]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/irqchip/irq-gic-v3-its.c
irqchip/gic-v3-its: Don't bind LPI to unavailable NUMA node
[mirror_ubuntu-bionic-kernel.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
40
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
43
44 #include "irq-gic-common.h"
45
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
49
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
51
52 static u32 lpi_id_bits;
53
54 /*
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58 */
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62
63 #define LPI_PROP_DEFAULT_PRIO 0xa0
64
65 /*
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
68 * CPU.
69 */
70 struct its_collection {
71 u64 target_address;
72 u16 col_id;
73 };
74
75 /*
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
78 */
79 struct its_baser {
80 void *base;
81 u64 val;
82 u32 order;
83 u32 psz;
84 };
85
86 struct its_device;
87
88 /*
89 * The ITS structure - contains most of the infrastructure, with the
90 * top-level MSI domain, the command queue, the collections, and the
91 * list of devices writing to it.
92 */
93 struct its_node {
94 raw_spinlock_t lock;
95 struct list_head entry;
96 void __iomem *base;
97 phys_addr_t phys_base;
98 struct its_cmd_block *cmd_base;
99 struct its_cmd_block *cmd_write;
100 struct its_baser tables[GITS_BASER_NR_REGS];
101 struct its_collection *collections;
102 struct fwnode_handle *fwnode_handle;
103 u64 (*get_msi_base)(struct its_device *its_dev);
104 struct list_head its_device_list;
105 u64 flags;
106 unsigned long list_nr;
107 u32 ite_size;
108 u32 device_ids;
109 int numa_node;
110 unsigned int msi_domain_flags;
111 u32 pre_its_base; /* for Socionext Synquacer */
112 bool is_v4;
113 int vlpi_redist_offset;
114 };
115
116 #define ITS_ITT_ALIGN SZ_256
117
118 /* The maximum number of VPEID bits supported by VLPI commands */
119 #define ITS_MAX_VPEID_BITS (16)
120 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
121
122 /* Convert page order to size in bytes */
123 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
124
125 struct event_lpi_map {
126 unsigned long *lpi_map;
127 u16 *col_map;
128 irq_hw_number_t lpi_base;
129 int nr_lpis;
130 struct mutex vlpi_lock;
131 struct its_vm *vm;
132 struct its_vlpi_map *vlpi_maps;
133 int nr_vlpis;
134 };
135
136 /*
137 * The ITS view of a device - belongs to an ITS, owns an interrupt
138 * translation table, and a list of interrupts. If it some of its
139 * LPIs are injected into a guest (GICv4), the event_map.vm field
140 * indicates which one.
141 */
142 struct its_device {
143 struct list_head entry;
144 struct its_node *its;
145 struct event_lpi_map event_map;
146 void *itt;
147 u32 nr_ites;
148 u32 device_id;
149 };
150
151 static struct {
152 raw_spinlock_t lock;
153 struct its_device *dev;
154 struct its_vpe **vpes;
155 int next_victim;
156 } vpe_proxy;
157
158 static LIST_HEAD(its_nodes);
159 static DEFINE_SPINLOCK(its_lock);
160 static struct rdists *gic_rdists;
161 static struct irq_domain *its_parent;
162
163 static unsigned long its_list_map;
164 static u16 vmovp_seq_num;
165 static DEFINE_RAW_SPINLOCK(vmovp_lock);
166
167 static DEFINE_IDA(its_vpeid_ida);
168
169 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
170 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
171 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
172
173 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
174 u32 event)
175 {
176 struct its_node *its = its_dev->its;
177
178 return its->collections + its_dev->event_map.col_map[event];
179 }
180
181 /*
182 * ITS command descriptors - parameters to be encoded in a command
183 * block.
184 */
185 struct its_cmd_desc {
186 union {
187 struct {
188 struct its_device *dev;
189 u32 event_id;
190 } its_inv_cmd;
191
192 struct {
193 struct its_device *dev;
194 u32 event_id;
195 } its_clear_cmd;
196
197 struct {
198 struct its_device *dev;
199 u32 event_id;
200 } its_int_cmd;
201
202 struct {
203 struct its_device *dev;
204 int valid;
205 } its_mapd_cmd;
206
207 struct {
208 struct its_collection *col;
209 int valid;
210 } its_mapc_cmd;
211
212 struct {
213 struct its_device *dev;
214 u32 phys_id;
215 u32 event_id;
216 } its_mapti_cmd;
217
218 struct {
219 struct its_device *dev;
220 struct its_collection *col;
221 u32 event_id;
222 } its_movi_cmd;
223
224 struct {
225 struct its_device *dev;
226 u32 event_id;
227 } its_discard_cmd;
228
229 struct {
230 struct its_collection *col;
231 } its_invall_cmd;
232
233 struct {
234 struct its_vpe *vpe;
235 } its_vinvall_cmd;
236
237 struct {
238 struct its_vpe *vpe;
239 struct its_collection *col;
240 bool valid;
241 } its_vmapp_cmd;
242
243 struct {
244 struct its_vpe *vpe;
245 struct its_device *dev;
246 u32 virt_id;
247 u32 event_id;
248 bool db_enabled;
249 } its_vmapti_cmd;
250
251 struct {
252 struct its_vpe *vpe;
253 struct its_device *dev;
254 u32 event_id;
255 bool db_enabled;
256 } its_vmovi_cmd;
257
258 struct {
259 struct its_vpe *vpe;
260 struct its_collection *col;
261 u16 seq_num;
262 u16 its_list;
263 } its_vmovp_cmd;
264 };
265 };
266
267 /*
268 * The ITS command block, which is what the ITS actually parses.
269 */
270 struct its_cmd_block {
271 u64 raw_cmd[4];
272 };
273
274 #define ITS_CMD_QUEUE_SZ SZ_64K
275 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
276
277 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
278 struct its_cmd_block *,
279 struct its_cmd_desc *);
280
281 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
282 struct its_cmd_block *,
283 struct its_cmd_desc *);
284
285 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
286 {
287 u64 mask = GENMASK_ULL(h, l);
288 *raw_cmd &= ~mask;
289 *raw_cmd |= (val << l) & mask;
290 }
291
292 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
293 {
294 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
295 }
296
297 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
298 {
299 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
300 }
301
302 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
303 {
304 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
305 }
306
307 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
308 {
309 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
310 }
311
312 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
313 {
314 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
315 }
316
317 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
318 {
319 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
320 }
321
322 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
323 {
324 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
325 }
326
327 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
328 {
329 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
330 }
331
332 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
333 {
334 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
335 }
336
337 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
338 {
339 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
340 }
341
342 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
343 {
344 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
345 }
346
347 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
348 {
349 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
350 }
351
352 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
353 {
354 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
355 }
356
357 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
358 {
359 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
360 }
361
362 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
363 {
364 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
365 }
366
367 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
368 {
369 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
370 }
371
372 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
373 {
374 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
375 }
376
377 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
378 {
379 /* Let's fixup BE commands */
380 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
381 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
382 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
383 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
384 }
385
386 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
387 struct its_cmd_block *cmd,
388 struct its_cmd_desc *desc)
389 {
390 unsigned long itt_addr;
391 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
392
393 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
394 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
395
396 its_encode_cmd(cmd, GITS_CMD_MAPD);
397 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
398 its_encode_size(cmd, size - 1);
399 its_encode_itt(cmd, itt_addr);
400 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
401
402 its_fixup_cmd(cmd);
403
404 return NULL;
405 }
406
407 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
408 struct its_cmd_block *cmd,
409 struct its_cmd_desc *desc)
410 {
411 its_encode_cmd(cmd, GITS_CMD_MAPC);
412 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
413 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
414 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
415
416 its_fixup_cmd(cmd);
417
418 return desc->its_mapc_cmd.col;
419 }
420
421 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
422 struct its_cmd_block *cmd,
423 struct its_cmd_desc *desc)
424 {
425 struct its_collection *col;
426
427 col = dev_event_to_col(desc->its_mapti_cmd.dev,
428 desc->its_mapti_cmd.event_id);
429
430 its_encode_cmd(cmd, GITS_CMD_MAPTI);
431 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
432 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
433 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
434 its_encode_collection(cmd, col->col_id);
435
436 its_fixup_cmd(cmd);
437
438 return col;
439 }
440
441 static struct its_collection *its_build_movi_cmd(struct its_node *its,
442 struct its_cmd_block *cmd,
443 struct its_cmd_desc *desc)
444 {
445 struct its_collection *col;
446
447 col = dev_event_to_col(desc->its_movi_cmd.dev,
448 desc->its_movi_cmd.event_id);
449
450 its_encode_cmd(cmd, GITS_CMD_MOVI);
451 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
452 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
453 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
454
455 its_fixup_cmd(cmd);
456
457 return col;
458 }
459
460 static struct its_collection *its_build_discard_cmd(struct its_node *its,
461 struct its_cmd_block *cmd,
462 struct its_cmd_desc *desc)
463 {
464 struct its_collection *col;
465
466 col = dev_event_to_col(desc->its_discard_cmd.dev,
467 desc->its_discard_cmd.event_id);
468
469 its_encode_cmd(cmd, GITS_CMD_DISCARD);
470 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
471 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
472
473 its_fixup_cmd(cmd);
474
475 return col;
476 }
477
478 static struct its_collection *its_build_inv_cmd(struct its_node *its,
479 struct its_cmd_block *cmd,
480 struct its_cmd_desc *desc)
481 {
482 struct its_collection *col;
483
484 col = dev_event_to_col(desc->its_inv_cmd.dev,
485 desc->its_inv_cmd.event_id);
486
487 its_encode_cmd(cmd, GITS_CMD_INV);
488 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
489 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
490
491 its_fixup_cmd(cmd);
492
493 return col;
494 }
495
496 static struct its_collection *its_build_int_cmd(struct its_node *its,
497 struct its_cmd_block *cmd,
498 struct its_cmd_desc *desc)
499 {
500 struct its_collection *col;
501
502 col = dev_event_to_col(desc->its_int_cmd.dev,
503 desc->its_int_cmd.event_id);
504
505 its_encode_cmd(cmd, GITS_CMD_INT);
506 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
507 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
508
509 its_fixup_cmd(cmd);
510
511 return col;
512 }
513
514 static struct its_collection *its_build_clear_cmd(struct its_node *its,
515 struct its_cmd_block *cmd,
516 struct its_cmd_desc *desc)
517 {
518 struct its_collection *col;
519
520 col = dev_event_to_col(desc->its_clear_cmd.dev,
521 desc->its_clear_cmd.event_id);
522
523 its_encode_cmd(cmd, GITS_CMD_CLEAR);
524 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
525 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
526
527 its_fixup_cmd(cmd);
528
529 return col;
530 }
531
532 static struct its_collection *its_build_invall_cmd(struct its_node *its,
533 struct its_cmd_block *cmd,
534 struct its_cmd_desc *desc)
535 {
536 its_encode_cmd(cmd, GITS_CMD_INVALL);
537 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
538
539 its_fixup_cmd(cmd);
540
541 return NULL;
542 }
543
544 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
545 struct its_cmd_block *cmd,
546 struct its_cmd_desc *desc)
547 {
548 its_encode_cmd(cmd, GITS_CMD_VINVALL);
549 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
550
551 its_fixup_cmd(cmd);
552
553 return desc->its_vinvall_cmd.vpe;
554 }
555
556 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
557 struct its_cmd_block *cmd,
558 struct its_cmd_desc *desc)
559 {
560 unsigned long vpt_addr;
561 u64 target;
562
563 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
564 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
565
566 its_encode_cmd(cmd, GITS_CMD_VMAPP);
567 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
568 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
569 its_encode_target(cmd, target);
570 its_encode_vpt_addr(cmd, vpt_addr);
571 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
572
573 its_fixup_cmd(cmd);
574
575 return desc->its_vmapp_cmd.vpe;
576 }
577
578 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
579 struct its_cmd_block *cmd,
580 struct its_cmd_desc *desc)
581 {
582 u32 db;
583
584 if (desc->its_vmapti_cmd.db_enabled)
585 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
586 else
587 db = 1023;
588
589 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
590 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
591 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
592 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
593 its_encode_db_phys_id(cmd, db);
594 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
595
596 its_fixup_cmd(cmd);
597
598 return desc->its_vmapti_cmd.vpe;
599 }
600
601 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
602 struct its_cmd_block *cmd,
603 struct its_cmd_desc *desc)
604 {
605 u32 db;
606
607 if (desc->its_vmovi_cmd.db_enabled)
608 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
609 else
610 db = 1023;
611
612 its_encode_cmd(cmd, GITS_CMD_VMOVI);
613 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
614 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
615 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
616 its_encode_db_phys_id(cmd, db);
617 its_encode_db_valid(cmd, true);
618
619 its_fixup_cmd(cmd);
620
621 return desc->its_vmovi_cmd.vpe;
622 }
623
624 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
625 struct its_cmd_block *cmd,
626 struct its_cmd_desc *desc)
627 {
628 u64 target;
629
630 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
631 its_encode_cmd(cmd, GITS_CMD_VMOVP);
632 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
633 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
634 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
635 its_encode_target(cmd, target);
636
637 its_fixup_cmd(cmd);
638
639 return desc->its_vmovp_cmd.vpe;
640 }
641
642 static u64 its_cmd_ptr_to_offset(struct its_node *its,
643 struct its_cmd_block *ptr)
644 {
645 return (ptr - its->cmd_base) * sizeof(*ptr);
646 }
647
648 static int its_queue_full(struct its_node *its)
649 {
650 int widx;
651 int ridx;
652
653 widx = its->cmd_write - its->cmd_base;
654 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
655
656 /* This is incredibly unlikely to happen, unless the ITS locks up. */
657 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
658 return 1;
659
660 return 0;
661 }
662
663 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
664 {
665 struct its_cmd_block *cmd;
666 u32 count = 1000000; /* 1s! */
667
668 while (its_queue_full(its)) {
669 count--;
670 if (!count) {
671 pr_err_ratelimited("ITS queue not draining\n");
672 return NULL;
673 }
674 cpu_relax();
675 udelay(1);
676 }
677
678 cmd = its->cmd_write++;
679
680 /* Handle queue wrapping */
681 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
682 its->cmd_write = its->cmd_base;
683
684 /* Clear command */
685 cmd->raw_cmd[0] = 0;
686 cmd->raw_cmd[1] = 0;
687 cmd->raw_cmd[2] = 0;
688 cmd->raw_cmd[3] = 0;
689
690 return cmd;
691 }
692
693 static struct its_cmd_block *its_post_commands(struct its_node *its)
694 {
695 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
696
697 writel_relaxed(wr, its->base + GITS_CWRITER);
698
699 return its->cmd_write;
700 }
701
702 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
703 {
704 /*
705 * Make sure the commands written to memory are observable by
706 * the ITS.
707 */
708 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
709 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
710 else
711 dsb(ishst);
712 }
713
714 static int its_wait_for_range_completion(struct its_node *its,
715 struct its_cmd_block *from,
716 struct its_cmd_block *to)
717 {
718 u64 rd_idx, from_idx, to_idx;
719 u32 count = 1000000; /* 1s! */
720
721 from_idx = its_cmd_ptr_to_offset(its, from);
722 to_idx = its_cmd_ptr_to_offset(its, to);
723
724 while (1) {
725 rd_idx = readl_relaxed(its->base + GITS_CREADR);
726
727 /* Direct case */
728 if (from_idx < to_idx && rd_idx >= to_idx)
729 break;
730
731 /* Wrapped case */
732 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
733 break;
734
735 count--;
736 if (!count) {
737 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
738 from_idx, to_idx, rd_idx);
739 return -1;
740 }
741 cpu_relax();
742 udelay(1);
743 }
744
745 return 0;
746 }
747
748 /* Warning, macro hell follows */
749 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
750 void name(struct its_node *its, \
751 buildtype builder, \
752 struct its_cmd_desc *desc) \
753 { \
754 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
755 synctype *sync_obj; \
756 unsigned long flags; \
757 \
758 raw_spin_lock_irqsave(&its->lock, flags); \
759 \
760 cmd = its_allocate_entry(its); \
761 if (!cmd) { /* We're soooooo screewed... */ \
762 raw_spin_unlock_irqrestore(&its->lock, flags); \
763 return; \
764 } \
765 sync_obj = builder(its, cmd, desc); \
766 its_flush_cmd(its, cmd); \
767 \
768 if (sync_obj) { \
769 sync_cmd = its_allocate_entry(its); \
770 if (!sync_cmd) \
771 goto post; \
772 \
773 buildfn(its, sync_cmd, sync_obj); \
774 its_flush_cmd(its, sync_cmd); \
775 } \
776 \
777 post: \
778 next_cmd = its_post_commands(its); \
779 raw_spin_unlock_irqrestore(&its->lock, flags); \
780 \
781 if (its_wait_for_range_completion(its, cmd, next_cmd)) \
782 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
783 }
784
785 static void its_build_sync_cmd(struct its_node *its,
786 struct its_cmd_block *sync_cmd,
787 struct its_collection *sync_col)
788 {
789 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
790 its_encode_target(sync_cmd, sync_col->target_address);
791
792 its_fixup_cmd(sync_cmd);
793 }
794
795 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
796 struct its_collection, its_build_sync_cmd)
797
798 static void its_build_vsync_cmd(struct its_node *its,
799 struct its_cmd_block *sync_cmd,
800 struct its_vpe *sync_vpe)
801 {
802 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
803 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
804
805 its_fixup_cmd(sync_cmd);
806 }
807
808 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
809 struct its_vpe, its_build_vsync_cmd)
810
811 static void its_send_int(struct its_device *dev, u32 event_id)
812 {
813 struct its_cmd_desc desc;
814
815 desc.its_int_cmd.dev = dev;
816 desc.its_int_cmd.event_id = event_id;
817
818 its_send_single_command(dev->its, its_build_int_cmd, &desc);
819 }
820
821 static void its_send_clear(struct its_device *dev, u32 event_id)
822 {
823 struct its_cmd_desc desc;
824
825 desc.its_clear_cmd.dev = dev;
826 desc.its_clear_cmd.event_id = event_id;
827
828 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
829 }
830
831 static void its_send_inv(struct its_device *dev, u32 event_id)
832 {
833 struct its_cmd_desc desc;
834
835 desc.its_inv_cmd.dev = dev;
836 desc.its_inv_cmd.event_id = event_id;
837
838 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
839 }
840
841 static void its_send_mapd(struct its_device *dev, int valid)
842 {
843 struct its_cmd_desc desc;
844
845 desc.its_mapd_cmd.dev = dev;
846 desc.its_mapd_cmd.valid = !!valid;
847
848 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
849 }
850
851 static void its_send_mapc(struct its_node *its, struct its_collection *col,
852 int valid)
853 {
854 struct its_cmd_desc desc;
855
856 desc.its_mapc_cmd.col = col;
857 desc.its_mapc_cmd.valid = !!valid;
858
859 its_send_single_command(its, its_build_mapc_cmd, &desc);
860 }
861
862 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
863 {
864 struct its_cmd_desc desc;
865
866 desc.its_mapti_cmd.dev = dev;
867 desc.its_mapti_cmd.phys_id = irq_id;
868 desc.its_mapti_cmd.event_id = id;
869
870 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
871 }
872
873 static void its_send_movi(struct its_device *dev,
874 struct its_collection *col, u32 id)
875 {
876 struct its_cmd_desc desc;
877
878 desc.its_movi_cmd.dev = dev;
879 desc.its_movi_cmd.col = col;
880 desc.its_movi_cmd.event_id = id;
881
882 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
883 }
884
885 static void its_send_discard(struct its_device *dev, u32 id)
886 {
887 struct its_cmd_desc desc;
888
889 desc.its_discard_cmd.dev = dev;
890 desc.its_discard_cmd.event_id = id;
891
892 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
893 }
894
895 static void its_send_invall(struct its_node *its, struct its_collection *col)
896 {
897 struct its_cmd_desc desc;
898
899 desc.its_invall_cmd.col = col;
900
901 its_send_single_command(its, its_build_invall_cmd, &desc);
902 }
903
904 static void its_send_vmapti(struct its_device *dev, u32 id)
905 {
906 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
907 struct its_cmd_desc desc;
908
909 desc.its_vmapti_cmd.vpe = map->vpe;
910 desc.its_vmapti_cmd.dev = dev;
911 desc.its_vmapti_cmd.virt_id = map->vintid;
912 desc.its_vmapti_cmd.event_id = id;
913 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
914
915 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
916 }
917
918 static void its_send_vmovi(struct its_device *dev, u32 id)
919 {
920 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
921 struct its_cmd_desc desc;
922
923 desc.its_vmovi_cmd.vpe = map->vpe;
924 desc.its_vmovi_cmd.dev = dev;
925 desc.its_vmovi_cmd.event_id = id;
926 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
927
928 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
929 }
930
931 static void its_send_vmapp(struct its_node *its,
932 struct its_vpe *vpe, bool valid)
933 {
934 struct its_cmd_desc desc;
935
936 desc.its_vmapp_cmd.vpe = vpe;
937 desc.its_vmapp_cmd.valid = valid;
938 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
939
940 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
941 }
942
943 static void its_send_vmovp(struct its_vpe *vpe)
944 {
945 struct its_cmd_desc desc;
946 struct its_node *its;
947 unsigned long flags;
948 int col_id = vpe->col_idx;
949
950 desc.its_vmovp_cmd.vpe = vpe;
951 desc.its_vmovp_cmd.its_list = (u16)its_list_map;
952
953 if (!its_list_map) {
954 its = list_first_entry(&its_nodes, struct its_node, entry);
955 desc.its_vmovp_cmd.seq_num = 0;
956 desc.its_vmovp_cmd.col = &its->collections[col_id];
957 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
958 return;
959 }
960
961 /*
962 * Yet another marvel of the architecture. If using the
963 * its_list "feature", we need to make sure that all ITSs
964 * receive all VMOVP commands in the same order. The only way
965 * to guarantee this is to make vmovp a serialization point.
966 *
967 * Wall <-- Head.
968 */
969 raw_spin_lock_irqsave(&vmovp_lock, flags);
970
971 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
972
973 /* Emit VMOVPs */
974 list_for_each_entry(its, &its_nodes, entry) {
975 if (!its->is_v4)
976 continue;
977
978 if (!vpe->its_vm->vlpi_count[its->list_nr])
979 continue;
980
981 desc.its_vmovp_cmd.col = &its->collections[col_id];
982 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
983 }
984
985 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
986 }
987
988 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
989 {
990 struct its_cmd_desc desc;
991
992 desc.its_vinvall_cmd.vpe = vpe;
993 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
994 }
995
996 /*
997 * irqchip functions - assumes MSI, mostly.
998 */
999
1000 static inline u32 its_get_event_id(struct irq_data *d)
1001 {
1002 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1003 return d->hwirq - its_dev->event_map.lpi_base;
1004 }
1005
1006 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1007 {
1008 irq_hw_number_t hwirq;
1009 struct page *prop_page;
1010 u8 *cfg;
1011
1012 if (irqd_is_forwarded_to_vcpu(d)) {
1013 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1014 u32 event = its_get_event_id(d);
1015 struct its_vlpi_map *map;
1016
1017 prop_page = its_dev->event_map.vm->vprop_page;
1018 map = &its_dev->event_map.vlpi_maps[event];
1019 hwirq = map->vintid;
1020
1021 /* Remember the updated property */
1022 map->properties &= ~clr;
1023 map->properties |= set | LPI_PROP_GROUP1;
1024 } else {
1025 prop_page = gic_rdists->prop_page;
1026 hwirq = d->hwirq;
1027 }
1028
1029 cfg = page_address(prop_page) + hwirq - 8192;
1030 *cfg &= ~clr;
1031 *cfg |= set | LPI_PROP_GROUP1;
1032
1033 /*
1034 * Make the above write visible to the redistributors.
1035 * And yes, we're flushing exactly: One. Single. Byte.
1036 * Humpf...
1037 */
1038 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1039 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1040 else
1041 dsb(ishst);
1042 }
1043
1044 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1045 {
1046 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1047
1048 lpi_write_config(d, clr, set);
1049 its_send_inv(its_dev, its_get_event_id(d));
1050 }
1051
1052 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1053 {
1054 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1055 u32 event = its_get_event_id(d);
1056
1057 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1058 return;
1059
1060 its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1061
1062 /*
1063 * More fun with the architecture:
1064 *
1065 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1066 * value or to 1023, depending on the enable bit. But that
1067 * would be issueing a mapping for an /existing/ DevID+EventID
1068 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1069 * to the /same/ vPE, using this opportunity to adjust the
1070 * doorbell. Mouahahahaha. We loves it, Precious.
1071 */
1072 its_send_vmovi(its_dev, event);
1073 }
1074
1075 static void its_mask_irq(struct irq_data *d)
1076 {
1077 if (irqd_is_forwarded_to_vcpu(d))
1078 its_vlpi_set_doorbell(d, false);
1079
1080 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1081 }
1082
1083 static void its_unmask_irq(struct irq_data *d)
1084 {
1085 if (irqd_is_forwarded_to_vcpu(d))
1086 its_vlpi_set_doorbell(d, true);
1087
1088 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1089 }
1090
1091 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1092 bool force)
1093 {
1094 unsigned int cpu;
1095 const struct cpumask *cpu_mask = cpu_online_mask;
1096 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1097 struct its_collection *target_col;
1098 u32 id = its_get_event_id(d);
1099
1100 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1101 if (irqd_is_forwarded_to_vcpu(d))
1102 return -EINVAL;
1103
1104 /* lpi cannot be routed to a redistributor that is on a foreign node */
1105 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1106 if (its_dev->its->numa_node >= 0) {
1107 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1108 if (!cpumask_intersects(mask_val, cpu_mask))
1109 return -EINVAL;
1110 }
1111 }
1112
1113 cpu = cpumask_any_and(mask_val, cpu_mask);
1114
1115 if (cpu >= nr_cpu_ids)
1116 return -EINVAL;
1117
1118 /* don't set the affinity when the target cpu is same as current one */
1119 if (cpu != its_dev->event_map.col_map[id]) {
1120 target_col = &its_dev->its->collections[cpu];
1121 its_send_movi(its_dev, target_col, id);
1122 its_dev->event_map.col_map[id] = cpu;
1123 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1124 }
1125
1126 return IRQ_SET_MASK_OK_DONE;
1127 }
1128
1129 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1130 {
1131 struct its_node *its = its_dev->its;
1132
1133 return its->phys_base + GITS_TRANSLATER;
1134 }
1135
1136 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1137 {
1138 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1139 struct its_node *its;
1140 u64 addr;
1141
1142 its = its_dev->its;
1143 addr = its->get_msi_base(its_dev);
1144
1145 msg->address_lo = lower_32_bits(addr);
1146 msg->address_hi = upper_32_bits(addr);
1147 msg->data = its_get_event_id(d);
1148
1149 iommu_dma_map_msi_msg(d->irq, msg);
1150 }
1151
1152 static int its_irq_set_irqchip_state(struct irq_data *d,
1153 enum irqchip_irq_state which,
1154 bool state)
1155 {
1156 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1157 u32 event = its_get_event_id(d);
1158
1159 if (which != IRQCHIP_STATE_PENDING)
1160 return -EINVAL;
1161
1162 if (state)
1163 its_send_int(its_dev, event);
1164 else
1165 its_send_clear(its_dev, event);
1166
1167 return 0;
1168 }
1169
1170 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1171 {
1172 unsigned long flags;
1173
1174 /* Not using the ITS list? Everything is always mapped. */
1175 if (!its_list_map)
1176 return;
1177
1178 raw_spin_lock_irqsave(&vmovp_lock, flags);
1179
1180 /*
1181 * If the VM wasn't mapped yet, iterate over the vpes and get
1182 * them mapped now.
1183 */
1184 vm->vlpi_count[its->list_nr]++;
1185
1186 if (vm->vlpi_count[its->list_nr] == 1) {
1187 int i;
1188
1189 for (i = 0; i < vm->nr_vpes; i++) {
1190 struct its_vpe *vpe = vm->vpes[i];
1191 struct irq_data *d = irq_get_irq_data(vpe->irq);
1192
1193 /* Map the VPE to the first possible CPU */
1194 vpe->col_idx = cpumask_first(cpu_online_mask);
1195 its_send_vmapp(its, vpe, true);
1196 its_send_vinvall(its, vpe);
1197 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1198 }
1199 }
1200
1201 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1202 }
1203
1204 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1205 {
1206 unsigned long flags;
1207
1208 /* Not using the ITS list? Everything is always mapped. */
1209 if (!its_list_map)
1210 return;
1211
1212 raw_spin_lock_irqsave(&vmovp_lock, flags);
1213
1214 if (!--vm->vlpi_count[its->list_nr]) {
1215 int i;
1216
1217 for (i = 0; i < vm->nr_vpes; i++)
1218 its_send_vmapp(its, vm->vpes[i], false);
1219 }
1220
1221 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1222 }
1223
1224 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1225 {
1226 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1227 u32 event = its_get_event_id(d);
1228 int ret = 0;
1229
1230 if (!info->map)
1231 return -EINVAL;
1232
1233 mutex_lock(&its_dev->event_map.vlpi_lock);
1234
1235 if (!its_dev->event_map.vm) {
1236 struct its_vlpi_map *maps;
1237
1238 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1239 GFP_KERNEL);
1240 if (!maps) {
1241 ret = -ENOMEM;
1242 goto out;
1243 }
1244
1245 its_dev->event_map.vm = info->map->vm;
1246 its_dev->event_map.vlpi_maps = maps;
1247 } else if (its_dev->event_map.vm != info->map->vm) {
1248 ret = -EINVAL;
1249 goto out;
1250 }
1251
1252 /* Get our private copy of the mapping information */
1253 its_dev->event_map.vlpi_maps[event] = *info->map;
1254
1255 if (irqd_is_forwarded_to_vcpu(d)) {
1256 /* Already mapped, move it around */
1257 its_send_vmovi(its_dev, event);
1258 } else {
1259 /* Ensure all the VPEs are mapped on this ITS */
1260 its_map_vm(its_dev->its, info->map->vm);
1261
1262 /*
1263 * Flag the interrupt as forwarded so that we can
1264 * start poking the virtual property table.
1265 */
1266 irqd_set_forwarded_to_vcpu(d);
1267
1268 /* Write out the property to the prop table */
1269 lpi_write_config(d, 0xff, info->map->properties);
1270
1271 /* Drop the physical mapping */
1272 its_send_discard(its_dev, event);
1273
1274 /* and install the virtual one */
1275 its_send_vmapti(its_dev, event);
1276
1277 /* Increment the number of VLPIs */
1278 its_dev->event_map.nr_vlpis++;
1279 }
1280
1281 out:
1282 mutex_unlock(&its_dev->event_map.vlpi_lock);
1283 return ret;
1284 }
1285
1286 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1287 {
1288 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1289 u32 event = its_get_event_id(d);
1290 int ret = 0;
1291
1292 mutex_lock(&its_dev->event_map.vlpi_lock);
1293
1294 if (!its_dev->event_map.vm ||
1295 !its_dev->event_map.vlpi_maps[event].vm) {
1296 ret = -EINVAL;
1297 goto out;
1298 }
1299
1300 /* Copy our mapping information to the incoming request */
1301 *info->map = its_dev->event_map.vlpi_maps[event];
1302
1303 out:
1304 mutex_unlock(&its_dev->event_map.vlpi_lock);
1305 return ret;
1306 }
1307
1308 static int its_vlpi_unmap(struct irq_data *d)
1309 {
1310 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311 u32 event = its_get_event_id(d);
1312 int ret = 0;
1313
1314 mutex_lock(&its_dev->event_map.vlpi_lock);
1315
1316 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1317 ret = -EINVAL;
1318 goto out;
1319 }
1320
1321 /* Drop the virtual mapping */
1322 its_send_discard(its_dev, event);
1323
1324 /* and restore the physical one */
1325 irqd_clr_forwarded_to_vcpu(d);
1326 its_send_mapti(its_dev, d->hwirq, event);
1327 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1328 LPI_PROP_ENABLED |
1329 LPI_PROP_GROUP1));
1330
1331 /* Potentially unmap the VM from this ITS */
1332 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1333
1334 /*
1335 * Drop the refcount and make the device available again if
1336 * this was the last VLPI.
1337 */
1338 if (!--its_dev->event_map.nr_vlpis) {
1339 its_dev->event_map.vm = NULL;
1340 kfree(its_dev->event_map.vlpi_maps);
1341 }
1342
1343 out:
1344 mutex_unlock(&its_dev->event_map.vlpi_lock);
1345 return ret;
1346 }
1347
1348 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1349 {
1350 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1351
1352 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1353 return -EINVAL;
1354
1355 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1356 lpi_update_config(d, 0xff, info->config);
1357 else
1358 lpi_write_config(d, 0xff, info->config);
1359 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1360
1361 return 0;
1362 }
1363
1364 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1365 {
1366 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1367 struct its_cmd_info *info = vcpu_info;
1368
1369 /* Need a v4 ITS */
1370 if (!its_dev->its->is_v4)
1371 return -EINVAL;
1372
1373 /* Unmap request? */
1374 if (!info)
1375 return its_vlpi_unmap(d);
1376
1377 switch (info->cmd_type) {
1378 case MAP_VLPI:
1379 return its_vlpi_map(d, info);
1380
1381 case GET_VLPI:
1382 return its_vlpi_get(d, info);
1383
1384 case PROP_UPDATE_VLPI:
1385 case PROP_UPDATE_AND_INV_VLPI:
1386 return its_vlpi_prop_update(d, info);
1387
1388 default:
1389 return -EINVAL;
1390 }
1391 }
1392
1393 static struct irq_chip its_irq_chip = {
1394 .name = "ITS",
1395 .irq_mask = its_mask_irq,
1396 .irq_unmask = its_unmask_irq,
1397 .irq_eoi = irq_chip_eoi_parent,
1398 .irq_set_affinity = its_set_affinity,
1399 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1400 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1401 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1402 };
1403
1404 /*
1405 * How we allocate LPIs:
1406 *
1407 * The GIC has id_bits bits for interrupt identifiers. From there, we
1408 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1409 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1410 * bits to the right.
1411 *
1412 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1413 */
1414 #define IRQS_PER_CHUNK_SHIFT 5
1415 #define IRQS_PER_CHUNK (1UL << IRQS_PER_CHUNK_SHIFT)
1416 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1417
1418 static unsigned long *lpi_bitmap;
1419 static u32 lpi_chunks;
1420 static DEFINE_SPINLOCK(lpi_lock);
1421
1422 static int its_lpi_to_chunk(int lpi)
1423 {
1424 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1425 }
1426
1427 static int its_chunk_to_lpi(int chunk)
1428 {
1429 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1430 }
1431
1432 static int __init its_lpi_init(u32 id_bits)
1433 {
1434 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1435
1436 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1437 GFP_KERNEL);
1438 if (!lpi_bitmap) {
1439 lpi_chunks = 0;
1440 return -ENOMEM;
1441 }
1442
1443 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1444 return 0;
1445 }
1446
1447 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1448 {
1449 unsigned long *bitmap = NULL;
1450 int chunk_id;
1451 int nr_chunks;
1452 int i;
1453
1454 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1455
1456 spin_lock(&lpi_lock);
1457
1458 do {
1459 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1460 0, nr_chunks, 0);
1461 if (chunk_id < lpi_chunks)
1462 break;
1463
1464 nr_chunks--;
1465 } while (nr_chunks > 0);
1466
1467 if (!nr_chunks)
1468 goto out;
1469
1470 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1471 GFP_ATOMIC);
1472 if (!bitmap)
1473 goto out;
1474
1475 for (i = 0; i < nr_chunks; i++)
1476 set_bit(chunk_id + i, lpi_bitmap);
1477
1478 *base = its_chunk_to_lpi(chunk_id);
1479 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1480
1481 out:
1482 spin_unlock(&lpi_lock);
1483
1484 if (!bitmap)
1485 *base = *nr_ids = 0;
1486
1487 return bitmap;
1488 }
1489
1490 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1491 {
1492 int lpi;
1493
1494 spin_lock(&lpi_lock);
1495
1496 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1497 int chunk = its_lpi_to_chunk(lpi);
1498
1499 BUG_ON(chunk > lpi_chunks);
1500 if (test_bit(chunk, lpi_bitmap)) {
1501 clear_bit(chunk, lpi_bitmap);
1502 } else {
1503 pr_err("Bad LPI chunk %d\n", chunk);
1504 }
1505 }
1506
1507 spin_unlock(&lpi_lock);
1508
1509 kfree(bitmap);
1510 }
1511
1512 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1513 {
1514 struct page *prop_page;
1515
1516 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1517 if (!prop_page)
1518 return NULL;
1519
1520 /* Priority 0xa0, Group-1, disabled */
1521 memset(page_address(prop_page),
1522 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1523 LPI_PROPBASE_SZ);
1524
1525 /* Make sure the GIC will observe the written configuration */
1526 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1527
1528 return prop_page;
1529 }
1530
1531 static void its_free_prop_table(struct page *prop_page)
1532 {
1533 free_pages((unsigned long)page_address(prop_page),
1534 get_order(LPI_PROPBASE_SZ));
1535 }
1536
1537 static int __init its_alloc_lpi_tables(void)
1538 {
1539 phys_addr_t paddr;
1540
1541 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1542 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1543 if (!gic_rdists->prop_page) {
1544 pr_err("Failed to allocate PROPBASE\n");
1545 return -ENOMEM;
1546 }
1547
1548 paddr = page_to_phys(gic_rdists->prop_page);
1549 pr_info("GIC: using LPI property table @%pa\n", &paddr);
1550
1551 return its_lpi_init(lpi_id_bits);
1552 }
1553
1554 static const char *its_base_type_string[] = {
1555 [GITS_BASER_TYPE_DEVICE] = "Devices",
1556 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
1557 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1558 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
1559 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
1560 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
1561 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
1562 };
1563
1564 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1565 {
1566 u32 idx = baser - its->tables;
1567
1568 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1569 }
1570
1571 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1572 u64 val)
1573 {
1574 u32 idx = baser - its->tables;
1575
1576 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1577 baser->val = its_read_baser(its, baser);
1578 }
1579
1580 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1581 u64 cache, u64 shr, u32 psz, u32 order,
1582 bool indirect)
1583 {
1584 u64 val = its_read_baser(its, baser);
1585 u64 esz = GITS_BASER_ENTRY_SIZE(val);
1586 u64 type = GITS_BASER_TYPE(val);
1587 u64 baser_phys, tmp;
1588 u32 alloc_pages;
1589 void *base;
1590
1591 retry_alloc_baser:
1592 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1593 if (alloc_pages > GITS_BASER_PAGES_MAX) {
1594 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1595 &its->phys_base, its_base_type_string[type],
1596 alloc_pages, GITS_BASER_PAGES_MAX);
1597 alloc_pages = GITS_BASER_PAGES_MAX;
1598 order = get_order(GITS_BASER_PAGES_MAX * psz);
1599 }
1600
1601 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1602 if (!base)
1603 return -ENOMEM;
1604
1605 baser_phys = virt_to_phys(base);
1606
1607 /* Check if the physical address of the memory is above 48bits */
1608 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1609
1610 /* 52bit PA is supported only when PageSize=64K */
1611 if (psz != SZ_64K) {
1612 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1613 free_pages((unsigned long)base, order);
1614 return -ENXIO;
1615 }
1616
1617 /* Convert 52bit PA to 48bit field */
1618 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1619 }
1620
1621 retry_baser:
1622 val = (baser_phys |
1623 (type << GITS_BASER_TYPE_SHIFT) |
1624 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
1625 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
1626 cache |
1627 shr |
1628 GITS_BASER_VALID);
1629
1630 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
1631
1632 switch (psz) {
1633 case SZ_4K:
1634 val |= GITS_BASER_PAGE_SIZE_4K;
1635 break;
1636 case SZ_16K:
1637 val |= GITS_BASER_PAGE_SIZE_16K;
1638 break;
1639 case SZ_64K:
1640 val |= GITS_BASER_PAGE_SIZE_64K;
1641 break;
1642 }
1643
1644 its_write_baser(its, baser, val);
1645 tmp = baser->val;
1646
1647 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1648 /*
1649 * Shareability didn't stick. Just use
1650 * whatever the read reported, which is likely
1651 * to be the only thing this redistributor
1652 * supports. If that's zero, make it
1653 * non-cacheable as well.
1654 */
1655 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1656 if (!shr) {
1657 cache = GITS_BASER_nC;
1658 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1659 }
1660 goto retry_baser;
1661 }
1662
1663 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1664 /*
1665 * Page size didn't stick. Let's try a smaller
1666 * size and retry. If we reach 4K, then
1667 * something is horribly wrong...
1668 */
1669 free_pages((unsigned long)base, order);
1670 baser->base = NULL;
1671
1672 switch (psz) {
1673 case SZ_16K:
1674 psz = SZ_4K;
1675 goto retry_alloc_baser;
1676 case SZ_64K:
1677 psz = SZ_16K;
1678 goto retry_alloc_baser;
1679 }
1680 }
1681
1682 if (val != tmp) {
1683 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1684 &its->phys_base, its_base_type_string[type],
1685 val, tmp);
1686 free_pages((unsigned long)base, order);
1687 return -ENXIO;
1688 }
1689
1690 baser->order = order;
1691 baser->base = base;
1692 baser->psz = psz;
1693 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1694
1695 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1696 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1697 its_base_type_string[type],
1698 (unsigned long)virt_to_phys(base),
1699 indirect ? "indirect" : "flat", (int)esz,
1700 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1701
1702 return 0;
1703 }
1704
1705 static bool its_parse_indirect_baser(struct its_node *its,
1706 struct its_baser *baser,
1707 u32 psz, u32 *order, u32 ids)
1708 {
1709 u64 tmp = its_read_baser(its, baser);
1710 u64 type = GITS_BASER_TYPE(tmp);
1711 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1712 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1713 u32 new_order = *order;
1714 bool indirect = false;
1715
1716 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1717 if ((esz << ids) > (psz * 2)) {
1718 /*
1719 * Find out whether hw supports a single or two-level table by
1720 * table by reading bit at offset '62' after writing '1' to it.
1721 */
1722 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1723 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1724
1725 if (indirect) {
1726 /*
1727 * The size of the lvl2 table is equal to ITS page size
1728 * which is 'psz'. For computing lvl1 table size,
1729 * subtract ID bits that sparse lvl2 table from 'ids'
1730 * which is reported by ITS hardware times lvl1 table
1731 * entry size.
1732 */
1733 ids -= ilog2(psz / (int)esz);
1734 esz = GITS_LVL1_ENTRY_SIZE;
1735 }
1736 }
1737
1738 /*
1739 * Allocate as many entries as required to fit the
1740 * range of device IDs that the ITS can grok... The ID
1741 * space being incredibly sparse, this results in a
1742 * massive waste of memory if two-level device table
1743 * feature is not supported by hardware.
1744 */
1745 new_order = max_t(u32, get_order(esz << ids), new_order);
1746 if (new_order >= MAX_ORDER) {
1747 new_order = MAX_ORDER - 1;
1748 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1749 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1750 &its->phys_base, its_base_type_string[type],
1751 its->device_ids, ids);
1752 }
1753
1754 *order = new_order;
1755
1756 return indirect;
1757 }
1758
1759 static void its_free_tables(struct its_node *its)
1760 {
1761 int i;
1762
1763 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1764 if (its->tables[i].base) {
1765 free_pages((unsigned long)its->tables[i].base,
1766 its->tables[i].order);
1767 its->tables[i].base = NULL;
1768 }
1769 }
1770 }
1771
1772 static int its_alloc_tables(struct its_node *its)
1773 {
1774 u64 shr = GITS_BASER_InnerShareable;
1775 u64 cache = GITS_BASER_RaWaWb;
1776 u32 psz = SZ_64K;
1777 int err, i;
1778
1779 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1780 /* erratum 24313: ignore memory access type */
1781 cache = GITS_BASER_nCnB;
1782
1783 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1784 struct its_baser *baser = its->tables + i;
1785 u64 val = its_read_baser(its, baser);
1786 u64 type = GITS_BASER_TYPE(val);
1787 u32 order = get_order(psz);
1788 bool indirect = false;
1789
1790 switch (type) {
1791 case GITS_BASER_TYPE_NONE:
1792 continue;
1793
1794 case GITS_BASER_TYPE_DEVICE:
1795 indirect = its_parse_indirect_baser(its, baser,
1796 psz, &order,
1797 its->device_ids);
1798 case GITS_BASER_TYPE_VCPU:
1799 indirect = its_parse_indirect_baser(its, baser,
1800 psz, &order,
1801 ITS_MAX_VPEID_BITS);
1802 break;
1803 }
1804
1805 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1806 if (err < 0) {
1807 its_free_tables(its);
1808 return err;
1809 }
1810
1811 /* Update settings which will be used for next BASERn */
1812 psz = baser->psz;
1813 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1814 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1815 }
1816
1817 return 0;
1818 }
1819
1820 static int its_alloc_collections(struct its_node *its)
1821 {
1822 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1823 GFP_KERNEL);
1824 if (!its->collections)
1825 return -ENOMEM;
1826
1827 return 0;
1828 }
1829
1830 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1831 {
1832 struct page *pend_page;
1833 /*
1834 * The pending pages have to be at least 64kB aligned,
1835 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1836 */
1837 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1838 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1839 if (!pend_page)
1840 return NULL;
1841
1842 /* Make sure the GIC will observe the zero-ed page */
1843 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1844
1845 return pend_page;
1846 }
1847
1848 static void its_free_pending_table(struct page *pt)
1849 {
1850 free_pages((unsigned long)page_address(pt),
1851 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1852 }
1853
1854 static void its_cpu_init_lpis(void)
1855 {
1856 void __iomem *rbase = gic_data_rdist_rd_base();
1857 struct page *pend_page;
1858 u64 val, tmp;
1859
1860 /* If we didn't allocate the pending table yet, do it now */
1861 pend_page = gic_data_rdist()->pend_page;
1862 if (!pend_page) {
1863 phys_addr_t paddr;
1864
1865 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1866 if (!pend_page) {
1867 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1868 smp_processor_id());
1869 return;
1870 }
1871
1872 paddr = page_to_phys(pend_page);
1873 pr_info("CPU%d: using LPI pending table @%pa\n",
1874 smp_processor_id(), &paddr);
1875 gic_data_rdist()->pend_page = pend_page;
1876 }
1877
1878 /* Disable LPIs */
1879 val = readl_relaxed(rbase + GICR_CTLR);
1880 val &= ~GICR_CTLR_ENABLE_LPIS;
1881 writel_relaxed(val, rbase + GICR_CTLR);
1882
1883 /*
1884 * Make sure any change to the table is observable by the GIC.
1885 */
1886 dsb(sy);
1887
1888 /* set PROPBASE */
1889 val = (page_to_phys(gic_rdists->prop_page) |
1890 GICR_PROPBASER_InnerShareable |
1891 GICR_PROPBASER_RaWaWb |
1892 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1893
1894 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1895 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1896
1897 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1898 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1899 /*
1900 * The HW reports non-shareable, we must
1901 * remove the cacheability attributes as
1902 * well.
1903 */
1904 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1905 GICR_PROPBASER_CACHEABILITY_MASK);
1906 val |= GICR_PROPBASER_nC;
1907 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1908 }
1909 pr_info_once("GIC: using cache flushing for LPI property table\n");
1910 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1911 }
1912
1913 /* set PENDBASE */
1914 val = (page_to_phys(pend_page) |
1915 GICR_PENDBASER_InnerShareable |
1916 GICR_PENDBASER_RaWaWb);
1917
1918 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1919 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1920
1921 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1922 /*
1923 * The HW reports non-shareable, we must remove the
1924 * cacheability attributes as well.
1925 */
1926 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1927 GICR_PENDBASER_CACHEABILITY_MASK);
1928 val |= GICR_PENDBASER_nC;
1929 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1930 }
1931
1932 /* Enable LPIs */
1933 val = readl_relaxed(rbase + GICR_CTLR);
1934 val |= GICR_CTLR_ENABLE_LPIS;
1935 writel_relaxed(val, rbase + GICR_CTLR);
1936
1937 /* Make sure the GIC has seen the above */
1938 dsb(sy);
1939 }
1940
1941 static void its_cpu_init_collection(void)
1942 {
1943 struct its_node *its;
1944 int cpu;
1945
1946 spin_lock(&its_lock);
1947 cpu = smp_processor_id();
1948
1949 list_for_each_entry(its, &its_nodes, entry) {
1950 u64 target;
1951
1952 /* avoid cross node collections and its mapping */
1953 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1954 struct device_node *cpu_node;
1955
1956 cpu_node = of_get_cpu_node(cpu, NULL);
1957 if (its->numa_node != NUMA_NO_NODE &&
1958 its->numa_node != of_node_to_nid(cpu_node))
1959 continue;
1960 }
1961
1962 /*
1963 * We now have to bind each collection to its target
1964 * redistributor.
1965 */
1966 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1967 /*
1968 * This ITS wants the physical address of the
1969 * redistributor.
1970 */
1971 target = gic_data_rdist()->phys_base;
1972 } else {
1973 /*
1974 * This ITS wants a linear CPU number.
1975 */
1976 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1977 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1978 }
1979
1980 /* Perform collection mapping */
1981 its->collections[cpu].target_address = target;
1982 its->collections[cpu].col_id = cpu;
1983
1984 its_send_mapc(its, &its->collections[cpu], 1);
1985 its_send_invall(its, &its->collections[cpu]);
1986 }
1987
1988 spin_unlock(&its_lock);
1989 }
1990
1991 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1992 {
1993 struct its_device *its_dev = NULL, *tmp;
1994 unsigned long flags;
1995
1996 raw_spin_lock_irqsave(&its->lock, flags);
1997
1998 list_for_each_entry(tmp, &its->its_device_list, entry) {
1999 if (tmp->device_id == dev_id) {
2000 its_dev = tmp;
2001 break;
2002 }
2003 }
2004
2005 raw_spin_unlock_irqrestore(&its->lock, flags);
2006
2007 return its_dev;
2008 }
2009
2010 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2011 {
2012 int i;
2013
2014 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2015 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2016 return &its->tables[i];
2017 }
2018
2019 return NULL;
2020 }
2021
2022 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2023 {
2024 struct page *page;
2025 u32 esz, idx;
2026 __le64 *table;
2027
2028 /* Don't allow device id that exceeds single, flat table limit */
2029 esz = GITS_BASER_ENTRY_SIZE(baser->val);
2030 if (!(baser->val & GITS_BASER_INDIRECT))
2031 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2032
2033 /* Compute 1st level table index & check if that exceeds table limit */
2034 idx = id >> ilog2(baser->psz / esz);
2035 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2036 return false;
2037
2038 table = baser->base;
2039
2040 /* Allocate memory for 2nd level table */
2041 if (!table[idx]) {
2042 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2043 if (!page)
2044 return false;
2045
2046 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2047 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2048 gic_flush_dcache_to_poc(page_address(page), baser->psz);
2049
2050 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2051
2052 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2053 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2054 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2055
2056 /* Ensure updated table contents are visible to ITS hardware */
2057 dsb(sy);
2058 }
2059
2060 return true;
2061 }
2062
2063 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2064 {
2065 struct its_baser *baser;
2066
2067 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2068
2069 /* Don't allow device id that exceeds ITS hardware limit */
2070 if (!baser)
2071 return (ilog2(dev_id) < its->device_ids);
2072
2073 return its_alloc_table_entry(baser, dev_id);
2074 }
2075
2076 static bool its_alloc_vpe_table(u32 vpe_id)
2077 {
2078 struct its_node *its;
2079
2080 /*
2081 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2082 * could try and only do it on ITSs corresponding to devices
2083 * that have interrupts targeted at this VPE, but the
2084 * complexity becomes crazy (and you have tons of memory
2085 * anyway, right?).
2086 */
2087 list_for_each_entry(its, &its_nodes, entry) {
2088 struct its_baser *baser;
2089
2090 if (!its->is_v4)
2091 continue;
2092
2093 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2094 if (!baser)
2095 return false;
2096
2097 if (!its_alloc_table_entry(baser, vpe_id))
2098 return false;
2099 }
2100
2101 return true;
2102 }
2103
2104 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2105 int nvecs, bool alloc_lpis)
2106 {
2107 struct its_device *dev;
2108 unsigned long *lpi_map = NULL;
2109 unsigned long flags;
2110 u16 *col_map = NULL;
2111 void *itt;
2112 int lpi_base;
2113 int nr_lpis;
2114 int nr_ites;
2115 int sz;
2116
2117 if (!its_alloc_device_table(its, dev_id))
2118 return NULL;
2119
2120 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2121 /*
2122 * We allocate at least one chunk worth of LPIs bet device,
2123 * and thus that many ITEs. The device may require less though.
2124 */
2125 nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2126 sz = nr_ites * its->ite_size;
2127 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2128 itt = kzalloc(sz, GFP_KERNEL);
2129 if (alloc_lpis) {
2130 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2131 if (lpi_map)
2132 col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2133 GFP_KERNEL);
2134 } else {
2135 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2136 nr_lpis = 0;
2137 lpi_base = 0;
2138 }
2139
2140 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
2141 kfree(dev);
2142 kfree(itt);
2143 kfree(lpi_map);
2144 kfree(col_map);
2145 return NULL;
2146 }
2147
2148 gic_flush_dcache_to_poc(itt, sz);
2149
2150 dev->its = its;
2151 dev->itt = itt;
2152 dev->nr_ites = nr_ites;
2153 dev->event_map.lpi_map = lpi_map;
2154 dev->event_map.col_map = col_map;
2155 dev->event_map.lpi_base = lpi_base;
2156 dev->event_map.nr_lpis = nr_lpis;
2157 mutex_init(&dev->event_map.vlpi_lock);
2158 dev->device_id = dev_id;
2159 INIT_LIST_HEAD(&dev->entry);
2160
2161 raw_spin_lock_irqsave(&its->lock, flags);
2162 list_add(&dev->entry, &its->its_device_list);
2163 raw_spin_unlock_irqrestore(&its->lock, flags);
2164
2165 /* Map device to its ITT */
2166 its_send_mapd(dev, 1);
2167
2168 return dev;
2169 }
2170
2171 static void its_free_device(struct its_device *its_dev)
2172 {
2173 unsigned long flags;
2174
2175 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2176 list_del(&its_dev->entry);
2177 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2178 kfree(its_dev->itt);
2179 kfree(its_dev);
2180 }
2181
2182 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2183 {
2184 int idx;
2185
2186 idx = find_first_zero_bit(dev->event_map.lpi_map,
2187 dev->event_map.nr_lpis);
2188 if (idx == dev->event_map.nr_lpis)
2189 return -ENOSPC;
2190
2191 *hwirq = dev->event_map.lpi_base + idx;
2192 set_bit(idx, dev->event_map.lpi_map);
2193
2194 return 0;
2195 }
2196
2197 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2198 int nvec, msi_alloc_info_t *info)
2199 {
2200 struct its_node *its;
2201 struct its_device *its_dev;
2202 struct msi_domain_info *msi_info;
2203 u32 dev_id;
2204
2205 /*
2206 * We ignore "dev" entierely, and rely on the dev_id that has
2207 * been passed via the scratchpad. This limits this domain's
2208 * usefulness to upper layers that definitely know that they
2209 * are built on top of the ITS.
2210 */
2211 dev_id = info->scratchpad[0].ul;
2212
2213 msi_info = msi_get_domain_info(domain);
2214 its = msi_info->data;
2215
2216 if (!gic_rdists->has_direct_lpi &&
2217 vpe_proxy.dev &&
2218 vpe_proxy.dev->its == its &&
2219 dev_id == vpe_proxy.dev->device_id) {
2220 /* Bad luck. Get yourself a better implementation */
2221 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2222 dev_id);
2223 return -EINVAL;
2224 }
2225
2226 its_dev = its_find_device(its, dev_id);
2227 if (its_dev) {
2228 /*
2229 * We already have seen this ID, probably through
2230 * another alias (PCI bridge of some sort). No need to
2231 * create the device.
2232 */
2233 pr_debug("Reusing ITT for devID %x\n", dev_id);
2234 goto out;
2235 }
2236
2237 its_dev = its_create_device(its, dev_id, nvec, true);
2238 if (!its_dev)
2239 return -ENOMEM;
2240
2241 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2242 out:
2243 info->scratchpad[0].ptr = its_dev;
2244 return 0;
2245 }
2246
2247 static struct msi_domain_ops its_msi_domain_ops = {
2248 .msi_prepare = its_msi_prepare,
2249 };
2250
2251 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2252 unsigned int virq,
2253 irq_hw_number_t hwirq)
2254 {
2255 struct irq_fwspec fwspec;
2256
2257 if (irq_domain_get_of_node(domain->parent)) {
2258 fwspec.fwnode = domain->parent->fwnode;
2259 fwspec.param_count = 3;
2260 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2261 fwspec.param[1] = hwirq;
2262 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2263 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2264 fwspec.fwnode = domain->parent->fwnode;
2265 fwspec.param_count = 2;
2266 fwspec.param[0] = hwirq;
2267 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2268 } else {
2269 return -EINVAL;
2270 }
2271
2272 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2273 }
2274
2275 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2276 unsigned int nr_irqs, void *args)
2277 {
2278 msi_alloc_info_t *info = args;
2279 struct its_device *its_dev = info->scratchpad[0].ptr;
2280 irq_hw_number_t hwirq;
2281 int err;
2282 int i;
2283
2284 for (i = 0; i < nr_irqs; i++) {
2285 err = its_alloc_device_irq(its_dev, &hwirq);
2286 if (err)
2287 return err;
2288
2289 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2290 if (err)
2291 return err;
2292
2293 irq_domain_set_hwirq_and_chip(domain, virq + i,
2294 hwirq, &its_irq_chip, its_dev);
2295 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2296 pr_debug("ID:%d pID:%d vID:%d\n",
2297 (int)(hwirq - its_dev->event_map.lpi_base),
2298 (int) hwirq, virq + i);
2299 }
2300
2301 return 0;
2302 }
2303
2304 static int its_irq_domain_activate(struct irq_domain *domain,
2305 struct irq_data *d, bool reserve)
2306 {
2307 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2308 u32 event = its_get_event_id(d);
2309 const struct cpumask *cpu_mask = cpu_online_mask;
2310 int cpu;
2311
2312 /* get the cpu_mask of local node */
2313 if (its_dev->its->numa_node >= 0)
2314 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2315
2316 /* Bind the LPI to the first possible CPU */
2317 cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2318 if (cpu >= nr_cpu_ids) {
2319 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2320 return;
2321
2322 cpu = cpumask_first(cpu_online_mask);
2323 }
2324
2325 its_dev->event_map.col_map[event] = cpu;
2326 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2327
2328 /* Map the GIC IRQ and event to the device */
2329 its_send_mapti(its_dev, d->hwirq, event);
2330 return 0;
2331 }
2332
2333 static void its_irq_domain_deactivate(struct irq_domain *domain,
2334 struct irq_data *d)
2335 {
2336 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2337 u32 event = its_get_event_id(d);
2338
2339 /* Stop the delivery of interrupts */
2340 its_send_discard(its_dev, event);
2341 }
2342
2343 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2344 unsigned int nr_irqs)
2345 {
2346 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2347 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2348 int i;
2349
2350 for (i = 0; i < nr_irqs; i++) {
2351 struct irq_data *data = irq_domain_get_irq_data(domain,
2352 virq + i);
2353 u32 event = its_get_event_id(data);
2354
2355 /* Mark interrupt index as unused */
2356 clear_bit(event, its_dev->event_map.lpi_map);
2357
2358 /* Nuke the entry in the domain */
2359 irq_domain_reset_irq_data(data);
2360 }
2361
2362 /* If all interrupts have been freed, start mopping the floor */
2363 if (bitmap_empty(its_dev->event_map.lpi_map,
2364 its_dev->event_map.nr_lpis)) {
2365 its_lpi_free_chunks(its_dev->event_map.lpi_map,
2366 its_dev->event_map.lpi_base,
2367 its_dev->event_map.nr_lpis);
2368 kfree(its_dev->event_map.col_map);
2369
2370 /* Unmap device/itt */
2371 its_send_mapd(its_dev, 0);
2372 its_free_device(its_dev);
2373 }
2374
2375 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2376 }
2377
2378 static const struct irq_domain_ops its_domain_ops = {
2379 .alloc = its_irq_domain_alloc,
2380 .free = its_irq_domain_free,
2381 .activate = its_irq_domain_activate,
2382 .deactivate = its_irq_domain_deactivate,
2383 };
2384
2385 /*
2386 * This is insane.
2387 *
2388 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2389 * likely), the only way to perform an invalidate is to use a fake
2390 * device to issue an INV command, implying that the LPI has first
2391 * been mapped to some event on that device. Since this is not exactly
2392 * cheap, we try to keep that mapping around as long as possible, and
2393 * only issue an UNMAP if we're short on available slots.
2394 *
2395 * Broken by design(tm).
2396 */
2397 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2398 {
2399 /* Already unmapped? */
2400 if (vpe->vpe_proxy_event == -1)
2401 return;
2402
2403 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2404 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2405
2406 /*
2407 * We don't track empty slots at all, so let's move the
2408 * next_victim pointer if we can quickly reuse that slot
2409 * instead of nuking an existing entry. Not clear that this is
2410 * always a win though, and this might just generate a ripple
2411 * effect... Let's just hope VPEs don't migrate too often.
2412 */
2413 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2414 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2415
2416 vpe->vpe_proxy_event = -1;
2417 }
2418
2419 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2420 {
2421 if (!gic_rdists->has_direct_lpi) {
2422 unsigned long flags;
2423
2424 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2425 its_vpe_db_proxy_unmap_locked(vpe);
2426 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2427 }
2428 }
2429
2430 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2431 {
2432 /* Already mapped? */
2433 if (vpe->vpe_proxy_event != -1)
2434 return;
2435
2436 /* This slot was already allocated. Kick the other VPE out. */
2437 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2438 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2439
2440 /* Map the new VPE instead */
2441 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2442 vpe->vpe_proxy_event = vpe_proxy.next_victim;
2443 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2444
2445 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2446 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2447 }
2448
2449 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2450 {
2451 unsigned long flags;
2452 struct its_collection *target_col;
2453
2454 if (gic_rdists->has_direct_lpi) {
2455 void __iomem *rdbase;
2456
2457 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2458 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2459 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2460 cpu_relax();
2461
2462 return;
2463 }
2464
2465 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2466
2467 its_vpe_db_proxy_map_locked(vpe);
2468
2469 target_col = &vpe_proxy.dev->its->collections[to];
2470 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2471 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2472
2473 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2474 }
2475
2476 static int its_vpe_set_affinity(struct irq_data *d,
2477 const struct cpumask *mask_val,
2478 bool force)
2479 {
2480 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2481 int cpu = cpumask_first(mask_val);
2482
2483 /*
2484 * Changing affinity is mega expensive, so let's be as lazy as
2485 * we can and only do it if we really have to. Also, if mapped
2486 * into the proxy device, we need to move the doorbell
2487 * interrupt to its new location.
2488 */
2489 if (vpe->col_idx != cpu) {
2490 int from = vpe->col_idx;
2491
2492 vpe->col_idx = cpu;
2493 its_send_vmovp(vpe);
2494 its_vpe_db_proxy_move(vpe, from, cpu);
2495 }
2496
2497 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2498
2499 return IRQ_SET_MASK_OK_DONE;
2500 }
2501
2502 static void its_vpe_schedule(struct its_vpe *vpe)
2503 {
2504 void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2505 u64 val;
2506
2507 /* Schedule the VPE */
2508 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2509 GENMASK_ULL(51, 12);
2510 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2511 val |= GICR_VPROPBASER_RaWb;
2512 val |= GICR_VPROPBASER_InnerShareable;
2513 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2514
2515 val = virt_to_phys(page_address(vpe->vpt_page)) &
2516 GENMASK_ULL(51, 16);
2517 val |= GICR_VPENDBASER_RaWaWb;
2518 val |= GICR_VPENDBASER_NonShareable;
2519 /*
2520 * There is no good way of finding out if the pending table is
2521 * empty as we can race against the doorbell interrupt very
2522 * easily. So in the end, vpe->pending_last is only an
2523 * indication that the vcpu has something pending, not one
2524 * that the pending table is empty. A good implementation
2525 * would be able to read its coarse map pretty quickly anyway,
2526 * making this a tolerable issue.
2527 */
2528 val |= GICR_VPENDBASER_PendingLast;
2529 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2530 val |= GICR_VPENDBASER_Valid;
2531 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2532 }
2533
2534 static void its_vpe_deschedule(struct its_vpe *vpe)
2535 {
2536 void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2537 u32 count = 1000000; /* 1s! */
2538 bool clean;
2539 u64 val;
2540
2541 /* We're being scheduled out */
2542 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2543 val &= ~GICR_VPENDBASER_Valid;
2544 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2545
2546 do {
2547 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2548 clean = !(val & GICR_VPENDBASER_Dirty);
2549 if (!clean) {
2550 count--;
2551 cpu_relax();
2552 udelay(1);
2553 }
2554 } while (!clean && count);
2555
2556 if (unlikely(!clean && !count)) {
2557 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2558 vpe->idai = false;
2559 vpe->pending_last = true;
2560 } else {
2561 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2562 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2563 }
2564 }
2565
2566 static void its_vpe_invall(struct its_vpe *vpe)
2567 {
2568 struct its_node *its;
2569
2570 list_for_each_entry(its, &its_nodes, entry) {
2571 if (!its->is_v4)
2572 continue;
2573
2574 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2575 continue;
2576
2577 /*
2578 * Sending a VINVALL to a single ITS is enough, as all
2579 * we need is to reach the redistributors.
2580 */
2581 its_send_vinvall(its, vpe);
2582 return;
2583 }
2584 }
2585
2586 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2587 {
2588 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2589 struct its_cmd_info *info = vcpu_info;
2590
2591 switch (info->cmd_type) {
2592 case SCHEDULE_VPE:
2593 its_vpe_schedule(vpe);
2594 return 0;
2595
2596 case DESCHEDULE_VPE:
2597 its_vpe_deschedule(vpe);
2598 return 0;
2599
2600 case INVALL_VPE:
2601 its_vpe_invall(vpe);
2602 return 0;
2603
2604 default:
2605 return -EINVAL;
2606 }
2607 }
2608
2609 static void its_vpe_send_cmd(struct its_vpe *vpe,
2610 void (*cmd)(struct its_device *, u32))
2611 {
2612 unsigned long flags;
2613
2614 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2615
2616 its_vpe_db_proxy_map_locked(vpe);
2617 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2618
2619 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2620 }
2621
2622 static void its_vpe_send_inv(struct irq_data *d)
2623 {
2624 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2625
2626 if (gic_rdists->has_direct_lpi) {
2627 void __iomem *rdbase;
2628
2629 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2630 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2631 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2632 cpu_relax();
2633 } else {
2634 its_vpe_send_cmd(vpe, its_send_inv);
2635 }
2636 }
2637
2638 static void its_vpe_mask_irq(struct irq_data *d)
2639 {
2640 /*
2641 * We need to unmask the LPI, which is described by the parent
2642 * irq_data. Instead of calling into the parent (which won't
2643 * exactly do the right thing, let's simply use the
2644 * parent_data pointer. Yes, I'm naughty.
2645 */
2646 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2647 its_vpe_send_inv(d);
2648 }
2649
2650 static void its_vpe_unmask_irq(struct irq_data *d)
2651 {
2652 /* Same hack as above... */
2653 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2654 its_vpe_send_inv(d);
2655 }
2656
2657 static int its_vpe_set_irqchip_state(struct irq_data *d,
2658 enum irqchip_irq_state which,
2659 bool state)
2660 {
2661 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2662
2663 if (which != IRQCHIP_STATE_PENDING)
2664 return -EINVAL;
2665
2666 if (gic_rdists->has_direct_lpi) {
2667 void __iomem *rdbase;
2668
2669 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2670 if (state) {
2671 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2672 } else {
2673 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2674 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2675 cpu_relax();
2676 }
2677 } else {
2678 if (state)
2679 its_vpe_send_cmd(vpe, its_send_int);
2680 else
2681 its_vpe_send_cmd(vpe, its_send_clear);
2682 }
2683
2684 return 0;
2685 }
2686
2687 static struct irq_chip its_vpe_irq_chip = {
2688 .name = "GICv4-vpe",
2689 .irq_mask = its_vpe_mask_irq,
2690 .irq_unmask = its_vpe_unmask_irq,
2691 .irq_eoi = irq_chip_eoi_parent,
2692 .irq_set_affinity = its_vpe_set_affinity,
2693 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
2694 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
2695 };
2696
2697 static int its_vpe_id_alloc(void)
2698 {
2699 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2700 }
2701
2702 static void its_vpe_id_free(u16 id)
2703 {
2704 ida_simple_remove(&its_vpeid_ida, id);
2705 }
2706
2707 static int its_vpe_init(struct its_vpe *vpe)
2708 {
2709 struct page *vpt_page;
2710 int vpe_id;
2711
2712 /* Allocate vpe_id */
2713 vpe_id = its_vpe_id_alloc();
2714 if (vpe_id < 0)
2715 return vpe_id;
2716
2717 /* Allocate VPT */
2718 vpt_page = its_allocate_pending_table(GFP_KERNEL);
2719 if (!vpt_page) {
2720 its_vpe_id_free(vpe_id);
2721 return -ENOMEM;
2722 }
2723
2724 if (!its_alloc_vpe_table(vpe_id)) {
2725 its_vpe_id_free(vpe_id);
2726 its_free_pending_table(vpe->vpt_page);
2727 return -ENOMEM;
2728 }
2729
2730 vpe->vpe_id = vpe_id;
2731 vpe->vpt_page = vpt_page;
2732 vpe->vpe_proxy_event = -1;
2733
2734 return 0;
2735 }
2736
2737 static void its_vpe_teardown(struct its_vpe *vpe)
2738 {
2739 its_vpe_db_proxy_unmap(vpe);
2740 its_vpe_id_free(vpe->vpe_id);
2741 its_free_pending_table(vpe->vpt_page);
2742 }
2743
2744 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2745 unsigned int virq,
2746 unsigned int nr_irqs)
2747 {
2748 struct its_vm *vm = domain->host_data;
2749 int i;
2750
2751 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2752
2753 for (i = 0; i < nr_irqs; i++) {
2754 struct irq_data *data = irq_domain_get_irq_data(domain,
2755 virq + i);
2756 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2757
2758 BUG_ON(vm != vpe->its_vm);
2759
2760 clear_bit(data->hwirq, vm->db_bitmap);
2761 its_vpe_teardown(vpe);
2762 irq_domain_reset_irq_data(data);
2763 }
2764
2765 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2766 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2767 its_free_prop_table(vm->vprop_page);
2768 }
2769 }
2770
2771 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2772 unsigned int nr_irqs, void *args)
2773 {
2774 struct its_vm *vm = args;
2775 unsigned long *bitmap;
2776 struct page *vprop_page;
2777 int base, nr_ids, i, err = 0;
2778
2779 BUG_ON(!vm);
2780
2781 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2782 if (!bitmap)
2783 return -ENOMEM;
2784
2785 if (nr_ids < nr_irqs) {
2786 its_lpi_free_chunks(bitmap, base, nr_ids);
2787 return -ENOMEM;
2788 }
2789
2790 vprop_page = its_allocate_prop_table(GFP_KERNEL);
2791 if (!vprop_page) {
2792 its_lpi_free_chunks(bitmap, base, nr_ids);
2793 return -ENOMEM;
2794 }
2795
2796 vm->db_bitmap = bitmap;
2797 vm->db_lpi_base = base;
2798 vm->nr_db_lpis = nr_ids;
2799 vm->vprop_page = vprop_page;
2800
2801 for (i = 0; i < nr_irqs; i++) {
2802 vm->vpes[i]->vpe_db_lpi = base + i;
2803 err = its_vpe_init(vm->vpes[i]);
2804 if (err)
2805 break;
2806 err = its_irq_gic_domain_alloc(domain, virq + i,
2807 vm->vpes[i]->vpe_db_lpi);
2808 if (err)
2809 break;
2810 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2811 &its_vpe_irq_chip, vm->vpes[i]);
2812 set_bit(i, bitmap);
2813 }
2814
2815 if (err) {
2816 if (i > 0)
2817 its_vpe_irq_domain_free(domain, virq, i - 1);
2818
2819 its_lpi_free_chunks(bitmap, base, nr_ids);
2820 its_free_prop_table(vprop_page);
2821 }
2822
2823 return err;
2824 }
2825
2826 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2827 struct irq_data *d, bool reserve)
2828 {
2829 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2830 struct its_node *its;
2831
2832 /* If we use the list map, we issue VMAPP on demand... */
2833 if (its_list_map)
2834 return 0;
2835
2836 /* Map the VPE to the first possible CPU */
2837 vpe->col_idx = cpumask_first(cpu_online_mask);
2838
2839 list_for_each_entry(its, &its_nodes, entry) {
2840 if (!its->is_v4)
2841 continue;
2842
2843 its_send_vmapp(its, vpe, true);
2844 its_send_vinvall(its, vpe);
2845 }
2846
2847 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2848
2849 return 0;
2850 }
2851
2852 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2853 struct irq_data *d)
2854 {
2855 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2856 struct its_node *its;
2857
2858 /*
2859 * If we use the list map, we unmap the VPE once no VLPIs are
2860 * associated with the VM.
2861 */
2862 if (its_list_map)
2863 return;
2864
2865 list_for_each_entry(its, &its_nodes, entry) {
2866 if (!its->is_v4)
2867 continue;
2868
2869 its_send_vmapp(its, vpe, false);
2870 }
2871 }
2872
2873 static const struct irq_domain_ops its_vpe_domain_ops = {
2874 .alloc = its_vpe_irq_domain_alloc,
2875 .free = its_vpe_irq_domain_free,
2876 .activate = its_vpe_irq_domain_activate,
2877 .deactivate = its_vpe_irq_domain_deactivate,
2878 };
2879
2880 static int its_force_quiescent(void __iomem *base)
2881 {
2882 u32 count = 1000000; /* 1s */
2883 u32 val;
2884
2885 val = readl_relaxed(base + GITS_CTLR);
2886 /*
2887 * GIC architecture specification requires the ITS to be both
2888 * disabled and quiescent for writes to GITS_BASER<n> or
2889 * GITS_CBASER to not have UNPREDICTABLE results.
2890 */
2891 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2892 return 0;
2893
2894 /* Disable the generation of all interrupts to this ITS */
2895 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2896 writel_relaxed(val, base + GITS_CTLR);
2897
2898 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2899 while (1) {
2900 val = readl_relaxed(base + GITS_CTLR);
2901 if (val & GITS_CTLR_QUIESCENT)
2902 return 0;
2903
2904 count--;
2905 if (!count)
2906 return -EBUSY;
2907
2908 cpu_relax();
2909 udelay(1);
2910 }
2911 }
2912
2913 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2914 {
2915 struct its_node *its = data;
2916
2917 /* erratum 22375: only alloc 8MB table size */
2918 its->device_ids = 0x14; /* 20 bits, 8MB */
2919 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2920
2921 return true;
2922 }
2923
2924 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2925 {
2926 struct its_node *its = data;
2927
2928 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2929
2930 return true;
2931 }
2932
2933 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2934 {
2935 struct its_node *its = data;
2936
2937 /* On QDF2400, the size of the ITE is 16Bytes */
2938 its->ite_size = 16;
2939
2940 return true;
2941 }
2942
2943 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2944 {
2945 struct its_node *its = its_dev->its;
2946
2947 /*
2948 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2949 * which maps 32-bit writes targeted at a separate window of
2950 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2951 * with device ID taken from bits [device_id_bits + 1:2] of
2952 * the window offset.
2953 */
2954 return its->pre_its_base + (its_dev->device_id << 2);
2955 }
2956
2957 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2958 {
2959 struct its_node *its = data;
2960 u32 pre_its_window[2];
2961 u32 ids;
2962
2963 if (!fwnode_property_read_u32_array(its->fwnode_handle,
2964 "socionext,synquacer-pre-its",
2965 pre_its_window,
2966 ARRAY_SIZE(pre_its_window))) {
2967
2968 its->pre_its_base = pre_its_window[0];
2969 its->get_msi_base = its_irq_get_msi_base_pre_its;
2970
2971 ids = ilog2(pre_its_window[1]) - 2;
2972 if (its->device_ids > ids)
2973 its->device_ids = ids;
2974
2975 /* the pre-ITS breaks isolation, so disable MSI remapping */
2976 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2977 return true;
2978 }
2979 return false;
2980 }
2981
2982 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2983 {
2984 struct its_node *its = data;
2985
2986 /*
2987 * Hip07 insists on using the wrong address for the VLPI
2988 * page. Trick it into doing the right thing...
2989 */
2990 its->vlpi_redist_offset = SZ_128K;
2991 return true;
2992 }
2993
2994 static const struct gic_quirk its_quirks[] = {
2995 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2996 {
2997 .desc = "ITS: Cavium errata 22375, 24313",
2998 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2999 .mask = 0xffff0fff,
3000 .init = its_enable_quirk_cavium_22375,
3001 },
3002 #endif
3003 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3004 {
3005 .desc = "ITS: Cavium erratum 23144",
3006 .iidr = 0xa100034c, /* ThunderX pass 1.x */
3007 .mask = 0xffff0fff,
3008 .init = its_enable_quirk_cavium_23144,
3009 },
3010 #endif
3011 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3012 {
3013 .desc = "ITS: QDF2400 erratum 0065",
3014 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
3015 .mask = 0xffffffff,
3016 .init = its_enable_quirk_qdf2400_e0065,
3017 },
3018 #endif
3019 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3020 {
3021 /*
3022 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3023 * implementation, but with a 'pre-ITS' added that requires
3024 * special handling in software.
3025 */
3026 .desc = "ITS: Socionext Synquacer pre-ITS",
3027 .iidr = 0x0001143b,
3028 .mask = 0xffffffff,
3029 .init = its_enable_quirk_socionext_synquacer,
3030 },
3031 #endif
3032 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3033 {
3034 .desc = "ITS: Hip07 erratum 161600802",
3035 .iidr = 0x00000004,
3036 .mask = 0xffffffff,
3037 .init = its_enable_quirk_hip07_161600802,
3038 },
3039 #endif
3040 {
3041 }
3042 };
3043
3044 static void its_enable_quirks(struct its_node *its)
3045 {
3046 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3047
3048 gic_enable_quirks(iidr, its_quirks, its);
3049 }
3050
3051 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3052 {
3053 struct irq_domain *inner_domain;
3054 struct msi_domain_info *info;
3055
3056 info = kzalloc(sizeof(*info), GFP_KERNEL);
3057 if (!info)
3058 return -ENOMEM;
3059
3060 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3061 if (!inner_domain) {
3062 kfree(info);
3063 return -ENOMEM;
3064 }
3065
3066 inner_domain->parent = its_parent;
3067 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3068 inner_domain->flags |= its->msi_domain_flags;
3069 info->ops = &its_msi_domain_ops;
3070 info->data = its;
3071 inner_domain->host_data = info;
3072
3073 return 0;
3074 }
3075
3076 static int its_init_vpe_domain(void)
3077 {
3078 struct its_node *its;
3079 u32 devid;
3080 int entries;
3081
3082 if (gic_rdists->has_direct_lpi) {
3083 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3084 return 0;
3085 }
3086
3087 /* Any ITS will do, even if not v4 */
3088 its = list_first_entry(&its_nodes, struct its_node, entry);
3089
3090 entries = roundup_pow_of_two(nr_cpu_ids);
3091 vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3092 GFP_KERNEL);
3093 if (!vpe_proxy.vpes) {
3094 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3095 return -ENOMEM;
3096 }
3097
3098 /* Use the last possible DevID */
3099 devid = GENMASK(its->device_ids - 1, 0);
3100 vpe_proxy.dev = its_create_device(its, devid, entries, false);
3101 if (!vpe_proxy.dev) {
3102 kfree(vpe_proxy.vpes);
3103 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3104 return -ENOMEM;
3105 }
3106
3107 BUG_ON(entries > vpe_proxy.dev->nr_ites);
3108
3109 raw_spin_lock_init(&vpe_proxy.lock);
3110 vpe_proxy.next_victim = 0;
3111 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3112 devid, vpe_proxy.dev->nr_ites);
3113
3114 return 0;
3115 }
3116
3117 static int __init its_compute_its_list_map(struct resource *res,
3118 void __iomem *its_base)
3119 {
3120 int its_number;
3121 u32 ctlr;
3122
3123 /*
3124 * This is assumed to be done early enough that we're
3125 * guaranteed to be single-threaded, hence no
3126 * locking. Should this change, we should address
3127 * this.
3128 */
3129 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3130 if (its_number >= GICv4_ITS_LIST_MAX) {
3131 pr_err("ITS@%pa: No ITSList entry available!\n",
3132 &res->start);
3133 return -EINVAL;
3134 }
3135
3136 ctlr = readl_relaxed(its_base + GITS_CTLR);
3137 ctlr &= ~GITS_CTLR_ITS_NUMBER;
3138 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3139 writel_relaxed(ctlr, its_base + GITS_CTLR);
3140 ctlr = readl_relaxed(its_base + GITS_CTLR);
3141 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3142 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3143 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3144 }
3145
3146 if (test_and_set_bit(its_number, &its_list_map)) {
3147 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3148 &res->start, its_number);
3149 return -EINVAL;
3150 }
3151
3152 return its_number;
3153 }
3154
3155 static int __init its_probe_one(struct resource *res,
3156 struct fwnode_handle *handle, int numa_node)
3157 {
3158 struct its_node *its;
3159 void __iomem *its_base;
3160 u32 val, ctlr;
3161 u64 baser, tmp, typer;
3162 int err;
3163
3164 its_base = ioremap(res->start, resource_size(res));
3165 if (!its_base) {
3166 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3167 return -ENOMEM;
3168 }
3169
3170 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3171 if (val != 0x30 && val != 0x40) {
3172 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3173 err = -ENODEV;
3174 goto out_unmap;
3175 }
3176
3177 err = its_force_quiescent(its_base);
3178 if (err) {
3179 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3180 goto out_unmap;
3181 }
3182
3183 pr_info("ITS %pR\n", res);
3184
3185 its = kzalloc(sizeof(*its), GFP_KERNEL);
3186 if (!its) {
3187 err = -ENOMEM;
3188 goto out_unmap;
3189 }
3190
3191 raw_spin_lock_init(&its->lock);
3192 INIT_LIST_HEAD(&its->entry);
3193 INIT_LIST_HEAD(&its->its_device_list);
3194 typer = gic_read_typer(its_base + GITS_TYPER);
3195 its->base = its_base;
3196 its->phys_base = res->start;
3197 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3198 its->device_ids = GITS_TYPER_DEVBITS(typer);
3199 its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3200 if (its->is_v4) {
3201 if (!(typer & GITS_TYPER_VMOVP)) {
3202 err = its_compute_its_list_map(res, its_base);
3203 if (err < 0)
3204 goto out_free_its;
3205
3206 its->list_nr = err;
3207
3208 pr_info("ITS@%pa: Using ITS number %d\n",
3209 &res->start, err);
3210 } else {
3211 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3212 }
3213 }
3214
3215 its->numa_node = numa_node;
3216
3217 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3218 get_order(ITS_CMD_QUEUE_SZ));
3219 if (!its->cmd_base) {
3220 err = -ENOMEM;
3221 goto out_free_its;
3222 }
3223 its->cmd_write = its->cmd_base;
3224 its->fwnode_handle = handle;
3225 its->get_msi_base = its_irq_get_msi_base;
3226 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3227
3228 its_enable_quirks(its);
3229
3230 err = its_alloc_tables(its);
3231 if (err)
3232 goto out_free_cmd;
3233
3234 err = its_alloc_collections(its);
3235 if (err)
3236 goto out_free_tables;
3237
3238 baser = (virt_to_phys(its->cmd_base) |
3239 GITS_CBASER_RaWaWb |
3240 GITS_CBASER_InnerShareable |
3241 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3242 GITS_CBASER_VALID);
3243
3244 gits_write_cbaser(baser, its->base + GITS_CBASER);
3245 tmp = gits_read_cbaser(its->base + GITS_CBASER);
3246
3247 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3248 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3249 /*
3250 * The HW reports non-shareable, we must
3251 * remove the cacheability attributes as
3252 * well.
3253 */
3254 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3255 GITS_CBASER_CACHEABILITY_MASK);
3256 baser |= GITS_CBASER_nC;
3257 gits_write_cbaser(baser, its->base + GITS_CBASER);
3258 }
3259 pr_info("ITS: using cache flushing for cmd queue\n");
3260 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3261 }
3262
3263 gits_write_cwriter(0, its->base + GITS_CWRITER);
3264 ctlr = readl_relaxed(its->base + GITS_CTLR);
3265 ctlr |= GITS_CTLR_ENABLE;
3266 if (its->is_v4)
3267 ctlr |= GITS_CTLR_ImDe;
3268 writel_relaxed(ctlr, its->base + GITS_CTLR);
3269
3270 err = its_init_domain(handle, its);
3271 if (err)
3272 goto out_free_tables;
3273
3274 spin_lock(&its_lock);
3275 list_add(&its->entry, &its_nodes);
3276 spin_unlock(&its_lock);
3277
3278 return 0;
3279
3280 out_free_tables:
3281 its_free_tables(its);
3282 out_free_cmd:
3283 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3284 out_free_its:
3285 kfree(its);
3286 out_unmap:
3287 iounmap(its_base);
3288 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3289 return err;
3290 }
3291
3292 static bool gic_rdists_supports_plpis(void)
3293 {
3294 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3295 }
3296
3297 int its_cpu_init(void)
3298 {
3299 if (!list_empty(&its_nodes)) {
3300 if (!gic_rdists_supports_plpis()) {
3301 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3302 return -ENXIO;
3303 }
3304 its_cpu_init_lpis();
3305 its_cpu_init_collection();
3306 }
3307
3308 return 0;
3309 }
3310
3311 static const struct of_device_id its_device_id[] = {
3312 { .compatible = "arm,gic-v3-its", },
3313 {},
3314 };
3315
3316 static int __init its_of_probe(struct device_node *node)
3317 {
3318 struct device_node *np;
3319 struct resource res;
3320
3321 for (np = of_find_matching_node(node, its_device_id); np;
3322 np = of_find_matching_node(np, its_device_id)) {
3323 if (!of_device_is_available(np))
3324 continue;
3325 if (!of_property_read_bool(np, "msi-controller")) {
3326 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3327 np);
3328 continue;
3329 }
3330
3331 if (of_address_to_resource(np, 0, &res)) {
3332 pr_warn("%pOF: no regs?\n", np);
3333 continue;
3334 }
3335
3336 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3337 }
3338 return 0;
3339 }
3340
3341 #ifdef CONFIG_ACPI
3342
3343 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3344
3345 #ifdef CONFIG_ACPI_NUMA
3346 struct its_srat_map {
3347 /* numa node id */
3348 u32 numa_node;
3349 /* GIC ITS ID */
3350 u32 its_id;
3351 };
3352
3353 static struct its_srat_map *its_srat_maps __initdata;
3354 static int its_in_srat __initdata;
3355
3356 static int __init acpi_get_its_numa_node(u32 its_id)
3357 {
3358 int i;
3359
3360 for (i = 0; i < its_in_srat; i++) {
3361 if (its_id == its_srat_maps[i].its_id)
3362 return its_srat_maps[i].numa_node;
3363 }
3364 return NUMA_NO_NODE;
3365 }
3366
3367 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3368 const unsigned long end)
3369 {
3370 return 0;
3371 }
3372
3373 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3374 const unsigned long end)
3375 {
3376 int node;
3377 struct acpi_srat_gic_its_affinity *its_affinity;
3378
3379 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3380 if (!its_affinity)
3381 return -EINVAL;
3382
3383 if (its_affinity->header.length < sizeof(*its_affinity)) {
3384 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3385 its_affinity->header.length);
3386 return -EINVAL;
3387 }
3388
3389 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3390
3391 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3392 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3393 return 0;
3394 }
3395
3396 its_srat_maps[its_in_srat].numa_node = node;
3397 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3398 its_in_srat++;
3399 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3400 its_affinity->proximity_domain, its_affinity->its_id, node);
3401
3402 return 0;
3403 }
3404
3405 static void __init acpi_table_parse_srat_its(void)
3406 {
3407 int count;
3408
3409 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3410 sizeof(struct acpi_table_srat),
3411 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3412 gic_acpi_match_srat_its, 0);
3413 if (count <= 0)
3414 return;
3415
3416 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3417 GFP_KERNEL);
3418 if (!its_srat_maps) {
3419 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3420 return;
3421 }
3422
3423 acpi_table_parse_entries(ACPI_SIG_SRAT,
3424 sizeof(struct acpi_table_srat),
3425 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3426 gic_acpi_parse_srat_its, 0);
3427 }
3428
3429 /* free the its_srat_maps after ITS probing */
3430 static void __init acpi_its_srat_maps_free(void)
3431 {
3432 kfree(its_srat_maps);
3433 }
3434 #else
3435 static void __init acpi_table_parse_srat_its(void) { }
3436 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3437 static void __init acpi_its_srat_maps_free(void) { }
3438 #endif
3439
3440 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3441 const unsigned long end)
3442 {
3443 struct acpi_madt_generic_translator *its_entry;
3444 struct fwnode_handle *dom_handle;
3445 struct resource res;
3446 int err;
3447
3448 its_entry = (struct acpi_madt_generic_translator *)header;
3449 memset(&res, 0, sizeof(res));
3450 res.start = its_entry->base_address;
3451 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3452 res.flags = IORESOURCE_MEM;
3453
3454 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3455 if (!dom_handle) {
3456 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3457 &res.start);
3458 return -ENOMEM;
3459 }
3460
3461 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3462 if (err) {
3463 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3464 &res.start, its_entry->translation_id);
3465 goto dom_err;
3466 }
3467
3468 err = its_probe_one(&res, dom_handle,
3469 acpi_get_its_numa_node(its_entry->translation_id));
3470 if (!err)
3471 return 0;
3472
3473 iort_deregister_domain_token(its_entry->translation_id);
3474 dom_err:
3475 irq_domain_free_fwnode(dom_handle);
3476 return err;
3477 }
3478
3479 static void __init its_acpi_probe(void)
3480 {
3481 acpi_table_parse_srat_its();
3482 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3483 gic_acpi_parse_madt_its, 0);
3484 acpi_its_srat_maps_free();
3485 }
3486 #else
3487 static void __init its_acpi_probe(void) { }
3488 #endif
3489
3490 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3491 struct irq_domain *parent_domain)
3492 {
3493 struct device_node *of_node;
3494 struct its_node *its;
3495 bool has_v4 = false;
3496 int err;
3497
3498 its_parent = parent_domain;
3499 of_node = to_of_node(handle);
3500 if (of_node)
3501 its_of_probe(of_node);
3502 else
3503 its_acpi_probe();
3504
3505 if (list_empty(&its_nodes)) {
3506 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3507 return -ENXIO;
3508 }
3509
3510 gic_rdists = rdists;
3511 err = its_alloc_lpi_tables();
3512 if (err)
3513 return err;
3514
3515 list_for_each_entry(its, &its_nodes, entry)
3516 has_v4 |= its->is_v4;
3517
3518 if (has_v4 & rdists->has_vlpis) {
3519 if (its_init_vpe_domain() ||
3520 its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3521 rdists->has_vlpis = false;
3522 pr_err("ITS: Disabling GICv4 support\n");
3523 }
3524 }
3525
3526 return 0;
3527 }