]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/irqchip/irq-gic-v3.c
Merge tag 'ovl-fixes-5.11-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[mirror_ubuntu-hirsute-kernel.git] / drivers / irqchip / irq-gic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #define pr_fmt(fmt) "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31
32 #include "irq-gic-common.h"
33
34 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
35
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
38
39 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
40
41 struct redist_region {
42 void __iomem *redist_base;
43 phys_addr_t phys_base;
44 bool single_redist;
45 };
46
47 struct gic_chip_data {
48 struct fwnode_handle *fwnode;
49 void __iomem *dist_base;
50 struct redist_region *redist_regions;
51 struct rdists rdists;
52 struct irq_domain *domain;
53 u64 redist_stride;
54 u32 nr_redist_regions;
55 u64 flags;
56 bool has_rss;
57 unsigned int ppi_nr;
58 struct partition_desc **ppi_descs;
59 };
60
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63
64 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67
68 /*
69 * The behaviours of RPR and PMR registers differ depending on the value of
70 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71 * distributor and redistributors depends on whether security is enabled in the
72 * GIC.
73 *
74 * When security is enabled, non-secure priority values from the (re)distributor
75 * are presented to the GIC CPUIF as follow:
76 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77 *
78 * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
79 * EL1 are subject to a similar operation thus matching the priorities presented
80 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81 * these values are unchanched by the GIC.
82 *
83 * see GICv3/GICv4 Architecture Specification (IHI0069D):
84 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85 * priorities.
86 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87 * interrupt.
88 */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90
91 /*
92 * Global static key controlling whether an update to PMR allowing more
93 * interrupts requires to be propagated to the redistributor (DSB SY).
94 * And this needs to be exported for modules to be able to enable
95 * interrupts...
96 */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102
103 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
104 static refcount_t *ppi_nmi_refs;
105
106 static struct gic_kvm_info gic_v3_kvm_info;
107 static DEFINE_PER_CPU(bool, has_rss);
108
109 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
110 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
111 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
112 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
113
114 /* Our default, arbitrary priority value. Linux only uses one anyway. */
115 #define DEFAULT_PMR_VALUE 0xf0
116
117 enum gic_intid_range {
118 SGI_RANGE,
119 PPI_RANGE,
120 SPI_RANGE,
121 EPPI_RANGE,
122 ESPI_RANGE,
123 LPI_RANGE,
124 __INVALID_RANGE__
125 };
126
127 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
128 {
129 switch (hwirq) {
130 case 0 ... 15:
131 return SGI_RANGE;
132 case 16 ... 31:
133 return PPI_RANGE;
134 case 32 ... 1019:
135 return SPI_RANGE;
136 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
137 return EPPI_RANGE;
138 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
139 return ESPI_RANGE;
140 case 8192 ... GENMASK(23, 0):
141 return LPI_RANGE;
142 default:
143 return __INVALID_RANGE__;
144 }
145 }
146
147 static enum gic_intid_range get_intid_range(struct irq_data *d)
148 {
149 return __get_intid_range(d->hwirq);
150 }
151
152 static inline unsigned int gic_irq(struct irq_data *d)
153 {
154 return d->hwirq;
155 }
156
157 static inline bool gic_irq_in_rdist(struct irq_data *d)
158 {
159 switch (get_intid_range(d)) {
160 case SGI_RANGE:
161 case PPI_RANGE:
162 case EPPI_RANGE:
163 return true;
164 default:
165 return false;
166 }
167 }
168
169 static inline void __iomem *gic_dist_base(struct irq_data *d)
170 {
171 switch (get_intid_range(d)) {
172 case SGI_RANGE:
173 case PPI_RANGE:
174 case EPPI_RANGE:
175 /* SGI+PPI -> SGI_base for this CPU */
176 return gic_data_rdist_sgi_base();
177
178 case SPI_RANGE:
179 case ESPI_RANGE:
180 /* SPI -> dist_base */
181 return gic_data.dist_base;
182
183 default:
184 return NULL;
185 }
186 }
187
188 static void gic_do_wait_for_rwp(void __iomem *base)
189 {
190 u32 count = 1000000; /* 1s! */
191
192 while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
193 count--;
194 if (!count) {
195 pr_err_ratelimited("RWP timeout, gone fishing\n");
196 return;
197 }
198 cpu_relax();
199 udelay(1);
200 }
201 }
202
203 /* Wait for completion of a distributor change */
204 static void gic_dist_wait_for_rwp(void)
205 {
206 gic_do_wait_for_rwp(gic_data.dist_base);
207 }
208
209 /* Wait for completion of a redistributor change */
210 static void gic_redist_wait_for_rwp(void)
211 {
212 gic_do_wait_for_rwp(gic_data_rdist_rd_base());
213 }
214
215 #ifdef CONFIG_ARM64
216
217 static u64 __maybe_unused gic_read_iar(void)
218 {
219 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
220 return gic_read_iar_cavium_thunderx();
221 else
222 return gic_read_iar_common();
223 }
224 #endif
225
226 static void gic_enable_redist(bool enable)
227 {
228 void __iomem *rbase;
229 u32 count = 1000000; /* 1s! */
230 u32 val;
231
232 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
233 return;
234
235 rbase = gic_data_rdist_rd_base();
236
237 val = readl_relaxed(rbase + GICR_WAKER);
238 if (enable)
239 /* Wake up this CPU redistributor */
240 val &= ~GICR_WAKER_ProcessorSleep;
241 else
242 val |= GICR_WAKER_ProcessorSleep;
243 writel_relaxed(val, rbase + GICR_WAKER);
244
245 if (!enable) { /* Check that GICR_WAKER is writeable */
246 val = readl_relaxed(rbase + GICR_WAKER);
247 if (!(val & GICR_WAKER_ProcessorSleep))
248 return; /* No PM support in this redistributor */
249 }
250
251 while (--count) {
252 val = readl_relaxed(rbase + GICR_WAKER);
253 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
254 break;
255 cpu_relax();
256 udelay(1);
257 }
258 if (!count)
259 pr_err_ratelimited("redistributor failed to %s...\n",
260 enable ? "wakeup" : "sleep");
261 }
262
263 /*
264 * Routines to disable, enable, EOI and route interrupts
265 */
266 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
267 {
268 switch (get_intid_range(d)) {
269 case SGI_RANGE:
270 case PPI_RANGE:
271 case SPI_RANGE:
272 *index = d->hwirq;
273 return offset;
274 case EPPI_RANGE:
275 /*
276 * Contrary to the ESPI range, the EPPI range is contiguous
277 * to the PPI range in the registers, so let's adjust the
278 * displacement accordingly. Consistency is overrated.
279 */
280 *index = d->hwirq - EPPI_BASE_INTID + 32;
281 return offset;
282 case ESPI_RANGE:
283 *index = d->hwirq - ESPI_BASE_INTID;
284 switch (offset) {
285 case GICD_ISENABLER:
286 return GICD_ISENABLERnE;
287 case GICD_ICENABLER:
288 return GICD_ICENABLERnE;
289 case GICD_ISPENDR:
290 return GICD_ISPENDRnE;
291 case GICD_ICPENDR:
292 return GICD_ICPENDRnE;
293 case GICD_ISACTIVER:
294 return GICD_ISACTIVERnE;
295 case GICD_ICACTIVER:
296 return GICD_ICACTIVERnE;
297 case GICD_IPRIORITYR:
298 return GICD_IPRIORITYRnE;
299 case GICD_ICFGR:
300 return GICD_ICFGRnE;
301 case GICD_IROUTER:
302 return GICD_IROUTERnE;
303 default:
304 break;
305 }
306 break;
307 default:
308 break;
309 }
310
311 WARN_ON(1);
312 *index = d->hwirq;
313 return offset;
314 }
315
316 static int gic_peek_irq(struct irq_data *d, u32 offset)
317 {
318 void __iomem *base;
319 u32 index, mask;
320
321 offset = convert_offset_index(d, offset, &index);
322 mask = 1 << (index % 32);
323
324 if (gic_irq_in_rdist(d))
325 base = gic_data_rdist_sgi_base();
326 else
327 base = gic_data.dist_base;
328
329 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
330 }
331
332 static void gic_poke_irq(struct irq_data *d, u32 offset)
333 {
334 void (*rwp_wait)(void);
335 void __iomem *base;
336 u32 index, mask;
337
338 offset = convert_offset_index(d, offset, &index);
339 mask = 1 << (index % 32);
340
341 if (gic_irq_in_rdist(d)) {
342 base = gic_data_rdist_sgi_base();
343 rwp_wait = gic_redist_wait_for_rwp;
344 } else {
345 base = gic_data.dist_base;
346 rwp_wait = gic_dist_wait_for_rwp;
347 }
348
349 writel_relaxed(mask, base + offset + (index / 32) * 4);
350 rwp_wait();
351 }
352
353 static void gic_mask_irq(struct irq_data *d)
354 {
355 gic_poke_irq(d, GICD_ICENABLER);
356 }
357
358 static void gic_eoimode1_mask_irq(struct irq_data *d)
359 {
360 gic_mask_irq(d);
361 /*
362 * When masking a forwarded interrupt, make sure it is
363 * deactivated as well.
364 *
365 * This ensures that an interrupt that is getting
366 * disabled/masked will not get "stuck", because there is
367 * noone to deactivate it (guest is being terminated).
368 */
369 if (irqd_is_forwarded_to_vcpu(d))
370 gic_poke_irq(d, GICD_ICACTIVER);
371 }
372
373 static void gic_unmask_irq(struct irq_data *d)
374 {
375 gic_poke_irq(d, GICD_ISENABLER);
376 }
377
378 static inline bool gic_supports_nmi(void)
379 {
380 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
381 static_branch_likely(&supports_pseudo_nmis);
382 }
383
384 static int gic_irq_set_irqchip_state(struct irq_data *d,
385 enum irqchip_irq_state which, bool val)
386 {
387 u32 reg;
388
389 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
390 return -EINVAL;
391
392 switch (which) {
393 case IRQCHIP_STATE_PENDING:
394 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
395 break;
396
397 case IRQCHIP_STATE_ACTIVE:
398 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
399 break;
400
401 case IRQCHIP_STATE_MASKED:
402 reg = val ? GICD_ICENABLER : GICD_ISENABLER;
403 break;
404
405 default:
406 return -EINVAL;
407 }
408
409 gic_poke_irq(d, reg);
410 return 0;
411 }
412
413 static int gic_irq_get_irqchip_state(struct irq_data *d,
414 enum irqchip_irq_state which, bool *val)
415 {
416 if (d->hwirq >= 8192) /* PPI/SPI only */
417 return -EINVAL;
418
419 switch (which) {
420 case IRQCHIP_STATE_PENDING:
421 *val = gic_peek_irq(d, GICD_ISPENDR);
422 break;
423
424 case IRQCHIP_STATE_ACTIVE:
425 *val = gic_peek_irq(d, GICD_ISACTIVER);
426 break;
427
428 case IRQCHIP_STATE_MASKED:
429 *val = !gic_peek_irq(d, GICD_ISENABLER);
430 break;
431
432 default:
433 return -EINVAL;
434 }
435
436 return 0;
437 }
438
439 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
440 {
441 void __iomem *base = gic_dist_base(d);
442 u32 offset, index;
443
444 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
445
446 writeb_relaxed(prio, base + offset + index);
447 }
448
449 static u32 gic_get_ppi_index(struct irq_data *d)
450 {
451 switch (get_intid_range(d)) {
452 case PPI_RANGE:
453 return d->hwirq - 16;
454 case EPPI_RANGE:
455 return d->hwirq - EPPI_BASE_INTID + 16;
456 default:
457 unreachable();
458 }
459 }
460
461 static int gic_irq_nmi_setup(struct irq_data *d)
462 {
463 struct irq_desc *desc = irq_to_desc(d->irq);
464
465 if (!gic_supports_nmi())
466 return -EINVAL;
467
468 if (gic_peek_irq(d, GICD_ISENABLER)) {
469 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
470 return -EINVAL;
471 }
472
473 /*
474 * A secondary irq_chip should be in charge of LPI request,
475 * it should not be possible to get there
476 */
477 if (WARN_ON(gic_irq(d) >= 8192))
478 return -EINVAL;
479
480 /* desc lock should already be held */
481 if (gic_irq_in_rdist(d)) {
482 u32 idx = gic_get_ppi_index(d);
483
484 /* Setting up PPI as NMI, only switch handler for first NMI */
485 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
486 refcount_set(&ppi_nmi_refs[idx], 1);
487 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
488 }
489 } else {
490 desc->handle_irq = handle_fasteoi_nmi;
491 }
492
493 gic_irq_set_prio(d, GICD_INT_NMI_PRI);
494
495 return 0;
496 }
497
498 static void gic_irq_nmi_teardown(struct irq_data *d)
499 {
500 struct irq_desc *desc = irq_to_desc(d->irq);
501
502 if (WARN_ON(!gic_supports_nmi()))
503 return;
504
505 if (gic_peek_irq(d, GICD_ISENABLER)) {
506 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
507 return;
508 }
509
510 /*
511 * A secondary irq_chip should be in charge of LPI request,
512 * it should not be possible to get there
513 */
514 if (WARN_ON(gic_irq(d) >= 8192))
515 return;
516
517 /* desc lock should already be held */
518 if (gic_irq_in_rdist(d)) {
519 u32 idx = gic_get_ppi_index(d);
520
521 /* Tearing down NMI, only switch handler for last NMI */
522 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
523 desc->handle_irq = handle_percpu_devid_irq;
524 } else {
525 desc->handle_irq = handle_fasteoi_irq;
526 }
527
528 gic_irq_set_prio(d, GICD_INT_DEF_PRI);
529 }
530
531 static void gic_eoi_irq(struct irq_data *d)
532 {
533 gic_write_eoir(gic_irq(d));
534 }
535
536 static void gic_eoimode1_eoi_irq(struct irq_data *d)
537 {
538 /*
539 * No need to deactivate an LPI, or an interrupt that
540 * is is getting forwarded to a vcpu.
541 */
542 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
543 return;
544 gic_write_dir(gic_irq(d));
545 }
546
547 static int gic_set_type(struct irq_data *d, unsigned int type)
548 {
549 enum gic_intid_range range;
550 unsigned int irq = gic_irq(d);
551 void (*rwp_wait)(void);
552 void __iomem *base;
553 u32 offset, index;
554 int ret;
555
556 range = get_intid_range(d);
557
558 /* Interrupt configuration for SGIs can't be changed */
559 if (range == SGI_RANGE)
560 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
561
562 /* SPIs have restrictions on the supported types */
563 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
564 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
565 return -EINVAL;
566
567 if (gic_irq_in_rdist(d)) {
568 base = gic_data_rdist_sgi_base();
569 rwp_wait = gic_redist_wait_for_rwp;
570 } else {
571 base = gic_data.dist_base;
572 rwp_wait = gic_dist_wait_for_rwp;
573 }
574
575 offset = convert_offset_index(d, GICD_ICFGR, &index);
576
577 ret = gic_configure_irq(index, type, base + offset, rwp_wait);
578 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
579 /* Misconfigured PPIs are usually not fatal */
580 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
581 ret = 0;
582 }
583
584 return ret;
585 }
586
587 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
588 {
589 if (get_intid_range(d) == SGI_RANGE)
590 return -EINVAL;
591
592 if (vcpu)
593 irqd_set_forwarded_to_vcpu(d);
594 else
595 irqd_clr_forwarded_to_vcpu(d);
596 return 0;
597 }
598
599 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
600 {
601 u64 aff;
602
603 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
604 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
605 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
606 MPIDR_AFFINITY_LEVEL(mpidr, 0));
607
608 return aff;
609 }
610
611 static void gic_deactivate_unhandled(u32 irqnr)
612 {
613 if (static_branch_likely(&supports_deactivate_key)) {
614 if (irqnr < 8192)
615 gic_write_dir(irqnr);
616 } else {
617 gic_write_eoir(irqnr);
618 }
619 }
620
621 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
622 {
623 bool irqs_enabled = interrupts_enabled(regs);
624 int err;
625
626 if (irqs_enabled)
627 nmi_enter();
628
629 if (static_branch_likely(&supports_deactivate_key))
630 gic_write_eoir(irqnr);
631 /*
632 * Leave the PSR.I bit set to prevent other NMIs to be
633 * received while handling this one.
634 * PSR.I will be restored when we ERET to the
635 * interrupted context.
636 */
637 err = handle_domain_nmi(gic_data.domain, irqnr, regs);
638 if (err)
639 gic_deactivate_unhandled(irqnr);
640
641 if (irqs_enabled)
642 nmi_exit();
643 }
644
645 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
646 {
647 u32 irqnr;
648
649 irqnr = gic_read_iar();
650
651 if (gic_supports_nmi() &&
652 unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
653 gic_handle_nmi(irqnr, regs);
654 return;
655 }
656
657 if (gic_prio_masking_enabled()) {
658 gic_pmr_mask_irqs();
659 gic_arch_enable_irqs();
660 }
661
662 /* Check for special IDs first */
663 if ((irqnr >= 1020 && irqnr <= 1023))
664 return;
665
666 if (static_branch_likely(&supports_deactivate_key))
667 gic_write_eoir(irqnr);
668 else
669 isb();
670
671 if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
672 WARN_ONCE(true, "Unexpected interrupt received!\n");
673 gic_deactivate_unhandled(irqnr);
674 }
675 }
676
677 static u32 gic_get_pribits(void)
678 {
679 u32 pribits;
680
681 pribits = gic_read_ctlr();
682 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
683 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
684 pribits++;
685
686 return pribits;
687 }
688
689 static bool gic_has_group0(void)
690 {
691 u32 val;
692 u32 old_pmr;
693
694 old_pmr = gic_read_pmr();
695
696 /*
697 * Let's find out if Group0 is under control of EL3 or not by
698 * setting the highest possible, non-zero priority in PMR.
699 *
700 * If SCR_EL3.FIQ is set, the priority gets shifted down in
701 * order for the CPU interface to set bit 7, and keep the
702 * actual priority in the non-secure range. In the process, it
703 * looses the least significant bit and the actual priority
704 * becomes 0x80. Reading it back returns 0, indicating that
705 * we're don't have access to Group0.
706 */
707 gic_write_pmr(BIT(8 - gic_get_pribits()));
708 val = gic_read_pmr();
709
710 gic_write_pmr(old_pmr);
711
712 return val != 0;
713 }
714
715 static void __init gic_dist_init(void)
716 {
717 unsigned int i;
718 u64 affinity;
719 void __iomem *base = gic_data.dist_base;
720 u32 val;
721
722 /* Disable the distributor */
723 writel_relaxed(0, base + GICD_CTLR);
724 gic_dist_wait_for_rwp();
725
726 /*
727 * Configure SPIs as non-secure Group-1. This will only matter
728 * if the GIC only has a single security state. This will not
729 * do the right thing if the kernel is running in secure mode,
730 * but that's not the intended use case anyway.
731 */
732 for (i = 32; i < GIC_LINE_NR; i += 32)
733 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
734
735 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
736 for (i = 0; i < GIC_ESPI_NR; i += 32) {
737 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
738 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
739 }
740
741 for (i = 0; i < GIC_ESPI_NR; i += 32)
742 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
743
744 for (i = 0; i < GIC_ESPI_NR; i += 16)
745 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
746
747 for (i = 0; i < GIC_ESPI_NR; i += 4)
748 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
749
750 /* Now do the common stuff, and wait for the distributor to drain */
751 gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
752
753 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
754 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
755 pr_info("Enabling SGIs without active state\n");
756 val |= GICD_CTLR_nASSGIreq;
757 }
758
759 /* Enable distributor with ARE, Group1 */
760 writel_relaxed(val, base + GICD_CTLR);
761
762 /*
763 * Set all global interrupts to the boot CPU only. ARE must be
764 * enabled.
765 */
766 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
767 for (i = 32; i < GIC_LINE_NR; i++)
768 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
769
770 for (i = 0; i < GIC_ESPI_NR; i++)
771 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
772 }
773
774 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
775 {
776 int ret = -ENODEV;
777 int i;
778
779 for (i = 0; i < gic_data.nr_redist_regions; i++) {
780 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
781 u64 typer;
782 u32 reg;
783
784 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
785 if (reg != GIC_PIDR2_ARCH_GICv3 &&
786 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
787 pr_warn("No redistributor present @%p\n", ptr);
788 break;
789 }
790
791 do {
792 typer = gic_read_typer(ptr + GICR_TYPER);
793 ret = fn(gic_data.redist_regions + i, ptr);
794 if (!ret)
795 return 0;
796
797 if (gic_data.redist_regions[i].single_redist)
798 break;
799
800 if (gic_data.redist_stride) {
801 ptr += gic_data.redist_stride;
802 } else {
803 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
804 if (typer & GICR_TYPER_VLPIS)
805 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
806 }
807 } while (!(typer & GICR_TYPER_LAST));
808 }
809
810 return ret ? -ENODEV : 0;
811 }
812
813 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
814 {
815 unsigned long mpidr = cpu_logical_map(smp_processor_id());
816 u64 typer;
817 u32 aff;
818
819 /*
820 * Convert affinity to a 32bit value that can be matched to
821 * GICR_TYPER bits [63:32].
822 */
823 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
824 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
825 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
826 MPIDR_AFFINITY_LEVEL(mpidr, 0));
827
828 typer = gic_read_typer(ptr + GICR_TYPER);
829 if ((typer >> 32) == aff) {
830 u64 offset = ptr - region->redist_base;
831 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
832 gic_data_rdist_rd_base() = ptr;
833 gic_data_rdist()->phys_base = region->phys_base + offset;
834
835 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
836 smp_processor_id(), mpidr,
837 (int)(region - gic_data.redist_regions),
838 &gic_data_rdist()->phys_base);
839 return 0;
840 }
841
842 /* Try next one */
843 return 1;
844 }
845
846 static int gic_populate_rdist(void)
847 {
848 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
849 return 0;
850
851 /* We couldn't even deal with ourselves... */
852 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
853 smp_processor_id(),
854 (unsigned long)cpu_logical_map(smp_processor_id()));
855 return -ENODEV;
856 }
857
858 static int __gic_update_rdist_properties(struct redist_region *region,
859 void __iomem *ptr)
860 {
861 u64 typer = gic_read_typer(ptr + GICR_TYPER);
862
863 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
864
865 /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
866 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
867 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
868 gic_data.rdists.has_rvpeid);
869 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
870
871 /* Detect non-sensical configurations */
872 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
873 gic_data.rdists.has_direct_lpi = false;
874 gic_data.rdists.has_vlpis = false;
875 gic_data.rdists.has_rvpeid = false;
876 }
877
878 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
879
880 return 1;
881 }
882
883 static void gic_update_rdist_properties(void)
884 {
885 gic_data.ppi_nr = UINT_MAX;
886 gic_iterate_rdists(__gic_update_rdist_properties);
887 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
888 gic_data.ppi_nr = 0;
889 pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
890 if (gic_data.rdists.has_vlpis)
891 pr_info("GICv4 features: %s%s%s\n",
892 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
893 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
894 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
895 }
896
897 /* Check whether it's single security state view */
898 static inline bool gic_dist_security_disabled(void)
899 {
900 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
901 }
902
903 static void gic_cpu_sys_reg_init(void)
904 {
905 int i, cpu = smp_processor_id();
906 u64 mpidr = cpu_logical_map(cpu);
907 u64 need_rss = MPIDR_RS(mpidr);
908 bool group0;
909 u32 pribits;
910
911 /*
912 * Need to check that the SRE bit has actually been set. If
913 * not, it means that SRE is disabled at EL2. We're going to
914 * die painfully, and there is nothing we can do about it.
915 *
916 * Kindly inform the luser.
917 */
918 if (!gic_enable_sre())
919 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
920
921 pribits = gic_get_pribits();
922
923 group0 = gic_has_group0();
924
925 /* Set priority mask register */
926 if (!gic_prio_masking_enabled()) {
927 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
928 } else if (gic_supports_nmi()) {
929 /*
930 * Mismatch configuration with boot CPU, the system is likely
931 * to die as interrupt masking will not work properly on all
932 * CPUs
933 *
934 * The boot CPU calls this function before enabling NMI support,
935 * and as a result we'll never see this warning in the boot path
936 * for that CPU.
937 */
938 if (static_branch_unlikely(&gic_nonsecure_priorities))
939 WARN_ON(!group0 || gic_dist_security_disabled());
940 else
941 WARN_ON(group0 && !gic_dist_security_disabled());
942 }
943
944 /*
945 * Some firmwares hand over to the kernel with the BPR changed from
946 * its reset value (and with a value large enough to prevent
947 * any pre-emptive interrupts from working at all). Writing a zero
948 * to BPR restores is reset value.
949 */
950 gic_write_bpr1(0);
951
952 if (static_branch_likely(&supports_deactivate_key)) {
953 /* EOI drops priority only (mode 1) */
954 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
955 } else {
956 /* EOI deactivates interrupt too (mode 0) */
957 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
958 }
959
960 /* Always whack Group0 before Group1 */
961 if (group0) {
962 switch(pribits) {
963 case 8:
964 case 7:
965 write_gicreg(0, ICC_AP0R3_EL1);
966 write_gicreg(0, ICC_AP0R2_EL1);
967 fallthrough;
968 case 6:
969 write_gicreg(0, ICC_AP0R1_EL1);
970 fallthrough;
971 case 5:
972 case 4:
973 write_gicreg(0, ICC_AP0R0_EL1);
974 }
975
976 isb();
977 }
978
979 switch(pribits) {
980 case 8:
981 case 7:
982 write_gicreg(0, ICC_AP1R3_EL1);
983 write_gicreg(0, ICC_AP1R2_EL1);
984 fallthrough;
985 case 6:
986 write_gicreg(0, ICC_AP1R1_EL1);
987 fallthrough;
988 case 5:
989 case 4:
990 write_gicreg(0, ICC_AP1R0_EL1);
991 }
992
993 isb();
994
995 /* ... and let's hit the road... */
996 gic_write_grpen1(1);
997
998 /* Keep the RSS capability status in per_cpu variable */
999 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1000
1001 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1002 for_each_online_cpu(i) {
1003 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1004
1005 need_rss |= MPIDR_RS(cpu_logical_map(i));
1006 if (need_rss && (!have_rss))
1007 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1008 cpu, (unsigned long)mpidr,
1009 i, (unsigned long)cpu_logical_map(i));
1010 }
1011
1012 /**
1013 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1014 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1015 * UNPREDICTABLE choice of :
1016 * - The write is ignored.
1017 * - The RS field is treated as 0.
1018 */
1019 if (need_rss && (!gic_data.has_rss))
1020 pr_crit_once("RSS is required but GICD doesn't support it\n");
1021 }
1022
1023 static bool gicv3_nolpi;
1024
1025 static int __init gicv3_nolpi_cfg(char *buf)
1026 {
1027 return strtobool(buf, &gicv3_nolpi);
1028 }
1029 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1030
1031 static int gic_dist_supports_lpis(void)
1032 {
1033 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1034 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1035 !gicv3_nolpi);
1036 }
1037
1038 static void gic_cpu_init(void)
1039 {
1040 void __iomem *rbase;
1041 int i;
1042
1043 /* Register ourselves with the rest of the world */
1044 if (gic_populate_rdist())
1045 return;
1046
1047 gic_enable_redist(true);
1048
1049 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1050 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1051 "Distributor has extended ranges, but CPU%d doesn't\n",
1052 smp_processor_id());
1053
1054 rbase = gic_data_rdist_sgi_base();
1055
1056 /* Configure SGIs/PPIs as non-secure Group-1 */
1057 for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1058 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1059
1060 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1061
1062 /* initialise system registers */
1063 gic_cpu_sys_reg_init();
1064 }
1065
1066 #ifdef CONFIG_SMP
1067
1068 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1069 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1070
1071 static int gic_starting_cpu(unsigned int cpu)
1072 {
1073 gic_cpu_init();
1074
1075 if (gic_dist_supports_lpis())
1076 its_cpu_init();
1077
1078 return 0;
1079 }
1080
1081 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1082 unsigned long cluster_id)
1083 {
1084 int next_cpu, cpu = *base_cpu;
1085 unsigned long mpidr = cpu_logical_map(cpu);
1086 u16 tlist = 0;
1087
1088 while (cpu < nr_cpu_ids) {
1089 tlist |= 1 << (mpidr & 0xf);
1090
1091 next_cpu = cpumask_next(cpu, mask);
1092 if (next_cpu >= nr_cpu_ids)
1093 goto out;
1094 cpu = next_cpu;
1095
1096 mpidr = cpu_logical_map(cpu);
1097
1098 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1099 cpu--;
1100 goto out;
1101 }
1102 }
1103 out:
1104 *base_cpu = cpu;
1105 return tlist;
1106 }
1107
1108 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1109 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1110 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1111
1112 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1113 {
1114 u64 val;
1115
1116 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1117 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1118 irq << ICC_SGI1R_SGI_ID_SHIFT |
1119 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1120 MPIDR_TO_SGI_RS(cluster_id) |
1121 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1122
1123 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1124 gic_write_sgi1r(val);
1125 }
1126
1127 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1128 {
1129 int cpu;
1130
1131 if (WARN_ON(d->hwirq >= 16))
1132 return;
1133
1134 /*
1135 * Ensure that stores to Normal memory are visible to the
1136 * other CPUs before issuing the IPI.
1137 */
1138 wmb();
1139
1140 for_each_cpu(cpu, mask) {
1141 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1142 u16 tlist;
1143
1144 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1145 gic_send_sgi(cluster_id, tlist, d->hwirq);
1146 }
1147
1148 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1149 isb();
1150 }
1151
1152 static void __init gic_smp_init(void)
1153 {
1154 struct irq_fwspec sgi_fwspec = {
1155 .fwnode = gic_data.fwnode,
1156 .param_count = 1,
1157 };
1158 int base_sgi;
1159
1160 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1161 "irqchip/arm/gicv3:starting",
1162 gic_starting_cpu, NULL);
1163
1164 /* Register all 8 non-secure SGIs */
1165 base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1166 NUMA_NO_NODE, &sgi_fwspec,
1167 false, NULL);
1168 if (WARN_ON(base_sgi <= 0))
1169 return;
1170
1171 set_smp_ipi_range(base_sgi, 8);
1172 }
1173
1174 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1175 bool force)
1176 {
1177 unsigned int cpu;
1178 u32 offset, index;
1179 void __iomem *reg;
1180 int enabled;
1181 u64 val;
1182
1183 if (force)
1184 cpu = cpumask_first(mask_val);
1185 else
1186 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1187
1188 if (cpu >= nr_cpu_ids)
1189 return -EINVAL;
1190
1191 if (gic_irq_in_rdist(d))
1192 return -EINVAL;
1193
1194 /* If interrupt was enabled, disable it first */
1195 enabled = gic_peek_irq(d, GICD_ISENABLER);
1196 if (enabled)
1197 gic_mask_irq(d);
1198
1199 offset = convert_offset_index(d, GICD_IROUTER, &index);
1200 reg = gic_dist_base(d) + offset + (index * 8);
1201 val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1202
1203 gic_write_irouter(val, reg);
1204
1205 /*
1206 * If the interrupt was enabled, enabled it again. Otherwise,
1207 * just wait for the distributor to have digested our changes.
1208 */
1209 if (enabled)
1210 gic_unmask_irq(d);
1211 else
1212 gic_dist_wait_for_rwp();
1213
1214 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1215
1216 return IRQ_SET_MASK_OK_DONE;
1217 }
1218 #else
1219 #define gic_set_affinity NULL
1220 #define gic_ipi_send_mask NULL
1221 #define gic_smp_init() do { } while(0)
1222 #endif
1223
1224 static int gic_retrigger(struct irq_data *data)
1225 {
1226 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1227 }
1228
1229 #ifdef CONFIG_CPU_PM
1230 static int gic_cpu_pm_notifier(struct notifier_block *self,
1231 unsigned long cmd, void *v)
1232 {
1233 if (cmd == CPU_PM_EXIT) {
1234 if (gic_dist_security_disabled())
1235 gic_enable_redist(true);
1236 gic_cpu_sys_reg_init();
1237 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1238 gic_write_grpen1(0);
1239 gic_enable_redist(false);
1240 }
1241 return NOTIFY_OK;
1242 }
1243
1244 static struct notifier_block gic_cpu_pm_notifier_block = {
1245 .notifier_call = gic_cpu_pm_notifier,
1246 };
1247
1248 static void gic_cpu_pm_init(void)
1249 {
1250 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1251 }
1252
1253 #else
1254 static inline void gic_cpu_pm_init(void) { }
1255 #endif /* CONFIG_CPU_PM */
1256
1257 static struct irq_chip gic_chip = {
1258 .name = "GICv3",
1259 .irq_mask = gic_mask_irq,
1260 .irq_unmask = gic_unmask_irq,
1261 .irq_eoi = gic_eoi_irq,
1262 .irq_set_type = gic_set_type,
1263 .irq_set_affinity = gic_set_affinity,
1264 .irq_retrigger = gic_retrigger,
1265 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1266 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1267 .irq_nmi_setup = gic_irq_nmi_setup,
1268 .irq_nmi_teardown = gic_irq_nmi_teardown,
1269 .ipi_send_mask = gic_ipi_send_mask,
1270 .flags = IRQCHIP_SET_TYPE_MASKED |
1271 IRQCHIP_SKIP_SET_WAKE |
1272 IRQCHIP_MASK_ON_SUSPEND,
1273 };
1274
1275 static struct irq_chip gic_eoimode1_chip = {
1276 .name = "GICv3",
1277 .irq_mask = gic_eoimode1_mask_irq,
1278 .irq_unmask = gic_unmask_irq,
1279 .irq_eoi = gic_eoimode1_eoi_irq,
1280 .irq_set_type = gic_set_type,
1281 .irq_set_affinity = gic_set_affinity,
1282 .irq_retrigger = gic_retrigger,
1283 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1284 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1285 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1286 .irq_nmi_setup = gic_irq_nmi_setup,
1287 .irq_nmi_teardown = gic_irq_nmi_teardown,
1288 .ipi_send_mask = gic_ipi_send_mask,
1289 .flags = IRQCHIP_SET_TYPE_MASKED |
1290 IRQCHIP_SKIP_SET_WAKE |
1291 IRQCHIP_MASK_ON_SUSPEND,
1292 };
1293
1294 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1295 irq_hw_number_t hw)
1296 {
1297 struct irq_chip *chip = &gic_chip;
1298 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1299
1300 if (static_branch_likely(&supports_deactivate_key))
1301 chip = &gic_eoimode1_chip;
1302
1303 switch (__get_intid_range(hw)) {
1304 case SGI_RANGE:
1305 case PPI_RANGE:
1306 case EPPI_RANGE:
1307 irq_set_percpu_devid(irq);
1308 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1309 handle_percpu_devid_irq, NULL, NULL);
1310 break;
1311
1312 case SPI_RANGE:
1313 case ESPI_RANGE:
1314 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1315 handle_fasteoi_irq, NULL, NULL);
1316 irq_set_probe(irq);
1317 irqd_set_single_target(irqd);
1318 break;
1319
1320 case LPI_RANGE:
1321 if (!gic_dist_supports_lpis())
1322 return -EPERM;
1323 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1324 handle_fasteoi_irq, NULL, NULL);
1325 break;
1326
1327 default:
1328 return -EPERM;
1329 }
1330
1331 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1332 irqd_set_handle_enforce_irqctx(irqd);
1333 return 0;
1334 }
1335
1336 static int gic_irq_domain_translate(struct irq_domain *d,
1337 struct irq_fwspec *fwspec,
1338 unsigned long *hwirq,
1339 unsigned int *type)
1340 {
1341 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1342 *hwirq = fwspec->param[0];
1343 *type = IRQ_TYPE_EDGE_RISING;
1344 return 0;
1345 }
1346
1347 if (is_of_node(fwspec->fwnode)) {
1348 if (fwspec->param_count < 3)
1349 return -EINVAL;
1350
1351 switch (fwspec->param[0]) {
1352 case 0: /* SPI */
1353 *hwirq = fwspec->param[1] + 32;
1354 break;
1355 case 1: /* PPI */
1356 *hwirq = fwspec->param[1] + 16;
1357 break;
1358 case 2: /* ESPI */
1359 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1360 break;
1361 case 3: /* EPPI */
1362 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1363 break;
1364 case GIC_IRQ_TYPE_LPI: /* LPI */
1365 *hwirq = fwspec->param[1];
1366 break;
1367 case GIC_IRQ_TYPE_PARTITION:
1368 *hwirq = fwspec->param[1];
1369 if (fwspec->param[1] >= 16)
1370 *hwirq += EPPI_BASE_INTID - 16;
1371 else
1372 *hwirq += 16;
1373 break;
1374 default:
1375 return -EINVAL;
1376 }
1377
1378 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1379
1380 /*
1381 * Make it clear that broken DTs are... broken.
1382 * Partitionned PPIs are an unfortunate exception.
1383 */
1384 WARN_ON(*type == IRQ_TYPE_NONE &&
1385 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1386 return 0;
1387 }
1388
1389 if (is_fwnode_irqchip(fwspec->fwnode)) {
1390 if(fwspec->param_count != 2)
1391 return -EINVAL;
1392
1393 *hwirq = fwspec->param[0];
1394 *type = fwspec->param[1];
1395
1396 WARN_ON(*type == IRQ_TYPE_NONE);
1397 return 0;
1398 }
1399
1400 return -EINVAL;
1401 }
1402
1403 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1404 unsigned int nr_irqs, void *arg)
1405 {
1406 int i, ret;
1407 irq_hw_number_t hwirq;
1408 unsigned int type = IRQ_TYPE_NONE;
1409 struct irq_fwspec *fwspec = arg;
1410
1411 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1412 if (ret)
1413 return ret;
1414
1415 for (i = 0; i < nr_irqs; i++) {
1416 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1417 if (ret)
1418 return ret;
1419 }
1420
1421 return 0;
1422 }
1423
1424 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1425 unsigned int nr_irqs)
1426 {
1427 int i;
1428
1429 for (i = 0; i < nr_irqs; i++) {
1430 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1431 irq_set_handler(virq + i, NULL);
1432 irq_domain_reset_irq_data(d);
1433 }
1434 }
1435
1436 static int gic_irq_domain_select(struct irq_domain *d,
1437 struct irq_fwspec *fwspec,
1438 enum irq_domain_bus_token bus_token)
1439 {
1440 /* Not for us */
1441 if (fwspec->fwnode != d->fwnode)
1442 return 0;
1443
1444 /* If this is not DT, then we have a single domain */
1445 if (!is_of_node(fwspec->fwnode))
1446 return 1;
1447
1448 /*
1449 * If this is a PPI and we have a 4th (non-null) parameter,
1450 * then we need to match the partition domain.
1451 */
1452 if (fwspec->param_count >= 4 &&
1453 fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1454 gic_data.ppi_descs)
1455 return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1456
1457 return d == gic_data.domain;
1458 }
1459
1460 static const struct irq_domain_ops gic_irq_domain_ops = {
1461 .translate = gic_irq_domain_translate,
1462 .alloc = gic_irq_domain_alloc,
1463 .free = gic_irq_domain_free,
1464 .select = gic_irq_domain_select,
1465 };
1466
1467 static int partition_domain_translate(struct irq_domain *d,
1468 struct irq_fwspec *fwspec,
1469 unsigned long *hwirq,
1470 unsigned int *type)
1471 {
1472 struct device_node *np;
1473 int ret;
1474
1475 if (!gic_data.ppi_descs)
1476 return -ENOMEM;
1477
1478 np = of_find_node_by_phandle(fwspec->param[3]);
1479 if (WARN_ON(!np))
1480 return -EINVAL;
1481
1482 ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1483 of_node_to_fwnode(np));
1484 if (ret < 0)
1485 return ret;
1486
1487 *hwirq = ret;
1488 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1489
1490 return 0;
1491 }
1492
1493 static const struct irq_domain_ops partition_domain_ops = {
1494 .translate = partition_domain_translate,
1495 .select = gic_irq_domain_select,
1496 };
1497
1498 static bool gic_enable_quirk_msm8996(void *data)
1499 {
1500 struct gic_chip_data *d = data;
1501
1502 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1503
1504 return true;
1505 }
1506
1507 static bool gic_enable_quirk_cavium_38539(void *data)
1508 {
1509 struct gic_chip_data *d = data;
1510
1511 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1512
1513 return true;
1514 }
1515
1516 static bool gic_enable_quirk_hip06_07(void *data)
1517 {
1518 struct gic_chip_data *d = data;
1519
1520 /*
1521 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1522 * not being an actual ARM implementation). The saving grace is
1523 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1524 * HIP07 doesn't even have a proper IIDR, and still pretends to
1525 * have ESPI. In both cases, put them right.
1526 */
1527 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1528 /* Zero both ESPI and the RES0 field next to it... */
1529 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1530 return true;
1531 }
1532
1533 return false;
1534 }
1535
1536 static const struct gic_quirk gic_quirks[] = {
1537 {
1538 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1539 .compatible = "qcom,msm8996-gic-v3",
1540 .init = gic_enable_quirk_msm8996,
1541 },
1542 {
1543 .desc = "GICv3: HIP06 erratum 161010803",
1544 .iidr = 0x0204043b,
1545 .mask = 0xffffffff,
1546 .init = gic_enable_quirk_hip06_07,
1547 },
1548 {
1549 .desc = "GICv3: HIP07 erratum 161010803",
1550 .iidr = 0x00000000,
1551 .mask = 0xffffffff,
1552 .init = gic_enable_quirk_hip06_07,
1553 },
1554 {
1555 /*
1556 * Reserved register accesses generate a Synchronous
1557 * External Abort. This erratum applies to:
1558 * - ThunderX: CN88xx
1559 * - OCTEON TX: CN83xx, CN81xx
1560 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1561 */
1562 .desc = "GICv3: Cavium erratum 38539",
1563 .iidr = 0xa000034c,
1564 .mask = 0xe8f00fff,
1565 .init = gic_enable_quirk_cavium_38539,
1566 },
1567 {
1568 }
1569 };
1570
1571 static void gic_enable_nmi_support(void)
1572 {
1573 int i;
1574
1575 if (!gic_prio_masking_enabled())
1576 return;
1577
1578 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1579 if (!ppi_nmi_refs)
1580 return;
1581
1582 for (i = 0; i < gic_data.ppi_nr; i++)
1583 refcount_set(&ppi_nmi_refs[i], 0);
1584
1585 /*
1586 * Linux itself doesn't use 1:N distribution, so has no need to
1587 * set PMHE. The only reason to have it set is if EL3 requires it
1588 * (and we can't change it).
1589 */
1590 if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1591 static_branch_enable(&gic_pmr_sync);
1592
1593 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1594 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1595
1596 /*
1597 * How priority values are used by the GIC depends on two things:
1598 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1599 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1600 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1601 * the ICC_PMR_EL1 register and the priority that software assigns to
1602 * interrupts:
1603 *
1604 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1605 * -----------------------------------------------------------
1606 * 1 | - | unchanged | unchanged
1607 * -----------------------------------------------------------
1608 * 0 | 1 | non-secure | non-secure
1609 * -----------------------------------------------------------
1610 * 0 | 0 | unchanged | non-secure
1611 *
1612 * where non-secure means that the value is right-shifted by one and the
1613 * MSB bit set, to make it fit in the non-secure priority range.
1614 *
1615 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1616 * are both either modified or unchanged, we can use the same set of
1617 * priorities.
1618 *
1619 * In the last case, where only the interrupt priorities are modified to
1620 * be in the non-secure range, we use a different PMR value to mask IRQs
1621 * and the rest of the values that we use remain unchanged.
1622 */
1623 if (gic_has_group0() && !gic_dist_security_disabled())
1624 static_branch_enable(&gic_nonsecure_priorities);
1625
1626 static_branch_enable(&supports_pseudo_nmis);
1627
1628 if (static_branch_likely(&supports_deactivate_key))
1629 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1630 else
1631 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1632 }
1633
1634 static int __init gic_init_bases(void __iomem *dist_base,
1635 struct redist_region *rdist_regs,
1636 u32 nr_redist_regions,
1637 u64 redist_stride,
1638 struct fwnode_handle *handle)
1639 {
1640 u32 typer;
1641 int err;
1642
1643 if (!is_hyp_mode_available())
1644 static_branch_disable(&supports_deactivate_key);
1645
1646 if (static_branch_likely(&supports_deactivate_key))
1647 pr_info("GIC: Using split EOI/Deactivate mode\n");
1648
1649 gic_data.fwnode = handle;
1650 gic_data.dist_base = dist_base;
1651 gic_data.redist_regions = rdist_regs;
1652 gic_data.nr_redist_regions = nr_redist_regions;
1653 gic_data.redist_stride = redist_stride;
1654
1655 /*
1656 * Find out how many interrupts are supported.
1657 */
1658 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1659 gic_data.rdists.gicd_typer = typer;
1660
1661 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1662 gic_quirks, &gic_data);
1663
1664 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1665 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1666
1667 /*
1668 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1669 * architecture spec (which says that reserved registers are RES0).
1670 */
1671 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1672 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1673
1674 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1675 &gic_data);
1676 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1677 gic_data.rdists.has_rvpeid = true;
1678 gic_data.rdists.has_vlpis = true;
1679 gic_data.rdists.has_direct_lpi = true;
1680 gic_data.rdists.has_vpend_valid_dirty = true;
1681
1682 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1683 err = -ENOMEM;
1684 goto out_free;
1685 }
1686
1687 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1688
1689 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1690 pr_info("Distributor has %sRange Selector support\n",
1691 gic_data.has_rss ? "" : "no ");
1692
1693 if (typer & GICD_TYPER_MBIS) {
1694 err = mbi_init(handle, gic_data.domain);
1695 if (err)
1696 pr_err("Failed to initialize MBIs\n");
1697 }
1698
1699 set_handle_irq(gic_handle_irq);
1700
1701 gic_update_rdist_properties();
1702
1703 gic_dist_init();
1704 gic_cpu_init();
1705 gic_smp_init();
1706 gic_cpu_pm_init();
1707
1708 if (gic_dist_supports_lpis()) {
1709 its_init(handle, &gic_data.rdists, gic_data.domain);
1710 its_cpu_init();
1711 } else {
1712 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1713 gicv2m_init(handle, gic_data.domain);
1714 }
1715
1716 gic_enable_nmi_support();
1717
1718 return 0;
1719
1720 out_free:
1721 if (gic_data.domain)
1722 irq_domain_remove(gic_data.domain);
1723 free_percpu(gic_data.rdists.rdist);
1724 return err;
1725 }
1726
1727 static int __init gic_validate_dist_version(void __iomem *dist_base)
1728 {
1729 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1730
1731 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1732 return -ENODEV;
1733
1734 return 0;
1735 }
1736
1737 /* Create all possible partitions at boot time */
1738 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1739 {
1740 struct device_node *parts_node, *child_part;
1741 int part_idx = 0, i;
1742 int nr_parts;
1743 struct partition_affinity *parts;
1744
1745 parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1746 if (!parts_node)
1747 return;
1748
1749 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1750 if (!gic_data.ppi_descs)
1751 return;
1752
1753 nr_parts = of_get_child_count(parts_node);
1754
1755 if (!nr_parts)
1756 goto out_put_node;
1757
1758 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1759 if (WARN_ON(!parts))
1760 goto out_put_node;
1761
1762 for_each_child_of_node(parts_node, child_part) {
1763 struct partition_affinity *part;
1764 int n;
1765
1766 part = &parts[part_idx];
1767
1768 part->partition_id = of_node_to_fwnode(child_part);
1769
1770 pr_info("GIC: PPI partition %pOFn[%d] { ",
1771 child_part, part_idx);
1772
1773 n = of_property_count_elems_of_size(child_part, "affinity",
1774 sizeof(u32));
1775 WARN_ON(n <= 0);
1776
1777 for (i = 0; i < n; i++) {
1778 int err, cpu;
1779 u32 cpu_phandle;
1780 struct device_node *cpu_node;
1781
1782 err = of_property_read_u32_index(child_part, "affinity",
1783 i, &cpu_phandle);
1784 if (WARN_ON(err))
1785 continue;
1786
1787 cpu_node = of_find_node_by_phandle(cpu_phandle);
1788 if (WARN_ON(!cpu_node))
1789 continue;
1790
1791 cpu = of_cpu_node_to_id(cpu_node);
1792 if (WARN_ON(cpu < 0))
1793 continue;
1794
1795 pr_cont("%pOF[%d] ", cpu_node, cpu);
1796
1797 cpumask_set_cpu(cpu, &part->mask);
1798 }
1799
1800 pr_cont("}\n");
1801 part_idx++;
1802 }
1803
1804 for (i = 0; i < gic_data.ppi_nr; i++) {
1805 unsigned int irq;
1806 struct partition_desc *desc;
1807 struct irq_fwspec ppi_fwspec = {
1808 .fwnode = gic_data.fwnode,
1809 .param_count = 3,
1810 .param = {
1811 [0] = GIC_IRQ_TYPE_PARTITION,
1812 [1] = i,
1813 [2] = IRQ_TYPE_NONE,
1814 },
1815 };
1816
1817 irq = irq_create_fwspec_mapping(&ppi_fwspec);
1818 if (WARN_ON(!irq))
1819 continue;
1820 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1821 irq, &partition_domain_ops);
1822 if (WARN_ON(!desc))
1823 continue;
1824
1825 gic_data.ppi_descs[i] = desc;
1826 }
1827
1828 out_put_node:
1829 of_node_put(parts_node);
1830 }
1831
1832 static void __init gic_of_setup_kvm_info(struct device_node *node)
1833 {
1834 int ret;
1835 struct resource r;
1836 u32 gicv_idx;
1837
1838 gic_v3_kvm_info.type = GIC_V3;
1839
1840 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1841 if (!gic_v3_kvm_info.maint_irq)
1842 return;
1843
1844 if (of_property_read_u32(node, "#redistributor-regions",
1845 &gicv_idx))
1846 gicv_idx = 1;
1847
1848 gicv_idx += 3; /* Also skip GICD, GICC, GICH */
1849 ret = of_address_to_resource(node, gicv_idx, &r);
1850 if (!ret)
1851 gic_v3_kvm_info.vcpu = r;
1852
1853 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1854 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1855 gic_set_kvm_info(&gic_v3_kvm_info);
1856 }
1857
1858 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1859 {
1860 void __iomem *dist_base;
1861 struct redist_region *rdist_regs;
1862 u64 redist_stride;
1863 u32 nr_redist_regions;
1864 int err, i;
1865
1866 dist_base = of_iomap(node, 0);
1867 if (!dist_base) {
1868 pr_err("%pOF: unable to map gic dist registers\n", node);
1869 return -ENXIO;
1870 }
1871
1872 err = gic_validate_dist_version(dist_base);
1873 if (err) {
1874 pr_err("%pOF: no distributor detected, giving up\n", node);
1875 goto out_unmap_dist;
1876 }
1877
1878 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1879 nr_redist_regions = 1;
1880
1881 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1882 GFP_KERNEL);
1883 if (!rdist_regs) {
1884 err = -ENOMEM;
1885 goto out_unmap_dist;
1886 }
1887
1888 for (i = 0; i < nr_redist_regions; i++) {
1889 struct resource res;
1890 int ret;
1891
1892 ret = of_address_to_resource(node, 1 + i, &res);
1893 rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1894 if (ret || !rdist_regs[i].redist_base) {
1895 pr_err("%pOF: couldn't map region %d\n", node, i);
1896 err = -ENODEV;
1897 goto out_unmap_rdist;
1898 }
1899 rdist_regs[i].phys_base = res.start;
1900 }
1901
1902 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1903 redist_stride = 0;
1904
1905 gic_enable_of_quirks(node, gic_quirks, &gic_data);
1906
1907 err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
1908 redist_stride, &node->fwnode);
1909 if (err)
1910 goto out_unmap_rdist;
1911
1912 gic_populate_ppi_partitions(node);
1913
1914 if (static_branch_likely(&supports_deactivate_key))
1915 gic_of_setup_kvm_info(node);
1916 return 0;
1917
1918 out_unmap_rdist:
1919 for (i = 0; i < nr_redist_regions; i++)
1920 if (rdist_regs[i].redist_base)
1921 iounmap(rdist_regs[i].redist_base);
1922 kfree(rdist_regs);
1923 out_unmap_dist:
1924 iounmap(dist_base);
1925 return err;
1926 }
1927
1928 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1929
1930 #ifdef CONFIG_ACPI
1931 static struct
1932 {
1933 void __iomem *dist_base;
1934 struct redist_region *redist_regs;
1935 u32 nr_redist_regions;
1936 bool single_redist;
1937 int enabled_rdists;
1938 u32 maint_irq;
1939 int maint_irq_mode;
1940 phys_addr_t vcpu_base;
1941 } acpi_data __initdata;
1942
1943 static void __init
1944 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
1945 {
1946 static int count = 0;
1947
1948 acpi_data.redist_regs[count].phys_base = phys_base;
1949 acpi_data.redist_regs[count].redist_base = redist_base;
1950 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1951 count++;
1952 }
1953
1954 static int __init
1955 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1956 const unsigned long end)
1957 {
1958 struct acpi_madt_generic_redistributor *redist =
1959 (struct acpi_madt_generic_redistributor *)header;
1960 void __iomem *redist_base;
1961
1962 redist_base = ioremap(redist->base_address, redist->length);
1963 if (!redist_base) {
1964 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
1965 return -ENOMEM;
1966 }
1967
1968 gic_acpi_register_redist(redist->base_address, redist_base);
1969 return 0;
1970 }
1971
1972 static int __init
1973 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
1974 const unsigned long end)
1975 {
1976 struct acpi_madt_generic_interrupt *gicc =
1977 (struct acpi_madt_generic_interrupt *)header;
1978 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1979 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
1980 void __iomem *redist_base;
1981
1982 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
1983 if (!(gicc->flags & ACPI_MADT_ENABLED))
1984 return 0;
1985
1986 redist_base = ioremap(gicc->gicr_base_address, size);
1987 if (!redist_base)
1988 return -ENOMEM;
1989
1990 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
1991 return 0;
1992 }
1993
1994 static int __init gic_acpi_collect_gicr_base(void)
1995 {
1996 acpi_tbl_entry_handler redist_parser;
1997 enum acpi_madt_type type;
1998
1999 if (acpi_data.single_redist) {
2000 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2001 redist_parser = gic_acpi_parse_madt_gicc;
2002 } else {
2003 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2004 redist_parser = gic_acpi_parse_madt_redist;
2005 }
2006
2007 /* Collect redistributor base addresses in GICR entries */
2008 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2009 return 0;
2010
2011 pr_info("No valid GICR entries exist\n");
2012 return -ENODEV;
2013 }
2014
2015 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2016 const unsigned long end)
2017 {
2018 /* Subtable presence means that redist exists, that's it */
2019 return 0;
2020 }
2021
2022 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2023 const unsigned long end)
2024 {
2025 struct acpi_madt_generic_interrupt *gicc =
2026 (struct acpi_madt_generic_interrupt *)header;
2027
2028 /*
2029 * If GICC is enabled and has valid gicr base address, then it means
2030 * GICR base is presented via GICC
2031 */
2032 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2033 acpi_data.enabled_rdists++;
2034 return 0;
2035 }
2036
2037 /*
2038 * It's perfectly valid firmware can pass disabled GICC entry, driver
2039 * should not treat as errors, skip the entry instead of probe fail.
2040 */
2041 if (!(gicc->flags & ACPI_MADT_ENABLED))
2042 return 0;
2043
2044 return -ENODEV;
2045 }
2046
2047 static int __init gic_acpi_count_gicr_regions(void)
2048 {
2049 int count;
2050
2051 /*
2052 * Count how many redistributor regions we have. It is not allowed
2053 * to mix redistributor description, GICR and GICC subtables have to be
2054 * mutually exclusive.
2055 */
2056 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2057 gic_acpi_match_gicr, 0);
2058 if (count > 0) {
2059 acpi_data.single_redist = false;
2060 return count;
2061 }
2062
2063 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2064 gic_acpi_match_gicc, 0);
2065 if (count > 0) {
2066 acpi_data.single_redist = true;
2067 count = acpi_data.enabled_rdists;
2068 }
2069
2070 return count;
2071 }
2072
2073 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2074 struct acpi_probe_entry *ape)
2075 {
2076 struct acpi_madt_generic_distributor *dist;
2077 int count;
2078
2079 dist = (struct acpi_madt_generic_distributor *)header;
2080 if (dist->version != ape->driver_data)
2081 return false;
2082
2083 /* We need to do that exercise anyway, the sooner the better */
2084 count = gic_acpi_count_gicr_regions();
2085 if (count <= 0)
2086 return false;
2087
2088 acpi_data.nr_redist_regions = count;
2089 return true;
2090 }
2091
2092 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2093 const unsigned long end)
2094 {
2095 struct acpi_madt_generic_interrupt *gicc =
2096 (struct acpi_madt_generic_interrupt *)header;
2097 int maint_irq_mode;
2098 static int first_madt = true;
2099
2100 /* Skip unusable CPUs */
2101 if (!(gicc->flags & ACPI_MADT_ENABLED))
2102 return 0;
2103
2104 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2105 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2106
2107 if (first_madt) {
2108 first_madt = false;
2109
2110 acpi_data.maint_irq = gicc->vgic_interrupt;
2111 acpi_data.maint_irq_mode = maint_irq_mode;
2112 acpi_data.vcpu_base = gicc->gicv_base_address;
2113
2114 return 0;
2115 }
2116
2117 /*
2118 * The maintenance interrupt and GICV should be the same for every CPU
2119 */
2120 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2121 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2122 (acpi_data.vcpu_base != gicc->gicv_base_address))
2123 return -EINVAL;
2124
2125 return 0;
2126 }
2127
2128 static bool __init gic_acpi_collect_virt_info(void)
2129 {
2130 int count;
2131
2132 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2133 gic_acpi_parse_virt_madt_gicc, 0);
2134
2135 return (count > 0);
2136 }
2137
2138 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2139 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2140 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2141
2142 static void __init gic_acpi_setup_kvm_info(void)
2143 {
2144 int irq;
2145
2146 if (!gic_acpi_collect_virt_info()) {
2147 pr_warn("Unable to get hardware information used for virtualization\n");
2148 return;
2149 }
2150
2151 gic_v3_kvm_info.type = GIC_V3;
2152
2153 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2154 acpi_data.maint_irq_mode,
2155 ACPI_ACTIVE_HIGH);
2156 if (irq <= 0)
2157 return;
2158
2159 gic_v3_kvm_info.maint_irq = irq;
2160
2161 if (acpi_data.vcpu_base) {
2162 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2163
2164 vcpu->flags = IORESOURCE_MEM;
2165 vcpu->start = acpi_data.vcpu_base;
2166 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2167 }
2168
2169 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2170 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2171 gic_set_kvm_info(&gic_v3_kvm_info);
2172 }
2173
2174 static int __init
2175 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2176 {
2177 struct acpi_madt_generic_distributor *dist;
2178 struct fwnode_handle *domain_handle;
2179 size_t size;
2180 int i, err;
2181
2182 /* Get distributor base address */
2183 dist = (struct acpi_madt_generic_distributor *)header;
2184 acpi_data.dist_base = ioremap(dist->base_address,
2185 ACPI_GICV3_DIST_MEM_SIZE);
2186 if (!acpi_data.dist_base) {
2187 pr_err("Unable to map GICD registers\n");
2188 return -ENOMEM;
2189 }
2190
2191 err = gic_validate_dist_version(acpi_data.dist_base);
2192 if (err) {
2193 pr_err("No distributor detected at @%p, giving up\n",
2194 acpi_data.dist_base);
2195 goto out_dist_unmap;
2196 }
2197
2198 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2199 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2200 if (!acpi_data.redist_regs) {
2201 err = -ENOMEM;
2202 goto out_dist_unmap;
2203 }
2204
2205 err = gic_acpi_collect_gicr_base();
2206 if (err)
2207 goto out_redist_unmap;
2208
2209 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2210 if (!domain_handle) {
2211 err = -ENOMEM;
2212 goto out_redist_unmap;
2213 }
2214
2215 err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2216 acpi_data.nr_redist_regions, 0, domain_handle);
2217 if (err)
2218 goto out_fwhandle_free;
2219
2220 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2221
2222 if (static_branch_likely(&supports_deactivate_key))
2223 gic_acpi_setup_kvm_info();
2224
2225 return 0;
2226
2227 out_fwhandle_free:
2228 irq_domain_free_fwnode(domain_handle);
2229 out_redist_unmap:
2230 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2231 if (acpi_data.redist_regs[i].redist_base)
2232 iounmap(acpi_data.redist_regs[i].redist_base);
2233 kfree(acpi_data.redist_regs);
2234 out_dist_unmap:
2235 iounmap(acpi_data.dist_base);
2236 return err;
2237 }
2238 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2239 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2240 gic_acpi_init);
2241 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2242 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2243 gic_acpi_init);
2244 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2245 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2246 gic_acpi_init);
2247 #endif