]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/irqchip/irq-gic-v3-its.c
irqchip/gicv3-its: Fix memory leak in its_free_tables()
[mirror_ubuntu-artful-kernel.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
46
47 /*
48 * Collection structure - just an ID, and a redistributor address to
49 * ping. We use one per CPU as a bag of interrupts assigned to this
50 * CPU.
51 */
52 struct its_collection {
53 u64 target_address;
54 u16 col_id;
55 };
56
57 /*
58 * The ITS structure - contains most of the infrastructure, with the
59 * top-level MSI domain, the command queue, the collections, and the
60 * list of devices writing to it.
61 */
62 struct its_node {
63 raw_spinlock_t lock;
64 struct list_head entry;
65 void __iomem *base;
66 unsigned long phys_base;
67 struct its_cmd_block *cmd_base;
68 struct its_cmd_block *cmd_write;
69 struct {
70 void *base;
71 u32 order;
72 } tables[GITS_BASER_NR_REGS];
73 struct its_collection *collections;
74 struct list_head its_device_list;
75 u64 flags;
76 u32 ite_size;
77 };
78
79 #define ITS_ITT_ALIGN SZ_256
80
81 struct event_lpi_map {
82 unsigned long *lpi_map;
83 u16 *col_map;
84 irq_hw_number_t lpi_base;
85 int nr_lpis;
86 };
87
88 /*
89 * The ITS view of a device - belongs to an ITS, a collection, owns an
90 * interrupt translation table, and a list of interrupts.
91 */
92 struct its_device {
93 struct list_head entry;
94 struct its_node *its;
95 struct event_lpi_map event_map;
96 void *itt;
97 u32 nr_ites;
98 u32 device_id;
99 };
100
101 static LIST_HEAD(its_nodes);
102 static DEFINE_SPINLOCK(its_lock);
103 static struct device_node *gic_root_node;
104 static struct rdists *gic_rdists;
105
106 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
107 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
108
109 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
110 u32 event)
111 {
112 struct its_node *its = its_dev->its;
113
114 return its->collections + its_dev->event_map.col_map[event];
115 }
116
117 /*
118 * ITS command descriptors - parameters to be encoded in a command
119 * block.
120 */
121 struct its_cmd_desc {
122 union {
123 struct {
124 struct its_device *dev;
125 u32 event_id;
126 } its_inv_cmd;
127
128 struct {
129 struct its_device *dev;
130 u32 event_id;
131 } its_int_cmd;
132
133 struct {
134 struct its_device *dev;
135 int valid;
136 } its_mapd_cmd;
137
138 struct {
139 struct its_collection *col;
140 int valid;
141 } its_mapc_cmd;
142
143 struct {
144 struct its_device *dev;
145 u32 phys_id;
146 u32 event_id;
147 } its_mapvi_cmd;
148
149 struct {
150 struct its_device *dev;
151 struct its_collection *col;
152 u32 event_id;
153 } its_movi_cmd;
154
155 struct {
156 struct its_device *dev;
157 u32 event_id;
158 } its_discard_cmd;
159
160 struct {
161 struct its_collection *col;
162 } its_invall_cmd;
163 };
164 };
165
166 /*
167 * The ITS command block, which is what the ITS actually parses.
168 */
169 struct its_cmd_block {
170 u64 raw_cmd[4];
171 };
172
173 #define ITS_CMD_QUEUE_SZ SZ_64K
174 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
175
176 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
177 struct its_cmd_desc *);
178
179 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
180 {
181 cmd->raw_cmd[0] &= ~0xffUL;
182 cmd->raw_cmd[0] |= cmd_nr;
183 }
184
185 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
186 {
187 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
188 cmd->raw_cmd[0] |= ((u64)devid) << 32;
189 }
190
191 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
192 {
193 cmd->raw_cmd[1] &= ~0xffffffffUL;
194 cmd->raw_cmd[1] |= id;
195 }
196
197 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
198 {
199 cmd->raw_cmd[1] &= 0xffffffffUL;
200 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
201 }
202
203 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
204 {
205 cmd->raw_cmd[1] &= ~0x1fUL;
206 cmd->raw_cmd[1] |= size & 0x1f;
207 }
208
209 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
210 {
211 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
212 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
213 }
214
215 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
216 {
217 cmd->raw_cmd[2] &= ~(1UL << 63);
218 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
219 }
220
221 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
222 {
223 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
224 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
225 }
226
227 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
228 {
229 cmd->raw_cmd[2] &= ~0xffffUL;
230 cmd->raw_cmd[2] |= col;
231 }
232
233 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
234 {
235 /* Let's fixup BE commands */
236 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
237 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
238 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
239 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
240 }
241
242 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
243 struct its_cmd_desc *desc)
244 {
245 unsigned long itt_addr;
246 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
247
248 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
249 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
250
251 its_encode_cmd(cmd, GITS_CMD_MAPD);
252 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
253 its_encode_size(cmd, size - 1);
254 its_encode_itt(cmd, itt_addr);
255 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
256
257 its_fixup_cmd(cmd);
258
259 return NULL;
260 }
261
262 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
263 struct its_cmd_desc *desc)
264 {
265 its_encode_cmd(cmd, GITS_CMD_MAPC);
266 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
267 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
268 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
269
270 its_fixup_cmd(cmd);
271
272 return desc->its_mapc_cmd.col;
273 }
274
275 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
276 struct its_cmd_desc *desc)
277 {
278 struct its_collection *col;
279
280 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
281 desc->its_mapvi_cmd.event_id);
282
283 its_encode_cmd(cmd, GITS_CMD_MAPVI);
284 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
285 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
286 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
287 its_encode_collection(cmd, col->col_id);
288
289 its_fixup_cmd(cmd);
290
291 return col;
292 }
293
294 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
295 struct its_cmd_desc *desc)
296 {
297 struct its_collection *col;
298
299 col = dev_event_to_col(desc->its_movi_cmd.dev,
300 desc->its_movi_cmd.event_id);
301
302 its_encode_cmd(cmd, GITS_CMD_MOVI);
303 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
304 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
305 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
306
307 its_fixup_cmd(cmd);
308
309 return col;
310 }
311
312 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
313 struct its_cmd_desc *desc)
314 {
315 struct its_collection *col;
316
317 col = dev_event_to_col(desc->its_discard_cmd.dev,
318 desc->its_discard_cmd.event_id);
319
320 its_encode_cmd(cmd, GITS_CMD_DISCARD);
321 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
322 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
323
324 its_fixup_cmd(cmd);
325
326 return col;
327 }
328
329 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
330 struct its_cmd_desc *desc)
331 {
332 struct its_collection *col;
333
334 col = dev_event_to_col(desc->its_inv_cmd.dev,
335 desc->its_inv_cmd.event_id);
336
337 its_encode_cmd(cmd, GITS_CMD_INV);
338 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
339 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
340
341 its_fixup_cmd(cmd);
342
343 return col;
344 }
345
346 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
347 struct its_cmd_desc *desc)
348 {
349 its_encode_cmd(cmd, GITS_CMD_INVALL);
350 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
351
352 its_fixup_cmd(cmd);
353
354 return NULL;
355 }
356
357 static u64 its_cmd_ptr_to_offset(struct its_node *its,
358 struct its_cmd_block *ptr)
359 {
360 return (ptr - its->cmd_base) * sizeof(*ptr);
361 }
362
363 static int its_queue_full(struct its_node *its)
364 {
365 int widx;
366 int ridx;
367
368 widx = its->cmd_write - its->cmd_base;
369 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
370
371 /* This is incredibly unlikely to happen, unless the ITS locks up. */
372 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
373 return 1;
374
375 return 0;
376 }
377
378 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
379 {
380 struct its_cmd_block *cmd;
381 u32 count = 1000000; /* 1s! */
382
383 while (its_queue_full(its)) {
384 count--;
385 if (!count) {
386 pr_err_ratelimited("ITS queue not draining\n");
387 return NULL;
388 }
389 cpu_relax();
390 udelay(1);
391 }
392
393 cmd = its->cmd_write++;
394
395 /* Handle queue wrapping */
396 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
397 its->cmd_write = its->cmd_base;
398
399 return cmd;
400 }
401
402 static struct its_cmd_block *its_post_commands(struct its_node *its)
403 {
404 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
405
406 writel_relaxed(wr, its->base + GITS_CWRITER);
407
408 return its->cmd_write;
409 }
410
411 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
412 {
413 /*
414 * Make sure the commands written to memory are observable by
415 * the ITS.
416 */
417 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
418 __flush_dcache_area(cmd, sizeof(*cmd));
419 else
420 dsb(ishst);
421 }
422
423 static void its_wait_for_range_completion(struct its_node *its,
424 struct its_cmd_block *from,
425 struct its_cmd_block *to)
426 {
427 u64 rd_idx, from_idx, to_idx;
428 u32 count = 1000000; /* 1s! */
429
430 from_idx = its_cmd_ptr_to_offset(its, from);
431 to_idx = its_cmd_ptr_to_offset(its, to);
432
433 while (1) {
434 rd_idx = readl_relaxed(its->base + GITS_CREADR);
435 if (rd_idx >= to_idx || rd_idx < from_idx)
436 break;
437
438 count--;
439 if (!count) {
440 pr_err_ratelimited("ITS queue timeout\n");
441 return;
442 }
443 cpu_relax();
444 udelay(1);
445 }
446 }
447
448 static void its_send_single_command(struct its_node *its,
449 its_cmd_builder_t builder,
450 struct its_cmd_desc *desc)
451 {
452 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
453 struct its_collection *sync_col;
454 unsigned long flags;
455
456 raw_spin_lock_irqsave(&its->lock, flags);
457
458 cmd = its_allocate_entry(its);
459 if (!cmd) { /* We're soooooo screewed... */
460 pr_err_ratelimited("ITS can't allocate, dropping command\n");
461 raw_spin_unlock_irqrestore(&its->lock, flags);
462 return;
463 }
464 sync_col = builder(cmd, desc);
465 its_flush_cmd(its, cmd);
466
467 if (sync_col) {
468 sync_cmd = its_allocate_entry(its);
469 if (!sync_cmd) {
470 pr_err_ratelimited("ITS can't SYNC, skipping\n");
471 goto post;
472 }
473 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
474 its_encode_target(sync_cmd, sync_col->target_address);
475 its_fixup_cmd(sync_cmd);
476 its_flush_cmd(its, sync_cmd);
477 }
478
479 post:
480 next_cmd = its_post_commands(its);
481 raw_spin_unlock_irqrestore(&its->lock, flags);
482
483 its_wait_for_range_completion(its, cmd, next_cmd);
484 }
485
486 static void its_send_inv(struct its_device *dev, u32 event_id)
487 {
488 struct its_cmd_desc desc;
489
490 desc.its_inv_cmd.dev = dev;
491 desc.its_inv_cmd.event_id = event_id;
492
493 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
494 }
495
496 static void its_send_mapd(struct its_device *dev, int valid)
497 {
498 struct its_cmd_desc desc;
499
500 desc.its_mapd_cmd.dev = dev;
501 desc.its_mapd_cmd.valid = !!valid;
502
503 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
504 }
505
506 static void its_send_mapc(struct its_node *its, struct its_collection *col,
507 int valid)
508 {
509 struct its_cmd_desc desc;
510
511 desc.its_mapc_cmd.col = col;
512 desc.its_mapc_cmd.valid = !!valid;
513
514 its_send_single_command(its, its_build_mapc_cmd, &desc);
515 }
516
517 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
518 {
519 struct its_cmd_desc desc;
520
521 desc.its_mapvi_cmd.dev = dev;
522 desc.its_mapvi_cmd.phys_id = irq_id;
523 desc.its_mapvi_cmd.event_id = id;
524
525 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
526 }
527
528 static void its_send_movi(struct its_device *dev,
529 struct its_collection *col, u32 id)
530 {
531 struct its_cmd_desc desc;
532
533 desc.its_movi_cmd.dev = dev;
534 desc.its_movi_cmd.col = col;
535 desc.its_movi_cmd.event_id = id;
536
537 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
538 }
539
540 static void its_send_discard(struct its_device *dev, u32 id)
541 {
542 struct its_cmd_desc desc;
543
544 desc.its_discard_cmd.dev = dev;
545 desc.its_discard_cmd.event_id = id;
546
547 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
548 }
549
550 static void its_send_invall(struct its_node *its, struct its_collection *col)
551 {
552 struct its_cmd_desc desc;
553
554 desc.its_invall_cmd.col = col;
555
556 its_send_single_command(its, its_build_invall_cmd, &desc);
557 }
558
559 /*
560 * irqchip functions - assumes MSI, mostly.
561 */
562
563 static inline u32 its_get_event_id(struct irq_data *d)
564 {
565 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
566 return d->hwirq - its_dev->event_map.lpi_base;
567 }
568
569 static void lpi_set_config(struct irq_data *d, bool enable)
570 {
571 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
572 irq_hw_number_t hwirq = d->hwirq;
573 u32 id = its_get_event_id(d);
574 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
575
576 if (enable)
577 *cfg |= LPI_PROP_ENABLED;
578 else
579 *cfg &= ~LPI_PROP_ENABLED;
580
581 /*
582 * Make the above write visible to the redistributors.
583 * And yes, we're flushing exactly: One. Single. Byte.
584 * Humpf...
585 */
586 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
587 __flush_dcache_area(cfg, sizeof(*cfg));
588 else
589 dsb(ishst);
590 its_send_inv(its_dev, id);
591 }
592
593 static void its_mask_irq(struct irq_data *d)
594 {
595 lpi_set_config(d, false);
596 }
597
598 static void its_unmask_irq(struct irq_data *d)
599 {
600 lpi_set_config(d, true);
601 }
602
603 static void its_eoi_irq(struct irq_data *d)
604 {
605 gic_write_eoir(d->hwirq);
606 }
607
608 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
609 bool force)
610 {
611 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
612 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
613 struct its_collection *target_col;
614 u32 id = its_get_event_id(d);
615
616 if (cpu >= nr_cpu_ids)
617 return -EINVAL;
618
619 target_col = &its_dev->its->collections[cpu];
620 its_send_movi(its_dev, target_col, id);
621 its_dev->event_map.col_map[id] = cpu;
622
623 return IRQ_SET_MASK_OK_DONE;
624 }
625
626 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
627 {
628 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
629 struct its_node *its;
630 u64 addr;
631
632 its = its_dev->its;
633 addr = its->phys_base + GITS_TRANSLATER;
634
635 msg->address_lo = addr & ((1UL << 32) - 1);
636 msg->address_hi = addr >> 32;
637 msg->data = its_get_event_id(d);
638 }
639
640 static struct irq_chip its_irq_chip = {
641 .name = "ITS",
642 .irq_mask = its_mask_irq,
643 .irq_unmask = its_unmask_irq,
644 .irq_eoi = its_eoi_irq,
645 .irq_set_affinity = its_set_affinity,
646 .irq_compose_msi_msg = its_irq_compose_msi_msg,
647 };
648
649 /*
650 * How we allocate LPIs:
651 *
652 * The GIC has id_bits bits for interrupt identifiers. From there, we
653 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
654 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
655 * bits to the right.
656 *
657 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
658 */
659 #define IRQS_PER_CHUNK_SHIFT 5
660 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
661
662 static unsigned long *lpi_bitmap;
663 static u32 lpi_chunks;
664 static DEFINE_SPINLOCK(lpi_lock);
665
666 static int its_lpi_to_chunk(int lpi)
667 {
668 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
669 }
670
671 static int its_chunk_to_lpi(int chunk)
672 {
673 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
674 }
675
676 static int its_lpi_init(u32 id_bits)
677 {
678 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
679
680 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
681 GFP_KERNEL);
682 if (!lpi_bitmap) {
683 lpi_chunks = 0;
684 return -ENOMEM;
685 }
686
687 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
688 return 0;
689 }
690
691 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
692 {
693 unsigned long *bitmap = NULL;
694 int chunk_id;
695 int nr_chunks;
696 int i;
697
698 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
699
700 spin_lock(&lpi_lock);
701
702 do {
703 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
704 0, nr_chunks, 0);
705 if (chunk_id < lpi_chunks)
706 break;
707
708 nr_chunks--;
709 } while (nr_chunks > 0);
710
711 if (!nr_chunks)
712 goto out;
713
714 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
715 GFP_ATOMIC);
716 if (!bitmap)
717 goto out;
718
719 for (i = 0; i < nr_chunks; i++)
720 set_bit(chunk_id + i, lpi_bitmap);
721
722 *base = its_chunk_to_lpi(chunk_id);
723 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
724
725 out:
726 spin_unlock(&lpi_lock);
727
728 if (!bitmap)
729 *base = *nr_ids = 0;
730
731 return bitmap;
732 }
733
734 static void its_lpi_free(struct event_lpi_map *map)
735 {
736 int base = map->lpi_base;
737 int nr_ids = map->nr_lpis;
738 int lpi;
739
740 spin_lock(&lpi_lock);
741
742 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
743 int chunk = its_lpi_to_chunk(lpi);
744 BUG_ON(chunk > lpi_chunks);
745 if (test_bit(chunk, lpi_bitmap)) {
746 clear_bit(chunk, lpi_bitmap);
747 } else {
748 pr_err("Bad LPI chunk %d\n", chunk);
749 }
750 }
751
752 spin_unlock(&lpi_lock);
753
754 kfree(map->lpi_map);
755 kfree(map->col_map);
756 }
757
758 /*
759 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
760 * deal with (one configuration byte per interrupt). PENDBASE has to
761 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
762 */
763 #define LPI_PROPBASE_SZ SZ_64K
764 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
765
766 /*
767 * This is how many bits of ID we need, including the useless ones.
768 */
769 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
770
771 #define LPI_PROP_DEFAULT_PRIO 0xa0
772
773 static int __init its_alloc_lpi_tables(void)
774 {
775 phys_addr_t paddr;
776
777 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
778 get_order(LPI_PROPBASE_SZ));
779 if (!gic_rdists->prop_page) {
780 pr_err("Failed to allocate PROPBASE\n");
781 return -ENOMEM;
782 }
783
784 paddr = page_to_phys(gic_rdists->prop_page);
785 pr_info("GIC: using LPI property table @%pa\n", &paddr);
786
787 /* Priority 0xa0, Group-1, disabled */
788 memset(page_address(gic_rdists->prop_page),
789 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
790 LPI_PROPBASE_SZ);
791
792 /* Make sure the GIC will observe the written configuration */
793 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
794
795 return 0;
796 }
797
798 static const char *its_base_type_string[] = {
799 [GITS_BASER_TYPE_DEVICE] = "Devices",
800 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
801 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
802 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
803 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
804 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
805 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
806 };
807
808 static void its_free_tables(struct its_node *its)
809 {
810 int i;
811
812 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
813 if (its->tables[i].base) {
814 free_pages((unsigned long)its->tables[i].base,
815 its->tables[i].order);
816 its->tables[i].base = NULL;
817 }
818 }
819 }
820
821 static int its_alloc_tables(const char *node_name, struct its_node *its)
822 {
823 int err;
824 int i;
825 int psz = SZ_64K;
826 u64 shr = GITS_BASER_InnerShareable;
827 u64 cache;
828 u64 typer;
829 u32 ids;
830
831 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
832 /*
833 * erratum 22375: only alloc 8MB table size
834 * erratum 24313: ignore memory access type
835 */
836 cache = 0;
837 ids = 0x14; /* 20 bits, 8MB */
838 } else {
839 cache = GITS_BASER_WaWb;
840 typer = readq_relaxed(its->base + GITS_TYPER);
841 ids = GITS_TYPER_DEVBITS(typer);
842 }
843
844 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
845 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
846 u64 type = GITS_BASER_TYPE(val);
847 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
848 int order = get_order(psz);
849 int alloc_size;
850 int alloc_pages;
851 u64 tmp;
852 void *base;
853
854 if (type == GITS_BASER_TYPE_NONE)
855 continue;
856
857 /*
858 * Allocate as many entries as required to fit the
859 * range of device IDs that the ITS can grok... The ID
860 * space being incredibly sparse, this results in a
861 * massive waste of memory.
862 *
863 * For other tables, only allocate a single page.
864 */
865 if (type == GITS_BASER_TYPE_DEVICE) {
866 /*
867 * 'order' was initialized earlier to the default page
868 * granule of the the ITS. We can't have an allocation
869 * smaller than that. If the requested allocation
870 * is smaller, round up to the default page granule.
871 */
872 order = max(get_order((1UL << ids) * entry_size),
873 order);
874 if (order >= MAX_ORDER) {
875 order = MAX_ORDER - 1;
876 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
877 node_name, order);
878 }
879 }
880
881 alloc_size = (1 << order) * PAGE_SIZE;
882 retry_alloc_baser:
883 alloc_pages = (alloc_size / psz);
884 if (alloc_pages > GITS_BASER_PAGES_MAX) {
885 alloc_pages = GITS_BASER_PAGES_MAX;
886 order = get_order(GITS_BASER_PAGES_MAX * psz);
887 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
888 node_name, order, alloc_pages);
889 }
890
891 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
892 if (!base) {
893 err = -ENOMEM;
894 goto out_free;
895 }
896
897 its->tables[i].base = base;
898 its->tables[i].order = order;
899
900 retry_baser:
901 val = (virt_to_phys(base) |
902 (type << GITS_BASER_TYPE_SHIFT) |
903 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
904 cache |
905 shr |
906 GITS_BASER_VALID);
907
908 switch (psz) {
909 case SZ_4K:
910 val |= GITS_BASER_PAGE_SIZE_4K;
911 break;
912 case SZ_16K:
913 val |= GITS_BASER_PAGE_SIZE_16K;
914 break;
915 case SZ_64K:
916 val |= GITS_BASER_PAGE_SIZE_64K;
917 break;
918 }
919
920 val |= alloc_pages - 1;
921
922 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
923 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
924
925 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
926 /*
927 * Shareability didn't stick. Just use
928 * whatever the read reported, which is likely
929 * to be the only thing this redistributor
930 * supports. If that's zero, make it
931 * non-cacheable as well.
932 */
933 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
934 if (!shr) {
935 cache = GITS_BASER_nC;
936 __flush_dcache_area(base, alloc_size);
937 }
938 goto retry_baser;
939 }
940
941 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
942 /*
943 * Page size didn't stick. Let's try a smaller
944 * size and retry. If we reach 4K, then
945 * something is horribly wrong...
946 */
947 free_pages((unsigned long)base, order);
948 its->tables[i].base = NULL;
949
950 switch (psz) {
951 case SZ_16K:
952 psz = SZ_4K;
953 goto retry_alloc_baser;
954 case SZ_64K:
955 psz = SZ_16K;
956 goto retry_alloc_baser;
957 }
958 }
959
960 if (val != tmp) {
961 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
962 node_name, i,
963 (unsigned long) val, (unsigned long) tmp);
964 err = -ENXIO;
965 goto out_free;
966 }
967
968 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
969 (int)(alloc_size / entry_size),
970 its_base_type_string[type],
971 (unsigned long)virt_to_phys(base),
972 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
973 }
974
975 return 0;
976
977 out_free:
978 its_free_tables(its);
979
980 return err;
981 }
982
983 static int its_alloc_collections(struct its_node *its)
984 {
985 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
986 GFP_KERNEL);
987 if (!its->collections)
988 return -ENOMEM;
989
990 return 0;
991 }
992
993 static void its_cpu_init_lpis(void)
994 {
995 void __iomem *rbase = gic_data_rdist_rd_base();
996 struct page *pend_page;
997 u64 val, tmp;
998
999 /* If we didn't allocate the pending table yet, do it now */
1000 pend_page = gic_data_rdist()->pend_page;
1001 if (!pend_page) {
1002 phys_addr_t paddr;
1003 /*
1004 * The pending pages have to be at least 64kB aligned,
1005 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1006 */
1007 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1008 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1009 if (!pend_page) {
1010 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1011 smp_processor_id());
1012 return;
1013 }
1014
1015 /* Make sure the GIC will observe the zero-ed page */
1016 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1017
1018 paddr = page_to_phys(pend_page);
1019 pr_info("CPU%d: using LPI pending table @%pa\n",
1020 smp_processor_id(), &paddr);
1021 gic_data_rdist()->pend_page = pend_page;
1022 }
1023
1024 /* Disable LPIs */
1025 val = readl_relaxed(rbase + GICR_CTLR);
1026 val &= ~GICR_CTLR_ENABLE_LPIS;
1027 writel_relaxed(val, rbase + GICR_CTLR);
1028
1029 /*
1030 * Make sure any change to the table is observable by the GIC.
1031 */
1032 dsb(sy);
1033
1034 /* set PROPBASE */
1035 val = (page_to_phys(gic_rdists->prop_page) |
1036 GICR_PROPBASER_InnerShareable |
1037 GICR_PROPBASER_WaWb |
1038 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1039
1040 writeq_relaxed(val, rbase + GICR_PROPBASER);
1041 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1042
1043 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1044 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1045 /*
1046 * The HW reports non-shareable, we must
1047 * remove the cacheability attributes as
1048 * well.
1049 */
1050 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1051 GICR_PROPBASER_CACHEABILITY_MASK);
1052 val |= GICR_PROPBASER_nC;
1053 writeq_relaxed(val, rbase + GICR_PROPBASER);
1054 }
1055 pr_info_once("GIC: using cache flushing for LPI property table\n");
1056 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1057 }
1058
1059 /* set PENDBASE */
1060 val = (page_to_phys(pend_page) |
1061 GICR_PENDBASER_InnerShareable |
1062 GICR_PENDBASER_WaWb);
1063
1064 writeq_relaxed(val, rbase + GICR_PENDBASER);
1065 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1066
1067 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1068 /*
1069 * The HW reports non-shareable, we must remove the
1070 * cacheability attributes as well.
1071 */
1072 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1073 GICR_PENDBASER_CACHEABILITY_MASK);
1074 val |= GICR_PENDBASER_nC;
1075 writeq_relaxed(val, rbase + GICR_PENDBASER);
1076 }
1077
1078 /* Enable LPIs */
1079 val = readl_relaxed(rbase + GICR_CTLR);
1080 val |= GICR_CTLR_ENABLE_LPIS;
1081 writel_relaxed(val, rbase + GICR_CTLR);
1082
1083 /* Make sure the GIC has seen the above */
1084 dsb(sy);
1085 }
1086
1087 static void its_cpu_init_collection(void)
1088 {
1089 struct its_node *its;
1090 int cpu;
1091
1092 spin_lock(&its_lock);
1093 cpu = smp_processor_id();
1094
1095 list_for_each_entry(its, &its_nodes, entry) {
1096 u64 target;
1097
1098 /*
1099 * We now have to bind each collection to its target
1100 * redistributor.
1101 */
1102 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1103 /*
1104 * This ITS wants the physical address of the
1105 * redistributor.
1106 */
1107 target = gic_data_rdist()->phys_base;
1108 } else {
1109 /*
1110 * This ITS wants a linear CPU number.
1111 */
1112 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1113 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1114 }
1115
1116 /* Perform collection mapping */
1117 its->collections[cpu].target_address = target;
1118 its->collections[cpu].col_id = cpu;
1119
1120 its_send_mapc(its, &its->collections[cpu], 1);
1121 its_send_invall(its, &its->collections[cpu]);
1122 }
1123
1124 spin_unlock(&its_lock);
1125 }
1126
1127 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1128 {
1129 struct its_device *its_dev = NULL, *tmp;
1130 unsigned long flags;
1131
1132 raw_spin_lock_irqsave(&its->lock, flags);
1133
1134 list_for_each_entry(tmp, &its->its_device_list, entry) {
1135 if (tmp->device_id == dev_id) {
1136 its_dev = tmp;
1137 break;
1138 }
1139 }
1140
1141 raw_spin_unlock_irqrestore(&its->lock, flags);
1142
1143 return its_dev;
1144 }
1145
1146 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1147 int nvecs)
1148 {
1149 struct its_device *dev;
1150 unsigned long *lpi_map;
1151 unsigned long flags;
1152 u16 *col_map = NULL;
1153 void *itt;
1154 int lpi_base;
1155 int nr_lpis;
1156 int nr_ites;
1157 int sz;
1158
1159 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1160 /*
1161 * At least one bit of EventID is being used, hence a minimum
1162 * of two entries. No, the architecture doesn't let you
1163 * express an ITT with a single entry.
1164 */
1165 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1166 sz = nr_ites * its->ite_size;
1167 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1168 itt = kzalloc(sz, GFP_KERNEL);
1169 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1170 if (lpi_map)
1171 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1172
1173 if (!dev || !itt || !lpi_map || !col_map) {
1174 kfree(dev);
1175 kfree(itt);
1176 kfree(lpi_map);
1177 kfree(col_map);
1178 return NULL;
1179 }
1180
1181 __flush_dcache_area(itt, sz);
1182
1183 dev->its = its;
1184 dev->itt = itt;
1185 dev->nr_ites = nr_ites;
1186 dev->event_map.lpi_map = lpi_map;
1187 dev->event_map.col_map = col_map;
1188 dev->event_map.lpi_base = lpi_base;
1189 dev->event_map.nr_lpis = nr_lpis;
1190 dev->device_id = dev_id;
1191 INIT_LIST_HEAD(&dev->entry);
1192
1193 raw_spin_lock_irqsave(&its->lock, flags);
1194 list_add(&dev->entry, &its->its_device_list);
1195 raw_spin_unlock_irqrestore(&its->lock, flags);
1196
1197 /* Map device to its ITT */
1198 its_send_mapd(dev, 1);
1199
1200 return dev;
1201 }
1202
1203 static void its_free_device(struct its_device *its_dev)
1204 {
1205 unsigned long flags;
1206
1207 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1208 list_del(&its_dev->entry);
1209 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1210 kfree(its_dev->itt);
1211 kfree(its_dev);
1212 }
1213
1214 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1215 {
1216 int idx;
1217
1218 idx = find_first_zero_bit(dev->event_map.lpi_map,
1219 dev->event_map.nr_lpis);
1220 if (idx == dev->event_map.nr_lpis)
1221 return -ENOSPC;
1222
1223 *hwirq = dev->event_map.lpi_base + idx;
1224 set_bit(idx, dev->event_map.lpi_map);
1225
1226 return 0;
1227 }
1228
1229 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1230 int nvec, msi_alloc_info_t *info)
1231 {
1232 struct its_node *its;
1233 struct its_device *its_dev;
1234 struct msi_domain_info *msi_info;
1235 u32 dev_id;
1236
1237 /*
1238 * We ignore "dev" entierely, and rely on the dev_id that has
1239 * been passed via the scratchpad. This limits this domain's
1240 * usefulness to upper layers that definitely know that they
1241 * are built on top of the ITS.
1242 */
1243 dev_id = info->scratchpad[0].ul;
1244
1245 msi_info = msi_get_domain_info(domain);
1246 its = msi_info->data;
1247
1248 its_dev = its_find_device(its, dev_id);
1249 if (its_dev) {
1250 /*
1251 * We already have seen this ID, probably through
1252 * another alias (PCI bridge of some sort). No need to
1253 * create the device.
1254 */
1255 pr_debug("Reusing ITT for devID %x\n", dev_id);
1256 goto out;
1257 }
1258
1259 its_dev = its_create_device(its, dev_id, nvec);
1260 if (!its_dev)
1261 return -ENOMEM;
1262
1263 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1264 out:
1265 info->scratchpad[0].ptr = its_dev;
1266 return 0;
1267 }
1268
1269 static struct msi_domain_ops its_msi_domain_ops = {
1270 .msi_prepare = its_msi_prepare,
1271 };
1272
1273 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1274 unsigned int virq,
1275 irq_hw_number_t hwirq)
1276 {
1277 struct irq_fwspec fwspec;
1278
1279 if (irq_domain_get_of_node(domain->parent)) {
1280 fwspec.fwnode = domain->parent->fwnode;
1281 fwspec.param_count = 3;
1282 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1283 fwspec.param[1] = hwirq;
1284 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1285 } else {
1286 return -EINVAL;
1287 }
1288
1289 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1290 }
1291
1292 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1293 unsigned int nr_irqs, void *args)
1294 {
1295 msi_alloc_info_t *info = args;
1296 struct its_device *its_dev = info->scratchpad[0].ptr;
1297 irq_hw_number_t hwirq;
1298 int err;
1299 int i;
1300
1301 for (i = 0; i < nr_irqs; i++) {
1302 err = its_alloc_device_irq(its_dev, &hwirq);
1303 if (err)
1304 return err;
1305
1306 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1307 if (err)
1308 return err;
1309
1310 irq_domain_set_hwirq_and_chip(domain, virq + i,
1311 hwirq, &its_irq_chip, its_dev);
1312 pr_debug("ID:%d pID:%d vID:%d\n",
1313 (int)(hwirq - its_dev->event_map.lpi_base),
1314 (int) hwirq, virq + i);
1315 }
1316
1317 return 0;
1318 }
1319
1320 static void its_irq_domain_activate(struct irq_domain *domain,
1321 struct irq_data *d)
1322 {
1323 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1324 u32 event = its_get_event_id(d);
1325
1326 /* Bind the LPI to the first possible CPU */
1327 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1328
1329 /* Map the GIC IRQ and event to the device */
1330 its_send_mapvi(its_dev, d->hwirq, event);
1331 }
1332
1333 static void its_irq_domain_deactivate(struct irq_domain *domain,
1334 struct irq_data *d)
1335 {
1336 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1337 u32 event = its_get_event_id(d);
1338
1339 /* Stop the delivery of interrupts */
1340 its_send_discard(its_dev, event);
1341 }
1342
1343 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1344 unsigned int nr_irqs)
1345 {
1346 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1347 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1348 int i;
1349
1350 for (i = 0; i < nr_irqs; i++) {
1351 struct irq_data *data = irq_domain_get_irq_data(domain,
1352 virq + i);
1353 u32 event = its_get_event_id(data);
1354
1355 /* Mark interrupt index as unused */
1356 clear_bit(event, its_dev->event_map.lpi_map);
1357
1358 /* Nuke the entry in the domain */
1359 irq_domain_reset_irq_data(data);
1360 }
1361
1362 /* If all interrupts have been freed, start mopping the floor */
1363 if (bitmap_empty(its_dev->event_map.lpi_map,
1364 its_dev->event_map.nr_lpis)) {
1365 its_lpi_free(&its_dev->event_map);
1366
1367 /* Unmap device/itt */
1368 its_send_mapd(its_dev, 0);
1369 its_free_device(its_dev);
1370 }
1371
1372 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1373 }
1374
1375 static const struct irq_domain_ops its_domain_ops = {
1376 .alloc = its_irq_domain_alloc,
1377 .free = its_irq_domain_free,
1378 .activate = its_irq_domain_activate,
1379 .deactivate = its_irq_domain_deactivate,
1380 };
1381
1382 static int its_force_quiescent(void __iomem *base)
1383 {
1384 u32 count = 1000000; /* 1s */
1385 u32 val;
1386
1387 val = readl_relaxed(base + GITS_CTLR);
1388 if (val & GITS_CTLR_QUIESCENT)
1389 return 0;
1390
1391 /* Disable the generation of all interrupts to this ITS */
1392 val &= ~GITS_CTLR_ENABLE;
1393 writel_relaxed(val, base + GITS_CTLR);
1394
1395 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1396 while (1) {
1397 val = readl_relaxed(base + GITS_CTLR);
1398 if (val & GITS_CTLR_QUIESCENT)
1399 return 0;
1400
1401 count--;
1402 if (!count)
1403 return -EBUSY;
1404
1405 cpu_relax();
1406 udelay(1);
1407 }
1408 }
1409
1410 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1411 {
1412 struct its_node *its = data;
1413
1414 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1415 }
1416
1417 static const struct gic_quirk its_quirks[] = {
1418 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1419 {
1420 .desc = "ITS: Cavium errata 22375, 24313",
1421 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1422 .mask = 0xffff0fff,
1423 .init = its_enable_quirk_cavium_22375,
1424 },
1425 #endif
1426 {
1427 }
1428 };
1429
1430 static void its_enable_quirks(struct its_node *its)
1431 {
1432 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1433
1434 gic_enable_quirks(iidr, its_quirks, its);
1435 }
1436
1437 static int its_probe(struct device_node *node, struct irq_domain *parent)
1438 {
1439 struct resource res;
1440 struct its_node *its;
1441 void __iomem *its_base;
1442 struct irq_domain *inner_domain;
1443 u32 val;
1444 u64 baser, tmp;
1445 int err;
1446
1447 err = of_address_to_resource(node, 0, &res);
1448 if (err) {
1449 pr_warn("%s: no regs?\n", node->full_name);
1450 return -ENXIO;
1451 }
1452
1453 its_base = ioremap(res.start, resource_size(&res));
1454 if (!its_base) {
1455 pr_warn("%s: unable to map registers\n", node->full_name);
1456 return -ENOMEM;
1457 }
1458
1459 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1460 if (val != 0x30 && val != 0x40) {
1461 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1462 err = -ENODEV;
1463 goto out_unmap;
1464 }
1465
1466 err = its_force_quiescent(its_base);
1467 if (err) {
1468 pr_warn("%s: failed to quiesce, giving up\n",
1469 node->full_name);
1470 goto out_unmap;
1471 }
1472
1473 pr_info("ITS: %s\n", node->full_name);
1474
1475 its = kzalloc(sizeof(*its), GFP_KERNEL);
1476 if (!its) {
1477 err = -ENOMEM;
1478 goto out_unmap;
1479 }
1480
1481 raw_spin_lock_init(&its->lock);
1482 INIT_LIST_HEAD(&its->entry);
1483 INIT_LIST_HEAD(&its->its_device_list);
1484 its->base = its_base;
1485 its->phys_base = res.start;
1486 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1487
1488 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1489 if (!its->cmd_base) {
1490 err = -ENOMEM;
1491 goto out_free_its;
1492 }
1493 its->cmd_write = its->cmd_base;
1494
1495 its_enable_quirks(its);
1496
1497 err = its_alloc_tables(node->full_name, its);
1498 if (err)
1499 goto out_free_cmd;
1500
1501 err = its_alloc_collections(its);
1502 if (err)
1503 goto out_free_tables;
1504
1505 baser = (virt_to_phys(its->cmd_base) |
1506 GITS_CBASER_WaWb |
1507 GITS_CBASER_InnerShareable |
1508 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1509 GITS_CBASER_VALID);
1510
1511 writeq_relaxed(baser, its->base + GITS_CBASER);
1512 tmp = readq_relaxed(its->base + GITS_CBASER);
1513
1514 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1515 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1516 /*
1517 * The HW reports non-shareable, we must
1518 * remove the cacheability attributes as
1519 * well.
1520 */
1521 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1522 GITS_CBASER_CACHEABILITY_MASK);
1523 baser |= GITS_CBASER_nC;
1524 writeq_relaxed(baser, its->base + GITS_CBASER);
1525 }
1526 pr_info("ITS: using cache flushing for cmd queue\n");
1527 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1528 }
1529
1530 writeq_relaxed(0, its->base + GITS_CWRITER);
1531 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1532
1533 if (of_property_read_bool(node, "msi-controller")) {
1534 struct msi_domain_info *info;
1535
1536 info = kzalloc(sizeof(*info), GFP_KERNEL);
1537 if (!info) {
1538 err = -ENOMEM;
1539 goto out_free_tables;
1540 }
1541
1542 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1543 if (!inner_domain) {
1544 err = -ENOMEM;
1545 kfree(info);
1546 goto out_free_tables;
1547 }
1548
1549 inner_domain->parent = parent;
1550 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1551 info->ops = &its_msi_domain_ops;
1552 info->data = its;
1553 inner_domain->host_data = info;
1554 }
1555
1556 spin_lock(&its_lock);
1557 list_add(&its->entry, &its_nodes);
1558 spin_unlock(&its_lock);
1559
1560 return 0;
1561
1562 out_free_tables:
1563 its_free_tables(its);
1564 out_free_cmd:
1565 kfree(its->cmd_base);
1566 out_free_its:
1567 kfree(its);
1568 out_unmap:
1569 iounmap(its_base);
1570 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1571 return err;
1572 }
1573
1574 static bool gic_rdists_supports_plpis(void)
1575 {
1576 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1577 }
1578
1579 int its_cpu_init(void)
1580 {
1581 if (!list_empty(&its_nodes)) {
1582 if (!gic_rdists_supports_plpis()) {
1583 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1584 return -ENXIO;
1585 }
1586 its_cpu_init_lpis();
1587 its_cpu_init_collection();
1588 }
1589
1590 return 0;
1591 }
1592
1593 static struct of_device_id its_device_id[] = {
1594 { .compatible = "arm,gic-v3-its", },
1595 {},
1596 };
1597
1598 int its_init(struct device_node *node, struct rdists *rdists,
1599 struct irq_domain *parent_domain)
1600 {
1601 struct device_node *np;
1602
1603 for (np = of_find_matching_node(node, its_device_id); np;
1604 np = of_find_matching_node(np, its_device_id)) {
1605 its_probe(np, parent_domain);
1606 }
1607
1608 if (list_empty(&its_nodes)) {
1609 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1610 return -ENXIO;
1611 }
1612
1613 gic_rdists = rdists;
1614 gic_root_node = node;
1615
1616 its_alloc_lpi_tables();
1617 its_lpi_init(rdists->id_bits);
1618
1619 return 0;
1620 }