]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/isdn/hardware/mISDN/hfcsusb.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3 * mISDN driver for Colognechip HFC-S USB chip
4 *
5 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7 *
8 * module params
9 * debug=<n>, default=0, with n=0xHHHHGGGG
10 * H - l1 driver flags described in hfcsusb.h
11 * G - common mISDN debug flags described at mISDNhw.h
12 *
13 * poll=<n>, default 128
14 * n : burst size of PH_DATA_IND at transparent rx data
15 *
16 * Revision: 0.3.3 (socket), 2008-11-05
17 */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static void hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55 if (debug & DBG_HFC_CALL_TRACE)
56 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58 if (hw->ctrl_cnt) {
59 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 hw->ctrl_urb->transfer_buffer = NULL;
62 hw->ctrl_urb->transfer_buffer_length = 0;
63 hw->ctrl_write.wIndex =
64 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 hw->ctrl_write.wValue =
66 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69 }
70 }
71
72 /*
73 * queue a control transfer request to write HFC-S USB
74 * chip register using CTRL resuest queue
75 */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78 struct ctrl_buf *buf;
79
80 if (debug & DBG_HFC_CALL_TRACE)
81 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 hw->name, __func__, reg, val);
83
84 spin_lock(&hw->ctrl_lock);
85 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 spin_unlock(&hw->ctrl_lock);
87 return 1;
88 }
89 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 buf->hfcs_reg = reg;
91 buf->reg_val = val;
92 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 hw->ctrl_in_idx = 0;
94 if (++hw->ctrl_cnt == 1)
95 ctrl_start_transfer(hw);
96 spin_unlock(&hw->ctrl_lock);
97
98 return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107 if (debug & DBG_HFC_CALL_TRACE)
108 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110 urb->dev = hw->dev;
111 if (hw->ctrl_cnt) {
112 hw->ctrl_cnt--; /* decrement actual count */
113 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 hw->ctrl_out_idx = 0; /* pointer wrap */
115
116 ctrl_start_transfer(hw); /* start next transfer */
117 }
118 }
119
120 /* handle LED bits */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124 if (set_on) {
125 if (led_bits < 0)
126 hw->led_state &= ~abs(led_bits);
127 else
128 hw->led_state |= led_bits;
129 } else {
130 if (led_bits < 0)
131 hw->led_state |= abs(led_bits);
132 else
133 hw->led_state &= ~led_bits;
134 }
135 }
136
137 /* handle LED requests */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 hfcsusb_idtab[hw->vend_idx].driver_info;
143 __u8 tmpled;
144
145 if (driver_info->led_scheme == LED_OFF)
146 return;
147 tmpled = hw->led_state;
148
149 switch (event) {
150 case LED_POWER_ON:
151 set_led_bit(hw, driver_info->led_bits[0], 1);
152 set_led_bit(hw, driver_info->led_bits[1], 0);
153 set_led_bit(hw, driver_info->led_bits[2], 0);
154 set_led_bit(hw, driver_info->led_bits[3], 0);
155 break;
156 case LED_POWER_OFF:
157 set_led_bit(hw, driver_info->led_bits[0], 0);
158 set_led_bit(hw, driver_info->led_bits[1], 0);
159 set_led_bit(hw, driver_info->led_bits[2], 0);
160 set_led_bit(hw, driver_info->led_bits[3], 0);
161 break;
162 case LED_S0_ON:
163 set_led_bit(hw, driver_info->led_bits[1], 1);
164 break;
165 case LED_S0_OFF:
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 break;
168 case LED_B1_ON:
169 set_led_bit(hw, driver_info->led_bits[2], 1);
170 break;
171 case LED_B1_OFF:
172 set_led_bit(hw, driver_info->led_bits[2], 0);
173 break;
174 case LED_B2_ON:
175 set_led_bit(hw, driver_info->led_bits[3], 1);
176 break;
177 case LED_B2_OFF:
178 set_led_bit(hw, driver_info->led_bits[3], 0);
179 break;
180 }
181
182 if (hw->led_state != tmpled) {
183 if (debug & DBG_HFC_CALL_TRACE)
184 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 hw->name, __func__,
186 HFCUSB_P_DATA, hw->led_state);
187
188 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189 }
190 }
191
192 /*
193 * Layer2 -> Layer 1 Bchannel data
194 */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198 struct bchannel *bch = container_of(ch, struct bchannel, ch);
199 struct hfcsusb *hw = bch->hw;
200 int ret = -EINVAL;
201 struct mISDNhead *hh = mISDN_HEAD_P(skb);
202 u_long flags;
203
204 if (debug & DBG_HFC_CALL_TRACE)
205 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207 switch (hh->prim) {
208 case PH_DATA_REQ:
209 spin_lock_irqsave(&hw->lock, flags);
210 ret = bchannel_senddata(bch, skb);
211 spin_unlock_irqrestore(&hw->lock, flags);
212 if (debug & DBG_HFC_CALL_TRACE)
213 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 hw->name, __func__, ret);
215 if (ret > 0)
216 ret = 0;
217 return ret;
218 case PH_ACTIVATE_REQ:
219 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 hfcsusb_start_endpoint(hw, bch->nr - 1);
221 ret = hfcsusb_setup_bch(bch, ch->protocol);
222 } else
223 ret = 0;
224 if (!ret)
225 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 0, NULL, GFP_KERNEL);
227 break;
228 case PH_DEACTIVATE_REQ:
229 deactivate_bchannel(bch);
230 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 0, NULL, GFP_KERNEL);
232 ret = 0;
233 break;
234 }
235 if (!ret)
236 dev_kfree_skb(skb);
237 return ret;
238 }
239
240 /*
241 * send full D/B channel status information
242 * as MPH_INFORMATION_IND
243 */
244 static void
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247 struct ph_info *phi;
248 struct dchannel *dch = &hw->dch;
249 int i;
250
251 phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 if (!phi)
253 return;
254
255 phi->dch.ch.protocol = hw->protocol;
256 phi->dch.ch.Flags = dch->Flags;
257 phi->dch.state = dch->state;
258 phi->dch.num_bch = dch->dev.nrbchan;
259 for (i = 0; i < dch->dev.nrbchan; i++) {
260 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 phi->bch[i].Flags = hw->bch[i].Flags;
262 }
263 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
265 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
266 kfree(phi);
267 }
268
269 /*
270 * Layer2 -> Layer 1 Dchannel data
271 */
272 static int
273 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
274 {
275 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
276 struct dchannel *dch = container_of(dev, struct dchannel, dev);
277 struct mISDNhead *hh = mISDN_HEAD_P(skb);
278 struct hfcsusb *hw = dch->hw;
279 int ret = -EINVAL;
280 u_long flags;
281
282 switch (hh->prim) {
283 case PH_DATA_REQ:
284 if (debug & DBG_HFC_CALL_TRACE)
285 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
286 hw->name, __func__);
287
288 spin_lock_irqsave(&hw->lock, flags);
289 ret = dchannel_senddata(dch, skb);
290 spin_unlock_irqrestore(&hw->lock, flags);
291 if (ret > 0) {
292 ret = 0;
293 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
294 }
295 break;
296
297 case PH_ACTIVATE_REQ:
298 if (debug & DBG_HFC_CALL_TRACE)
299 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
300 hw->name, __func__,
301 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
302
303 if (hw->protocol == ISDN_P_NT_S0) {
304 ret = 0;
305 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
306 _queue_data(&dch->dev.D,
307 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
308 NULL, GFP_ATOMIC);
309 } else {
310 hfcsusb_ph_command(hw,
311 HFC_L1_ACTIVATE_NT);
312 test_and_set_bit(FLG_L2_ACTIVATED,
313 &dch->Flags);
314 }
315 } else {
316 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
317 ret = l1_event(dch->l1, hh->prim);
318 }
319 break;
320
321 case PH_DEACTIVATE_REQ:
322 if (debug & DBG_HFC_CALL_TRACE)
323 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
324 hw->name, __func__);
325 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
326
327 if (hw->protocol == ISDN_P_NT_S0) {
328 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
329 spin_lock_irqsave(&hw->lock, flags);
330 skb_queue_purge(&dch->squeue);
331 if (dch->tx_skb) {
332 dev_kfree_skb(dch->tx_skb);
333 dch->tx_skb = NULL;
334 }
335 dch->tx_idx = 0;
336 if (dch->rx_skb) {
337 dev_kfree_skb(dch->rx_skb);
338 dch->rx_skb = NULL;
339 }
340 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
341 spin_unlock_irqrestore(&hw->lock, flags);
342 #ifdef FIXME
343 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
344 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
345 #endif
346 ret = 0;
347 } else
348 ret = l1_event(dch->l1, hh->prim);
349 break;
350 case MPH_INFORMATION_REQ:
351 hfcsusb_ph_info(hw);
352 ret = 0;
353 break;
354 }
355
356 return ret;
357 }
358
359 /*
360 * Layer 1 callback function
361 */
362 static int
363 hfc_l1callback(struct dchannel *dch, u_int cmd)
364 {
365 struct hfcsusb *hw = dch->hw;
366
367 if (debug & DBG_HFC_CALL_TRACE)
368 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
369 hw->name, __func__, cmd);
370
371 switch (cmd) {
372 case INFO3_P8:
373 case INFO3_P10:
374 case HW_RESET_REQ:
375 case HW_POWERUP_REQ:
376 break;
377
378 case HW_DEACT_REQ:
379 skb_queue_purge(&dch->squeue);
380 if (dch->tx_skb) {
381 dev_kfree_skb(dch->tx_skb);
382 dch->tx_skb = NULL;
383 }
384 dch->tx_idx = 0;
385 if (dch->rx_skb) {
386 dev_kfree_skb(dch->rx_skb);
387 dch->rx_skb = NULL;
388 }
389 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
390 break;
391 case PH_ACTIVATE_IND:
392 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
393 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
394 GFP_ATOMIC);
395 break;
396 case PH_DEACTIVATE_IND:
397 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
398 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399 GFP_ATOMIC);
400 break;
401 default:
402 if (dch->debug & DEBUG_HW)
403 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
404 hw->name, __func__, cmd);
405 return -1;
406 }
407 hfcsusb_ph_info(hw);
408 return 0;
409 }
410
411 static int
412 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
413 struct channel_req *rq)
414 {
415 int err = 0;
416
417 if (debug & DEBUG_HW_OPEN)
418 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
419 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
420 __builtin_return_address(0));
421 if (rq->protocol == ISDN_P_NONE)
422 return -EINVAL;
423
424 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
425 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
426 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
427
428 /* E-Channel logging */
429 if (rq->adr.channel == 1) {
430 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
431 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
432 set_bit(FLG_ACTIVE, &hw->ech.Flags);
433 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
434 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
435 } else
436 return -EINVAL;
437 }
438
439 if (!hw->initdone) {
440 hw->protocol = rq->protocol;
441 if (rq->protocol == ISDN_P_TE_S0) {
442 err = create_l1(&hw->dch, hfc_l1callback);
443 if (err)
444 return err;
445 }
446 setPortMode(hw);
447 ch->protocol = rq->protocol;
448 hw->initdone = 1;
449 } else {
450 if (rq->protocol != ch->protocol)
451 return -EPROTONOSUPPORT;
452 }
453
454 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
455 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
456 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
457 0, NULL, GFP_KERNEL);
458 rq->ch = ch;
459 if (!try_module_get(THIS_MODULE))
460 printk(KERN_WARNING "%s: %s: cannot get module\n",
461 hw->name, __func__);
462 return 0;
463 }
464
465 static int
466 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
467 {
468 struct bchannel *bch;
469
470 if (rq->adr.channel == 0 || rq->adr.channel > 2)
471 return -EINVAL;
472 if (rq->protocol == ISDN_P_NONE)
473 return -EINVAL;
474
475 if (debug & DBG_HFC_CALL_TRACE)
476 printk(KERN_DEBUG "%s: %s B%i\n",
477 hw->name, __func__, rq->adr.channel);
478
479 bch = &hw->bch[rq->adr.channel - 1];
480 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
481 return -EBUSY; /* b-channel can be only open once */
482 bch->ch.protocol = rq->protocol;
483 rq->ch = &bch->ch;
484
485 if (!try_module_get(THIS_MODULE))
486 printk(KERN_WARNING "%s: %s:cannot get module\n",
487 hw->name, __func__);
488 return 0;
489 }
490
491 static int
492 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
493 {
494 int ret = 0;
495
496 if (debug & DBG_HFC_CALL_TRACE)
497 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
498 hw->name, __func__, (cq->op), (cq->channel));
499
500 switch (cq->op) {
501 case MISDN_CTRL_GETOP:
502 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
503 MISDN_CTRL_DISCONNECT;
504 break;
505 default:
506 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
507 hw->name, __func__, cq->op);
508 ret = -EINVAL;
509 break;
510 }
511 return ret;
512 }
513
514 /*
515 * device control function
516 */
517 static int
518 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
519 {
520 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
521 struct dchannel *dch = container_of(dev, struct dchannel, dev);
522 struct hfcsusb *hw = dch->hw;
523 struct channel_req *rq;
524 int err = 0;
525
526 if (dch->debug & DEBUG_HW)
527 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
528 hw->name, __func__, cmd, arg);
529 switch (cmd) {
530 case OPEN_CHANNEL:
531 rq = arg;
532 if ((rq->protocol == ISDN_P_TE_S0) ||
533 (rq->protocol == ISDN_P_NT_S0))
534 err = open_dchannel(hw, ch, rq);
535 else
536 err = open_bchannel(hw, rq);
537 if (!err)
538 hw->open++;
539 break;
540 case CLOSE_CHANNEL:
541 hw->open--;
542 if (debug & DEBUG_HW_OPEN)
543 printk(KERN_DEBUG
544 "%s: %s: dev(%d) close from %p (open %d)\n",
545 hw->name, __func__, hw->dch.dev.id,
546 __builtin_return_address(0), hw->open);
547 if (!hw->open) {
548 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
549 if (hw->fifos[HFCUSB_PCM_RX].pipe)
550 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
551 handle_led(hw, LED_POWER_ON);
552 }
553 module_put(THIS_MODULE);
554 break;
555 case CONTROL_CHANNEL:
556 err = channel_ctrl(hw, arg);
557 break;
558 default:
559 if (dch->debug & DEBUG_HW)
560 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
561 hw->name, __func__, cmd);
562 return -EINVAL;
563 }
564 return err;
565 }
566
567 /*
568 * S0 TE state change event handler
569 */
570 static void
571 ph_state_te(struct dchannel *dch)
572 {
573 struct hfcsusb *hw = dch->hw;
574
575 if (debug & DEBUG_HW) {
576 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
577 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
578 HFC_TE_LAYER1_STATES[dch->state]);
579 else
580 printk(KERN_DEBUG "%s: %s: TE F%d\n",
581 hw->name, __func__, dch->state);
582 }
583
584 switch (dch->state) {
585 case 0:
586 l1_event(dch->l1, HW_RESET_IND);
587 break;
588 case 3:
589 l1_event(dch->l1, HW_DEACT_IND);
590 break;
591 case 5:
592 case 8:
593 l1_event(dch->l1, ANYSIGNAL);
594 break;
595 case 6:
596 l1_event(dch->l1, INFO2);
597 break;
598 case 7:
599 l1_event(dch->l1, INFO4_P8);
600 break;
601 }
602 if (dch->state == 7)
603 handle_led(hw, LED_S0_ON);
604 else
605 handle_led(hw, LED_S0_OFF);
606 }
607
608 /*
609 * S0 NT state change event handler
610 */
611 static void
612 ph_state_nt(struct dchannel *dch)
613 {
614 struct hfcsusb *hw = dch->hw;
615
616 if (debug & DEBUG_HW) {
617 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
618 printk(KERN_DEBUG "%s: %s: %s\n",
619 hw->name, __func__,
620 HFC_NT_LAYER1_STATES[dch->state]);
621
622 else
623 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
624 hw->name, __func__, dch->state);
625 }
626
627 switch (dch->state) {
628 case (1):
629 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
630 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
631 hw->nt_timer = 0;
632 hw->timers &= ~NT_ACTIVATION_TIMER;
633 handle_led(hw, LED_S0_OFF);
634 break;
635
636 case (2):
637 if (hw->nt_timer < 0) {
638 hw->nt_timer = 0;
639 hw->timers &= ~NT_ACTIVATION_TIMER;
640 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
641 } else {
642 hw->timers |= NT_ACTIVATION_TIMER;
643 hw->nt_timer = NT_T1_COUNT;
644 /* allow G2 -> G3 transition */
645 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
646 }
647 break;
648 case (3):
649 hw->nt_timer = 0;
650 hw->timers &= ~NT_ACTIVATION_TIMER;
651 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
652 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
653 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
654 handle_led(hw, LED_S0_ON);
655 break;
656 case (4):
657 hw->nt_timer = 0;
658 hw->timers &= ~NT_ACTIVATION_TIMER;
659 break;
660 default:
661 break;
662 }
663 hfcsusb_ph_info(hw);
664 }
665
666 static void
667 ph_state(struct dchannel *dch)
668 {
669 struct hfcsusb *hw = dch->hw;
670
671 if (hw->protocol == ISDN_P_NT_S0)
672 ph_state_nt(dch);
673 else if (hw->protocol == ISDN_P_TE_S0)
674 ph_state_te(dch);
675 }
676
677 /*
678 * disable/enable BChannel for desired protocoll
679 */
680 static int
681 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
682 {
683 struct hfcsusb *hw = bch->hw;
684 __u8 conhdlc, sctrl, sctrl_r;
685
686 if (debug & DEBUG_HW)
687 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
688 hw->name, __func__, bch->state, protocol,
689 bch->nr);
690
691 /* setup val for CON_HDLC */
692 conhdlc = 0;
693 if (protocol > ISDN_P_NONE)
694 conhdlc = 8; /* enable FIFO */
695
696 switch (protocol) {
697 case (-1): /* used for init */
698 bch->state = -1;
699 /* fall through */
700 case (ISDN_P_NONE):
701 if (bch->state == ISDN_P_NONE)
702 return 0; /* already in idle state */
703 bch->state = ISDN_P_NONE;
704 clear_bit(FLG_HDLC, &bch->Flags);
705 clear_bit(FLG_TRANSPARENT, &bch->Flags);
706 break;
707 case (ISDN_P_B_RAW):
708 conhdlc |= 2;
709 bch->state = protocol;
710 set_bit(FLG_TRANSPARENT, &bch->Flags);
711 break;
712 case (ISDN_P_B_HDLC):
713 bch->state = protocol;
714 set_bit(FLG_HDLC, &bch->Flags);
715 break;
716 default:
717 if (debug & DEBUG_HW)
718 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
719 hw->name, __func__, protocol);
720 return -ENOPROTOOPT;
721 }
722
723 if (protocol >= ISDN_P_NONE) {
724 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
725 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
726 write_reg(hw, HFCUSB_INC_RES_F, 2);
727 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
728 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729 write_reg(hw, HFCUSB_INC_RES_F, 2);
730
731 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
732 sctrl_r = 0x0;
733 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
734 sctrl |= 1;
735 sctrl_r |= 1;
736 }
737 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
738 sctrl |= 2;
739 sctrl_r |= 2;
740 }
741 write_reg(hw, HFCUSB_SCTRL, sctrl);
742 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
743
744 if (protocol > ISDN_P_NONE)
745 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
746 else
747 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
748 LED_B2_OFF);
749 }
750 hfcsusb_ph_info(hw);
751 return 0;
752 }
753
754 static void
755 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
756 {
757 if (debug & DEBUG_HW)
758 printk(KERN_DEBUG "%s: %s: %x\n",
759 hw->name, __func__, command);
760
761 switch (command) {
762 case HFC_L1_ACTIVATE_TE:
763 /* force sending sending INFO1 */
764 write_reg(hw, HFCUSB_STATES, 0x14);
765 /* start l1 activation */
766 write_reg(hw, HFCUSB_STATES, 0x04);
767 break;
768
769 case HFC_L1_FORCE_DEACTIVATE_TE:
770 write_reg(hw, HFCUSB_STATES, 0x10);
771 write_reg(hw, HFCUSB_STATES, 0x03);
772 break;
773
774 case HFC_L1_ACTIVATE_NT:
775 if (hw->dch.state == 3)
776 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
777 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
778 else
779 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
780 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
781 break;
782
783 case HFC_L1_DEACTIVATE_NT:
784 write_reg(hw, HFCUSB_STATES,
785 HFCUSB_DO_ACTION);
786 break;
787 }
788 }
789
790 /*
791 * Layer 1 B-channel hardware access
792 */
793 static int
794 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
795 {
796 return mISDN_ctrl_bchannel(bch, cq);
797 }
798
799 /* collect data from incoming interrupt or isochron USB data */
800 static void
801 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
802 int finish)
803 {
804 struct hfcsusb *hw = fifo->hw;
805 struct sk_buff *rx_skb = NULL;
806 int maxlen = 0;
807 int fifon = fifo->fifonum;
808 int i;
809 int hdlc = 0;
810 unsigned long flags;
811
812 if (debug & DBG_HFC_CALL_TRACE)
813 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
814 "dch(%p) bch(%p) ech(%p)\n",
815 hw->name, __func__, fifon, len,
816 fifo->dch, fifo->bch, fifo->ech);
817
818 if (!len)
819 return;
820
821 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
822 printk(KERN_DEBUG "%s: %s: undefined channel\n",
823 hw->name, __func__);
824 return;
825 }
826
827 spin_lock_irqsave(&hw->lock, flags);
828 if (fifo->dch) {
829 rx_skb = fifo->dch->rx_skb;
830 maxlen = fifo->dch->maxlen;
831 hdlc = 1;
832 }
833 if (fifo->bch) {
834 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
835 fifo->bch->dropcnt += len;
836 spin_unlock_irqrestore(&hw->lock, flags);
837 return;
838 }
839 maxlen = bchannel_get_rxbuf(fifo->bch, len);
840 rx_skb = fifo->bch->rx_skb;
841 if (maxlen < 0) {
842 if (rx_skb)
843 skb_trim(rx_skb, 0);
844 pr_warning("%s.B%d: No bufferspace for %d bytes\n",
845 hw->name, fifo->bch->nr, len);
846 spin_unlock_irqrestore(&hw->lock, flags);
847 return;
848 }
849 maxlen = fifo->bch->maxlen;
850 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
851 }
852 if (fifo->ech) {
853 rx_skb = fifo->ech->rx_skb;
854 maxlen = fifo->ech->maxlen;
855 hdlc = 1;
856 }
857
858 if (fifo->dch || fifo->ech) {
859 if (!rx_skb) {
860 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
861 if (rx_skb) {
862 if (fifo->dch)
863 fifo->dch->rx_skb = rx_skb;
864 if (fifo->ech)
865 fifo->ech->rx_skb = rx_skb;
866 skb_trim(rx_skb, 0);
867 } else {
868 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
869 hw->name, __func__);
870 spin_unlock_irqrestore(&hw->lock, flags);
871 return;
872 }
873 }
874 /* D/E-Channel SKB range check */
875 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
876 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
877 "for fifo(%d) HFCUSB_D_RX\n",
878 hw->name, __func__, fifon);
879 skb_trim(rx_skb, 0);
880 spin_unlock_irqrestore(&hw->lock, flags);
881 return;
882 }
883 }
884
885 skb_put_data(rx_skb, data, len);
886
887 if (hdlc) {
888 /* we have a complete hdlc packet */
889 if (finish) {
890 if ((rx_skb->len > 3) &&
891 (!(rx_skb->data[rx_skb->len - 1]))) {
892 if (debug & DBG_HFC_FIFO_VERBOSE) {
893 printk(KERN_DEBUG "%s: %s: fifon(%i)"
894 " new RX len(%i): ",
895 hw->name, __func__, fifon,
896 rx_skb->len);
897 i = 0;
898 while (i < rx_skb->len)
899 printk("%02x ",
900 rx_skb->data[i++]);
901 printk("\n");
902 }
903
904 /* remove CRC & status */
905 skb_trim(rx_skb, rx_skb->len - 3);
906
907 if (fifo->dch)
908 recv_Dchannel(fifo->dch);
909 if (fifo->bch)
910 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
911 0);
912 if (fifo->ech)
913 recv_Echannel(fifo->ech,
914 &hw->dch);
915 } else {
916 if (debug & DBG_HFC_FIFO_VERBOSE) {
917 printk(KERN_DEBUG
918 "%s: CRC or minlen ERROR fifon(%i) "
919 "RX len(%i): ",
920 hw->name, fifon, rx_skb->len);
921 i = 0;
922 while (i < rx_skb->len)
923 printk("%02x ",
924 rx_skb->data[i++]);
925 printk("\n");
926 }
927 skb_trim(rx_skb, 0);
928 }
929 }
930 } else {
931 /* deliver transparent data to layer2 */
932 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
933 }
934 spin_unlock_irqrestore(&hw->lock, flags);
935 }
936
937 static void
938 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
939 void *buf, int num_packets, int packet_size, int interval,
940 usb_complete_t complete, void *context)
941 {
942 int k;
943
944 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
945 complete, context);
946
947 urb->number_of_packets = num_packets;
948 urb->transfer_flags = URB_ISO_ASAP;
949 urb->actual_length = 0;
950 urb->interval = interval;
951
952 for (k = 0; k < num_packets; k++) {
953 urb->iso_frame_desc[k].offset = packet_size * k;
954 urb->iso_frame_desc[k].length = packet_size;
955 urb->iso_frame_desc[k].actual_length = 0;
956 }
957 }
958
959 /* receive completion routine for all ISO tx fifos */
960 static void
961 rx_iso_complete(struct urb *urb)
962 {
963 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
964 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
965 struct hfcsusb *hw = fifo->hw;
966 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
967 status, iso_status, i;
968 __u8 *buf;
969 static __u8 eof[8];
970 __u8 s0_state;
971 unsigned long flags;
972
973 fifon = fifo->fifonum;
974 status = urb->status;
975
976 spin_lock_irqsave(&hw->lock, flags);
977 if (fifo->stop_gracefull) {
978 fifo->stop_gracefull = 0;
979 fifo->active = 0;
980 spin_unlock_irqrestore(&hw->lock, flags);
981 return;
982 }
983 spin_unlock_irqrestore(&hw->lock, flags);
984
985 /*
986 * ISO transfer only partially completed,
987 * look at individual frame status for details
988 */
989 if (status == -EXDEV) {
990 if (debug & DEBUG_HW)
991 printk(KERN_DEBUG "%s: %s: with -EXDEV "
992 "urb->status %d, fifonum %d\n",
993 hw->name, __func__, status, fifon);
994
995 /* clear status, so go on with ISO transfers */
996 status = 0;
997 }
998
999 s0_state = 0;
1000 if (fifo->active && !status) {
1001 num_isoc_packets = iso_packets[fifon];
1002 maxlen = fifo->usb_packet_maxlen;
1003
1004 for (k = 0; k < num_isoc_packets; ++k) {
1005 len = urb->iso_frame_desc[k].actual_length;
1006 offset = urb->iso_frame_desc[k].offset;
1007 buf = context_iso_urb->buffer + offset;
1008 iso_status = urb->iso_frame_desc[k].status;
1009
1010 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1011 printk(KERN_DEBUG "%s: %s: "
1012 "ISO packet %i, status: %i\n",
1013 hw->name, __func__, k, iso_status);
1014 }
1015
1016 /* USB data log for every D ISO in */
1017 if ((fifon == HFCUSB_D_RX) &&
1018 (debug & DBG_HFC_USB_VERBOSE)) {
1019 printk(KERN_DEBUG
1020 "%s: %s: %d (%d/%d) len(%d) ",
1021 hw->name, __func__, urb->start_frame,
1022 k, num_isoc_packets - 1,
1023 len);
1024 for (i = 0; i < len; i++)
1025 printk("%x ", buf[i]);
1026 printk("\n");
1027 }
1028
1029 if (!iso_status) {
1030 if (fifo->last_urblen != maxlen) {
1031 /*
1032 * save fifo fill-level threshold bits
1033 * to use them later in TX ISO URB
1034 * completions
1035 */
1036 hw->threshold_mask = buf[1];
1037
1038 if (fifon == HFCUSB_D_RX)
1039 s0_state = (buf[0] >> 4);
1040
1041 eof[fifon] = buf[0] & 1;
1042 if (len > 2)
1043 hfcsusb_rx_frame(fifo, buf + 2,
1044 len - 2, (len < maxlen)
1045 ? eof[fifon] : 0);
1046 } else
1047 hfcsusb_rx_frame(fifo, buf, len,
1048 (len < maxlen) ?
1049 eof[fifon] : 0);
1050 fifo->last_urblen = len;
1051 }
1052 }
1053
1054 /* signal S0 layer1 state change */
1055 if ((s0_state) && (hw->initdone) &&
1056 (s0_state != hw->dch.state)) {
1057 hw->dch.state = s0_state;
1058 schedule_event(&hw->dch, FLG_PHCHANGE);
1059 }
1060
1061 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1062 context_iso_urb->buffer, num_isoc_packets,
1063 fifo->usb_packet_maxlen, fifo->intervall,
1064 (usb_complete_t)rx_iso_complete, urb->context);
1065 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1066 if (errcode < 0) {
1067 if (debug & DEBUG_HW)
1068 printk(KERN_DEBUG "%s: %s: error submitting "
1069 "ISO URB: %d\n",
1070 hw->name, __func__, errcode);
1071 }
1072 } else {
1073 if (status && (debug & DBG_HFC_URB_INFO))
1074 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1075 "urb->status %d, fifonum %d\n",
1076 hw->name, __func__, status, fifon);
1077 }
1078 }
1079
1080 /* receive completion routine for all interrupt rx fifos */
1081 static void
1082 rx_int_complete(struct urb *urb)
1083 {
1084 int len, status, i;
1085 __u8 *buf, maxlen, fifon;
1086 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1087 struct hfcsusb *hw = fifo->hw;
1088 static __u8 eof[8];
1089 unsigned long flags;
1090
1091 spin_lock_irqsave(&hw->lock, flags);
1092 if (fifo->stop_gracefull) {
1093 fifo->stop_gracefull = 0;
1094 fifo->active = 0;
1095 spin_unlock_irqrestore(&hw->lock, flags);
1096 return;
1097 }
1098 spin_unlock_irqrestore(&hw->lock, flags);
1099
1100 fifon = fifo->fifonum;
1101 if ((!fifo->active) || (urb->status)) {
1102 if (debug & DBG_HFC_URB_ERROR)
1103 printk(KERN_DEBUG
1104 "%s: %s: RX-Fifo %i is going down (%i)\n",
1105 hw->name, __func__, fifon, urb->status);
1106
1107 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1108 return;
1109 }
1110 len = urb->actual_length;
1111 buf = fifo->buffer;
1112 maxlen = fifo->usb_packet_maxlen;
1113
1114 /* USB data log for every D INT in */
1115 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1116 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1117 hw->name, __func__, len);
1118 for (i = 0; i < len; i++)
1119 printk("%02x ", buf[i]);
1120 printk("\n");
1121 }
1122
1123 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1124 /* the threshold mask is in the 2nd status byte */
1125 hw->threshold_mask = buf[1];
1126
1127 /* signal S0 layer1 state change */
1128 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1129 hw->dch.state = (buf[0] >> 4);
1130 schedule_event(&hw->dch, FLG_PHCHANGE);
1131 }
1132
1133 eof[fifon] = buf[0] & 1;
1134 /* if we have more than the 2 status bytes -> collect data */
1135 if (len > 2)
1136 hfcsusb_rx_frame(fifo, buf + 2,
1137 urb->actual_length - 2,
1138 (len < maxlen) ? eof[fifon] : 0);
1139 } else {
1140 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1141 (len < maxlen) ? eof[fifon] : 0);
1142 }
1143 fifo->last_urblen = urb->actual_length;
1144
1145 status = usb_submit_urb(urb, GFP_ATOMIC);
1146 if (status) {
1147 if (debug & DEBUG_HW)
1148 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1149 hw->name, __func__);
1150 }
1151 }
1152
1153 /* transmit completion routine for all ISO tx fifos */
1154 static void
1155 tx_iso_complete(struct urb *urb)
1156 {
1157 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1158 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1159 struct hfcsusb *hw = fifo->hw;
1160 struct sk_buff *tx_skb;
1161 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1162 errcode, hdlc, i;
1163 int *tx_idx;
1164 int frame_complete, fifon, status, fillempty = 0;
1165 __u8 threshbit, *p;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&hw->lock, flags);
1169 if (fifo->stop_gracefull) {
1170 fifo->stop_gracefull = 0;
1171 fifo->active = 0;
1172 spin_unlock_irqrestore(&hw->lock, flags);
1173 return;
1174 }
1175
1176 if (fifo->dch) {
1177 tx_skb = fifo->dch->tx_skb;
1178 tx_idx = &fifo->dch->tx_idx;
1179 hdlc = 1;
1180 } else if (fifo->bch) {
1181 tx_skb = fifo->bch->tx_skb;
1182 tx_idx = &fifo->bch->tx_idx;
1183 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1184 if (!tx_skb && !hdlc &&
1185 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1186 fillempty = 1;
1187 } else {
1188 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1189 hw->name, __func__);
1190 spin_unlock_irqrestore(&hw->lock, flags);
1191 return;
1192 }
1193
1194 fifon = fifo->fifonum;
1195 status = urb->status;
1196
1197 tx_offset = 0;
1198
1199 /*
1200 * ISO transfer only partially completed,
1201 * look at individual frame status for details
1202 */
1203 if (status == -EXDEV) {
1204 if (debug & DBG_HFC_URB_ERROR)
1205 printk(KERN_DEBUG "%s: %s: "
1206 "-EXDEV (%i) fifon (%d)\n",
1207 hw->name, __func__, status, fifon);
1208
1209 /* clear status, so go on with ISO transfers */
1210 status = 0;
1211 }
1212
1213 if (fifo->active && !status) {
1214 /* is FifoFull-threshold set for our channel? */
1215 threshbit = (hw->threshold_mask & (1 << fifon));
1216 num_isoc_packets = iso_packets[fifon];
1217
1218 /* predict dataflow to avoid fifo overflow */
1219 if (fifon >= HFCUSB_D_TX)
1220 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1221 else
1222 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1223 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1224 context_iso_urb->buffer, num_isoc_packets,
1225 fifo->usb_packet_maxlen, fifo->intervall,
1226 (usb_complete_t)tx_iso_complete, urb->context);
1227 memset(context_iso_urb->buffer, 0,
1228 sizeof(context_iso_urb->buffer));
1229 frame_complete = 0;
1230
1231 for (k = 0; k < num_isoc_packets; ++k) {
1232 /* analyze tx success of previous ISO packets */
1233 if (debug & DBG_HFC_URB_ERROR) {
1234 errcode = urb->iso_frame_desc[k].status;
1235 if (errcode) {
1236 printk(KERN_DEBUG "%s: %s: "
1237 "ISO packet %i, status: %i\n",
1238 hw->name, __func__, k, errcode);
1239 }
1240 }
1241
1242 /* Generate next ISO Packets */
1243 if (tx_skb)
1244 remain = tx_skb->len - *tx_idx;
1245 else if (fillempty)
1246 remain = 15; /* > not complete */
1247 else
1248 remain = 0;
1249
1250 if (remain > 0) {
1251 fifo->bit_line -= sink;
1252 current_len = (0 - fifo->bit_line) / 8;
1253 if (current_len > 14)
1254 current_len = 14;
1255 if (current_len < 0)
1256 current_len = 0;
1257 if (remain < current_len)
1258 current_len = remain;
1259
1260 /* how much bit do we put on the line? */
1261 fifo->bit_line += current_len * 8;
1262
1263 context_iso_urb->buffer[tx_offset] = 0;
1264 if (current_len == remain) {
1265 if (hdlc) {
1266 /* signal frame completion */
1267 context_iso_urb->
1268 buffer[tx_offset] = 1;
1269 /* add 2 byte flags and 16bit
1270 * CRC at end of ISDN frame */
1271 fifo->bit_line += 32;
1272 }
1273 frame_complete = 1;
1274 }
1275
1276 /* copy tx data to iso-urb buffer */
1277 p = context_iso_urb->buffer + tx_offset + 1;
1278 if (fillempty) {
1279 memset(p, fifo->bch->fill[0],
1280 current_len);
1281 } else {
1282 memcpy(p, (tx_skb->data + *tx_idx),
1283 current_len);
1284 *tx_idx += current_len;
1285 }
1286 urb->iso_frame_desc[k].offset = tx_offset;
1287 urb->iso_frame_desc[k].length = current_len + 1;
1288
1289 /* USB data log for every D ISO out */
1290 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1291 (debug & DBG_HFC_USB_VERBOSE)) {
1292 printk(KERN_DEBUG
1293 "%s: %s (%d/%d) offs(%d) len(%d) ",
1294 hw->name, __func__,
1295 k, num_isoc_packets - 1,
1296 urb->iso_frame_desc[k].offset,
1297 urb->iso_frame_desc[k].length);
1298
1299 for (i = urb->iso_frame_desc[k].offset;
1300 i < (urb->iso_frame_desc[k].offset
1301 + urb->iso_frame_desc[k].length);
1302 i++)
1303 printk("%x ",
1304 context_iso_urb->buffer[i]);
1305
1306 printk(" skb->len(%i) tx-idx(%d)\n",
1307 tx_skb->len, *tx_idx);
1308 }
1309
1310 tx_offset += (current_len + 1);
1311 } else {
1312 urb->iso_frame_desc[k].offset = tx_offset++;
1313 urb->iso_frame_desc[k].length = 1;
1314 /* we lower data margin every msec */
1315 fifo->bit_line -= sink;
1316 if (fifo->bit_line < BITLINE_INF)
1317 fifo->bit_line = BITLINE_INF;
1318 }
1319
1320 if (frame_complete) {
1321 frame_complete = 0;
1322
1323 if (debug & DBG_HFC_FIFO_VERBOSE) {
1324 printk(KERN_DEBUG "%s: %s: "
1325 "fifon(%i) new TX len(%i): ",
1326 hw->name, __func__,
1327 fifon, tx_skb->len);
1328 i = 0;
1329 while (i < tx_skb->len)
1330 printk("%02x ",
1331 tx_skb->data[i++]);
1332 printk("\n");
1333 }
1334
1335 dev_kfree_skb(tx_skb);
1336 tx_skb = NULL;
1337 if (fifo->dch && get_next_dframe(fifo->dch))
1338 tx_skb = fifo->dch->tx_skb;
1339 else if (fifo->bch &&
1340 get_next_bframe(fifo->bch))
1341 tx_skb = fifo->bch->tx_skb;
1342 }
1343 }
1344 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1345 if (errcode < 0) {
1346 if (debug & DEBUG_HW)
1347 printk(KERN_DEBUG
1348 "%s: %s: error submitting ISO URB: %d \n",
1349 hw->name, __func__, errcode);
1350 }
1351
1352 /*
1353 * abuse DChannel tx iso completion to trigger NT mode state
1354 * changes tx_iso_complete is assumed to be called every
1355 * fifo->intervall (ms)
1356 */
1357 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1358 && (hw->timers & NT_ACTIVATION_TIMER)) {
1359 if ((--hw->nt_timer) < 0)
1360 schedule_event(&hw->dch, FLG_PHCHANGE);
1361 }
1362
1363 } else {
1364 if (status && (debug & DBG_HFC_URB_ERROR))
1365 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1366 "fifonum=%d\n",
1367 hw->name, __func__,
1368 symbolic(urb_errlist, status), status, fifon);
1369 }
1370 spin_unlock_irqrestore(&hw->lock, flags);
1371 }
1372
1373 /*
1374 * allocs urbs and start isoc transfer with two pending urbs to avoid
1375 * gaps in the transfer chain
1376 */
1377 static int
1378 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1379 usb_complete_t complete, int packet_size)
1380 {
1381 struct hfcsusb *hw = fifo->hw;
1382 int i, k, errcode;
1383
1384 if (debug)
1385 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1386 hw->name, __func__, fifo->fifonum);
1387
1388 /* allocate Memory for Iso out Urbs */
1389 for (i = 0; i < 2; i++) {
1390 if (!(fifo->iso[i].urb)) {
1391 fifo->iso[i].urb =
1392 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1393 if (!(fifo->iso[i].urb)) {
1394 printk(KERN_DEBUG
1395 "%s: %s: alloc urb for fifo %i failed",
1396 hw->name, __func__, fifo->fifonum);
1397 }
1398 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1399 fifo->iso[i].indx = i;
1400
1401 /* Init the first iso */
1402 if (ISO_BUFFER_SIZE >=
1403 (fifo->usb_packet_maxlen *
1404 num_packets_per_urb)) {
1405 fill_isoc_urb(fifo->iso[i].urb,
1406 fifo->hw->dev, fifo->pipe,
1407 fifo->iso[i].buffer,
1408 num_packets_per_urb,
1409 fifo->usb_packet_maxlen,
1410 fifo->intervall, complete,
1411 &fifo->iso[i]);
1412 memset(fifo->iso[i].buffer, 0,
1413 sizeof(fifo->iso[i].buffer));
1414
1415 for (k = 0; k < num_packets_per_urb; k++) {
1416 fifo->iso[i].urb->
1417 iso_frame_desc[k].offset =
1418 k * packet_size;
1419 fifo->iso[i].urb->
1420 iso_frame_desc[k].length =
1421 packet_size;
1422 }
1423 } else {
1424 printk(KERN_DEBUG
1425 "%s: %s: ISO Buffer size to small!\n",
1426 hw->name, __func__);
1427 }
1428 }
1429 fifo->bit_line = BITLINE_INF;
1430
1431 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1432 fifo->active = (errcode >= 0) ? 1 : 0;
1433 fifo->stop_gracefull = 0;
1434 if (errcode < 0) {
1435 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1436 hw->name, __func__,
1437 symbolic(urb_errlist, errcode), i);
1438 }
1439 }
1440 return fifo->active;
1441 }
1442
1443 static void
1444 stop_iso_gracefull(struct usb_fifo *fifo)
1445 {
1446 struct hfcsusb *hw = fifo->hw;
1447 int i, timeout;
1448 u_long flags;
1449
1450 for (i = 0; i < 2; i++) {
1451 spin_lock_irqsave(&hw->lock, flags);
1452 if (debug)
1453 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1454 hw->name, __func__, fifo->fifonum, i);
1455 fifo->stop_gracefull = 1;
1456 spin_unlock_irqrestore(&hw->lock, flags);
1457 }
1458
1459 for (i = 0; i < 2; i++) {
1460 timeout = 3;
1461 while (fifo->stop_gracefull && timeout--)
1462 schedule_timeout_interruptible((HZ / 1000) * 16);
1463 if (debug && fifo->stop_gracefull)
1464 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1465 hw->name, __func__, fifo->fifonum, i);
1466 }
1467 }
1468
1469 static void
1470 stop_int_gracefull(struct usb_fifo *fifo)
1471 {
1472 struct hfcsusb *hw = fifo->hw;
1473 int timeout;
1474 u_long flags;
1475
1476 spin_lock_irqsave(&hw->lock, flags);
1477 if (debug)
1478 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1479 hw->name, __func__, fifo->fifonum);
1480 fifo->stop_gracefull = 1;
1481 spin_unlock_irqrestore(&hw->lock, flags);
1482
1483 timeout = 3;
1484 while (fifo->stop_gracefull && timeout--)
1485 schedule_timeout_interruptible((HZ / 1000) * 3);
1486 if (debug && fifo->stop_gracefull)
1487 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1488 hw->name, __func__, fifo->fifonum);
1489 }
1490
1491 /* start the interrupt transfer for the given fifo */
1492 static void
1493 start_int_fifo(struct usb_fifo *fifo)
1494 {
1495 struct hfcsusb *hw = fifo->hw;
1496 int errcode;
1497
1498 if (debug)
1499 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1500 hw->name, __func__, fifo->fifonum);
1501
1502 if (!fifo->urb) {
1503 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1504 if (!fifo->urb)
1505 return;
1506 }
1507 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1508 fifo->buffer, fifo->usb_packet_maxlen,
1509 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1510 fifo->active = 1;
1511 fifo->stop_gracefull = 0;
1512 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1513 if (errcode) {
1514 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1515 hw->name, __func__, errcode);
1516 fifo->active = 0;
1517 }
1518 }
1519
1520 static void
1521 setPortMode(struct hfcsusb *hw)
1522 {
1523 if (debug & DEBUG_HW)
1524 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1525 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1526
1527 if (hw->protocol == ISDN_P_TE_S0) {
1528 write_reg(hw, HFCUSB_SCTRL, 0x40);
1529 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1530 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1531 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1532 write_reg(hw, HFCUSB_STATES, 3);
1533 } else {
1534 write_reg(hw, HFCUSB_SCTRL, 0x44);
1535 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1536 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1537 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1538 write_reg(hw, HFCUSB_STATES, 1);
1539 }
1540 }
1541
1542 static void
1543 reset_hfcsusb(struct hfcsusb *hw)
1544 {
1545 struct usb_fifo *fifo;
1546 int i;
1547
1548 if (debug & DEBUG_HW)
1549 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1550
1551 /* do Chip reset */
1552 write_reg(hw, HFCUSB_CIRM, 8);
1553
1554 /* aux = output, reset off */
1555 write_reg(hw, HFCUSB_CIRM, 0x10);
1556
1557 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1558 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1559 ((hw->packet_size / 8) << 4));
1560
1561 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1562 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1563
1564 /* enable PCM/GCI master mode */
1565 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1566 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1567
1568 /* init the fifos */
1569 write_reg(hw, HFCUSB_F_THRES,
1570 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1571
1572 fifo = hw->fifos;
1573 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1574 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1575 fifo[i].max_size =
1576 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1577 fifo[i].last_urblen = 0;
1578
1579 /* set 2 bit for D- & E-channel */
1580 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1581
1582 /* enable all fifos */
1583 if (i == HFCUSB_D_TX)
1584 write_reg(hw, HFCUSB_CON_HDLC,
1585 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1586 else
1587 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1588 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1589 }
1590
1591 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1592 handle_led(hw, LED_POWER_ON);
1593 }
1594
1595 /* start USB data pipes dependand on device's endpoint configuration */
1596 static void
1597 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1598 {
1599 /* quick check if endpoint already running */
1600 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1601 return;
1602 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1603 return;
1604 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1605 return;
1606 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1607 return;
1608
1609 /* start rx endpoints using USB INT IN method */
1610 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1611 start_int_fifo(hw->fifos + channel * 2 + 1);
1612
1613 /* start rx endpoints using USB ISO IN method */
1614 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1615 switch (channel) {
1616 case HFC_CHAN_D:
1617 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1618 ISOC_PACKETS_D,
1619 (usb_complete_t)rx_iso_complete,
1620 16);
1621 break;
1622 case HFC_CHAN_E:
1623 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1624 ISOC_PACKETS_D,
1625 (usb_complete_t)rx_iso_complete,
1626 16);
1627 break;
1628 case HFC_CHAN_B1:
1629 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1630 ISOC_PACKETS_B,
1631 (usb_complete_t)rx_iso_complete,
1632 16);
1633 break;
1634 case HFC_CHAN_B2:
1635 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1636 ISOC_PACKETS_B,
1637 (usb_complete_t)rx_iso_complete,
1638 16);
1639 break;
1640 }
1641 }
1642
1643 /* start tx endpoints using USB ISO OUT method */
1644 switch (channel) {
1645 case HFC_CHAN_D:
1646 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1647 ISOC_PACKETS_B,
1648 (usb_complete_t)tx_iso_complete, 1);
1649 break;
1650 case HFC_CHAN_B1:
1651 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1652 ISOC_PACKETS_D,
1653 (usb_complete_t)tx_iso_complete, 1);
1654 break;
1655 case HFC_CHAN_B2:
1656 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1657 ISOC_PACKETS_B,
1658 (usb_complete_t)tx_iso_complete, 1);
1659 break;
1660 }
1661 }
1662
1663 /* stop USB data pipes dependand on device's endpoint configuration */
1664 static void
1665 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1666 {
1667 /* quick check if endpoint currently running */
1668 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1669 return;
1670 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1671 return;
1672 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1673 return;
1674 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1675 return;
1676
1677 /* rx endpoints using USB INT IN method */
1678 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1679 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1680
1681 /* rx endpoints using USB ISO IN method */
1682 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1683 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1684
1685 /* tx endpoints using USB ISO OUT method */
1686 if (channel != HFC_CHAN_E)
1687 stop_iso_gracefull(hw->fifos + channel * 2);
1688 }
1689
1690
1691 /* Hardware Initialization */
1692 static int
1693 setup_hfcsusb(struct hfcsusb *hw)
1694 {
1695 u_char b;
1696
1697 if (debug & DBG_HFC_CALL_TRACE)
1698 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1699
1700 /* check the chip id */
1701 if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1702 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1703 hw->name, __func__);
1704 return 1;
1705 }
1706 if (b != HFCUSB_CHIPID) {
1707 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1708 hw->name, __func__, b);
1709 return 1;
1710 }
1711
1712 /* first set the needed config, interface and alternate */
1713 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1714
1715 hw->led_state = 0;
1716
1717 /* init the background machinery for control requests */
1718 hw->ctrl_read.bRequestType = 0xc0;
1719 hw->ctrl_read.bRequest = 1;
1720 hw->ctrl_read.wLength = cpu_to_le16(1);
1721 hw->ctrl_write.bRequestType = 0x40;
1722 hw->ctrl_write.bRequest = 0;
1723 hw->ctrl_write.wLength = 0;
1724 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1725 (u_char *)&hw->ctrl_write, NULL, 0,
1726 (usb_complete_t)ctrl_complete, hw);
1727
1728 reset_hfcsusb(hw);
1729 return 0;
1730 }
1731
1732 static void
1733 release_hw(struct hfcsusb *hw)
1734 {
1735 if (debug & DBG_HFC_CALL_TRACE)
1736 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1737
1738 /*
1739 * stop all endpoints gracefully
1740 * TODO: mISDN_core should generate CLOSE_CHANNEL
1741 * signals after calling mISDN_unregister_device()
1742 */
1743 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1744 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1745 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1746 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1747 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1748 if (hw->protocol == ISDN_P_TE_S0)
1749 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1750
1751 mISDN_unregister_device(&hw->dch.dev);
1752 mISDN_freebchannel(&hw->bch[1]);
1753 mISDN_freebchannel(&hw->bch[0]);
1754 mISDN_freedchannel(&hw->dch);
1755
1756 if (hw->ctrl_urb) {
1757 usb_kill_urb(hw->ctrl_urb);
1758 usb_free_urb(hw->ctrl_urb);
1759 hw->ctrl_urb = NULL;
1760 }
1761
1762 if (hw->intf)
1763 usb_set_intfdata(hw->intf, NULL);
1764 list_del(&hw->list);
1765 kfree(hw);
1766 hw = NULL;
1767 }
1768
1769 static void
1770 deactivate_bchannel(struct bchannel *bch)
1771 {
1772 struct hfcsusb *hw = bch->hw;
1773 u_long flags;
1774
1775 if (bch->debug & DEBUG_HW)
1776 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1777 hw->name, __func__, bch->nr);
1778
1779 spin_lock_irqsave(&hw->lock, flags);
1780 mISDN_clear_bchannel(bch);
1781 spin_unlock_irqrestore(&hw->lock, flags);
1782 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1783 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1784 }
1785
1786 /*
1787 * Layer 1 B-channel hardware access
1788 */
1789 static int
1790 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1791 {
1792 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1793 int ret = -EINVAL;
1794
1795 if (bch->debug & DEBUG_HW)
1796 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1797
1798 switch (cmd) {
1799 case HW_TESTRX_RAW:
1800 case HW_TESTRX_HDLC:
1801 case HW_TESTRX_OFF:
1802 ret = -EINVAL;
1803 break;
1804
1805 case CLOSE_CHANNEL:
1806 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1807 deactivate_bchannel(bch);
1808 ch->protocol = ISDN_P_NONE;
1809 ch->peer = NULL;
1810 module_put(THIS_MODULE);
1811 ret = 0;
1812 break;
1813 case CONTROL_CHANNEL:
1814 ret = channel_bctrl(bch, arg);
1815 break;
1816 default:
1817 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1818 __func__, cmd);
1819 }
1820 return ret;
1821 }
1822
1823 static int
1824 setup_instance(struct hfcsusb *hw, struct device *parent)
1825 {
1826 u_long flags;
1827 int err, i;
1828
1829 if (debug & DBG_HFC_CALL_TRACE)
1830 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1831
1832 spin_lock_init(&hw->ctrl_lock);
1833 spin_lock_init(&hw->lock);
1834
1835 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1836 hw->dch.debug = debug & 0xFFFF;
1837 hw->dch.hw = hw;
1838 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1839 hw->dch.dev.D.send = hfcusb_l2l1D;
1840 hw->dch.dev.D.ctrl = hfc_dctrl;
1841
1842 /* enable E-Channel logging */
1843 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1844 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1845
1846 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1847 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1848 hw->dch.dev.nrbchan = 2;
1849 for (i = 0; i < 2; i++) {
1850 hw->bch[i].nr = i + 1;
1851 set_channelmap(i + 1, hw->dch.dev.channelmap);
1852 hw->bch[i].debug = debug;
1853 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1854 hw->bch[i].hw = hw;
1855 hw->bch[i].ch.send = hfcusb_l2l1B;
1856 hw->bch[i].ch.ctrl = hfc_bctrl;
1857 hw->bch[i].ch.nr = i + 1;
1858 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1859 }
1860
1861 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1862 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1863 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1864 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1865 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1866 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1867 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1868 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1869
1870 err = setup_hfcsusb(hw);
1871 if (err)
1872 goto out;
1873
1874 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1875 hfcsusb_cnt + 1);
1876 printk(KERN_INFO "%s: registered as '%s'\n",
1877 DRIVER_NAME, hw->name);
1878
1879 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1880 if (err)
1881 goto out;
1882
1883 hfcsusb_cnt++;
1884 write_lock_irqsave(&HFClock, flags);
1885 list_add_tail(&hw->list, &HFClist);
1886 write_unlock_irqrestore(&HFClock, flags);
1887 return 0;
1888
1889 out:
1890 mISDN_freebchannel(&hw->bch[1]);
1891 mISDN_freebchannel(&hw->bch[0]);
1892 mISDN_freedchannel(&hw->dch);
1893 kfree(hw);
1894 return err;
1895 }
1896
1897 static int
1898 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1899 {
1900 struct hfcsusb *hw;
1901 struct usb_device *dev = interface_to_usbdev(intf);
1902 struct usb_host_interface *iface = intf->cur_altsetting;
1903 struct usb_host_interface *iface_used = NULL;
1904 struct usb_host_endpoint *ep;
1905 struct hfcsusb_vdata *driver_info;
1906 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1907 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1908 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1909 alt_used = 0;
1910
1911 vend_idx = 0xffff;
1912 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1913 if ((le16_to_cpu(dev->descriptor.idVendor)
1914 == hfcsusb_idtab[i].idVendor) &&
1915 (le16_to_cpu(dev->descriptor.idProduct)
1916 == hfcsusb_idtab[i].idProduct)) {
1917 vend_idx = i;
1918 continue;
1919 }
1920 }
1921
1922 printk(KERN_DEBUG
1923 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1924 __func__, ifnum, iface->desc.bAlternateSetting,
1925 intf->minor, vend_idx);
1926
1927 if (vend_idx == 0xffff) {
1928 printk(KERN_WARNING
1929 "%s: no valid vendor found in USB descriptor\n",
1930 __func__);
1931 return -EIO;
1932 }
1933 /* if vendor and product ID is OK, start probing alternate settings */
1934 alt_idx = 0;
1935 small_match = -1;
1936
1937 /* default settings */
1938 iso_packet_size = 16;
1939 packet_size = 64;
1940
1941 while (alt_idx < intf->num_altsetting) {
1942 iface = intf->altsetting + alt_idx;
1943 probe_alt_setting = iface->desc.bAlternateSetting;
1944 cfg_used = 0;
1945
1946 while (validconf[cfg_used][0]) {
1947 cfg_found = 1;
1948 vcf = validconf[cfg_used];
1949 ep = iface->endpoint;
1950 memcpy(cmptbl, vcf, 16 * sizeof(int));
1951
1952 /* check for all endpoints in this alternate setting */
1953 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1954 ep_addr = ep->desc.bEndpointAddress;
1955
1956 /* get endpoint base */
1957 idx = ((ep_addr & 0x7f) - 1) * 2;
1958 if (ep_addr & 0x80)
1959 idx++;
1960 attr = ep->desc.bmAttributes;
1961
1962 if (cmptbl[idx] != EP_NOP) {
1963 if (cmptbl[idx] == EP_NUL)
1964 cfg_found = 0;
1965 if (attr == USB_ENDPOINT_XFER_INT
1966 && cmptbl[idx] == EP_INT)
1967 cmptbl[idx] = EP_NUL;
1968 if (attr == USB_ENDPOINT_XFER_BULK
1969 && cmptbl[idx] == EP_BLK)
1970 cmptbl[idx] = EP_NUL;
1971 if (attr == USB_ENDPOINT_XFER_ISOC
1972 && cmptbl[idx] == EP_ISO)
1973 cmptbl[idx] = EP_NUL;
1974
1975 if (attr == USB_ENDPOINT_XFER_INT &&
1976 ep->desc.bInterval < vcf[17]) {
1977 cfg_found = 0;
1978 }
1979 }
1980 ep++;
1981 }
1982
1983 for (i = 0; i < 16; i++)
1984 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1985 cfg_found = 0;
1986
1987 if (cfg_found) {
1988 if (small_match < cfg_used) {
1989 small_match = cfg_used;
1990 alt_used = probe_alt_setting;
1991 iface_used = iface;
1992 }
1993 }
1994 cfg_used++;
1995 }
1996 alt_idx++;
1997 } /* (alt_idx < intf->num_altsetting) */
1998
1999 /* not found a valid USB Ta Endpoint config */
2000 if (small_match == -1)
2001 return -EIO;
2002
2003 iface = iface_used;
2004 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2005 if (!hw)
2006 return -ENOMEM; /* got no mem */
2007 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2008
2009 ep = iface->endpoint;
2010 vcf = validconf[small_match];
2011
2012 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2013 struct usb_fifo *f;
2014
2015 ep_addr = ep->desc.bEndpointAddress;
2016 /* get endpoint base */
2017 idx = ((ep_addr & 0x7f) - 1) * 2;
2018 if (ep_addr & 0x80)
2019 idx++;
2020 f = &hw->fifos[idx & 7];
2021
2022 /* init Endpoints */
2023 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2024 ep++;
2025 continue;
2026 }
2027 switch (ep->desc.bmAttributes) {
2028 case USB_ENDPOINT_XFER_INT:
2029 f->pipe = usb_rcvintpipe(dev,
2030 ep->desc.bEndpointAddress);
2031 f->usb_transfer_mode = USB_INT;
2032 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2033 break;
2034 case USB_ENDPOINT_XFER_BULK:
2035 if (ep_addr & 0x80)
2036 f->pipe = usb_rcvbulkpipe(dev,
2037 ep->desc.bEndpointAddress);
2038 else
2039 f->pipe = usb_sndbulkpipe(dev,
2040 ep->desc.bEndpointAddress);
2041 f->usb_transfer_mode = USB_BULK;
2042 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2043 break;
2044 case USB_ENDPOINT_XFER_ISOC:
2045 if (ep_addr & 0x80)
2046 f->pipe = usb_rcvisocpipe(dev,
2047 ep->desc.bEndpointAddress);
2048 else
2049 f->pipe = usb_sndisocpipe(dev,
2050 ep->desc.bEndpointAddress);
2051 f->usb_transfer_mode = USB_ISOC;
2052 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2053 break;
2054 default:
2055 f->pipe = 0;
2056 }
2057
2058 if (f->pipe) {
2059 f->fifonum = idx & 7;
2060 f->hw = hw;
2061 f->usb_packet_maxlen =
2062 le16_to_cpu(ep->desc.wMaxPacketSize);
2063 f->intervall = ep->desc.bInterval;
2064 }
2065 ep++;
2066 }
2067 hw->dev = dev; /* save device */
2068 hw->if_used = ifnum; /* save used interface */
2069 hw->alt_used = alt_used; /* and alternate config */
2070 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2071 hw->cfg_used = vcf[16]; /* store used config */
2072 hw->vend_idx = vend_idx; /* store found vendor */
2073 hw->packet_size = packet_size;
2074 hw->iso_packet_size = iso_packet_size;
2075
2076 /* create the control pipes needed for register access */
2077 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2078 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2079
2080 driver_info = (struct hfcsusb_vdata *)
2081 hfcsusb_idtab[vend_idx].driver_info;
2082
2083 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2084 if (!hw->ctrl_urb) {
2085 pr_warn("%s: No memory for control urb\n",
2086 driver_info->vend_name);
2087 kfree(hw);
2088 return -ENOMEM;
2089 }
2090
2091 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2092 hw->name, __func__, driver_info->vend_name,
2093 conf_str[small_match], ifnum, alt_used);
2094
2095 if (setup_instance(hw, dev->dev.parent))
2096 return -EIO;
2097
2098 hw->intf = intf;
2099 usb_set_intfdata(hw->intf, hw);
2100 return 0;
2101 }
2102
2103 /* function called when an active device is removed */
2104 static void
2105 hfcsusb_disconnect(struct usb_interface *intf)
2106 {
2107 struct hfcsusb *hw = usb_get_intfdata(intf);
2108 struct hfcsusb *next;
2109 int cnt = 0;
2110
2111 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2112
2113 handle_led(hw, LED_POWER_OFF);
2114 release_hw(hw);
2115
2116 list_for_each_entry_safe(hw, next, &HFClist, list)
2117 cnt++;
2118 if (!cnt)
2119 hfcsusb_cnt = 0;
2120
2121 usb_set_intfdata(intf, NULL);
2122 }
2123
2124 static struct usb_driver hfcsusb_drv = {
2125 .name = DRIVER_NAME,
2126 .id_table = hfcsusb_idtab,
2127 .probe = hfcsusb_probe,
2128 .disconnect = hfcsusb_disconnect,
2129 .disable_hub_initiated_lpm = 1,
2130 };
2131
2132 module_usb_driver(hfcsusb_drv);