]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/isdn/hardware/mISDN/hfcpci.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[mirror_ubuntu-bionic-kernel.git] / drivers / isdn / hardware / mISDN / hfcpci.c
1 /*
2 *
3 * hfcpci.c low level driver for CCD's hfc-pci based cards
4 *
5 * Author Werner Cornelius (werner@isdn4linux.de)
6 * based on existing driver for CCD hfc ISA cards
7 * type approval valid for HFC-S PCI A based card
8 *
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil <kkeil@novell.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module options:
27 *
28 * debug:
29 * NOTE: only one poll value must be given for all cards
30 * See hfc_pci.h for debug flags.
31 *
32 * poll:
33 * NOTE: only one poll value must be given for all cards
34 * Give the number of samples for each fifo process.
35 * By default 128 is used. Decrease to reduce delay, increase to
36 * reduce cpu load. If unsure, don't mess with it!
37 * A value of 128 will use controller's interrupt. Other values will
38 * use kernel timer, because the controller will not allow lower values
39 * than 128.
40 * Also note that the value depends on the kernel timer frequency.
41 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42 * If the kernel uses 100 Hz, steps of 80 samples are possible.
43 * If the kernel uses 300 Hz, steps of about 26 samples are possible.
44 *
45 */
46
47 #include <linux/module.h>
48 #include <linux/pci.h>
49 #include <linux/delay.h>
50 #include <linux/mISDNhw.h>
51
52 #include "hfc_pci.h"
53
54 static const char *hfcpci_revision = "2.0";
55
56 static int HFC_cnt;
57 static uint debug;
58 static uint poll, tics;
59 static struct timer_list hfc_tl;
60 static unsigned long hfc_jiffies;
61
62 MODULE_AUTHOR("Karsten Keil");
63 MODULE_LICENSE("GPL");
64 module_param(debug, uint, S_IRUGO | S_IWUSR);
65 module_param(poll, uint, S_IRUGO | S_IWUSR);
66
67 enum {
68 HFC_CCD_2BD0,
69 HFC_CCD_B000,
70 HFC_CCD_B006,
71 HFC_CCD_B007,
72 HFC_CCD_B008,
73 HFC_CCD_B009,
74 HFC_CCD_B00A,
75 HFC_CCD_B00B,
76 HFC_CCD_B00C,
77 HFC_CCD_B100,
78 HFC_CCD_B700,
79 HFC_CCD_B701,
80 HFC_ASUS_0675,
81 HFC_BERKOM_A1T,
82 HFC_BERKOM_TCONCEPT,
83 HFC_ANIGMA_MC145575,
84 HFC_ZOLTRIX_2BD0,
85 HFC_DIGI_DF_M_IOM2_E,
86 HFC_DIGI_DF_M_E,
87 HFC_DIGI_DF_M_IOM2_A,
88 HFC_DIGI_DF_M_A,
89 HFC_ABOCOM_2BD1,
90 HFC_SITECOM_DC105V2,
91 };
92
93 struct hfcPCI_hw {
94 unsigned char cirm;
95 unsigned char ctmt;
96 unsigned char clkdel;
97 unsigned char states;
98 unsigned char conn;
99 unsigned char mst_m;
100 unsigned char int_m1;
101 unsigned char int_m2;
102 unsigned char sctrl;
103 unsigned char sctrl_r;
104 unsigned char sctrl_e;
105 unsigned char trm;
106 unsigned char fifo_en;
107 unsigned char bswapped;
108 unsigned char protocol;
109 int nt_timer;
110 unsigned char __iomem *pci_io; /* start of PCI IO memory */
111 dma_addr_t dmahandle;
112 void *fifos; /* FIFO memory */
113 int last_bfifo_cnt[2];
114 /* marker saving last b-fifo frame count */
115 struct timer_list timer;
116 };
117
118 #define HFC_CFG_MASTER 1
119 #define HFC_CFG_SLAVE 2
120 #define HFC_CFG_PCM 3
121 #define HFC_CFG_2HFC 4
122 #define HFC_CFG_SLAVEHFC 5
123 #define HFC_CFG_NEG_F0 6
124 #define HFC_CFG_SW_DD_DU 7
125
126 #define FLG_HFC_TIMER_T1 16
127 #define FLG_HFC_TIMER_T3 17
128
129 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */
130 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */
131 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
132 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
133
134
135 struct hfc_pci {
136 u_char subtype;
137 u_char chanlimit;
138 u_char initdone;
139 u_long cfg;
140 u_int irq;
141 u_int irqcnt;
142 struct pci_dev *pdev;
143 struct hfcPCI_hw hw;
144 spinlock_t lock; /* card lock */
145 struct dchannel dch;
146 struct bchannel bch[2];
147 };
148
149 /* Interface functions */
150 static void
151 enable_hwirq(struct hfc_pci *hc)
152 {
153 hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
154 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
155 }
156
157 static void
158 disable_hwirq(struct hfc_pci *hc)
159 {
160 hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
161 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
162 }
163
164 /*
165 * free hardware resources used by driver
166 */
167 static void
168 release_io_hfcpci(struct hfc_pci *hc)
169 {
170 /* disable memory mapped ports + busmaster */
171 pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
172 del_timer(&hc->hw.timer);
173 pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
174 iounmap(hc->hw.pci_io);
175 }
176
177 /*
178 * set mode (NT or TE)
179 */
180 static void
181 hfcpci_setmode(struct hfc_pci *hc)
182 {
183 if (hc->hw.protocol == ISDN_P_NT_S0) {
184 hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */
185 hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */
186 hc->hw.states = 1; /* G1 */
187 } else {
188 hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */
189 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
190 hc->hw.states = 2; /* F2 */
191 }
192 Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
193 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
194 udelay(10);
195 Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
196 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
197 }
198
199 /*
200 * function called to reset the HFC PCI chip. A complete software reset of chip
201 * and fifos is done.
202 */
203 static void
204 reset_hfcpci(struct hfc_pci *hc)
205 {
206 u_char val;
207 int cnt = 0;
208
209 printk(KERN_DEBUG "reset_hfcpci: entered\n");
210 val = Read_hfc(hc, HFCPCI_CHIP_ID);
211 printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
212 /* enable memory mapped ports, disable busmaster */
213 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
214 disable_hwirq(hc);
215 /* enable memory ports + busmaster */
216 pci_write_config_word(hc->pdev, PCI_COMMAND,
217 PCI_ENA_MEMIO + PCI_ENA_MASTER);
218 val = Read_hfc(hc, HFCPCI_STATUS);
219 printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
220 hc->hw.cirm = HFCPCI_RESET; /* Reset On */
221 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
222 set_current_state(TASK_UNINTERRUPTIBLE);
223 mdelay(10); /* Timeout 10ms */
224 hc->hw.cirm = 0; /* Reset Off */
225 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
226 val = Read_hfc(hc, HFCPCI_STATUS);
227 printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
228 while (cnt < 50000) { /* max 50000 us */
229 udelay(5);
230 cnt += 5;
231 val = Read_hfc(hc, HFCPCI_STATUS);
232 if (!(val & 2))
233 break;
234 }
235 printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
236
237 hc->hw.fifo_en = 0x30; /* only D fifos enabled */
238
239 hc->hw.bswapped = 0; /* no exchange */
240 hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
241 hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
242 hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
243 hc->hw.sctrl_r = 0;
244 hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */
245 hc->hw.mst_m = 0;
246 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
247 hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */
248 if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
249 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
250 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
251 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
252 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
253 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
254
255 hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
256 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
257 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
258
259 /* Clear already pending ints */
260 val = Read_hfc(hc, HFCPCI_INT_S1);
261
262 /* set NT/TE mode */
263 hfcpci_setmode(hc);
264
265 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
266 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
267
268 /*
269 * Init GCI/IOM2 in master mode
270 * Slots 0 and 1 are set for B-chan 1 and 2
271 * D- and monitor/CI channel are not enabled
272 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
273 * STIO2 is used as data input, B1+B2 from IOM->ST
274 * ST B-channel send disabled -> continous 1s
275 * The IOM slots are always enabled
276 */
277 if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
278 /* set data flow directions: connect B1,B2: HFC to/from PCM */
279 hc->hw.conn = 0x09;
280 } else {
281 hc->hw.conn = 0x36; /* set data flow directions */
282 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
283 Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
284 Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
285 Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
286 Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
287 } else {
288 Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
289 Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
290 Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
291 Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
292 }
293 }
294 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
295 val = Read_hfc(hc, HFCPCI_INT_S2);
296 }
297
298 /*
299 * Timer function called when kernel timer expires
300 */
301 static void
302 hfcpci_Timer(struct hfc_pci *hc)
303 {
304 hc->hw.timer.expires = jiffies + 75;
305 /* WD RESET */
306 /*
307 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
308 * add_timer(&hc->hw.timer);
309 */
310 }
311
312
313 /*
314 * select a b-channel entry matching and active
315 */
316 static struct bchannel *
317 Sel_BCS(struct hfc_pci *hc, int channel)
318 {
319 if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
320 (hc->bch[0].nr & channel))
321 return &hc->bch[0];
322 else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
323 (hc->bch[1].nr & channel))
324 return &hc->bch[1];
325 else
326 return NULL;
327 }
328
329 /*
330 * clear the desired B-channel rx fifo
331 */
332 static void
333 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
334 {
335 u_char fifo_state;
336 struct bzfifo *bzr;
337
338 if (fifo) {
339 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
340 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
341 } else {
342 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
343 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
344 }
345 if (fifo_state)
346 hc->hw.fifo_en ^= fifo_state;
347 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
348 hc->hw.last_bfifo_cnt[fifo] = 0;
349 bzr->f1 = MAX_B_FRAMES;
350 bzr->f2 = bzr->f1; /* init F pointers to remain constant */
351 bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
352 bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
353 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
354 if (fifo_state)
355 hc->hw.fifo_en |= fifo_state;
356 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
357 }
358
359 /*
360 * clear the desired B-channel tx fifo
361 */
362 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
363 {
364 u_char fifo_state;
365 struct bzfifo *bzt;
366
367 if (fifo) {
368 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
369 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
370 } else {
371 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
372 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
373 }
374 if (fifo_state)
375 hc->hw.fifo_en ^= fifo_state;
376 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
377 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
378 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
379 "z1(%x) z2(%x) state(%x)\n",
380 fifo, bzt->f1, bzt->f2,
381 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
382 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
383 fifo_state);
384 bzt->f2 = MAX_B_FRAMES;
385 bzt->f1 = bzt->f2; /* init F pointers to remain constant */
386 bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
387 bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
388 if (fifo_state)
389 hc->hw.fifo_en |= fifo_state;
390 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
391 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
392 printk(KERN_DEBUG
393 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
394 fifo, bzt->f1, bzt->f2,
395 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
396 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
397 }
398
399 /*
400 * read a complete B-frame out of the buffer
401 */
402 static void
403 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
404 u_char *bdata, int count)
405 {
406 u_char *ptr, *ptr1, new_f2;
407 int total, maxlen, new_z2;
408 struct zt *zp;
409
410 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
411 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
412 zp = &bz->za[bz->f2]; /* point to Z-Regs */
413 new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */
414 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
415 new_z2 -= B_FIFO_SIZE; /* buffer wrap */
416 new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
417 if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
418 (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
419 if (bch->debug & DEBUG_HW)
420 printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
421 "invalid length %d or crc\n", count);
422 #ifdef ERROR_STATISTIC
423 bch->err_inv++;
424 #endif
425 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
426 bz->f2 = new_f2; /* next buffer */
427 } else {
428 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
429 if (!bch->rx_skb) {
430 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
431 return;
432 }
433 total = count;
434 count -= 3;
435 ptr = skb_put(bch->rx_skb, count);
436
437 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
438 maxlen = count; /* complete transfer */
439 else
440 maxlen = B_FIFO_SIZE + B_SUB_VAL -
441 le16_to_cpu(zp->z2); /* maximum */
442
443 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
444 /* start of data */
445 memcpy(ptr, ptr1, maxlen); /* copy data */
446 count -= maxlen;
447
448 if (count) { /* rest remaining */
449 ptr += maxlen;
450 ptr1 = bdata; /* start of buffer */
451 memcpy(ptr, ptr1, count); /* rest */
452 }
453 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
454 bz->f2 = new_f2; /* next buffer */
455 recv_Bchannel(bch, MISDN_ID_ANY);
456 }
457 }
458
459 /*
460 * D-channel receive procedure
461 */
462 static int
463 receive_dmsg(struct hfc_pci *hc)
464 {
465 struct dchannel *dch = &hc->dch;
466 int maxlen;
467 int rcnt, total;
468 int count = 5;
469 u_char *ptr, *ptr1;
470 struct dfifo *df;
471 struct zt *zp;
472
473 df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
474 while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
475 zp = &df->za[df->f2 & D_FREG_MASK];
476 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
477 if (rcnt < 0)
478 rcnt += D_FIFO_SIZE;
479 rcnt++;
480 if (dch->debug & DEBUG_HW_DCHANNEL)
481 printk(KERN_DEBUG
482 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
483 df->f1, df->f2,
484 le16_to_cpu(zp->z1),
485 le16_to_cpu(zp->z2),
486 rcnt);
487
488 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
489 (df->data[le16_to_cpu(zp->z1)])) {
490 if (dch->debug & DEBUG_HW)
491 printk(KERN_DEBUG
492 "empty_fifo hfcpci paket inv. len "
493 "%d or crc %d\n",
494 rcnt,
495 df->data[le16_to_cpu(zp->z1)]);
496 #ifdef ERROR_STATISTIC
497 cs->err_rx++;
498 #endif
499 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
500 (MAX_D_FRAMES + 1); /* next buffer */
501 df->za[df->f2 & D_FREG_MASK].z2 =
502 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
503 (D_FIFO_SIZE - 1));
504 } else {
505 dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
506 if (!dch->rx_skb) {
507 printk(KERN_WARNING
508 "HFC-PCI: D receive out of memory\n");
509 break;
510 }
511 total = rcnt;
512 rcnt -= 3;
513 ptr = skb_put(dch->rx_skb, rcnt);
514
515 if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
516 maxlen = rcnt; /* complete transfer */
517 else
518 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
519 /* maximum */
520
521 ptr1 = df->data + le16_to_cpu(zp->z2);
522 /* start of data */
523 memcpy(ptr, ptr1, maxlen); /* copy data */
524 rcnt -= maxlen;
525
526 if (rcnt) { /* rest remaining */
527 ptr += maxlen;
528 ptr1 = df->data; /* start of buffer */
529 memcpy(ptr, ptr1, rcnt); /* rest */
530 }
531 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
532 (MAX_D_FRAMES + 1); /* next buffer */
533 df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
534 le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
535 recv_Dchannel(dch);
536 }
537 }
538 return 1;
539 }
540
541 /*
542 * check for transparent receive data and read max one 'poll' size if avail
543 */
544 static void
545 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
546 struct bzfifo *txbz, u_char *bdata)
547 {
548 __le16 *z1r, *z2r, *z1t, *z2t;
549 int new_z2, fcnt_rx, fcnt_tx, maxlen;
550 u_char *ptr, *ptr1;
551
552 z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
553 z2r = z1r + 1;
554 z1t = &txbz->za[MAX_B_FRAMES].z1;
555 z2t = z1t + 1;
556
557 fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
558 if (!fcnt_rx)
559 return; /* no data avail */
560
561 if (fcnt_rx <= 0)
562 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
563 new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */
564 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
565 new_z2 -= B_FIFO_SIZE; /* buffer wrap */
566
567 if (fcnt_rx > MAX_DATA_SIZE) { /* flush, if oversized */
568 *z2r = cpu_to_le16(new_z2); /* new position */
569 return;
570 }
571
572 fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
573 if (fcnt_tx <= 0)
574 fcnt_tx += B_FIFO_SIZE;
575 /* fcnt_tx contains available bytes in tx-fifo */
576 fcnt_tx = B_FIFO_SIZE - fcnt_tx;
577 /* remaining bytes to send (bytes in tx-fifo) */
578
579 bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC);
580 if (bch->rx_skb) {
581 ptr = skb_put(bch->rx_skb, fcnt_rx);
582 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
583 maxlen = fcnt_rx; /* complete transfer */
584 else
585 maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
586 /* maximum */
587
588 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
589 /* start of data */
590 memcpy(ptr, ptr1, maxlen); /* copy data */
591 fcnt_rx -= maxlen;
592
593 if (fcnt_rx) { /* rest remaining */
594 ptr += maxlen;
595 ptr1 = bdata; /* start of buffer */
596 memcpy(ptr, ptr1, fcnt_rx); /* rest */
597 }
598 recv_Bchannel(bch, fcnt_tx); /* bch, id */
599 } else
600 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
601
602 *z2r = cpu_to_le16(new_z2); /* new position */
603 }
604
605 /*
606 * B-channel main receive routine
607 */
608 static void
609 main_rec_hfcpci(struct bchannel *bch)
610 {
611 struct hfc_pci *hc = bch->hw;
612 int rcnt, real_fifo;
613 int receive = 0, count = 5;
614 struct bzfifo *txbz, *rxbz;
615 u_char *bdata;
616 struct zt *zp;
617
618 if ((bch->nr & 2) && (!hc->hw.bswapped)) {
619 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
620 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
621 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
622 real_fifo = 1;
623 } else {
624 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
625 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
626 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
627 real_fifo = 0;
628 }
629 Begin:
630 count--;
631 if (rxbz->f1 != rxbz->f2) {
632 if (bch->debug & DEBUG_HW_BCHANNEL)
633 printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
634 bch->nr, rxbz->f1, rxbz->f2);
635 zp = &rxbz->za[rxbz->f2];
636
637 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
638 if (rcnt < 0)
639 rcnt += B_FIFO_SIZE;
640 rcnt++;
641 if (bch->debug & DEBUG_HW_BCHANNEL)
642 printk(KERN_DEBUG
643 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
644 bch->nr, le16_to_cpu(zp->z1),
645 le16_to_cpu(zp->z2), rcnt);
646 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
647 rcnt = rxbz->f1 - rxbz->f2;
648 if (rcnt < 0)
649 rcnt += MAX_B_FRAMES + 1;
650 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
651 rcnt = 0;
652 hfcpci_clear_fifo_rx(hc, real_fifo);
653 }
654 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
655 if (rcnt > 1)
656 receive = 1;
657 else
658 receive = 0;
659 } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
660 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
661 return;
662 } else
663 receive = 0;
664 if (count && receive)
665 goto Begin;
666
667 }
668
669 /*
670 * D-channel send routine
671 */
672 static void
673 hfcpci_fill_dfifo(struct hfc_pci *hc)
674 {
675 struct dchannel *dch = &hc->dch;
676 int fcnt;
677 int count, new_z1, maxlen;
678 struct dfifo *df;
679 u_char *src, *dst, new_f1;
680
681 if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
682 printk(KERN_DEBUG "%s\n", __func__);
683
684 if (!dch->tx_skb)
685 return;
686 count = dch->tx_skb->len - dch->tx_idx;
687 if (count <= 0)
688 return;
689 df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
690
691 if (dch->debug & DEBUG_HW_DFIFO)
692 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
693 df->f1, df->f2,
694 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
695 fcnt = df->f1 - df->f2; /* frame count actually buffered */
696 if (fcnt < 0)
697 fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
698 if (fcnt > (MAX_D_FRAMES - 1)) {
699 if (dch->debug & DEBUG_HW_DCHANNEL)
700 printk(KERN_DEBUG
701 "hfcpci_fill_Dfifo more as 14 frames\n");
702 #ifdef ERROR_STATISTIC
703 cs->err_tx++;
704 #endif
705 return;
706 }
707 /* now determine free bytes in FIFO buffer */
708 maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
709 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
710 if (maxlen <= 0)
711 maxlen += D_FIFO_SIZE; /* count now contains available bytes */
712
713 if (dch->debug & DEBUG_HW_DCHANNEL)
714 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
715 count, maxlen);
716 if (count > maxlen) {
717 if (dch->debug & DEBUG_HW_DCHANNEL)
718 printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
719 return;
720 }
721 new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
722 (D_FIFO_SIZE - 1);
723 new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
724 src = dch->tx_skb->data + dch->tx_idx; /* source pointer */
725 dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
726 maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
727 /* end fifo */
728 if (maxlen > count)
729 maxlen = count; /* limit size */
730 memcpy(dst, src, maxlen); /* first copy */
731
732 count -= maxlen; /* remaining bytes */
733 if (count) {
734 dst = df->data; /* start of buffer */
735 src += maxlen; /* new position */
736 memcpy(dst, src, count);
737 }
738 df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
739 /* for next buffer */
740 df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
741 /* new pos actual buffer */
742 df->f1 = new_f1; /* next frame */
743 dch->tx_idx = dch->tx_skb->len;
744 }
745
746 /*
747 * B-channel send routine
748 */
749 static void
750 hfcpci_fill_fifo(struct bchannel *bch)
751 {
752 struct hfc_pci *hc = bch->hw;
753 int maxlen, fcnt;
754 int count, new_z1;
755 struct bzfifo *bz;
756 u_char *bdata;
757 u_char new_f1, *src, *dst;
758 __le16 *z1t, *z2t;
759
760 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
761 printk(KERN_DEBUG "%s\n", __func__);
762 if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
763 return;
764 count = bch->tx_skb->len - bch->tx_idx;
765 if ((bch->nr & 2) && (!hc->hw.bswapped)) {
766 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
767 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
768 } else {
769 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
770 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
771 }
772
773 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
774 z1t = &bz->za[MAX_B_FRAMES].z1;
775 z2t = z1t + 1;
776 if (bch->debug & DEBUG_HW_BCHANNEL)
777 printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
778 "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
779 le16_to_cpu(*z1t), le16_to_cpu(*z2t));
780 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
781 if (fcnt <= 0)
782 fcnt += B_FIFO_SIZE;
783 /* fcnt contains available bytes in fifo */
784 fcnt = B_FIFO_SIZE - fcnt;
785 /* remaining bytes to send (bytes in fifo) */
786
787 /* "fill fifo if empty" feature */
788 if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
789 /* printk(KERN_DEBUG "%s: buffer empty, so we have "
790 "underrun\n", __func__); */
791 /* fill buffer, to prevent future underrun */
792 count = HFCPCI_FILLEMPTY;
793 new_z1 = le16_to_cpu(*z1t) + count;
794 /* new buffer Position */
795 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
796 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
797 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
798 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
799 /* end of fifo */
800 if (bch->debug & DEBUG_HW_BFIFO)
801 printk(KERN_DEBUG "hfcpci_FFt fillempty "
802 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
803 fcnt, maxlen, new_z1, dst);
804 fcnt += count;
805 if (maxlen > count)
806 maxlen = count; /* limit size */
807 memset(dst, 0x2a, maxlen); /* first copy */
808 count -= maxlen; /* remaining bytes */
809 if (count) {
810 dst = bdata; /* start of buffer */
811 memset(dst, 0x2a, count);
812 }
813 *z1t = cpu_to_le16(new_z1); /* now send data */
814 }
815
816 next_t_frame:
817 count = bch->tx_skb->len - bch->tx_idx;
818 /* maximum fill shall be poll*2 */
819 if (count > (poll << 1) - fcnt)
820 count = (poll << 1) - fcnt;
821 if (count <= 0)
822 return;
823 /* data is suitable for fifo */
824 new_z1 = le16_to_cpu(*z1t) + count;
825 /* new buffer Position */
826 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
827 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
828 src = bch->tx_skb->data + bch->tx_idx;
829 /* source pointer */
830 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
831 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
832 /* end of fifo */
833 if (bch->debug & DEBUG_HW_BFIFO)
834 printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
835 "maxl(%d) nz1(%x) dst(%p)\n",
836 fcnt, maxlen, new_z1, dst);
837 fcnt += count;
838 bch->tx_idx += count;
839 if (maxlen > count)
840 maxlen = count; /* limit size */
841 memcpy(dst, src, maxlen); /* first copy */
842 count -= maxlen; /* remaining bytes */
843 if (count) {
844 dst = bdata; /* start of buffer */
845 src += maxlen; /* new position */
846 memcpy(dst, src, count);
847 }
848 *z1t = cpu_to_le16(new_z1); /* now send data */
849 if (bch->tx_idx < bch->tx_skb->len)
850 return;
851 /* send confirm, on trans, free on hdlc. */
852 if (test_bit(FLG_TRANSPARENT, &bch->Flags))
853 confirm_Bsend(bch);
854 dev_kfree_skb(bch->tx_skb);
855 if (get_next_bframe(bch))
856 goto next_t_frame;
857 return;
858 }
859 if (bch->debug & DEBUG_HW_BCHANNEL)
860 printk(KERN_DEBUG
861 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
862 __func__, bch->nr, bz->f1, bz->f2,
863 bz->za[bz->f1].z1);
864 fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
865 if (fcnt < 0)
866 fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
867 if (fcnt > (MAX_B_FRAMES - 1)) {
868 if (bch->debug & DEBUG_HW_BCHANNEL)
869 printk(KERN_DEBUG
870 "hfcpci_fill_Bfifo more as 14 frames\n");
871 return;
872 }
873 /* now determine free bytes in FIFO buffer */
874 maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
875 le16_to_cpu(bz->za[bz->f1].z1) - 1;
876 if (maxlen <= 0)
877 maxlen += B_FIFO_SIZE; /* count now contains available bytes */
878
879 if (bch->debug & DEBUG_HW_BCHANNEL)
880 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
881 bch->nr, count, maxlen);
882
883 if (maxlen < count) {
884 if (bch->debug & DEBUG_HW_BCHANNEL)
885 printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
886 return;
887 }
888 new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
889 /* new buffer Position */
890 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
891 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
892
893 new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
894 src = bch->tx_skb->data + bch->tx_idx; /* source pointer */
895 dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
896 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
897 /* end fifo */
898 if (maxlen > count)
899 maxlen = count; /* limit size */
900 memcpy(dst, src, maxlen); /* first copy */
901
902 count -= maxlen; /* remaining bytes */
903 if (count) {
904 dst = bdata; /* start of buffer */
905 src += maxlen; /* new position */
906 memcpy(dst, src, count);
907 }
908 bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */
909 bz->f1 = new_f1; /* next frame */
910 dev_kfree_skb(bch->tx_skb);
911 get_next_bframe(bch);
912 }
913
914
915
916 /*
917 * handle L1 state changes TE
918 */
919
920 static void
921 ph_state_te(struct dchannel *dch)
922 {
923 if (dch->debug)
924 printk(KERN_DEBUG "%s: TE newstate %x\n",
925 __func__, dch->state);
926 switch (dch->state) {
927 case 0:
928 l1_event(dch->l1, HW_RESET_IND);
929 break;
930 case 3:
931 l1_event(dch->l1, HW_DEACT_IND);
932 break;
933 case 5:
934 case 8:
935 l1_event(dch->l1, ANYSIGNAL);
936 break;
937 case 6:
938 l1_event(dch->l1, INFO2);
939 break;
940 case 7:
941 l1_event(dch->l1, INFO4_P8);
942 break;
943 }
944 }
945
946 /*
947 * handle L1 state changes NT
948 */
949
950 static void
951 handle_nt_timer3(struct dchannel *dch) {
952 struct hfc_pci *hc = dch->hw;
953
954 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
955 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
956 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
957 hc->hw.nt_timer = 0;
958 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
959 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
960 hc->hw.mst_m |= HFCPCI_MASTER;
961 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
962 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
963 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
964 }
965
966 static void
967 ph_state_nt(struct dchannel *dch)
968 {
969 struct hfc_pci *hc = dch->hw;
970 u_char val;
971
972 if (dch->debug)
973 printk(KERN_DEBUG "%s: NT newstate %x\n",
974 __func__, dch->state);
975 switch (dch->state) {
976 case 2:
977 if (hc->hw.nt_timer < 0) {
978 hc->hw.nt_timer = 0;
979 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
980 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
981 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983 /* Clear already pending ints */
984 val = Read_hfc(hc, HFCPCI_INT_S1);
985 Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
986 udelay(10);
987 Write_hfc(hc, HFCPCI_STATES, 4);
988 dch->state = 4;
989 } else if (hc->hw.nt_timer == 0) {
990 hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992 hc->hw.nt_timer = NT_T1_COUNT;
993 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994 hc->hw.ctmt |= HFCPCI_TIM3_125;
995 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
996 HFCPCI_CLTIMER);
997 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
998 test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
999 /* allow G2 -> G3 transition */
1000 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1001 } else {
1002 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1003 }
1004 break;
1005 case 1:
1006 hc->hw.nt_timer = 0;
1007 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1012 hc->hw.mst_m &= ~HFCPCI_MASTER;
1013 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1014 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1015 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1016 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1017 break;
1018 case 4:
1019 hc->hw.nt_timer = 0;
1020 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1021 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1022 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024 break;
1025 case 3:
1026 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1027 if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1028 &dch->Flags)) {
1029 handle_nt_timer3(dch);
1030 break;
1031 }
1032 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1033 hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035 hc->hw.nt_timer = NT_T3_COUNT;
1036 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037 hc->hw.ctmt |= HFCPCI_TIM3_125;
1038 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039 HFCPCI_CLTIMER);
1040 }
1041 break;
1042 }
1043 }
1044
1045 static void
1046 ph_state(struct dchannel *dch)
1047 {
1048 struct hfc_pci *hc = dch->hw;
1049
1050 if (hc->hw.protocol == ISDN_P_NT_S0) {
1051 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052 hc->hw.nt_timer < 0)
1053 handle_nt_timer3(dch);
1054 else
1055 ph_state_nt(dch);
1056 } else
1057 ph_state_te(dch);
1058 }
1059
1060 /*
1061 * Layer 1 callback function
1062 */
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1065 {
1066 struct hfc_pci *hc = dch->hw;
1067
1068 switch (cmd) {
1069 case INFO3_P8:
1070 case INFO3_P10:
1071 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072 hc->hw.mst_m |= HFCPCI_MASTER;
1073 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074 break;
1075 case HW_RESET_REQ:
1076 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1077 /* HFC ST 3 */
1078 udelay(6);
1079 Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */
1080 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081 hc->hw.mst_m |= HFCPCI_MASTER;
1082 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1083 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1084 HFCPCI_DO_ACTION);
1085 l1_event(dch->l1, HW_POWERUP_IND);
1086 break;
1087 case HW_DEACT_REQ:
1088 hc->hw.mst_m &= ~HFCPCI_MASTER;
1089 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090 skb_queue_purge(&dch->squeue);
1091 if (dch->tx_skb) {
1092 dev_kfree_skb(dch->tx_skb);
1093 dch->tx_skb = NULL;
1094 }
1095 dch->tx_idx = 0;
1096 if (dch->rx_skb) {
1097 dev_kfree_skb(dch->rx_skb);
1098 dch->rx_skb = NULL;
1099 }
1100 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1101 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1102 del_timer(&dch->timer);
1103 break;
1104 case HW_POWERUP_REQ:
1105 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1106 break;
1107 case PH_ACTIVATE_IND:
1108 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1109 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110 GFP_ATOMIC);
1111 break;
1112 case PH_DEACTIVATE_IND:
1113 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1114 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115 GFP_ATOMIC);
1116 break;
1117 default:
1118 if (dch->debug & DEBUG_HW)
1119 printk(KERN_DEBUG "%s: unknown command %x\n",
1120 __func__, cmd);
1121 return -1;
1122 }
1123 return 0;
1124 }
1125
1126 /*
1127 * Interrupt handler
1128 */
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1131 {
1132 if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133 hfcpci_fill_fifo(bch);
1134 else {
1135 if (bch->tx_skb)
1136 dev_kfree_skb(bch->tx_skb);
1137 if (get_next_bframe(bch))
1138 hfcpci_fill_fifo(bch);
1139 }
1140 }
1141
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1144 {
1145 if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146 hfcpci_fill_dfifo(dch->hw);
1147 else {
1148 if (dch->tx_skb)
1149 dev_kfree_skb(dch->tx_skb);
1150 if (get_next_dframe(dch))
1151 hfcpci_fill_dfifo(dch->hw);
1152 }
1153 }
1154
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1157 {
1158 struct hfc_pci *hc = dev_id;
1159 u_char exval;
1160 struct bchannel *bch;
1161 u_char val, stat;
1162
1163 spin_lock(&hc->lock);
1164 if (!(hc->hw.int_m2 & 0x08)) {
1165 spin_unlock(&hc->lock);
1166 return IRQ_NONE; /* not initialised */
1167 }
1168 stat = Read_hfc(hc, HFCPCI_STATUS);
1169 if (HFCPCI_ANYINT & stat) {
1170 val = Read_hfc(hc, HFCPCI_INT_S1);
1171 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172 printk(KERN_DEBUG
1173 "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174 } else {
1175 /* shared */
1176 spin_unlock(&hc->lock);
1177 return IRQ_NONE;
1178 }
1179 hc->irqcnt++;
1180
1181 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183 val &= hc->hw.int_m1;
1184 if (val & 0x40) { /* state machine irq */
1185 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187 printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188 hc->dch.state, exval);
1189 hc->dch.state = exval;
1190 schedule_event(&hc->dch, FLG_PHCHANGE);
1191 val &= ~0x40;
1192 }
1193 if (val & 0x80) { /* timer irq */
1194 if (hc->hw.protocol == ISDN_P_NT_S0) {
1195 if ((--hc->hw.nt_timer) < 0)
1196 schedule_event(&hc->dch, FLG_PHCHANGE);
1197 }
1198 val &= ~0x80;
1199 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1200 }
1201 if (val & 0x08) { /* B1 rx */
1202 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203 if (bch)
1204 main_rec_hfcpci(bch);
1205 else if (hc->dch.debug)
1206 printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1207 }
1208 if (val & 0x10) { /* B2 rx */
1209 bch = Sel_BCS(hc, 2);
1210 if (bch)
1211 main_rec_hfcpci(bch);
1212 else if (hc->dch.debug)
1213 printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1214 }
1215 if (val & 0x01) { /* B1 tx */
1216 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217 if (bch)
1218 tx_birq(bch);
1219 else if (hc->dch.debug)
1220 printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1221 }
1222 if (val & 0x02) { /* B2 tx */
1223 bch = Sel_BCS(hc, 2);
1224 if (bch)
1225 tx_birq(bch);
1226 else if (hc->dch.debug)
1227 printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1228 }
1229 if (val & 0x20) /* D rx */
1230 receive_dmsg(hc);
1231 if (val & 0x04) { /* D tx */
1232 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233 del_timer(&hc->dch.timer);
1234 tx_dirq(&hc->dch);
1235 }
1236 spin_unlock(&hc->lock);
1237 return IRQ_HANDLED;
1238 }
1239
1240 /*
1241 * timer callback for D-chan busy resolution. Currently no function
1242 */
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1245 {
1246 }
1247
1248 /*
1249 * activate/deactivate hardware for selected channels and mode
1250 */
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1253 {
1254 struct hfc_pci *hc = bch->hw;
1255 int fifo2;
1256 u_char rx_slot = 0, tx_slot = 0, pcm_mode;
1257
1258 if (bch->debug & DEBUG_HW_BCHANNEL)
1259 printk(KERN_DEBUG
1260 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261 bch->state, protocol, bch->nr, bc);
1262
1263 fifo2 = bc;
1264 pcm_mode = (bc>>24) & 0xff;
1265 if (pcm_mode) { /* PCM SLOT USE */
1266 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1267 printk(KERN_WARNING
1268 "%s: pcm channel id without HFC_CFG_PCM\n",
1269 __func__);
1270 rx_slot = (bc>>8) & 0xff;
1271 tx_slot = (bc>>16) & 0xff;
1272 bc = bc & 0xff;
1273 } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275 __func__);
1276 if (hc->chanlimit > 1) {
1277 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1278 hc->hw.sctrl_e &= ~0x80;
1279 } else {
1280 if (bc & 2) {
1281 if (protocol != ISDN_P_NONE) {
1282 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283 hc->hw.sctrl_e |= 0x80;
1284 } else {
1285 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286 hc->hw.sctrl_e &= ~0x80;
1287 }
1288 fifo2 = 1;
1289 } else {
1290 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1291 hc->hw.sctrl_e &= ~0x80;
1292 }
1293 }
1294 switch (protocol) {
1295 case (-1): /* used for init */
1296 bch->state = -1;
1297 bch->nr = bc;
1298 case (ISDN_P_NONE):
1299 if (bch->state == ISDN_P_NONE)
1300 return 0;
1301 if (bc & 2) {
1302 hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303 hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304 } else {
1305 hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306 hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1307 }
1308 if (fifo2 & 2) {
1309 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310 hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1311 HFCPCI_INTS_B2REC);
1312 } else {
1313 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314 hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1315 HFCPCI_INTS_B1REC);
1316 }
1317 #ifdef REVERSE_BITORDER
1318 if (bch->nr & 2)
1319 hc->hw.cirm &= 0x7f;
1320 else
1321 hc->hw.cirm &= 0xbf;
1322 #endif
1323 bch->state = ISDN_P_NONE;
1324 bch->nr = bc;
1325 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1326 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1327 break;
1328 case (ISDN_P_B_RAW):
1329 bch->state = protocol;
1330 bch->nr = bc;
1331 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333 if (bc & 2) {
1334 hc->hw.sctrl |= SCTRL_B2_ENA;
1335 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337 hc->hw.cirm |= 0x80;
1338 #endif
1339 } else {
1340 hc->hw.sctrl |= SCTRL_B1_ENA;
1341 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343 hc->hw.cirm |= 0x40;
1344 #endif
1345 }
1346 if (fifo2 & 2) {
1347 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348 if (!tics)
1349 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1350 HFCPCI_INTS_B2REC);
1351 hc->hw.ctmt |= 2;
1352 hc->hw.conn &= ~0x18;
1353 } else {
1354 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355 if (!tics)
1356 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1357 HFCPCI_INTS_B1REC);
1358 hc->hw.ctmt |= 1;
1359 hc->hw.conn &= ~0x03;
1360 }
1361 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1362 break;
1363 case (ISDN_P_B_HDLC):
1364 bch->state = protocol;
1365 bch->nr = bc;
1366 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368 if (bc & 2) {
1369 hc->hw.sctrl |= SCTRL_B2_ENA;
1370 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371 } else {
1372 hc->hw.sctrl |= SCTRL_B1_ENA;
1373 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1374 }
1375 if (fifo2 & 2) {
1376 hc->hw.last_bfifo_cnt[1] = 0;
1377 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1379 HFCPCI_INTS_B2REC);
1380 hc->hw.ctmt &= ~2;
1381 hc->hw.conn &= ~0x18;
1382 } else {
1383 hc->hw.last_bfifo_cnt[0] = 0;
1384 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1386 HFCPCI_INTS_B1REC);
1387 hc->hw.ctmt &= ~1;
1388 hc->hw.conn &= ~0x03;
1389 }
1390 test_and_set_bit(FLG_HDLC, &bch->Flags);
1391 break;
1392 default:
1393 printk(KERN_DEBUG "prot not known %x\n", protocol);
1394 return -ENOPROTOOPT;
1395 }
1396 if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397 if ((protocol == ISDN_P_NONE) ||
1398 (protocol == -1)) { /* init case */
1399 rx_slot = 0;
1400 tx_slot = 0;
1401 } else {
1402 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403 rx_slot |= 0xC0;
1404 tx_slot |= 0xC0;
1405 } else {
1406 rx_slot |= 0x80;
1407 tx_slot |= 0x80;
1408 }
1409 }
1410 if (bc & 2) {
1411 hc->hw.conn &= 0xc7;
1412 hc->hw.conn |= 0x08;
1413 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414 __func__, tx_slot);
1415 printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416 __func__, rx_slot);
1417 Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418 Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419 } else {
1420 hc->hw.conn &= 0xf8;
1421 hc->hw.conn |= 0x01;
1422 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423 __func__, tx_slot);
1424 printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425 __func__, rx_slot);
1426 Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427 Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1428 }
1429 }
1430 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440 return 0;
1441 }
1442
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1445 {
1446 struct hfc_pci *hc = bch->hw;
1447
1448 if (bch->debug & DEBUG_HW_BCHANNEL)
1449 printk(KERN_DEBUG
1450 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451 bch->state, protocol, bch->nr, chan);
1452 if (bch->nr != chan) {
1453 printk(KERN_DEBUG
1454 "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455 bch->nr, chan);
1456 return -EINVAL;
1457 }
1458 switch (protocol) {
1459 case (ISDN_P_B_RAW):
1460 bch->state = protocol;
1461 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462 if (chan & 2) {
1463 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465 if (!tics)
1466 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467 hc->hw.ctmt |= 2;
1468 hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470 hc->hw.cirm |= 0x80;
1471 #endif
1472 } else {
1473 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475 if (!tics)
1476 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477 hc->hw.ctmt |= 1;
1478 hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480 hc->hw.cirm |= 0x40;
1481 #endif
1482 }
1483 break;
1484 case (ISDN_P_B_HDLC):
1485 bch->state = protocol;
1486 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487 if (chan & 2) {
1488 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489 hc->hw.last_bfifo_cnt[1] = 0;
1490 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492 hc->hw.ctmt &= ~2;
1493 hc->hw.conn &= ~0x18;
1494 } else {
1495 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496 hc->hw.last_bfifo_cnt[0] = 0;
1497 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499 hc->hw.ctmt &= ~1;
1500 hc->hw.conn &= ~0x03;
1501 }
1502 break;
1503 default:
1504 printk(KERN_DEBUG "prot not known %x\n", protocol);
1505 return -ENOPROTOOPT;
1506 }
1507 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515 return 0;
1516 }
1517
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1520 {
1521 struct hfc_pci *hc = bch->hw;
1522 u_long flags;
1523
1524 spin_lock_irqsave(&hc->lock, flags);
1525 if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
1526 dev_kfree_skb(bch->next_skb);
1527 bch->next_skb = NULL;
1528 }
1529 if (bch->tx_skb) {
1530 dev_kfree_skb(bch->tx_skb);
1531 bch->tx_skb = NULL;
1532 }
1533 bch->tx_idx = 0;
1534 if (bch->rx_skb) {
1535 dev_kfree_skb(bch->rx_skb);
1536 bch->rx_skb = NULL;
1537 }
1538 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1539 test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
1540 test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
1541 spin_unlock_irqrestore(&hc->lock, flags);
1542 }
1543
1544 /*
1545 * Layer 1 B-channel hardware access
1546 */
1547 static int
1548 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1549 {
1550 int ret = 0;
1551
1552 switch (cq->op) {
1553 case MISDN_CTRL_GETOP:
1554 cq->op = MISDN_CTRL_FILL_EMPTY;
1555 break;
1556 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1557 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1558 if (debug & DEBUG_HW_OPEN)
1559 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1560 "off=%d)\n", __func__, bch->nr, !!cq->p1);
1561 break;
1562 default:
1563 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1564 ret = -EINVAL;
1565 break;
1566 }
1567 return ret;
1568 }
1569 static int
1570 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1571 {
1572 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1573 struct hfc_pci *hc = bch->hw;
1574 int ret = -EINVAL;
1575 u_long flags;
1576
1577 if (bch->debug & DEBUG_HW)
1578 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1579 switch (cmd) {
1580 case HW_TESTRX_RAW:
1581 spin_lock_irqsave(&hc->lock, flags);
1582 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1583 spin_unlock_irqrestore(&hc->lock, flags);
1584 break;
1585 case HW_TESTRX_HDLC:
1586 spin_lock_irqsave(&hc->lock, flags);
1587 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1588 spin_unlock_irqrestore(&hc->lock, flags);
1589 break;
1590 case HW_TESTRX_OFF:
1591 spin_lock_irqsave(&hc->lock, flags);
1592 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1593 spin_unlock_irqrestore(&hc->lock, flags);
1594 ret = 0;
1595 break;
1596 case CLOSE_CHANNEL:
1597 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1598 if (test_bit(FLG_ACTIVE, &bch->Flags))
1599 deactivate_bchannel(bch);
1600 ch->protocol = ISDN_P_NONE;
1601 ch->peer = NULL;
1602 module_put(THIS_MODULE);
1603 ret = 0;
1604 break;
1605 case CONTROL_CHANNEL:
1606 ret = channel_bctrl(bch, arg);
1607 break;
1608 default:
1609 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1610 __func__, cmd);
1611 }
1612 return ret;
1613 }
1614
1615 /*
1616 * Layer2 -> Layer 1 Dchannel data
1617 */
1618 static int
1619 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1620 {
1621 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1622 struct dchannel *dch = container_of(dev, struct dchannel, dev);
1623 struct hfc_pci *hc = dch->hw;
1624 int ret = -EINVAL;
1625 struct mISDNhead *hh = mISDN_HEAD_P(skb);
1626 unsigned int id;
1627 u_long flags;
1628
1629 switch (hh->prim) {
1630 case PH_DATA_REQ:
1631 spin_lock_irqsave(&hc->lock, flags);
1632 ret = dchannel_senddata(dch, skb);
1633 if (ret > 0) { /* direct TX */
1634 id = hh->id; /* skb can be freed */
1635 hfcpci_fill_dfifo(dch->hw);
1636 ret = 0;
1637 spin_unlock_irqrestore(&hc->lock, flags);
1638 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1639 } else
1640 spin_unlock_irqrestore(&hc->lock, flags);
1641 return ret;
1642 case PH_ACTIVATE_REQ:
1643 spin_lock_irqsave(&hc->lock, flags);
1644 if (hc->hw.protocol == ISDN_P_NT_S0) {
1645 ret = 0;
1646 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1647 hc->hw.mst_m |= HFCPCI_MASTER;
1648 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1649 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1650 spin_unlock_irqrestore(&hc->lock, flags);
1651 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1652 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1653 break;
1654 }
1655 test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1656 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1657 HFCPCI_DO_ACTION | 1);
1658 } else
1659 ret = l1_event(dch->l1, hh->prim);
1660 spin_unlock_irqrestore(&hc->lock, flags);
1661 break;
1662 case PH_DEACTIVATE_REQ:
1663 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1664 spin_lock_irqsave(&hc->lock, flags);
1665 if (hc->hw.protocol == ISDN_P_NT_S0) {
1666 /* prepare deactivation */
1667 Write_hfc(hc, HFCPCI_STATES, 0x40);
1668 skb_queue_purge(&dch->squeue);
1669 if (dch->tx_skb) {
1670 dev_kfree_skb(dch->tx_skb);
1671 dch->tx_skb = NULL;
1672 }
1673 dch->tx_idx = 0;
1674 if (dch->rx_skb) {
1675 dev_kfree_skb(dch->rx_skb);
1676 dch->rx_skb = NULL;
1677 }
1678 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1679 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1680 del_timer(&dch->timer);
1681 #ifdef FIXME
1682 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1683 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1684 #endif
1685 hc->hw.mst_m &= ~HFCPCI_MASTER;
1686 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1687 ret = 0;
1688 } else {
1689 ret = l1_event(dch->l1, hh->prim);
1690 }
1691 spin_unlock_irqrestore(&hc->lock, flags);
1692 break;
1693 }
1694 if (!ret)
1695 dev_kfree_skb(skb);
1696 return ret;
1697 }
1698
1699 /*
1700 * Layer2 -> Layer 1 Bchannel data
1701 */
1702 static int
1703 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1704 {
1705 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1706 struct hfc_pci *hc = bch->hw;
1707 int ret = -EINVAL;
1708 struct mISDNhead *hh = mISDN_HEAD_P(skb);
1709 unsigned int id;
1710 u_long flags;
1711
1712 switch (hh->prim) {
1713 case PH_DATA_REQ:
1714 spin_lock_irqsave(&hc->lock, flags);
1715 ret = bchannel_senddata(bch, skb);
1716 if (ret > 0) { /* direct TX */
1717 id = hh->id; /* skb can be freed */
1718 hfcpci_fill_fifo(bch);
1719 ret = 0;
1720 spin_unlock_irqrestore(&hc->lock, flags);
1721 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1722 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1723 } else
1724 spin_unlock_irqrestore(&hc->lock, flags);
1725 return ret;
1726 case PH_ACTIVATE_REQ:
1727 spin_lock_irqsave(&hc->lock, flags);
1728 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1729 ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1730 else
1731 ret = 0;
1732 spin_unlock_irqrestore(&hc->lock, flags);
1733 if (!ret)
1734 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1735 NULL, GFP_KERNEL);
1736 break;
1737 case PH_DEACTIVATE_REQ:
1738 deactivate_bchannel(bch);
1739 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1740 NULL, GFP_KERNEL);
1741 ret = 0;
1742 break;
1743 }
1744 if (!ret)
1745 dev_kfree_skb(skb);
1746 return ret;
1747 }
1748
1749 /*
1750 * called for card init message
1751 */
1752
1753 static void
1754 inithfcpci(struct hfc_pci *hc)
1755 {
1756 printk(KERN_DEBUG "inithfcpci: entered\n");
1757 hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1758 hc->dch.timer.data = (long) &hc->dch;
1759 init_timer(&hc->dch.timer);
1760 hc->chanlimit = 2;
1761 mode_hfcpci(&hc->bch[0], 1, -1);
1762 mode_hfcpci(&hc->bch[1], 2, -1);
1763 }
1764
1765
1766 static int
1767 init_card(struct hfc_pci *hc)
1768 {
1769 int cnt = 3;
1770 u_long flags;
1771
1772 printk(KERN_DEBUG "init_card: entered\n");
1773
1774
1775 spin_lock_irqsave(&hc->lock, flags);
1776 disable_hwirq(hc);
1777 spin_unlock_irqrestore(&hc->lock, flags);
1778 if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1779 printk(KERN_WARNING
1780 "mISDN: couldn't get interrupt %d\n", hc->irq);
1781 return -EIO;
1782 }
1783 spin_lock_irqsave(&hc->lock, flags);
1784 reset_hfcpci(hc);
1785 while (cnt) {
1786 inithfcpci(hc);
1787 /*
1788 * Finally enable IRQ output
1789 * this is only allowed, if an IRQ routine is allready
1790 * established for this HFC, so don't do that earlier
1791 */
1792 enable_hwirq(hc);
1793 spin_unlock_irqrestore(&hc->lock, flags);
1794 /* Timeout 80ms */
1795 current->state = TASK_UNINTERRUPTIBLE;
1796 schedule_timeout((80*HZ)/1000);
1797 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1798 hc->irq, hc->irqcnt);
1799 /* now switch timer interrupt off */
1800 spin_lock_irqsave(&hc->lock, flags);
1801 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1802 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1803 /* reinit mode reg */
1804 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1805 if (!hc->irqcnt) {
1806 printk(KERN_WARNING
1807 "HFC PCI: IRQ(%d) getting no interrupts "
1808 "during init %d\n", hc->irq, 4 - cnt);
1809 if (cnt == 1)
1810 break;
1811 else {
1812 reset_hfcpci(hc);
1813 cnt--;
1814 }
1815 } else {
1816 spin_unlock_irqrestore(&hc->lock, flags);
1817 hc->initdone = 1;
1818 return 0;
1819 }
1820 }
1821 disable_hwirq(hc);
1822 spin_unlock_irqrestore(&hc->lock, flags);
1823 free_irq(hc->irq, hc);
1824 return -EIO;
1825 }
1826
1827 static int
1828 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1829 {
1830 int ret = 0;
1831 u_char slot;
1832
1833 switch (cq->op) {
1834 case MISDN_CTRL_GETOP:
1835 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1836 MISDN_CTRL_DISCONNECT;
1837 break;
1838 case MISDN_CTRL_LOOP:
1839 /* channel 0 disabled loop */
1840 if (cq->channel < 0 || cq->channel > 2) {
1841 ret = -EINVAL;
1842 break;
1843 }
1844 if (cq->channel & 1) {
1845 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1846 slot = 0xC0;
1847 else
1848 slot = 0x80;
1849 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1850 __func__, slot);
1851 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1852 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1853 hc->hw.conn = (hc->hw.conn & ~7) | 6;
1854 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1855 }
1856 if (cq->channel & 2) {
1857 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1858 slot = 0xC1;
1859 else
1860 slot = 0x81;
1861 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1862 __func__, slot);
1863 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1864 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1865 hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1866 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1867 }
1868 if (cq->channel & 3)
1869 hc->hw.trm |= 0x80; /* enable IOM-loop */
1870 else {
1871 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1872 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1873 hc->hw.trm &= 0x7f; /* disable IOM-loop */
1874 }
1875 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1876 break;
1877 case MISDN_CTRL_CONNECT:
1878 if (cq->channel == cq->p1) {
1879 ret = -EINVAL;
1880 break;
1881 }
1882 if (cq->channel < 1 || cq->channel > 2 ||
1883 cq->p1 < 1 || cq->p1 > 2) {
1884 ret = -EINVAL;
1885 break;
1886 }
1887 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1888 slot = 0xC0;
1889 else
1890 slot = 0x80;
1891 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1892 __func__, slot);
1893 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1894 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1895 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1896 slot = 0xC1;
1897 else
1898 slot = 0x81;
1899 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1900 __func__, slot);
1901 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1902 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1903 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1904 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1905 hc->hw.trm |= 0x80;
1906 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1907 break;
1908 case MISDN_CTRL_DISCONNECT:
1909 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1910 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1911 hc->hw.trm &= 0x7f; /* disable IOM-loop */
1912 break;
1913 default:
1914 printk(KERN_WARNING "%s: unknown Op %x\n",
1915 __func__, cq->op);
1916 ret = -EINVAL;
1917 break;
1918 }
1919 return ret;
1920 }
1921
1922 static int
1923 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1924 struct channel_req *rq)
1925 {
1926 int err = 0;
1927
1928 if (debug & DEBUG_HW_OPEN)
1929 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1930 hc->dch.dev.id, __builtin_return_address(0));
1931 if (rq->protocol == ISDN_P_NONE)
1932 return -EINVAL;
1933 if (rq->adr.channel == 1) {
1934 /* TODO: E-Channel */
1935 return -EINVAL;
1936 }
1937 if (!hc->initdone) {
1938 if (rq->protocol == ISDN_P_TE_S0) {
1939 err = create_l1(&hc->dch, hfc_l1callback);
1940 if (err)
1941 return err;
1942 }
1943 hc->hw.protocol = rq->protocol;
1944 ch->protocol = rq->protocol;
1945 err = init_card(hc);
1946 if (err)
1947 return err;
1948 } else {
1949 if (rq->protocol != ch->protocol) {
1950 if (hc->hw.protocol == ISDN_P_TE_S0)
1951 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1952 if (rq->protocol == ISDN_P_TE_S0) {
1953 err = create_l1(&hc->dch, hfc_l1callback);
1954 if (err)
1955 return err;
1956 }
1957 hc->hw.protocol = rq->protocol;
1958 ch->protocol = rq->protocol;
1959 hfcpci_setmode(hc);
1960 }
1961 }
1962
1963 if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1964 ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1965 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1966 0, NULL, GFP_KERNEL);
1967 }
1968 rq->ch = ch;
1969 if (!try_module_get(THIS_MODULE))
1970 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1971 return 0;
1972 }
1973
1974 static int
1975 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1976 {
1977 struct bchannel *bch;
1978
1979 if (rq->adr.channel > 2)
1980 return -EINVAL;
1981 if (rq->protocol == ISDN_P_NONE)
1982 return -EINVAL;
1983 bch = &hc->bch[rq->adr.channel - 1];
1984 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1985 return -EBUSY; /* b-channel can be only open once */
1986 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1987 bch->ch.protocol = rq->protocol;
1988 rq->ch = &bch->ch; /* TODO: E-channel */
1989 if (!try_module_get(THIS_MODULE))
1990 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1991 return 0;
1992 }
1993
1994 /*
1995 * device control function
1996 */
1997 static int
1998 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1999 {
2000 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
2001 struct dchannel *dch = container_of(dev, struct dchannel, dev);
2002 struct hfc_pci *hc = dch->hw;
2003 struct channel_req *rq;
2004 int err = 0;
2005
2006 if (dch->debug & DEBUG_HW)
2007 printk(KERN_DEBUG "%s: cmd:%x %p\n",
2008 __func__, cmd, arg);
2009 switch (cmd) {
2010 case OPEN_CHANNEL:
2011 rq = arg;
2012 if ((rq->protocol == ISDN_P_TE_S0) ||
2013 (rq->protocol == ISDN_P_NT_S0))
2014 err = open_dchannel(hc, ch, rq);
2015 else
2016 err = open_bchannel(hc, rq);
2017 break;
2018 case CLOSE_CHANNEL:
2019 if (debug & DEBUG_HW_OPEN)
2020 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2021 __func__, hc->dch.dev.id,
2022 __builtin_return_address(0));
2023 module_put(THIS_MODULE);
2024 break;
2025 case CONTROL_CHANNEL:
2026 err = channel_ctrl(hc, arg);
2027 break;
2028 default:
2029 if (dch->debug & DEBUG_HW)
2030 printk(KERN_DEBUG "%s: unknown command %x\n",
2031 __func__, cmd);
2032 return -EINVAL;
2033 }
2034 return err;
2035 }
2036
2037 static int
2038 setup_hw(struct hfc_pci *hc)
2039 {
2040 void *buffer;
2041
2042 printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2043 hc->hw.cirm = 0;
2044 hc->dch.state = 0;
2045 pci_set_master(hc->pdev);
2046 if (!hc->irq) {
2047 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2048 return 1;
2049 }
2050 hc->hw.pci_io =
2051 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2052
2053 if (!hc->hw.pci_io) {
2054 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2055 return 1;
2056 }
2057 /* Allocate memory for FIFOS */
2058 /* the memory needs to be on a 32k boundary within the first 4G */
2059 pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2060 buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2061 /* We silently assume the address is okay if nonzero */
2062 if (!buffer) {
2063 printk(KERN_WARNING
2064 "HFC-PCI: Error allocating memory for FIFO!\n");
2065 return 1;
2066 }
2067 hc->hw.fifos = buffer;
2068 pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2069 hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2070 printk(KERN_INFO
2071 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2072 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2073 (u_long) hc->hw.dmahandle, hc->irq, HZ);
2074 /* enable memory mapped ports, disable busmaster */
2075 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2076 hc->hw.int_m2 = 0;
2077 disable_hwirq(hc);
2078 hc->hw.int_m1 = 0;
2079 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2080 /* At this point the needed PCI config is done */
2081 /* fifos are still not enabled */
2082 hc->hw.timer.function = (void *) hfcpci_Timer;
2083 hc->hw.timer.data = (long) hc;
2084 init_timer(&hc->hw.timer);
2085 /* default PCM master */
2086 test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2087 return 0;
2088 }
2089
2090 static void
2091 release_card(struct hfc_pci *hc) {
2092 u_long flags;
2093
2094 spin_lock_irqsave(&hc->lock, flags);
2095 hc->hw.int_m2 = 0; /* interrupt output off ! */
2096 disable_hwirq(hc);
2097 mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2098 mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2099 if (hc->dch.timer.function != NULL) {
2100 del_timer(&hc->dch.timer);
2101 hc->dch.timer.function = NULL;
2102 }
2103 spin_unlock_irqrestore(&hc->lock, flags);
2104 if (hc->hw.protocol == ISDN_P_TE_S0)
2105 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2106 if (hc->initdone)
2107 free_irq(hc->irq, hc);
2108 release_io_hfcpci(hc); /* must release after free_irq! */
2109 mISDN_unregister_device(&hc->dch.dev);
2110 mISDN_freebchannel(&hc->bch[1]);
2111 mISDN_freebchannel(&hc->bch[0]);
2112 mISDN_freedchannel(&hc->dch);
2113 pci_set_drvdata(hc->pdev, NULL);
2114 kfree(hc);
2115 }
2116
2117 static int
2118 setup_card(struct hfc_pci *card)
2119 {
2120 int err = -EINVAL;
2121 u_int i;
2122 char name[MISDN_MAX_IDLEN];
2123
2124 card->dch.debug = debug;
2125 spin_lock_init(&card->lock);
2126 mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2127 card->dch.hw = card;
2128 card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2129 card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2130 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2131 card->dch.dev.D.send = hfcpci_l2l1D;
2132 card->dch.dev.D.ctrl = hfc_dctrl;
2133 card->dch.dev.nrbchan = 2;
2134 for (i = 0; i < 2; i++) {
2135 card->bch[i].nr = i + 1;
2136 set_channelmap(i + 1, card->dch.dev.channelmap);
2137 card->bch[i].debug = debug;
2138 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2139 card->bch[i].hw = card;
2140 card->bch[i].ch.send = hfcpci_l2l1B;
2141 card->bch[i].ch.ctrl = hfc_bctrl;
2142 card->bch[i].ch.nr = i + 1;
2143 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2144 }
2145 err = setup_hw(card);
2146 if (err)
2147 goto error;
2148 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2149 err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2150 if (err)
2151 goto error;
2152 HFC_cnt++;
2153 printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2154 return 0;
2155 error:
2156 mISDN_freebchannel(&card->bch[1]);
2157 mISDN_freebchannel(&card->bch[0]);
2158 mISDN_freedchannel(&card->dch);
2159 kfree(card);
2160 return err;
2161 }
2162
2163 /* private data in the PCI devices list */
2164 struct _hfc_map {
2165 u_int subtype;
2166 u_int flag;
2167 char *name;
2168 };
2169
2170 static const struct _hfc_map hfc_map[] =
2171 {
2172 {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2173 {HFC_CCD_B000, 0, "Billion B000"},
2174 {HFC_CCD_B006, 0, "Billion B006"},
2175 {HFC_CCD_B007, 0, "Billion B007"},
2176 {HFC_CCD_B008, 0, "Billion B008"},
2177 {HFC_CCD_B009, 0, "Billion B009"},
2178 {HFC_CCD_B00A, 0, "Billion B00A"},
2179 {HFC_CCD_B00B, 0, "Billion B00B"},
2180 {HFC_CCD_B00C, 0, "Billion B00C"},
2181 {HFC_CCD_B100, 0, "Seyeon B100"},
2182 {HFC_CCD_B700, 0, "Primux II S0 B700"},
2183 {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2184 {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2185 {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2186 {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2187 {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2188 {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2189 {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2190 {HFC_DIGI_DF_M_IOM2_E, 0,
2191 "Digi International DataFire Micro V IOM2 (Europe)"},
2192 {HFC_DIGI_DF_M_E, 0,
2193 "Digi International DataFire Micro V (Europe)"},
2194 {HFC_DIGI_DF_M_IOM2_A, 0,
2195 "Digi International DataFire Micro V IOM2 (North America)"},
2196 {HFC_DIGI_DF_M_A, 0,
2197 "Digi International DataFire Micro V (North America)"},
2198 {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2199 {},
2200 };
2201
2202 static struct pci_device_id hfc_ids[] =
2203 {
2204 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0,
2205 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[0]},
2206 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000,
2207 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[1]},
2208 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006,
2209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[2]},
2210 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007,
2211 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[3]},
2212 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008,
2213 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[4]},
2214 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009,
2215 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[5]},
2216 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A,
2217 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[6]},
2218 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B,
2219 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[7]},
2220 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C,
2221 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[8]},
2222 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100,
2223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[9]},
2224 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700,
2225 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[10]},
2226 {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701,
2227 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[11]},
2228 {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1,
2229 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[12]},
2230 {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675,
2231 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[13]},
2232 {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT,
2233 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[14]},
2234 {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T,
2235 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[15]},
2236 {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575,
2237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[16]},
2238 {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0,
2239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[17]},
2240 {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,
2241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[18]},
2242 {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,
2243 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[19]},
2244 {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,
2245 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[20]},
2246 {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,
2247 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[21]},
2248 {PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2,
2249 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[22]},
2250 {},
2251 };
2252
2253 static int __devinit
2254 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2255 {
2256 int err = -ENOMEM;
2257 struct hfc_pci *card;
2258 struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2259
2260 card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2261 if (!card) {
2262 printk(KERN_ERR "No kmem for HFC card\n");
2263 return err;
2264 }
2265 card->pdev = pdev;
2266 card->subtype = m->subtype;
2267 err = pci_enable_device(pdev);
2268 if (err) {
2269 kfree(card);
2270 return err;
2271 }
2272
2273 printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2274 m->name, pci_name(pdev));
2275
2276 card->irq = pdev->irq;
2277 pci_set_drvdata(pdev, card);
2278 err = setup_card(card);
2279 if (err)
2280 pci_set_drvdata(pdev, NULL);
2281 return err;
2282 }
2283
2284 static void __devexit
2285 hfc_remove_pci(struct pci_dev *pdev)
2286 {
2287 struct hfc_pci *card = pci_get_drvdata(pdev);
2288
2289 if (card)
2290 release_card(card);
2291 else
2292 if (debug)
2293 printk(KERN_DEBUG "%s: drvdata already removed\n",
2294 __func__);
2295 }
2296
2297
2298 static struct pci_driver hfc_driver = {
2299 .name = "hfcpci",
2300 .probe = hfc_probe,
2301 .remove = __devexit_p(hfc_remove_pci),
2302 .id_table = hfc_ids,
2303 };
2304
2305 static int
2306 _hfcpci_softirq(struct device *dev, void *arg)
2307 {
2308 struct hfc_pci *hc = dev_get_drvdata(dev);
2309 struct bchannel *bch;
2310 if (hc == NULL)
2311 return 0;
2312
2313 if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2314 spin_lock(&hc->lock);
2315 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2316 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2317 main_rec_hfcpci(bch);
2318 tx_birq(bch);
2319 }
2320 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2321 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2322 main_rec_hfcpci(bch);
2323 tx_birq(bch);
2324 }
2325 spin_unlock(&hc->lock);
2326 }
2327 return 0;
2328 }
2329
2330 static void
2331 hfcpci_softirq(void *arg)
2332 {
2333 (void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2334 _hfcpci_softirq);
2335
2336 /* if next event would be in the past ... */
2337 if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2338 hfc_jiffies = jiffies + 1;
2339 else
2340 hfc_jiffies += tics;
2341 hfc_tl.expires = hfc_jiffies;
2342 add_timer(&hfc_tl);
2343 }
2344
2345 static int __init
2346 HFC_init(void)
2347 {
2348 int err;
2349
2350 if (!poll)
2351 poll = HFCPCI_BTRANS_THRESHOLD;
2352
2353 if (poll != HFCPCI_BTRANS_THRESHOLD) {
2354 tics = (poll * HZ) / 8000;
2355 if (tics < 1)
2356 tics = 1;
2357 poll = (tics * 8000) / HZ;
2358 if (poll > 256 || poll < 8) {
2359 printk(KERN_ERR "%s: Wrong poll value %d not in range "
2360 "of 8..256.\n", __func__, poll);
2361 err = -EINVAL;
2362 return err;
2363 }
2364 }
2365 if (poll != HFCPCI_BTRANS_THRESHOLD) {
2366 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2367 __func__, poll);
2368 hfc_tl.function = (void *)hfcpci_softirq;
2369 hfc_tl.data = 0;
2370 init_timer(&hfc_tl);
2371 hfc_tl.expires = jiffies + tics;
2372 hfc_jiffies = hfc_tl.expires;
2373 add_timer(&hfc_tl);
2374 } else
2375 tics = 0; /* indicate the use of controller's timer */
2376
2377 err = pci_register_driver(&hfc_driver);
2378 if (err) {
2379 if (timer_pending(&hfc_tl))
2380 del_timer(&hfc_tl);
2381 }
2382
2383 return err;
2384 }
2385
2386 static void __exit
2387 HFC_cleanup(void)
2388 {
2389 if (timer_pending(&hfc_tl))
2390 del_timer(&hfc_tl);
2391
2392 pci_unregister_driver(&hfc_driver);
2393 }
2394
2395 module_init(HFC_init);
2396 module_exit(HFC_cleanup);
2397
2398 MODULE_DEVICE_TABLE(pci, hfc_ids);