probe();
1872
1873 if (list_empty(&its_nodes)) {
1874 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1875 return -ENXIO;
1876 }
1877
1878 gic_rdists = rdists;
1879 its_alloc_lpi_tables();
1880 its_lpi_init(rdists->id_bits);
1881
1882 return 0;
1883 }