]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/irqchip/irq-gic-v3-its.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/acpi.h>
19 #include <linux/bitmap.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dma-iommu.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/acpi_iort.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42
43 #include "irq-gic-common.h"
44
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
48
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
50
51 /*
52 * Collection structure - just an ID, and a redistributor address to
53 * ping. We use one per CPU as a bag of interrupts assigned to this
54 * CPU.
55 */
56 struct its_collection {
57 u64 target_address;
58 u16 col_id;
59 };
60
61 /*
62 * The ITS_BASER structure - contains memory information, cached
63 * value of BASER register configuration and ITS page size.
64 */
65 struct its_baser {
66 void *base;
67 u64 val;
68 u32 order;
69 u32 psz;
70 };
71
72 /*
73 * The ITS structure - contains most of the infrastructure, with the
74 * top-level MSI domain, the command queue, the collections, and the
75 * list of devices writing to it.
76 */
77 struct its_node {
78 raw_spinlock_t lock;
79 struct list_head entry;
80 void __iomem *base;
81 phys_addr_t phys_base;
82 struct its_cmd_block *cmd_base;
83 struct its_cmd_block *cmd_write;
84 struct its_baser tables[GITS_BASER_NR_REGS];
85 struct its_collection *collections;
86 struct list_head its_device_list;
87 u64 flags;
88 u32 ite_size;
89 u32 device_ids;
90 int numa_node;
91 };
92
93 #define ITS_ITT_ALIGN SZ_256
94
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
97
98 struct event_lpi_map {
99 unsigned long *lpi_map;
100 u16 *col_map;
101 irq_hw_number_t lpi_base;
102 int nr_lpis;
103 };
104
105 /*
106 * The ITS view of a device - belongs to an ITS, a collection, owns an
107 * interrupt translation table, and a list of interrupts.
108 */
109 struct its_device {
110 struct list_head entry;
111 struct its_node *its;
112 struct event_lpi_map event_map;
113 void *itt;
114 u32 nr_ites;
115 u32 device_id;
116 };
117
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122
123 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
125
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 u32 event)
128 {
129 struct its_node *its = its_dev->its;
130
131 return its->collections + its_dev->event_map.col_map[event];
132 }
133
134 /*
135 * ITS command descriptors - parameters to be encoded in a command
136 * block.
137 */
138 struct its_cmd_desc {
139 union {
140 struct {
141 struct its_device *dev;
142 u32 event_id;
143 } its_inv_cmd;
144
145 struct {
146 struct its_device *dev;
147 u32 event_id;
148 } its_int_cmd;
149
150 struct {
151 struct its_device *dev;
152 int valid;
153 } its_mapd_cmd;
154
155 struct {
156 struct its_collection *col;
157 int valid;
158 } its_mapc_cmd;
159
160 struct {
161 struct its_device *dev;
162 u32 phys_id;
163 u32 event_id;
164 } its_mapti_cmd;
165
166 struct {
167 struct its_device *dev;
168 struct its_collection *col;
169 u32 event_id;
170 } its_movi_cmd;
171
172 struct {
173 struct its_device *dev;
174 u32 event_id;
175 } its_discard_cmd;
176
177 struct {
178 struct its_collection *col;
179 } its_invall_cmd;
180 };
181 };
182
183 /*
184 * The ITS command block, which is what the ITS actually parses.
185 */
186 struct its_cmd_block {
187 u64 raw_cmd[4];
188 };
189
190 #define ITS_CMD_QUEUE_SZ SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 struct its_cmd_desc *);
195
196 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
197 {
198 u64 mask = GENMASK_ULL(h, l);
199 *raw_cmd &= ~mask;
200 *raw_cmd |= (val << l) & mask;
201 }
202
203 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
204 {
205 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
206 }
207
208 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
209 {
210 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
211 }
212
213 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
214 {
215 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
216 }
217
218 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
219 {
220 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
221 }
222
223 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
224 {
225 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
226 }
227
228 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
229 {
230 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8);
231 }
232
233 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
234 {
235 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
236 }
237
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16);
241 }
242
243 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
244 {
245 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
246 }
247
248 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
249 {
250 /* Let's fixup BE commands */
251 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
252 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
253 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
254 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
255 }
256
257 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
258 struct its_cmd_desc *desc)
259 {
260 unsigned long itt_addr;
261 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
262
263 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
264 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
265
266 its_encode_cmd(cmd, GITS_CMD_MAPD);
267 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
268 its_encode_size(cmd, size - 1);
269 its_encode_itt(cmd, itt_addr);
270 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
271
272 its_fixup_cmd(cmd);
273
274 return NULL;
275 }
276
277 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
278 struct its_cmd_desc *desc)
279 {
280 its_encode_cmd(cmd, GITS_CMD_MAPC);
281 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
282 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
283 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
284
285 its_fixup_cmd(cmd);
286
287 return desc->its_mapc_cmd.col;
288 }
289
290 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
291 struct its_cmd_desc *desc)
292 {
293 struct its_collection *col;
294
295 col = dev_event_to_col(desc->its_mapti_cmd.dev,
296 desc->its_mapti_cmd.event_id);
297
298 its_encode_cmd(cmd, GITS_CMD_MAPTI);
299 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
300 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
301 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
302 its_encode_collection(cmd, col->col_id);
303
304 its_fixup_cmd(cmd);
305
306 return col;
307 }
308
309 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
310 struct its_cmd_desc *desc)
311 {
312 struct its_collection *col;
313
314 col = dev_event_to_col(desc->its_movi_cmd.dev,
315 desc->its_movi_cmd.event_id);
316
317 its_encode_cmd(cmd, GITS_CMD_MOVI);
318 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
319 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
320 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
321
322 its_fixup_cmd(cmd);
323
324 return col;
325 }
326
327 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
328 struct its_cmd_desc *desc)
329 {
330 struct its_collection *col;
331
332 col = dev_event_to_col(desc->its_discard_cmd.dev,
333 desc->its_discard_cmd.event_id);
334
335 its_encode_cmd(cmd, GITS_CMD_DISCARD);
336 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
337 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
338
339 its_fixup_cmd(cmd);
340
341 return col;
342 }
343
344 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
345 struct its_cmd_desc *desc)
346 {
347 struct its_collection *col;
348
349 col = dev_event_to_col(desc->its_inv_cmd.dev,
350 desc->its_inv_cmd.event_id);
351
352 its_encode_cmd(cmd, GITS_CMD_INV);
353 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
354 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
355
356 its_fixup_cmd(cmd);
357
358 return col;
359 }
360
361 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
362 struct its_cmd_desc *desc)
363 {
364 its_encode_cmd(cmd, GITS_CMD_INVALL);
365 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
366
367 its_fixup_cmd(cmd);
368
369 return NULL;
370 }
371
372 static u64 its_cmd_ptr_to_offset(struct its_node *its,
373 struct its_cmd_block *ptr)
374 {
375 return (ptr - its->cmd_base) * sizeof(*ptr);
376 }
377
378 static int its_queue_full(struct its_node *its)
379 {
380 int widx;
381 int ridx;
382
383 widx = its->cmd_write - its->cmd_base;
384 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
385
386 /* This is incredibly unlikely to happen, unless the ITS locks up. */
387 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
388 return 1;
389
390 return 0;
391 }
392
393 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
394 {
395 struct its_cmd_block *cmd;
396 u32 count = 1000000; /* 1s! */
397
398 while (its_queue_full(its)) {
399 count--;
400 if (!count) {
401 pr_err_ratelimited("ITS queue not draining\n");
402 return NULL;
403 }
404 cpu_relax();
405 udelay(1);
406 }
407
408 cmd = its->cmd_write++;
409
410 /* Handle queue wrapping */
411 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
412 its->cmd_write = its->cmd_base;
413
414 /* Clear command */
415 cmd->raw_cmd[0] = 0;
416 cmd->raw_cmd[1] = 0;
417 cmd->raw_cmd[2] = 0;
418 cmd->raw_cmd[3] = 0;
419
420 return cmd;
421 }
422
423 static struct its_cmd_block *its_post_commands(struct its_node *its)
424 {
425 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
426
427 writel_relaxed(wr, its->base + GITS_CWRITER);
428
429 return its->cmd_write;
430 }
431
432 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
433 {
434 /*
435 * Make sure the commands written to memory are observable by
436 * the ITS.
437 */
438 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
439 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
440 else
441 dsb(ishst);
442 }
443
444 static void its_wait_for_range_completion(struct its_node *its,
445 struct its_cmd_block *from,
446 struct its_cmd_block *to)
447 {
448 u64 rd_idx, from_idx, to_idx;
449 u32 count = 1000000; /* 1s! */
450
451 from_idx = its_cmd_ptr_to_offset(its, from);
452 to_idx = its_cmd_ptr_to_offset(its, to);
453
454 while (1) {
455 rd_idx = readl_relaxed(its->base + GITS_CREADR);
456 if (rd_idx >= to_idx || rd_idx < from_idx)
457 break;
458
459 count--;
460 if (!count) {
461 pr_err_ratelimited("ITS queue timeout\n");
462 return;
463 }
464 cpu_relax();
465 udelay(1);
466 }
467 }
468
469 static void its_send_single_command(struct its_node *its,
470 its_cmd_builder_t builder,
471 struct its_cmd_desc *desc)
472 {
473 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
474 struct its_collection *sync_col;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&its->lock, flags);
478
479 cmd = its_allocate_entry(its);
480 if (!cmd) { /* We're soooooo screewed... */
481 pr_err_ratelimited("ITS can't allocate, dropping command\n");
482 raw_spin_unlock_irqrestore(&its->lock, flags);
483 return;
484 }
485 sync_col = builder(cmd, desc);
486 its_flush_cmd(its, cmd);
487
488 if (sync_col) {
489 sync_cmd = its_allocate_entry(its);
490 if (!sync_cmd) {
491 pr_err_ratelimited("ITS can't SYNC, skipping\n");
492 goto post;
493 }
494 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
495 its_encode_target(sync_cmd, sync_col->target_address);
496 its_fixup_cmd(sync_cmd);
497 its_flush_cmd(its, sync_cmd);
498 }
499
500 post:
501 next_cmd = its_post_commands(its);
502 raw_spin_unlock_irqrestore(&its->lock, flags);
503
504 its_wait_for_range_completion(its, cmd, next_cmd);
505 }
506
507 static void its_send_inv(struct its_device *dev, u32 event_id)
508 {
509 struct its_cmd_desc desc;
510
511 desc.its_inv_cmd.dev = dev;
512 desc.its_inv_cmd.event_id = event_id;
513
514 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
515 }
516
517 static void its_send_mapd(struct its_device *dev, int valid)
518 {
519 struct its_cmd_desc desc;
520
521 desc.its_mapd_cmd.dev = dev;
522 desc.its_mapd_cmd.valid = !!valid;
523
524 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
525 }
526
527 static void its_send_mapc(struct its_node *its, struct its_collection *col,
528 int valid)
529 {
530 struct its_cmd_desc desc;
531
532 desc.its_mapc_cmd.col = col;
533 desc.its_mapc_cmd.valid = !!valid;
534
535 its_send_single_command(its, its_build_mapc_cmd, &desc);
536 }
537
538 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
539 {
540 struct its_cmd_desc desc;
541
542 desc.its_mapti_cmd.dev = dev;
543 desc.its_mapti_cmd.phys_id = irq_id;
544 desc.its_mapti_cmd.event_id = id;
545
546 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
547 }
548
549 static void its_send_movi(struct its_device *dev,
550 struct its_collection *col, u32 id)
551 {
552 struct its_cmd_desc desc;
553
554 desc.its_movi_cmd.dev = dev;
555 desc.its_movi_cmd.col = col;
556 desc.its_movi_cmd.event_id = id;
557
558 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
559 }
560
561 static void its_send_discard(struct its_device *dev, u32 id)
562 {
563 struct its_cmd_desc desc;
564
565 desc.its_discard_cmd.dev = dev;
566 desc.its_discard_cmd.event_id = id;
567
568 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
569 }
570
571 static void its_send_invall(struct its_node *its, struct its_collection *col)
572 {
573 struct its_cmd_desc desc;
574
575 desc.its_invall_cmd.col = col;
576
577 its_send_single_command(its, its_build_invall_cmd, &desc);
578 }
579
580 /*
581 * irqchip functions - assumes MSI, mostly.
582 */
583
584 static inline u32 its_get_event_id(struct irq_data *d)
585 {
586 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
587 return d->hwirq - its_dev->event_map.lpi_base;
588 }
589
590 static void lpi_set_config(struct irq_data *d, bool enable)
591 {
592 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
593 irq_hw_number_t hwirq = d->hwirq;
594 u32 id = its_get_event_id(d);
595 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
596
597 if (enable)
598 *cfg |= LPI_PROP_ENABLED;
599 else
600 *cfg &= ~LPI_PROP_ENABLED;
601
602 /*
603 * Make the above write visible to the redistributors.
604 * And yes, we're flushing exactly: One. Single. Byte.
605 * Humpf...
606 */
607 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
608 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
609 else
610 dsb(ishst);
611 its_send_inv(its_dev, id);
612 }
613
614 static void its_mask_irq(struct irq_data *d)
615 {
616 lpi_set_config(d, false);
617 }
618
619 static void its_unmask_irq(struct irq_data *d)
620 {
621 lpi_set_config(d, true);
622 }
623
624 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
625 bool force)
626 {
627 unsigned int cpu;
628 const struct cpumask *cpu_mask = cpu_online_mask;
629 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
630 struct its_collection *target_col;
631 u32 id = its_get_event_id(d);
632
633 /* lpi cannot be routed to a redistributor that is on a foreign node */
634 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
635 if (its_dev->its->numa_node >= 0) {
636 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
637 if (!cpumask_intersects(mask_val, cpu_mask))
638 return -EINVAL;
639 }
640 }
641
642 cpu = cpumask_any_and(mask_val, cpu_mask);
643
644 if (cpu >= nr_cpu_ids)
645 return -EINVAL;
646
647 target_col = &its_dev->its->collections[cpu];
648 its_send_movi(its_dev, target_col, id);
649 its_dev->event_map.col_map[id] = cpu;
650
651 return IRQ_SET_MASK_OK_DONE;
652 }
653
654 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
655 {
656 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
657 struct its_node *its;
658 u64 addr;
659
660 its = its_dev->its;
661 addr = its->phys_base + GITS_TRANSLATER;
662
663 msg->address_lo = lower_32_bits(addr);
664 msg->address_hi = upper_32_bits(addr);
665 msg->data = its_get_event_id(d);
666
667 iommu_dma_map_msi_msg(d->irq, msg);
668 }
669
670 static struct irq_chip its_irq_chip = {
671 .name = "ITS",
672 .irq_mask = its_mask_irq,
673 .irq_unmask = its_unmask_irq,
674 .irq_eoi = irq_chip_eoi_parent,
675 .irq_set_affinity = its_set_affinity,
676 .irq_compose_msi_msg = its_irq_compose_msi_msg,
677 };
678
679 /*
680 * How we allocate LPIs:
681 *
682 * The GIC has id_bits bits for interrupt identifiers. From there, we
683 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
684 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
685 * bits to the right.
686 *
687 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
688 */
689 #define IRQS_PER_CHUNK_SHIFT 5
690 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
691
692 static unsigned long *lpi_bitmap;
693 static u32 lpi_chunks;
694 static DEFINE_SPINLOCK(lpi_lock);
695
696 static int its_lpi_to_chunk(int lpi)
697 {
698 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
699 }
700
701 static int its_chunk_to_lpi(int chunk)
702 {
703 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
704 }
705
706 static int __init its_lpi_init(u32 id_bits)
707 {
708 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
709
710 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
711 GFP_KERNEL);
712 if (!lpi_bitmap) {
713 lpi_chunks = 0;
714 return -ENOMEM;
715 }
716
717 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
718 return 0;
719 }
720
721 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
722 {
723 unsigned long *bitmap = NULL;
724 int chunk_id;
725 int nr_chunks;
726 int i;
727
728 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
729
730 spin_lock(&lpi_lock);
731
732 do {
733 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
734 0, nr_chunks, 0);
735 if (chunk_id < lpi_chunks)
736 break;
737
738 nr_chunks--;
739 } while (nr_chunks > 0);
740
741 if (!nr_chunks)
742 goto out;
743
744 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
745 GFP_ATOMIC);
746 if (!bitmap)
747 goto out;
748
749 for (i = 0; i < nr_chunks; i++)
750 set_bit(chunk_id + i, lpi_bitmap);
751
752 *base = its_chunk_to_lpi(chunk_id);
753 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
754
755 out:
756 spin_unlock(&lpi_lock);
757
758 if (!bitmap)
759 *base = *nr_ids = 0;
760
761 return bitmap;
762 }
763
764 static void its_lpi_free(struct event_lpi_map *map)
765 {
766 int base = map->lpi_base;
767 int nr_ids = map->nr_lpis;
768 int lpi;
769
770 spin_lock(&lpi_lock);
771
772 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
773 int chunk = its_lpi_to_chunk(lpi);
774 BUG_ON(chunk > lpi_chunks);
775 if (test_bit(chunk, lpi_bitmap)) {
776 clear_bit(chunk, lpi_bitmap);
777 } else {
778 pr_err("Bad LPI chunk %d\n", chunk);
779 }
780 }
781
782 spin_unlock(&lpi_lock);
783
784 kfree(map->lpi_map);
785 kfree(map->col_map);
786 }
787
788 /*
789 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
790 * deal with (one configuration byte per interrupt). PENDBASE has to
791 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
792 */
793 #define LPI_PROPBASE_SZ SZ_64K
794 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
795
796 /*
797 * This is how many bits of ID we need, including the useless ones.
798 */
799 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
800
801 #define LPI_PROP_DEFAULT_PRIO 0xa0
802
803 static int __init its_alloc_lpi_tables(void)
804 {
805 phys_addr_t paddr;
806
807 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
808 get_order(LPI_PROPBASE_SZ));
809 if (!gic_rdists->prop_page) {
810 pr_err("Failed to allocate PROPBASE\n");
811 return -ENOMEM;
812 }
813
814 paddr = page_to_phys(gic_rdists->prop_page);
815 pr_info("GIC: using LPI property table @%pa\n", &paddr);
816
817 /* Priority 0xa0, Group-1, disabled */
818 memset(page_address(gic_rdists->prop_page),
819 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
820 LPI_PROPBASE_SZ);
821
822 /* Make sure the GIC will observe the written configuration */
823 gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
824
825 return 0;
826 }
827
828 static const char *its_base_type_string[] = {
829 [GITS_BASER_TYPE_DEVICE] = "Devices",
830 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
831 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
832 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
833 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
834 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
835 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
836 };
837
838 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
839 {
840 u32 idx = baser - its->tables;
841
842 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
843 }
844
845 static void its_write_baser(struct its_node *its, struct its_baser *baser,
846 u64 val)
847 {
848 u32 idx = baser - its->tables;
849
850 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
851 baser->val = its_read_baser(its, baser);
852 }
853
854 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
855 u64 cache, u64 shr, u32 psz, u32 order,
856 bool indirect)
857 {
858 u64 val = its_read_baser(its, baser);
859 u64 esz = GITS_BASER_ENTRY_SIZE(val);
860 u64 type = GITS_BASER_TYPE(val);
861 u32 alloc_pages;
862 void *base;
863 u64 tmp;
864
865 retry_alloc_baser:
866 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
867 if (alloc_pages > GITS_BASER_PAGES_MAX) {
868 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
869 &its->phys_base, its_base_type_string[type],
870 alloc_pages, GITS_BASER_PAGES_MAX);
871 alloc_pages = GITS_BASER_PAGES_MAX;
872 order = get_order(GITS_BASER_PAGES_MAX * psz);
873 }
874
875 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
876 if (!base)
877 return -ENOMEM;
878
879 retry_baser:
880 val = (virt_to_phys(base) |
881 (type << GITS_BASER_TYPE_SHIFT) |
882 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
883 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
884 cache |
885 shr |
886 GITS_BASER_VALID);
887
888 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
889
890 switch (psz) {
891 case SZ_4K:
892 val |= GITS_BASER_PAGE_SIZE_4K;
893 break;
894 case SZ_16K:
895 val |= GITS_BASER_PAGE_SIZE_16K;
896 break;
897 case SZ_64K:
898 val |= GITS_BASER_PAGE_SIZE_64K;
899 break;
900 }
901
902 its_write_baser(its, baser, val);
903 tmp = baser->val;
904
905 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
906 /*
907 * Shareability didn't stick. Just use
908 * whatever the read reported, which is likely
909 * to be the only thing this redistributor
910 * supports. If that's zero, make it
911 * non-cacheable as well.
912 */
913 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
914 if (!shr) {
915 cache = GITS_BASER_nC;
916 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
917 }
918 goto retry_baser;
919 }
920
921 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
922 /*
923 * Page size didn't stick. Let's try a smaller
924 * size and retry. If we reach 4K, then
925 * something is horribly wrong...
926 */
927 free_pages((unsigned long)base, order);
928 baser->base = NULL;
929
930 switch (psz) {
931 case SZ_16K:
932 psz = SZ_4K;
933 goto retry_alloc_baser;
934 case SZ_64K:
935 psz = SZ_16K;
936 goto retry_alloc_baser;
937 }
938 }
939
940 if (val != tmp) {
941 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
942 &its->phys_base, its_base_type_string[type],
943 val, tmp);
944 free_pages((unsigned long)base, order);
945 return -ENXIO;
946 }
947
948 baser->order = order;
949 baser->base = base;
950 baser->psz = psz;
951 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
952
953 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
954 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
955 its_base_type_string[type],
956 (unsigned long)virt_to_phys(base),
957 indirect ? "indirect" : "flat", (int)esz,
958 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
959
960 return 0;
961 }
962
963 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
964 u32 psz, u32 *order)
965 {
966 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
967 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
968 u32 ids = its->device_ids;
969 u32 new_order = *order;
970 bool indirect = false;
971
972 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
973 if ((esz << ids) > (psz * 2)) {
974 /*
975 * Find out whether hw supports a single or two-level table by
976 * table by reading bit at offset '62' after writing '1' to it.
977 */
978 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
979 indirect = !!(baser->val & GITS_BASER_INDIRECT);
980
981 if (indirect) {
982 /*
983 * The size of the lvl2 table is equal to ITS page size
984 * which is 'psz'. For computing lvl1 table size,
985 * subtract ID bits that sparse lvl2 table from 'ids'
986 * which is reported by ITS hardware times lvl1 table
987 * entry size.
988 */
989 ids -= ilog2(psz / (int)esz);
990 esz = GITS_LVL1_ENTRY_SIZE;
991 }
992 }
993
994 /*
995 * Allocate as many entries as required to fit the
996 * range of device IDs that the ITS can grok... The ID
997 * space being incredibly sparse, this results in a
998 * massive waste of memory if two-level device table
999 * feature is not supported by hardware.
1000 */
1001 new_order = max_t(u32, get_order(esz << ids), new_order);
1002 if (new_order >= MAX_ORDER) {
1003 new_order = MAX_ORDER - 1;
1004 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1005 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1006 &its->phys_base, its->device_ids, ids);
1007 }
1008
1009 *order = new_order;
1010
1011 return indirect;
1012 }
1013
1014 static void its_free_tables(struct its_node *its)
1015 {
1016 int i;
1017
1018 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1019 if (its->tables[i].base) {
1020 free_pages((unsigned long)its->tables[i].base,
1021 its->tables[i].order);
1022 its->tables[i].base = NULL;
1023 }
1024 }
1025 }
1026
1027 static int its_alloc_tables(struct its_node *its)
1028 {
1029 u64 typer = gic_read_typer(its->base + GITS_TYPER);
1030 u32 ids = GITS_TYPER_DEVBITS(typer);
1031 u64 shr = GITS_BASER_InnerShareable;
1032 u64 cache = GITS_BASER_RaWaWb;
1033 u32 psz = SZ_64K;
1034 int err, i;
1035
1036 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1037 /*
1038 * erratum 22375: only alloc 8MB table size
1039 * erratum 24313: ignore memory access type
1040 */
1041 cache = GITS_BASER_nCnB;
1042 ids = 0x14; /* 20 bits, 8MB */
1043 }
1044
1045 its->device_ids = ids;
1046
1047 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1048 struct its_baser *baser = its->tables + i;
1049 u64 val = its_read_baser(its, baser);
1050 u64 type = GITS_BASER_TYPE(val);
1051 u32 order = get_order(psz);
1052 bool indirect = false;
1053
1054 if (type == GITS_BASER_TYPE_NONE)
1055 continue;
1056
1057 if (type == GITS_BASER_TYPE_DEVICE)
1058 indirect = its_parse_baser_device(its, baser, psz, &order);
1059
1060 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1061 if (err < 0) {
1062 its_free_tables(its);
1063 return err;
1064 }
1065
1066 /* Update settings which will be used for next BASERn */
1067 psz = baser->psz;
1068 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1069 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1070 }
1071
1072 return 0;
1073 }
1074
1075 static int its_alloc_collections(struct its_node *its)
1076 {
1077 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1078 GFP_KERNEL);
1079 if (!its->collections)
1080 return -ENOMEM;
1081
1082 return 0;
1083 }
1084
1085 static void its_cpu_init_lpis(void)
1086 {
1087 void __iomem *rbase = gic_data_rdist_rd_base();
1088 struct page *pend_page;
1089 u64 val, tmp;
1090
1091 /* If we didn't allocate the pending table yet, do it now */
1092 pend_page = gic_data_rdist()->pend_page;
1093 if (!pend_page) {
1094 phys_addr_t paddr;
1095 /*
1096 * The pending pages have to be at least 64kB aligned,
1097 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1098 */
1099 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1100 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1101 if (!pend_page) {
1102 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1103 smp_processor_id());
1104 return;
1105 }
1106
1107 /* Make sure the GIC will observe the zero-ed page */
1108 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1109
1110 paddr = page_to_phys(pend_page);
1111 pr_info("CPU%d: using LPI pending table @%pa\n",
1112 smp_processor_id(), &paddr);
1113 gic_data_rdist()->pend_page = pend_page;
1114 }
1115
1116 /* Disable LPIs */
1117 val = readl_relaxed(rbase + GICR_CTLR);
1118 val &= ~GICR_CTLR_ENABLE_LPIS;
1119 writel_relaxed(val, rbase + GICR_CTLR);
1120
1121 /*
1122 * Make sure any change to the table is observable by the GIC.
1123 */
1124 dsb(sy);
1125
1126 /* set PROPBASE */
1127 val = (page_to_phys(gic_rdists->prop_page) |
1128 GICR_PROPBASER_InnerShareable |
1129 GICR_PROPBASER_RaWaWb |
1130 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1131
1132 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1133 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1134
1135 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1136 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1137 /*
1138 * The HW reports non-shareable, we must
1139 * remove the cacheability attributes as
1140 * well.
1141 */
1142 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1143 GICR_PROPBASER_CACHEABILITY_MASK);
1144 val |= GICR_PROPBASER_nC;
1145 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1146 }
1147 pr_info_once("GIC: using cache flushing for LPI property table\n");
1148 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1149 }
1150
1151 /* set PENDBASE */
1152 val = (page_to_phys(pend_page) |
1153 GICR_PENDBASER_InnerShareable |
1154 GICR_PENDBASER_RaWaWb);
1155
1156 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1157 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1158
1159 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1160 /*
1161 * The HW reports non-shareable, we must remove the
1162 * cacheability attributes as well.
1163 */
1164 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1165 GICR_PENDBASER_CACHEABILITY_MASK);
1166 val |= GICR_PENDBASER_nC;
1167 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1168 }
1169
1170 /* Enable LPIs */
1171 val = readl_relaxed(rbase + GICR_CTLR);
1172 val |= GICR_CTLR_ENABLE_LPIS;
1173 writel_relaxed(val, rbase + GICR_CTLR);
1174
1175 /* Make sure the GIC has seen the above */
1176 dsb(sy);
1177 }
1178
1179 static void its_cpu_init_collection(void)
1180 {
1181 struct its_node *its;
1182 int cpu;
1183
1184 spin_lock(&its_lock);
1185 cpu = smp_processor_id();
1186
1187 list_for_each_entry(its, &its_nodes, entry) {
1188 u64 target;
1189
1190 /* avoid cross node collections and its mapping */
1191 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1192 struct device_node *cpu_node;
1193
1194 cpu_node = of_get_cpu_node(cpu, NULL);
1195 if (its->numa_node != NUMA_NO_NODE &&
1196 its->numa_node != of_node_to_nid(cpu_node))
1197 continue;
1198 }
1199
1200 /*
1201 * We now have to bind each collection to its target
1202 * redistributor.
1203 */
1204 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1205 /*
1206 * This ITS wants the physical address of the
1207 * redistributor.
1208 */
1209 target = gic_data_rdist()->phys_base;
1210 } else {
1211 /*
1212 * This ITS wants a linear CPU number.
1213 */
1214 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1215 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1216 }
1217
1218 /* Perform collection mapping */
1219 its->collections[cpu].target_address = target;
1220 its->collections[cpu].col_id = cpu;
1221
1222 its_send_mapc(its, &its->collections[cpu], 1);
1223 its_send_invall(its, &its->collections[cpu]);
1224 }
1225
1226 spin_unlock(&its_lock);
1227 }
1228
1229 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1230 {
1231 struct its_device *its_dev = NULL, *tmp;
1232 unsigned long flags;
1233
1234 raw_spin_lock_irqsave(&its->lock, flags);
1235
1236 list_for_each_entry(tmp, &its->its_device_list, entry) {
1237 if (tmp->device_id == dev_id) {
1238 its_dev = tmp;
1239 break;
1240 }
1241 }
1242
1243 raw_spin_unlock_irqrestore(&its->lock, flags);
1244
1245 return its_dev;
1246 }
1247
1248 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1249 {
1250 int i;
1251
1252 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1253 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1254 return &its->tables[i];
1255 }
1256
1257 return NULL;
1258 }
1259
1260 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1261 {
1262 struct its_baser *baser;
1263 struct page *page;
1264 u32 esz, idx;
1265 __le64 *table;
1266
1267 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1268
1269 /* Don't allow device id that exceeds ITS hardware limit */
1270 if (!baser)
1271 return (ilog2(dev_id) < its->device_ids);
1272
1273 /* Don't allow device id that exceeds single, flat table limit */
1274 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1275 if (!(baser->val & GITS_BASER_INDIRECT))
1276 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1277
1278 /* Compute 1st level table index & check if that exceeds table limit */
1279 idx = dev_id >> ilog2(baser->psz / esz);
1280 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1281 return false;
1282
1283 table = baser->base;
1284
1285 /* Allocate memory for 2nd level table */
1286 if (!table[idx]) {
1287 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1288 if (!page)
1289 return false;
1290
1291 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1292 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1293 gic_flush_dcache_to_poc(page_address(page), baser->psz);
1294
1295 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1296
1297 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1298 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1299 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1300
1301 /* Ensure updated table contents are visible to ITS hardware */
1302 dsb(sy);
1303 }
1304
1305 return true;
1306 }
1307
1308 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1309 int nvecs)
1310 {
1311 struct its_device *dev;
1312 unsigned long *lpi_map;
1313 unsigned long flags;
1314 u16 *col_map = NULL;
1315 void *itt;
1316 int lpi_base;
1317 int nr_lpis;
1318 int nr_ites;
1319 int sz;
1320
1321 if (!its_alloc_device_table(its, dev_id))
1322 return NULL;
1323
1324 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1325 /*
1326 * At least one bit of EventID is being used, hence a minimum
1327 * of two entries. No, the architecture doesn't let you
1328 * express an ITT with a single entry.
1329 */
1330 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1331 sz = nr_ites * its->ite_size;
1332 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1333 itt = kzalloc(sz, GFP_KERNEL);
1334 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1335 if (lpi_map)
1336 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1337
1338 if (!dev || !itt || !lpi_map || !col_map) {
1339 kfree(dev);
1340 kfree(itt);
1341 kfree(lpi_map);
1342 kfree(col_map);
1343 return NULL;
1344 }
1345
1346 gic_flush_dcache_to_poc(itt, sz);
1347
1348 dev->its = its;
1349 dev->itt = itt;
1350 dev->nr_ites = nr_ites;
1351 dev->event_map.lpi_map = lpi_map;
1352 dev->event_map.col_map = col_map;
1353 dev->event_map.lpi_base = lpi_base;
1354 dev->event_map.nr_lpis = nr_lpis;
1355 dev->device_id = dev_id;
1356 INIT_LIST_HEAD(&dev->entry);
1357
1358 raw_spin_lock_irqsave(&its->lock, flags);
1359 list_add(&dev->entry, &its->its_device_list);
1360 raw_spin_unlock_irqrestore(&its->lock, flags);
1361
1362 /* Map device to its ITT */
1363 its_send_mapd(dev, 1);
1364
1365 return dev;
1366 }
1367
1368 static void its_free_device(struct its_device *its_dev)
1369 {
1370 unsigned long flags;
1371
1372 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1373 list_del(&its_dev->entry);
1374 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1375 kfree(its_dev->itt);
1376 kfree(its_dev);
1377 }
1378
1379 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1380 {
1381 int idx;
1382
1383 idx = find_first_zero_bit(dev->event_map.lpi_map,
1384 dev->event_map.nr_lpis);
1385 if (idx == dev->event_map.nr_lpis)
1386 return -ENOSPC;
1387
1388 *hwirq = dev->event_map.lpi_base + idx;
1389 set_bit(idx, dev->event_map.lpi_map);
1390
1391 return 0;
1392 }
1393
1394 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1395 int nvec, msi_alloc_info_t *info)
1396 {
1397 struct its_node *its;
1398 struct its_device *its_dev;
1399 struct msi_domain_info *msi_info;
1400 u32 dev_id;
1401
1402 /*
1403 * We ignore "dev" entierely, and rely on the dev_id that has
1404 * been passed via the scratchpad. This limits this domain's
1405 * usefulness to upper layers that definitely know that they
1406 * are built on top of the ITS.
1407 */
1408 dev_id = info->scratchpad[0].ul;
1409
1410 msi_info = msi_get_domain_info(domain);
1411 its = msi_info->data;
1412
1413 its_dev = its_find_device(its, dev_id);
1414 if (its_dev) {
1415 /*
1416 * We already have seen this ID, probably through
1417 * another alias (PCI bridge of some sort). No need to
1418 * create the device.
1419 */
1420 pr_debug("Reusing ITT for devID %x\n", dev_id);
1421 goto out;
1422 }
1423
1424 its_dev = its_create_device(its, dev_id, nvec);
1425 if (!its_dev)
1426 return -ENOMEM;
1427
1428 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1429 out:
1430 info->scratchpad[0].ptr = its_dev;
1431 return 0;
1432 }
1433
1434 static struct msi_domain_ops its_msi_domain_ops = {
1435 .msi_prepare = its_msi_prepare,
1436 };
1437
1438 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1439 unsigned int virq,
1440 irq_hw_number_t hwirq)
1441 {
1442 struct irq_fwspec fwspec;
1443
1444 if (irq_domain_get_of_node(domain->parent)) {
1445 fwspec.fwnode = domain->parent->fwnode;
1446 fwspec.param_count = 3;
1447 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1448 fwspec.param[1] = hwirq;
1449 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1450 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1451 fwspec.fwnode = domain->parent->fwnode;
1452 fwspec.param_count = 2;
1453 fwspec.param[0] = hwirq;
1454 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1455 } else {
1456 return -EINVAL;
1457 }
1458
1459 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1460 }
1461
1462 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1463 unsigned int nr_irqs, void *args)
1464 {
1465 msi_alloc_info_t *info = args;
1466 struct its_device *its_dev = info->scratchpad[0].ptr;
1467 irq_hw_number_t hwirq;
1468 int err;
1469 int i;
1470
1471 for (i = 0; i < nr_irqs; i++) {
1472 err = its_alloc_device_irq(its_dev, &hwirq);
1473 if (err)
1474 return err;
1475
1476 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1477 if (err)
1478 return err;
1479
1480 irq_domain_set_hwirq_and_chip(domain, virq + i,
1481 hwirq, &its_irq_chip, its_dev);
1482 pr_debug("ID:%d pID:%d vID:%d\n",
1483 (int)(hwirq - its_dev->event_map.lpi_base),
1484 (int) hwirq, virq + i);
1485 }
1486
1487 return 0;
1488 }
1489
1490 static void its_irq_domain_activate(struct irq_domain *domain,
1491 struct irq_data *d)
1492 {
1493 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1494 u32 event = its_get_event_id(d);
1495 const struct cpumask *cpu_mask = cpu_online_mask;
1496
1497 /* get the cpu_mask of local node */
1498 if (its_dev->its->numa_node >= 0)
1499 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1500
1501 /* Bind the LPI to the first possible CPU */
1502 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1503
1504 /* Map the GIC IRQ and event to the device */
1505 its_send_mapti(its_dev, d->hwirq, event);
1506 }
1507
1508 static void its_irq_domain_deactivate(struct irq_domain *domain,
1509 struct irq_data *d)
1510 {
1511 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1512 u32 event = its_get_event_id(d);
1513
1514 /* Stop the delivery of interrupts */
1515 its_send_discard(its_dev, event);
1516 }
1517
1518 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1519 unsigned int nr_irqs)
1520 {
1521 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1522 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1523 int i;
1524
1525 for (i = 0; i < nr_irqs; i++) {
1526 struct irq_data *data = irq_domain_get_irq_data(domain,
1527 virq + i);
1528 u32 event = its_get_event_id(data);
1529
1530 /* Mark interrupt index as unused */
1531 clear_bit(event, its_dev->event_map.lpi_map);
1532
1533 /* Nuke the entry in the domain */
1534 irq_domain_reset_irq_data(data);
1535 }
1536
1537 /* If all interrupts have been freed, start mopping the floor */
1538 if (bitmap_empty(its_dev->event_map.lpi_map,
1539 its_dev->event_map.nr_lpis)) {
1540 its_lpi_free(&its_dev->event_map);
1541
1542 /* Unmap device/itt */
1543 its_send_mapd(its_dev, 0);
1544 its_free_device(its_dev);
1545 }
1546
1547 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1548 }
1549
1550 static const struct irq_domain_ops its_domain_ops = {
1551 .alloc = its_irq_domain_alloc,
1552 .free = its_irq_domain_free,
1553 .activate = its_irq_domain_activate,
1554 .deactivate = its_irq_domain_deactivate,
1555 };
1556
1557 static int its_force_quiescent(void __iomem *base)
1558 {
1559 u32 count = 1000000; /* 1s */
1560 u32 val;
1561
1562 val = readl_relaxed(base + GITS_CTLR);
1563 /*
1564 * GIC architecture specification requires the ITS to be both
1565 * disabled and quiescent for writes to GITS_BASER<n> or
1566 * GITS_CBASER to not have UNPREDICTABLE results.
1567 */
1568 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1569 return 0;
1570
1571 /* Disable the generation of all interrupts to this ITS */
1572 val &= ~GITS_CTLR_ENABLE;
1573 writel_relaxed(val, base + GITS_CTLR);
1574
1575 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1576 while (1) {
1577 val = readl_relaxed(base + GITS_CTLR);
1578 if (val & GITS_CTLR_QUIESCENT)
1579 return 0;
1580
1581 count--;
1582 if (!count)
1583 return -EBUSY;
1584
1585 cpu_relax();
1586 udelay(1);
1587 }
1588 }
1589
1590 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1591 {
1592 struct its_node *its = data;
1593
1594 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1595 }
1596
1597 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1598 {
1599 struct its_node *its = data;
1600
1601 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1602 }
1603
1604 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
1605 {
1606 struct its_node *its = data;
1607
1608 /* On QDF2400, the size of the ITE is 16Bytes */
1609 its->ite_size = 16;
1610 }
1611
1612 static const struct gic_quirk its_quirks[] = {
1613 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1614 {
1615 .desc = "ITS: Cavium errata 22375, 24313",
1616 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1617 .mask = 0xffff0fff,
1618 .init = its_enable_quirk_cavium_22375,
1619 },
1620 #endif
1621 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1622 {
1623 .desc = "ITS: Cavium erratum 23144",
1624 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1625 .mask = 0xffff0fff,
1626 .init = its_enable_quirk_cavium_23144,
1627 },
1628 #endif
1629 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
1630 {
1631 .desc = "ITS: QDF2400 erratum 0065",
1632 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
1633 .mask = 0xffffffff,
1634 .init = its_enable_quirk_qdf2400_e0065,
1635 },
1636 #endif
1637 {
1638 }
1639 };
1640
1641 static void its_enable_quirks(struct its_node *its)
1642 {
1643 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1644
1645 gic_enable_quirks(iidr, its_quirks, its);
1646 }
1647
1648 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1649 {
1650 struct irq_domain *inner_domain;
1651 struct msi_domain_info *info;
1652
1653 info = kzalloc(sizeof(*info), GFP_KERNEL);
1654 if (!info)
1655 return -ENOMEM;
1656
1657 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1658 if (!inner_domain) {
1659 kfree(info);
1660 return -ENOMEM;
1661 }
1662
1663 inner_domain->parent = its_parent;
1664 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1665 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
1666 info->ops = &its_msi_domain_ops;
1667 info->data = its;
1668 inner_domain->host_data = info;
1669
1670 return 0;
1671 }
1672
1673 static int __init its_probe_one(struct resource *res,
1674 struct fwnode_handle *handle, int numa_node)
1675 {
1676 struct its_node *its;
1677 void __iomem *its_base;
1678 u32 val;
1679 u64 baser, tmp;
1680 int err;
1681
1682 its_base = ioremap(res->start, resource_size(res));
1683 if (!its_base) {
1684 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1685 return -ENOMEM;
1686 }
1687
1688 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1689 if (val != 0x30 && val != 0x40) {
1690 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1691 err = -ENODEV;
1692 goto out_unmap;
1693 }
1694
1695 err = its_force_quiescent(its_base);
1696 if (err) {
1697 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1698 goto out_unmap;
1699 }
1700
1701 pr_info("ITS %pR\n", res);
1702
1703 its = kzalloc(sizeof(*its), GFP_KERNEL);
1704 if (!its) {
1705 err = -ENOMEM;
1706 goto out_unmap;
1707 }
1708
1709 raw_spin_lock_init(&its->lock);
1710 INIT_LIST_HEAD(&its->entry);
1711 INIT_LIST_HEAD(&its->its_device_list);
1712 its->base = its_base;
1713 its->phys_base = res->start;
1714 its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1715 its->numa_node = numa_node;
1716
1717 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1718 get_order(ITS_CMD_QUEUE_SZ));
1719 if (!its->cmd_base) {
1720 err = -ENOMEM;
1721 goto out_free_its;
1722 }
1723 its->cmd_write = its->cmd_base;
1724
1725 its_enable_quirks(its);
1726
1727 err = its_alloc_tables(its);
1728 if (err)
1729 goto out_free_cmd;
1730
1731 err = its_alloc_collections(its);
1732 if (err)
1733 goto out_free_tables;
1734
1735 baser = (virt_to_phys(its->cmd_base) |
1736 GITS_CBASER_RaWaWb |
1737 GITS_CBASER_InnerShareable |
1738 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1739 GITS_CBASER_VALID);
1740
1741 gits_write_cbaser(baser, its->base + GITS_CBASER);
1742 tmp = gits_read_cbaser(its->base + GITS_CBASER);
1743
1744 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1745 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1746 /*
1747 * The HW reports non-shareable, we must
1748 * remove the cacheability attributes as
1749 * well.
1750 */
1751 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1752 GITS_CBASER_CACHEABILITY_MASK);
1753 baser |= GITS_CBASER_nC;
1754 gits_write_cbaser(baser, its->base + GITS_CBASER);
1755 }
1756 pr_info("ITS: using cache flushing for cmd queue\n");
1757 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1758 }
1759
1760 gits_write_cwriter(0, its->base + GITS_CWRITER);
1761 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1762
1763 err = its_init_domain(handle, its);
1764 if (err)
1765 goto out_free_tables;
1766
1767 spin_lock(&its_lock);
1768 list_add(&its->entry, &its_nodes);
1769 spin_unlock(&its_lock);
1770
1771 return 0;
1772
1773 out_free_tables:
1774 its_free_tables(its);
1775 out_free_cmd:
1776 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
1777 out_free_its:
1778 kfree(its);
1779 out_unmap:
1780 iounmap(its_base);
1781 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1782 return err;
1783 }
1784
1785 static bool gic_rdists_supports_plpis(void)
1786 {
1787 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1788 }
1789
1790 int its_cpu_init(void)
1791 {
1792 if (!list_empty(&its_nodes)) {
1793 if (!gic_rdists_supports_plpis()) {
1794 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1795 return -ENXIO;
1796 }
1797 its_cpu_init_lpis();
1798 its_cpu_init_collection();
1799 }
1800
1801 return 0;
1802 }
1803
1804 static struct of_device_id its_device_id[] = {
1805 { .compatible = "arm,gic-v3-its", },
1806 {},
1807 };
1808
1809 static int __init its_of_probe(struct device_node *node)
1810 {
1811 struct device_node *np;
1812 struct resource res;
1813
1814 for (np = of_find_matching_node(node, its_device_id); np;
1815 np = of_find_matching_node(np, its_device_id)) {
1816 if (!of_property_read_bool(np, "msi-controller")) {
1817 pr_warn("%s: no msi-controller property, ITS ignored\n",
1818 np->full_name);
1819 continue;
1820 }
1821
1822 if (of_address_to_resource(np, 0, &res)) {
1823 pr_warn("%s: no regs?\n", np->full_name);
1824 continue;
1825 }
1826
1827 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1828 }
1829 return 0;
1830 }
1831
1832 #ifdef CONFIG_ACPI
1833
1834 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1835
1836 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1837 const unsigned long end)
1838 {
1839 struct acpi_madt_generic_translator *its_entry;
1840 struct fwnode_handle *dom_handle;
1841 struct resource res;
1842 int err;
1843
1844 its_entry = (struct acpi_madt_generic_translator *)header;
1845 memset(&res, 0, sizeof(res));
1846 res.start = its_entry->base_address;
1847 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1848 res.flags = IORESOURCE_MEM;
1849
1850 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1851 if (!dom_handle) {
1852 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1853 &res.start);
1854 return -ENOMEM;
1855 }
1856
1857 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1858 if (err) {
1859 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1860 &res.start, its_entry->translation_id);
1861 goto dom_err;
1862 }
1863
1864 err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1865 if (!err)
1866 return 0;
1867
1868 iort_deregister_domain_token(its_entry->translation_id);
1869 dom_err:
1870 irq_domain_free_fwnode(dom_handle);
1871 return err;
1872 }
1873
1874 static void __init its_acpi_probe(void)
1875 {
1876 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1877 gic_acpi_parse_madt_its, 0);
1878 }
1879 #else
1880 static void __init its_acpi_probe(void) { }
1881 #endif
1882
1883 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1884 struct irq_domain *parent_domain)
1885 {
1886 struct device_node *of_node;
1887
1888 its_parent = parent_domain;
1889 of_node = to_of_node(handle);
1890 if (of_node)
1891 its_of_probe(of_node);
1892 else
1893 its_acpi_probe();
1894
1895 if (list_empty(&its_nodes)) {
1896 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1897 return -ENXIO;
1898 }
1899
1900 gic_rdists = rdists;
1901 its_alloc_lpi_tables();
1902 its_lpi_init(rdists->id_bits);
1903
1904 return 0;
1905 }