]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/irqchip/irq-gic.c
Merge branch 'drm-fixes-4.14' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-bionic-kernel.git] / drivers / irqchip / irq-gic.c
1 /*
2 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Interrupt architecture for the GIC:
9 *
10 * o There is one Interrupt Distributor, which receives interrupts
11 * from system devices and sends them to the Interrupt Controllers.
12 *
13 * o There is one CPU Interface per CPU, which sends interrupts sent
14 * by the Distributor, and interrupts generated locally, to the
15 * associated CPU. The base address of the CPU interface is usually
16 * aliased so that the same address points to different chips depending
17 * on the CPU it is accessed from.
18 *
19 * Note that IRQs 0-31 are special - they are local to each CPU.
20 * As such, the enable set/clear, pending set/clear and active bit
21 * registers are banked per-cpu for these sources.
22 */
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/list.h>
28 #include <linux/smp.h>
29 #include <linux/cpu.h>
30 #include <linux/cpu_pm.h>
31 #include <linux/cpumask.h>
32 #include <linux/io.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/acpi.h>
37 #include <linux/irqdomain.h>
38 #include <linux/interrupt.h>
39 #include <linux/percpu.h>
40 #include <linux/slab.h>
41 #include <linux/irqchip.h>
42 #include <linux/irqchip/chained_irq.h>
43 #include <linux/irqchip/arm-gic.h>
44
45 #include <asm/cputype.h>
46 #include <asm/irq.h>
47 #include <asm/exception.h>
48 #include <asm/smp_plat.h>
49 #include <asm/virt.h>
50
51 #include "irq-gic-common.h"
52
53 #ifdef CONFIG_ARM64
54 #include <asm/cpufeature.h>
55
56 static void gic_check_cpu_features(void)
57 {
58 WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
59 TAINT_CPU_OUT_OF_SPEC,
60 "GICv3 system registers enabled, broken firmware!\n");
61 }
62 #else
63 #define gic_check_cpu_features() do { } while(0)
64 #endif
65
66 union gic_base {
67 void __iomem *common_base;
68 void __percpu * __iomem *percpu_base;
69 };
70
71 struct gic_chip_data {
72 struct irq_chip chip;
73 union gic_base dist_base;
74 union gic_base cpu_base;
75 void __iomem *raw_dist_base;
76 void __iomem *raw_cpu_base;
77 u32 percpu_offset;
78 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
79 u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
80 u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
81 u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
82 u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
83 u32 __percpu *saved_ppi_enable;
84 u32 __percpu *saved_ppi_active;
85 u32 __percpu *saved_ppi_conf;
86 #endif
87 struct irq_domain *domain;
88 unsigned int gic_irqs;
89 #ifdef CONFIG_GIC_NON_BANKED
90 void __iomem *(*get_base)(union gic_base *);
91 #endif
92 };
93
94 #ifdef CONFIG_BL_SWITCHER
95
96 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
97
98 #define gic_lock_irqsave(f) \
99 raw_spin_lock_irqsave(&cpu_map_lock, (f))
100 #define gic_unlock_irqrestore(f) \
101 raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
102
103 #define gic_lock() raw_spin_lock(&cpu_map_lock)
104 #define gic_unlock() raw_spin_unlock(&cpu_map_lock)
105
106 #else
107
108 #define gic_lock_irqsave(f) do { (void)(f); } while(0)
109 #define gic_unlock_irqrestore(f) do { (void)(f); } while(0)
110
111 #define gic_lock() do { } while(0)
112 #define gic_unlock() do { } while(0)
113
114 #endif
115
116 /*
117 * The GIC mapping of CPU interfaces does not necessarily match
118 * the logical CPU numbering. Let's use a mapping as returned
119 * by the GIC itself.
120 */
121 #define NR_GIC_CPU_IF 8
122 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
123
124 static struct static_key supports_deactivate = STATIC_KEY_INIT_TRUE;
125
126 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
127
128 static struct gic_kvm_info gic_v2_kvm_info;
129
130 #ifdef CONFIG_GIC_NON_BANKED
131 static void __iomem *gic_get_percpu_base(union gic_base *base)
132 {
133 return raw_cpu_read(*base->percpu_base);
134 }
135
136 static void __iomem *gic_get_common_base(union gic_base *base)
137 {
138 return base->common_base;
139 }
140
141 static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
142 {
143 return data->get_base(&data->dist_base);
144 }
145
146 static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
147 {
148 return data->get_base(&data->cpu_base);
149 }
150
151 static inline void gic_set_base_accessor(struct gic_chip_data *data,
152 void __iomem *(*f)(union gic_base *))
153 {
154 data->get_base = f;
155 }
156 #else
157 #define gic_data_dist_base(d) ((d)->dist_base.common_base)
158 #define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
159 #define gic_set_base_accessor(d, f)
160 #endif
161
162 static inline void __iomem *gic_dist_base(struct irq_data *d)
163 {
164 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
165 return gic_data_dist_base(gic_data);
166 }
167
168 static inline void __iomem *gic_cpu_base(struct irq_data *d)
169 {
170 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
171 return gic_data_cpu_base(gic_data);
172 }
173
174 static inline unsigned int gic_irq(struct irq_data *d)
175 {
176 return d->hwirq;
177 }
178
179 static inline bool cascading_gic_irq(struct irq_data *d)
180 {
181 void *data = irq_data_get_irq_handler_data(d);
182
183 /*
184 * If handler_data is set, this is a cascading interrupt, and
185 * it cannot possibly be forwarded.
186 */
187 return data != NULL;
188 }
189
190 /*
191 * Routines to acknowledge, disable and enable interrupts
192 */
193 static void gic_poke_irq(struct irq_data *d, u32 offset)
194 {
195 u32 mask = 1 << (gic_irq(d) % 32);
196 writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
197 }
198
199 static int gic_peek_irq(struct irq_data *d, u32 offset)
200 {
201 u32 mask = 1 << (gic_irq(d) % 32);
202 return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
203 }
204
205 static void gic_mask_irq(struct irq_data *d)
206 {
207 gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
208 }
209
210 static void gic_eoimode1_mask_irq(struct irq_data *d)
211 {
212 gic_mask_irq(d);
213 /*
214 * When masking a forwarded interrupt, make sure it is
215 * deactivated as well.
216 *
217 * This ensures that an interrupt that is getting
218 * disabled/masked will not get "stuck", because there is
219 * noone to deactivate it (guest is being terminated).
220 */
221 if (irqd_is_forwarded_to_vcpu(d))
222 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
223 }
224
225 static void gic_unmask_irq(struct irq_data *d)
226 {
227 gic_poke_irq(d, GIC_DIST_ENABLE_SET);
228 }
229
230 static void gic_eoi_irq(struct irq_data *d)
231 {
232 writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
233 }
234
235 static void gic_eoimode1_eoi_irq(struct irq_data *d)
236 {
237 /* Do not deactivate an IRQ forwarded to a vcpu. */
238 if (irqd_is_forwarded_to_vcpu(d))
239 return;
240
241 writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
242 }
243
244 static int gic_irq_set_irqchip_state(struct irq_data *d,
245 enum irqchip_irq_state which, bool val)
246 {
247 u32 reg;
248
249 switch (which) {
250 case IRQCHIP_STATE_PENDING:
251 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
252 break;
253
254 case IRQCHIP_STATE_ACTIVE:
255 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
256 break;
257
258 case IRQCHIP_STATE_MASKED:
259 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
260 break;
261
262 default:
263 return -EINVAL;
264 }
265
266 gic_poke_irq(d, reg);
267 return 0;
268 }
269
270 static int gic_irq_get_irqchip_state(struct irq_data *d,
271 enum irqchip_irq_state which, bool *val)
272 {
273 switch (which) {
274 case IRQCHIP_STATE_PENDING:
275 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
276 break;
277
278 case IRQCHIP_STATE_ACTIVE:
279 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
280 break;
281
282 case IRQCHIP_STATE_MASKED:
283 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
284 break;
285
286 default:
287 return -EINVAL;
288 }
289
290 return 0;
291 }
292
293 static int gic_set_type(struct irq_data *d, unsigned int type)
294 {
295 void __iomem *base = gic_dist_base(d);
296 unsigned int gicirq = gic_irq(d);
297
298 /* Interrupt configuration for SGIs can't be changed */
299 if (gicirq < 16)
300 return -EINVAL;
301
302 /* SPIs have restrictions on the supported types */
303 if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
304 type != IRQ_TYPE_EDGE_RISING)
305 return -EINVAL;
306
307 return gic_configure_irq(gicirq, type, base, NULL);
308 }
309
310 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
311 {
312 /* Only interrupts on the primary GIC can be forwarded to a vcpu. */
313 if (cascading_gic_irq(d))
314 return -EINVAL;
315
316 if (vcpu)
317 irqd_set_forwarded_to_vcpu(d);
318 else
319 irqd_clr_forwarded_to_vcpu(d);
320 return 0;
321 }
322
323 #ifdef CONFIG_SMP
324 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
325 bool force)
326 {
327 void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
328 unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
329 u32 val, mask, bit;
330 unsigned long flags;
331
332 if (!force)
333 cpu = cpumask_any_and(mask_val, cpu_online_mask);
334 else
335 cpu = cpumask_first(mask_val);
336
337 if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
338 return -EINVAL;
339
340 gic_lock_irqsave(flags);
341 mask = 0xff << shift;
342 bit = gic_cpu_map[cpu] << shift;
343 val = readl_relaxed(reg) & ~mask;
344 writel_relaxed(val | bit, reg);
345 gic_unlock_irqrestore(flags);
346
347 irq_data_update_effective_affinity(d, cpumask_of(cpu));
348
349 return IRQ_SET_MASK_OK_DONE;
350 }
351 #endif
352
353 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
354 {
355 u32 irqstat, irqnr;
356 struct gic_chip_data *gic = &gic_data[0];
357 void __iomem *cpu_base = gic_data_cpu_base(gic);
358
359 do {
360 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
361 irqnr = irqstat & GICC_IAR_INT_ID_MASK;
362
363 if (likely(irqnr > 15 && irqnr < 1020)) {
364 if (static_key_true(&supports_deactivate))
365 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
366 isb();
367 handle_domain_irq(gic->domain, irqnr, regs);
368 continue;
369 }
370 if (irqnr < 16) {
371 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
372 if (static_key_true(&supports_deactivate))
373 writel_relaxed(irqstat, cpu_base + GIC_CPU_DEACTIVATE);
374 #ifdef CONFIG_SMP
375 /*
376 * Ensure any shared data written by the CPU sending
377 * the IPI is read after we've read the ACK register
378 * on the GIC.
379 *
380 * Pairs with the write barrier in gic_raise_softirq
381 */
382 smp_rmb();
383 handle_IPI(irqnr, regs);
384 #endif
385 continue;
386 }
387 break;
388 } while (1);
389 }
390
391 static void gic_handle_cascade_irq(struct irq_desc *desc)
392 {
393 struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
394 struct irq_chip *chip = irq_desc_get_chip(desc);
395 unsigned int cascade_irq, gic_irq;
396 unsigned long status;
397
398 chained_irq_enter(chip, desc);
399
400 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
401
402 gic_irq = (status & GICC_IAR_INT_ID_MASK);
403 if (gic_irq == GICC_INT_SPURIOUS)
404 goto out;
405
406 cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
407 if (unlikely(gic_irq < 32 || gic_irq > 1020)) {
408 handle_bad_irq(desc);
409 } else {
410 isb();
411 generic_handle_irq(cascade_irq);
412 }
413
414 out:
415 chained_irq_exit(chip, desc);
416 }
417
418 static const struct irq_chip gic_chip = {
419 .irq_mask = gic_mask_irq,
420 .irq_unmask = gic_unmask_irq,
421 .irq_eoi = gic_eoi_irq,
422 .irq_set_type = gic_set_type,
423 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
424 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
425 .flags = IRQCHIP_SET_TYPE_MASKED |
426 IRQCHIP_SKIP_SET_WAKE |
427 IRQCHIP_MASK_ON_SUSPEND,
428 };
429
430 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
431 {
432 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
433 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
434 &gic_data[gic_nr]);
435 }
436
437 static u8 gic_get_cpumask(struct gic_chip_data *gic)
438 {
439 void __iomem *base = gic_data_dist_base(gic);
440 u32 mask, i;
441
442 for (i = mask = 0; i < 32; i += 4) {
443 mask = readl_relaxed(base + GIC_DIST_TARGET + i);
444 mask |= mask >> 16;
445 mask |= mask >> 8;
446 if (mask)
447 break;
448 }
449
450 if (!mask && num_possible_cpus() > 1)
451 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
452
453 return mask;
454 }
455
456 static void gic_cpu_if_up(struct gic_chip_data *gic)
457 {
458 void __iomem *cpu_base = gic_data_cpu_base(gic);
459 u32 bypass = 0;
460 u32 mode = 0;
461
462 if (gic == &gic_data[0] && static_key_true(&supports_deactivate))
463 mode = GIC_CPU_CTRL_EOImodeNS;
464
465 /*
466 * Preserve bypass disable bits to be written back later
467 */
468 bypass = readl(cpu_base + GIC_CPU_CTRL);
469 bypass &= GICC_DIS_BYPASS_MASK;
470
471 writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
472 }
473
474
475 static void gic_dist_init(struct gic_chip_data *gic)
476 {
477 unsigned int i;
478 u32 cpumask;
479 unsigned int gic_irqs = gic->gic_irqs;
480 void __iomem *base = gic_data_dist_base(gic);
481
482 writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
483
484 /*
485 * Set all global interrupts to this CPU only.
486 */
487 cpumask = gic_get_cpumask(gic);
488 cpumask |= cpumask << 8;
489 cpumask |= cpumask << 16;
490 for (i = 32; i < gic_irqs; i += 4)
491 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
492
493 gic_dist_config(base, gic_irqs, NULL);
494
495 writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
496 }
497
498 static int gic_cpu_init(struct gic_chip_data *gic)
499 {
500 void __iomem *dist_base = gic_data_dist_base(gic);
501 void __iomem *base = gic_data_cpu_base(gic);
502 unsigned int cpu_mask, cpu = smp_processor_id();
503 int i;
504
505 /*
506 * Setting up the CPU map is only relevant for the primary GIC
507 * because any nested/secondary GICs do not directly interface
508 * with the CPU(s).
509 */
510 if (gic == &gic_data[0]) {
511 /*
512 * Get what the GIC says our CPU mask is.
513 */
514 if (WARN_ON(cpu >= NR_GIC_CPU_IF))
515 return -EINVAL;
516
517 gic_check_cpu_features();
518 cpu_mask = gic_get_cpumask(gic);
519 gic_cpu_map[cpu] = cpu_mask;
520
521 /*
522 * Clear our mask from the other map entries in case they're
523 * still undefined.
524 */
525 for (i = 0; i < NR_GIC_CPU_IF; i++)
526 if (i != cpu)
527 gic_cpu_map[i] &= ~cpu_mask;
528 }
529
530 gic_cpu_config(dist_base, NULL);
531
532 writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
533 gic_cpu_if_up(gic);
534
535 return 0;
536 }
537
538 int gic_cpu_if_down(unsigned int gic_nr)
539 {
540 void __iomem *cpu_base;
541 u32 val = 0;
542
543 if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
544 return -EINVAL;
545
546 cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
547 val = readl(cpu_base + GIC_CPU_CTRL);
548 val &= ~GICC_ENABLE;
549 writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
550
551 return 0;
552 }
553
554 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
555 /*
556 * Saves the GIC distributor registers during suspend or idle. Must be called
557 * with interrupts disabled but before powering down the GIC. After calling
558 * this function, no interrupts will be delivered by the GIC, and another
559 * platform-specific wakeup source must be enabled.
560 */
561 void gic_dist_save(struct gic_chip_data *gic)
562 {
563 unsigned int gic_irqs;
564 void __iomem *dist_base;
565 int i;
566
567 if (WARN_ON(!gic))
568 return;
569
570 gic_irqs = gic->gic_irqs;
571 dist_base = gic_data_dist_base(gic);
572
573 if (!dist_base)
574 return;
575
576 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
577 gic->saved_spi_conf[i] =
578 readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
579
580 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
581 gic->saved_spi_target[i] =
582 readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
583
584 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
585 gic->saved_spi_enable[i] =
586 readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
587
588 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
589 gic->saved_spi_active[i] =
590 readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
591 }
592
593 /*
594 * Restores the GIC distributor registers during resume or when coming out of
595 * idle. Must be called before enabling interrupts. If a level interrupt
596 * that occured while the GIC was suspended is still present, it will be
597 * handled normally, but any edge interrupts that occured will not be seen by
598 * the GIC and need to be handled by the platform-specific wakeup source.
599 */
600 void gic_dist_restore(struct gic_chip_data *gic)
601 {
602 unsigned int gic_irqs;
603 unsigned int i;
604 void __iomem *dist_base;
605
606 if (WARN_ON(!gic))
607 return;
608
609 gic_irqs = gic->gic_irqs;
610 dist_base = gic_data_dist_base(gic);
611
612 if (!dist_base)
613 return;
614
615 writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
616
617 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
618 writel_relaxed(gic->saved_spi_conf[i],
619 dist_base + GIC_DIST_CONFIG + i * 4);
620
621 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
622 writel_relaxed(GICD_INT_DEF_PRI_X4,
623 dist_base + GIC_DIST_PRI + i * 4);
624
625 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
626 writel_relaxed(gic->saved_spi_target[i],
627 dist_base + GIC_DIST_TARGET + i * 4);
628
629 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
630 writel_relaxed(GICD_INT_EN_CLR_X32,
631 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
632 writel_relaxed(gic->saved_spi_enable[i],
633 dist_base + GIC_DIST_ENABLE_SET + i * 4);
634 }
635
636 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
637 writel_relaxed(GICD_INT_EN_CLR_X32,
638 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
639 writel_relaxed(gic->saved_spi_active[i],
640 dist_base + GIC_DIST_ACTIVE_SET + i * 4);
641 }
642
643 writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
644 }
645
646 void gic_cpu_save(struct gic_chip_data *gic)
647 {
648 int i;
649 u32 *ptr;
650 void __iomem *dist_base;
651 void __iomem *cpu_base;
652
653 if (WARN_ON(!gic))
654 return;
655
656 dist_base = gic_data_dist_base(gic);
657 cpu_base = gic_data_cpu_base(gic);
658
659 if (!dist_base || !cpu_base)
660 return;
661
662 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
663 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
664 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
665
666 ptr = raw_cpu_ptr(gic->saved_ppi_active);
667 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
668 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
669
670 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
671 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
672 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
673
674 }
675
676 void gic_cpu_restore(struct gic_chip_data *gic)
677 {
678 int i;
679 u32 *ptr;
680 void __iomem *dist_base;
681 void __iomem *cpu_base;
682
683 if (WARN_ON(!gic))
684 return;
685
686 dist_base = gic_data_dist_base(gic);
687 cpu_base = gic_data_cpu_base(gic);
688
689 if (!dist_base || !cpu_base)
690 return;
691
692 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
693 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
694 writel_relaxed(GICD_INT_EN_CLR_X32,
695 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
696 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
697 }
698
699 ptr = raw_cpu_ptr(gic->saved_ppi_active);
700 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
701 writel_relaxed(GICD_INT_EN_CLR_X32,
702 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
703 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
704 }
705
706 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
707 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
708 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
709
710 for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
711 writel_relaxed(GICD_INT_DEF_PRI_X4,
712 dist_base + GIC_DIST_PRI + i * 4);
713
714 writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
715 gic_cpu_if_up(gic);
716 }
717
718 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
719 {
720 int i;
721
722 for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
723 #ifdef CONFIG_GIC_NON_BANKED
724 /* Skip over unused GICs */
725 if (!gic_data[i].get_base)
726 continue;
727 #endif
728 switch (cmd) {
729 case CPU_PM_ENTER:
730 gic_cpu_save(&gic_data[i]);
731 break;
732 case CPU_PM_ENTER_FAILED:
733 case CPU_PM_EXIT:
734 gic_cpu_restore(&gic_data[i]);
735 break;
736 case CPU_CLUSTER_PM_ENTER:
737 gic_dist_save(&gic_data[i]);
738 break;
739 case CPU_CLUSTER_PM_ENTER_FAILED:
740 case CPU_CLUSTER_PM_EXIT:
741 gic_dist_restore(&gic_data[i]);
742 break;
743 }
744 }
745
746 return NOTIFY_OK;
747 }
748
749 static struct notifier_block gic_notifier_block = {
750 .notifier_call = gic_notifier,
751 };
752
753 static int gic_pm_init(struct gic_chip_data *gic)
754 {
755 gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
756 sizeof(u32));
757 if (WARN_ON(!gic->saved_ppi_enable))
758 return -ENOMEM;
759
760 gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
761 sizeof(u32));
762 if (WARN_ON(!gic->saved_ppi_active))
763 goto free_ppi_enable;
764
765 gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
766 sizeof(u32));
767 if (WARN_ON(!gic->saved_ppi_conf))
768 goto free_ppi_active;
769
770 if (gic == &gic_data[0])
771 cpu_pm_register_notifier(&gic_notifier_block);
772
773 return 0;
774
775 free_ppi_active:
776 free_percpu(gic->saved_ppi_active);
777 free_ppi_enable:
778 free_percpu(gic->saved_ppi_enable);
779
780 return -ENOMEM;
781 }
782 #else
783 static int gic_pm_init(struct gic_chip_data *gic)
784 {
785 return 0;
786 }
787 #endif
788
789 #ifdef CONFIG_SMP
790 static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
791 {
792 int cpu;
793 unsigned long flags, map = 0;
794
795 if (unlikely(nr_cpu_ids == 1)) {
796 /* Only one CPU? let's do a self-IPI... */
797 writel_relaxed(2 << 24 | irq,
798 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
799 return;
800 }
801
802 gic_lock_irqsave(flags);
803
804 /* Convert our logical CPU mask into a physical one. */
805 for_each_cpu(cpu, mask)
806 map |= gic_cpu_map[cpu];
807
808 /*
809 * Ensure that stores to Normal memory are visible to the
810 * other CPUs before they observe us issuing the IPI.
811 */
812 dmb(ishst);
813
814 /* this always happens on GIC0 */
815 writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
816
817 gic_unlock_irqrestore(flags);
818 }
819 #endif
820
821 #ifdef CONFIG_BL_SWITCHER
822 /*
823 * gic_send_sgi - send a SGI directly to given CPU interface number
824 *
825 * cpu_id: the ID for the destination CPU interface
826 * irq: the IPI number to send a SGI for
827 */
828 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
829 {
830 BUG_ON(cpu_id >= NR_GIC_CPU_IF);
831 cpu_id = 1 << cpu_id;
832 /* this always happens on GIC0 */
833 writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
834 }
835
836 /*
837 * gic_get_cpu_id - get the CPU interface ID for the specified CPU
838 *
839 * @cpu: the logical CPU number to get the GIC ID for.
840 *
841 * Return the CPU interface ID for the given logical CPU number,
842 * or -1 if the CPU number is too large or the interface ID is
843 * unknown (more than one bit set).
844 */
845 int gic_get_cpu_id(unsigned int cpu)
846 {
847 unsigned int cpu_bit;
848
849 if (cpu >= NR_GIC_CPU_IF)
850 return -1;
851 cpu_bit = gic_cpu_map[cpu];
852 if (cpu_bit & (cpu_bit - 1))
853 return -1;
854 return __ffs(cpu_bit);
855 }
856
857 /*
858 * gic_migrate_target - migrate IRQs to another CPU interface
859 *
860 * @new_cpu_id: the CPU target ID to migrate IRQs to
861 *
862 * Migrate all peripheral interrupts with a target matching the current CPU
863 * to the interface corresponding to @new_cpu_id. The CPU interface mapping
864 * is also updated. Targets to other CPU interfaces are unchanged.
865 * This must be called with IRQs locally disabled.
866 */
867 void gic_migrate_target(unsigned int new_cpu_id)
868 {
869 unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
870 void __iomem *dist_base;
871 int i, ror_val, cpu = smp_processor_id();
872 u32 val, cur_target_mask, active_mask;
873
874 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
875
876 dist_base = gic_data_dist_base(&gic_data[gic_nr]);
877 if (!dist_base)
878 return;
879 gic_irqs = gic_data[gic_nr].gic_irqs;
880
881 cur_cpu_id = __ffs(gic_cpu_map[cpu]);
882 cur_target_mask = 0x01010101 << cur_cpu_id;
883 ror_val = (cur_cpu_id - new_cpu_id) & 31;
884
885 gic_lock();
886
887 /* Update the target interface for this logical CPU */
888 gic_cpu_map[cpu] = 1 << new_cpu_id;
889
890 /*
891 * Find all the peripheral interrupts targetting the current
892 * CPU interface and migrate them to the new CPU interface.
893 * We skip DIST_TARGET 0 to 7 as they are read-only.
894 */
895 for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
896 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
897 active_mask = val & cur_target_mask;
898 if (active_mask) {
899 val &= ~active_mask;
900 val |= ror32(active_mask, ror_val);
901 writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
902 }
903 }
904
905 gic_unlock();
906
907 /*
908 * Now let's migrate and clear any potential SGIs that might be
909 * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
910 * is a banked register, we can only forward the SGI using
911 * GIC_DIST_SOFTINT. The original SGI source is lost but Linux
912 * doesn't use that information anyway.
913 *
914 * For the same reason we do not adjust SGI source information
915 * for previously sent SGIs by us to other CPUs either.
916 */
917 for (i = 0; i < 16; i += 4) {
918 int j;
919 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
920 if (!val)
921 continue;
922 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
923 for (j = i; j < i + 4; j++) {
924 if (val & 0xff)
925 writel_relaxed((1 << (new_cpu_id + 16)) | j,
926 dist_base + GIC_DIST_SOFTINT);
927 val >>= 8;
928 }
929 }
930 }
931
932 /*
933 * gic_get_sgir_physaddr - get the physical address for the SGI register
934 *
935 * REturn the physical address of the SGI register to be used
936 * by some early assembly code when the kernel is not yet available.
937 */
938 static unsigned long gic_dist_physaddr;
939
940 unsigned long gic_get_sgir_physaddr(void)
941 {
942 if (!gic_dist_physaddr)
943 return 0;
944 return gic_dist_physaddr + GIC_DIST_SOFTINT;
945 }
946
947 static void __init gic_init_physaddr(struct device_node *node)
948 {
949 struct resource res;
950 if (of_address_to_resource(node, 0, &res) == 0) {
951 gic_dist_physaddr = res.start;
952 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
953 }
954 }
955
956 #else
957 #define gic_init_physaddr(node) do { } while (0)
958 #endif
959
960 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
961 irq_hw_number_t hw)
962 {
963 struct gic_chip_data *gic = d->host_data;
964
965 if (hw < 32) {
966 irq_set_percpu_devid(irq);
967 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
968 handle_percpu_devid_irq, NULL, NULL);
969 irq_set_status_flags(irq, IRQ_NOAUTOEN);
970 } else {
971 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
972 handle_fasteoi_irq, NULL, NULL);
973 irq_set_probe(irq);
974 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
975 }
976 return 0;
977 }
978
979 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
980 {
981 }
982
983 static int gic_irq_domain_translate(struct irq_domain *d,
984 struct irq_fwspec *fwspec,
985 unsigned long *hwirq,
986 unsigned int *type)
987 {
988 if (is_of_node(fwspec->fwnode)) {
989 if (fwspec->param_count < 3)
990 return -EINVAL;
991
992 /* Get the interrupt number and add 16 to skip over SGIs */
993 *hwirq = fwspec->param[1] + 16;
994
995 /*
996 * For SPIs, we need to add 16 more to get the GIC irq
997 * ID number
998 */
999 if (!fwspec->param[0])
1000 *hwirq += 16;
1001
1002 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1003 return 0;
1004 }
1005
1006 if (is_fwnode_irqchip(fwspec->fwnode)) {
1007 if(fwspec->param_count != 2)
1008 return -EINVAL;
1009
1010 *hwirq = fwspec->param[0];
1011 *type = fwspec->param[1];
1012 return 0;
1013 }
1014
1015 return -EINVAL;
1016 }
1017
1018 static int gic_starting_cpu(unsigned int cpu)
1019 {
1020 gic_cpu_init(&gic_data[0]);
1021 return 0;
1022 }
1023
1024 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1025 unsigned int nr_irqs, void *arg)
1026 {
1027 int i, ret;
1028 irq_hw_number_t hwirq;
1029 unsigned int type = IRQ_TYPE_NONE;
1030 struct irq_fwspec *fwspec = arg;
1031
1032 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1033 if (ret)
1034 return ret;
1035
1036 for (i = 0; i < nr_irqs; i++) {
1037 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1038 if (ret)
1039 return ret;
1040 }
1041
1042 return 0;
1043 }
1044
1045 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1046 .translate = gic_irq_domain_translate,
1047 .alloc = gic_irq_domain_alloc,
1048 .free = irq_domain_free_irqs_top,
1049 };
1050
1051 static const struct irq_domain_ops gic_irq_domain_ops = {
1052 .map = gic_irq_domain_map,
1053 .unmap = gic_irq_domain_unmap,
1054 };
1055
1056 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1057 const char *name, bool use_eoimode1)
1058 {
1059 /* Initialize irq_chip */
1060 gic->chip = gic_chip;
1061 gic->chip.name = name;
1062 gic->chip.parent_device = dev;
1063
1064 if (use_eoimode1) {
1065 gic->chip.irq_mask = gic_eoimode1_mask_irq;
1066 gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1067 gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1068 }
1069
1070 #ifdef CONFIG_SMP
1071 if (gic == &gic_data[0])
1072 gic->chip.irq_set_affinity = gic_set_affinity;
1073 #endif
1074 }
1075
1076 static int gic_init_bases(struct gic_chip_data *gic, int irq_start,
1077 struct fwnode_handle *handle)
1078 {
1079 irq_hw_number_t hwirq_base;
1080 int gic_irqs, irq_base, ret;
1081
1082 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1083 /* Frankein-GIC without banked registers... */
1084 unsigned int cpu;
1085
1086 gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1087 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1088 if (WARN_ON(!gic->dist_base.percpu_base ||
1089 !gic->cpu_base.percpu_base)) {
1090 ret = -ENOMEM;
1091 goto error;
1092 }
1093
1094 for_each_possible_cpu(cpu) {
1095 u32 mpidr = cpu_logical_map(cpu);
1096 u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1097 unsigned long offset = gic->percpu_offset * core_id;
1098 *per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1099 gic->raw_dist_base + offset;
1100 *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1101 gic->raw_cpu_base + offset;
1102 }
1103
1104 gic_set_base_accessor(gic, gic_get_percpu_base);
1105 } else {
1106 /* Normal, sane GIC... */
1107 WARN(gic->percpu_offset,
1108 "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1109 gic->percpu_offset);
1110 gic->dist_base.common_base = gic->raw_dist_base;
1111 gic->cpu_base.common_base = gic->raw_cpu_base;
1112 gic_set_base_accessor(gic, gic_get_common_base);
1113 }
1114
1115 /*
1116 * Find out how many interrupts are supported.
1117 * The GIC only supports up to 1020 interrupt sources.
1118 */
1119 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1120 gic_irqs = (gic_irqs + 1) * 32;
1121 if (gic_irqs > 1020)
1122 gic_irqs = 1020;
1123 gic->gic_irqs = gic_irqs;
1124
1125 if (handle) { /* DT/ACPI */
1126 gic->domain = irq_domain_create_linear(handle, gic_irqs,
1127 &gic_irq_domain_hierarchy_ops,
1128 gic);
1129 } else { /* Legacy support */
1130 /*
1131 * For primary GICs, skip over SGIs.
1132 * For secondary GICs, skip over PPIs, too.
1133 */
1134 if (gic == &gic_data[0] && (irq_start & 31) > 0) {
1135 hwirq_base = 16;
1136 if (irq_start != -1)
1137 irq_start = (irq_start & ~31) + 16;
1138 } else {
1139 hwirq_base = 32;
1140 }
1141
1142 gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
1143
1144 irq_base = irq_alloc_descs(irq_start, 16, gic_irqs,
1145 numa_node_id());
1146 if (irq_base < 0) {
1147 WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
1148 irq_start);
1149 irq_base = irq_start;
1150 }
1151
1152 gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1153 hwirq_base, &gic_irq_domain_ops, gic);
1154 }
1155
1156 if (WARN_ON(!gic->domain)) {
1157 ret = -ENODEV;
1158 goto error;
1159 }
1160
1161 gic_dist_init(gic);
1162 ret = gic_cpu_init(gic);
1163 if (ret)
1164 goto error;
1165
1166 ret = gic_pm_init(gic);
1167 if (ret)
1168 goto error;
1169
1170 return 0;
1171
1172 error:
1173 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1174 free_percpu(gic->dist_base.percpu_base);
1175 free_percpu(gic->cpu_base.percpu_base);
1176 }
1177
1178 return ret;
1179 }
1180
1181 static int __init __gic_init_bases(struct gic_chip_data *gic,
1182 int irq_start,
1183 struct fwnode_handle *handle)
1184 {
1185 char *name;
1186 int i, ret;
1187
1188 if (WARN_ON(!gic || gic->domain))
1189 return -EINVAL;
1190
1191 if (gic == &gic_data[0]) {
1192 /*
1193 * Initialize the CPU interface map to all CPUs.
1194 * It will be refined as each CPU probes its ID.
1195 * This is only necessary for the primary GIC.
1196 */
1197 for (i = 0; i < NR_GIC_CPU_IF; i++)
1198 gic_cpu_map[i] = 0xff;
1199 #ifdef CONFIG_SMP
1200 set_smp_cross_call(gic_raise_softirq);
1201 #endif
1202 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1203 "irqchip/arm/gic:starting",
1204 gic_starting_cpu, NULL);
1205 set_handle_irq(gic_handle_irq);
1206 if (static_key_true(&supports_deactivate))
1207 pr_info("GIC: Using split EOI/Deactivate mode\n");
1208 }
1209
1210 if (static_key_true(&supports_deactivate) && gic == &gic_data[0]) {
1211 name = kasprintf(GFP_KERNEL, "GICv2");
1212 gic_init_chip(gic, NULL, name, true);
1213 } else {
1214 name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1215 gic_init_chip(gic, NULL, name, false);
1216 }
1217
1218 ret = gic_init_bases(gic, irq_start, handle);
1219 if (ret)
1220 kfree(name);
1221
1222 return ret;
1223 }
1224
1225 void __init gic_init(unsigned int gic_nr, int irq_start,
1226 void __iomem *dist_base, void __iomem *cpu_base)
1227 {
1228 struct gic_chip_data *gic;
1229
1230 if (WARN_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR))
1231 return;
1232
1233 /*
1234 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1235 * bother with these...
1236 */
1237 static_key_slow_dec(&supports_deactivate);
1238
1239 gic = &gic_data[gic_nr];
1240 gic->raw_dist_base = dist_base;
1241 gic->raw_cpu_base = cpu_base;
1242
1243 __gic_init_bases(gic, irq_start, NULL);
1244 }
1245
1246 static void gic_teardown(struct gic_chip_data *gic)
1247 {
1248 if (WARN_ON(!gic))
1249 return;
1250
1251 if (gic->raw_dist_base)
1252 iounmap(gic->raw_dist_base);
1253 if (gic->raw_cpu_base)
1254 iounmap(gic->raw_cpu_base);
1255 }
1256
1257 #ifdef CONFIG_OF
1258 static int gic_cnt __initdata;
1259
1260 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1261 {
1262 struct resource cpuif_res;
1263
1264 of_address_to_resource(node, 1, &cpuif_res);
1265
1266 if (!is_hyp_mode_available())
1267 return false;
1268 if (resource_size(&cpuif_res) < SZ_8K)
1269 return false;
1270 if (resource_size(&cpuif_res) == SZ_128K) {
1271 u32 val_low, val_high;
1272
1273 /*
1274 * Verify that we have the first 4kB of a GIC400
1275 * aliased over the first 64kB by checking the
1276 * GICC_IIDR register on both ends.
1277 */
1278 val_low = readl_relaxed(*base + GIC_CPU_IDENT);
1279 val_high = readl_relaxed(*base + GIC_CPU_IDENT + 0xf000);
1280 if ((val_low & 0xffff0fff) != 0x0202043B ||
1281 val_low != val_high)
1282 return false;
1283
1284 /*
1285 * Move the base up by 60kB, so that we have a 8kB
1286 * contiguous region, which allows us to use GICC_DIR
1287 * at its normal offset. Please pass me that bucket.
1288 */
1289 *base += 0xf000;
1290 cpuif_res.start += 0xf000;
1291 pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1292 &cpuif_res.start);
1293 }
1294
1295 return true;
1296 }
1297
1298 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1299 {
1300 if (!gic || !node)
1301 return -EINVAL;
1302
1303 gic->raw_dist_base = of_iomap(node, 0);
1304 if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1305 goto error;
1306
1307 gic->raw_cpu_base = of_iomap(node, 1);
1308 if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1309 goto error;
1310
1311 if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1312 gic->percpu_offset = 0;
1313
1314 return 0;
1315
1316 error:
1317 gic_teardown(gic);
1318
1319 return -ENOMEM;
1320 }
1321
1322 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1323 {
1324 int ret;
1325
1326 if (!dev || !dev->of_node || !gic || !irq)
1327 return -EINVAL;
1328
1329 *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1330 if (!*gic)
1331 return -ENOMEM;
1332
1333 gic_init_chip(*gic, dev, dev->of_node->name, false);
1334
1335 ret = gic_of_setup(*gic, dev->of_node);
1336 if (ret)
1337 return ret;
1338
1339 ret = gic_init_bases(*gic, -1, &dev->of_node->fwnode);
1340 if (ret) {
1341 gic_teardown(*gic);
1342 return ret;
1343 }
1344
1345 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1346
1347 return 0;
1348 }
1349
1350 static void __init gic_of_setup_kvm_info(struct device_node *node)
1351 {
1352 int ret;
1353 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1354 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1355
1356 gic_v2_kvm_info.type = GIC_V2;
1357
1358 gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1359 if (!gic_v2_kvm_info.maint_irq)
1360 return;
1361
1362 ret = of_address_to_resource(node, 2, vctrl_res);
1363 if (ret)
1364 return;
1365
1366 ret = of_address_to_resource(node, 3, vcpu_res);
1367 if (ret)
1368 return;
1369
1370 gic_set_kvm_info(&gic_v2_kvm_info);
1371 }
1372
1373 int __init
1374 gic_of_init(struct device_node *node, struct device_node *parent)
1375 {
1376 struct gic_chip_data *gic;
1377 int irq, ret;
1378
1379 if (WARN_ON(!node))
1380 return -ENODEV;
1381
1382 if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1383 return -EINVAL;
1384
1385 gic = &gic_data[gic_cnt];
1386
1387 ret = gic_of_setup(gic, node);
1388 if (ret)
1389 return ret;
1390
1391 /*
1392 * Disable split EOI/Deactivate if either HYP is not available
1393 * or the CPU interface is too small.
1394 */
1395 if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1396 static_key_slow_dec(&supports_deactivate);
1397
1398 ret = __gic_init_bases(gic, -1, &node->fwnode);
1399 if (ret) {
1400 gic_teardown(gic);
1401 return ret;
1402 }
1403
1404 if (!gic_cnt) {
1405 gic_init_physaddr(node);
1406 gic_of_setup_kvm_info(node);
1407 }
1408
1409 if (parent) {
1410 irq = irq_of_parse_and_map(node, 0);
1411 gic_cascade_irq(gic_cnt, irq);
1412 }
1413
1414 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1415 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1416
1417 gic_cnt++;
1418 return 0;
1419 }
1420 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1421 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1422 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1423 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1424 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1425 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1426 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1427 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1428 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1429 #else
1430 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1431 {
1432 return -ENOTSUPP;
1433 }
1434 #endif
1435
1436 #ifdef CONFIG_ACPI
1437 static struct
1438 {
1439 phys_addr_t cpu_phys_base;
1440 u32 maint_irq;
1441 int maint_irq_mode;
1442 phys_addr_t vctrl_base;
1443 phys_addr_t vcpu_base;
1444 } acpi_data __initdata;
1445
1446 static int __init
1447 gic_acpi_parse_madt_cpu(struct acpi_subtable_header *header,
1448 const unsigned long end)
1449 {
1450 struct acpi_madt_generic_interrupt *processor;
1451 phys_addr_t gic_cpu_base;
1452 static int cpu_base_assigned;
1453
1454 processor = (struct acpi_madt_generic_interrupt *)header;
1455
1456 if (BAD_MADT_GICC_ENTRY(processor, end))
1457 return -EINVAL;
1458
1459 /*
1460 * There is no support for non-banked GICv1/2 register in ACPI spec.
1461 * All CPU interface addresses have to be the same.
1462 */
1463 gic_cpu_base = processor->base_address;
1464 if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1465 return -EINVAL;
1466
1467 acpi_data.cpu_phys_base = gic_cpu_base;
1468 acpi_data.maint_irq = processor->vgic_interrupt;
1469 acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1470 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1471 acpi_data.vctrl_base = processor->gich_base_address;
1472 acpi_data.vcpu_base = processor->gicv_base_address;
1473
1474 cpu_base_assigned = 1;
1475 return 0;
1476 }
1477
1478 /* The things you have to do to just *count* something... */
1479 static int __init acpi_dummy_func(struct acpi_subtable_header *header,
1480 const unsigned long end)
1481 {
1482 return 0;
1483 }
1484
1485 static bool __init acpi_gic_redist_is_present(void)
1486 {
1487 return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1488 acpi_dummy_func, 0) > 0;
1489 }
1490
1491 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1492 struct acpi_probe_entry *ape)
1493 {
1494 struct acpi_madt_generic_distributor *dist;
1495 dist = (struct acpi_madt_generic_distributor *)header;
1496
1497 return (dist->version == ape->driver_data &&
1498 (dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1499 !acpi_gic_redist_is_present()));
1500 }
1501
1502 #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
1503 #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
1504 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
1505 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
1506
1507 static void __init gic_acpi_setup_kvm_info(void)
1508 {
1509 int irq;
1510 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1511 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1512
1513 gic_v2_kvm_info.type = GIC_V2;
1514
1515 if (!acpi_data.vctrl_base)
1516 return;
1517
1518 vctrl_res->flags = IORESOURCE_MEM;
1519 vctrl_res->start = acpi_data.vctrl_base;
1520 vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1521
1522 if (!acpi_data.vcpu_base)
1523 return;
1524
1525 vcpu_res->flags = IORESOURCE_MEM;
1526 vcpu_res->start = acpi_data.vcpu_base;
1527 vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1528
1529 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1530 acpi_data.maint_irq_mode,
1531 ACPI_ACTIVE_HIGH);
1532 if (irq <= 0)
1533 return;
1534
1535 gic_v2_kvm_info.maint_irq = irq;
1536
1537 gic_set_kvm_info(&gic_v2_kvm_info);
1538 }
1539
1540 static int __init gic_v2_acpi_init(struct acpi_subtable_header *header,
1541 const unsigned long end)
1542 {
1543 struct acpi_madt_generic_distributor *dist;
1544 struct fwnode_handle *domain_handle;
1545 struct gic_chip_data *gic = &gic_data[0];
1546 int count, ret;
1547
1548 /* Collect CPU base addresses */
1549 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1550 gic_acpi_parse_madt_cpu, 0);
1551 if (count <= 0) {
1552 pr_err("No valid GICC entries exist\n");
1553 return -EINVAL;
1554 }
1555
1556 gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1557 if (!gic->raw_cpu_base) {
1558 pr_err("Unable to map GICC registers\n");
1559 return -ENOMEM;
1560 }
1561
1562 dist = (struct acpi_madt_generic_distributor *)header;
1563 gic->raw_dist_base = ioremap(dist->base_address,
1564 ACPI_GICV2_DIST_MEM_SIZE);
1565 if (!gic->raw_dist_base) {
1566 pr_err("Unable to map GICD registers\n");
1567 gic_teardown(gic);
1568 return -ENOMEM;
1569 }
1570
1571 /*
1572 * Disable split EOI/Deactivate if HYP is not available. ACPI
1573 * guarantees that we'll always have a GICv2, so the CPU
1574 * interface will always be the right size.
1575 */
1576 if (!is_hyp_mode_available())
1577 static_key_slow_dec(&supports_deactivate);
1578
1579 /*
1580 * Initialize GIC instance zero (no multi-GIC support).
1581 */
1582 domain_handle = irq_domain_alloc_fwnode(gic->raw_dist_base);
1583 if (!domain_handle) {
1584 pr_err("Unable to allocate domain handle\n");
1585 gic_teardown(gic);
1586 return -ENOMEM;
1587 }
1588
1589 ret = __gic_init_bases(gic, -1, domain_handle);
1590 if (ret) {
1591 pr_err("Failed to initialise GIC\n");
1592 irq_domain_free_fwnode(domain_handle);
1593 gic_teardown(gic);
1594 return ret;
1595 }
1596
1597 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1598
1599 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1600 gicv2m_init(NULL, gic_data[0].domain);
1601
1602 gic_acpi_setup_kvm_info();
1603
1604 return 0;
1605 }
1606 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1607 gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1608 gic_v2_acpi_init);
1609 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1610 gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1611 gic_v2_acpi_init);
1612 #endif