]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/isdn/hardware/mISDN/hfcsusb.c
602338734634e184f50d8952911fa1d68d1cb9fd
[mirror_ubuntu-bionic-kernel.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2 * mISDN driver for Colognechip HFC-S USB chip
3 *
4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 *
22 * module params
23 * debug=<n>, default=0, with n=0xHHHHGGGG
24 * H - l1 driver flags described in hfcsusb.h
25 * G - common mISDN debug flags described at mISDNhw.h
26 *
27 * poll=<n>, default 128
28 * n : burst size of PH_DATA_IND at transparent rx data
29 *
30 * Revision: 0.3.3 (socket), 2008-11-05
31 */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 if (debug & DBG_HFC_CALL_TRACE)
70 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72 if (hw->ctrl_cnt) {
73 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 hw->ctrl_urb->transfer_buffer = NULL;
76 hw->ctrl_urb->transfer_buffer_length = 0;
77 hw->ctrl_write.wIndex =
78 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 hw->ctrl_write.wValue =
80 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 }
84 }
85
86 /*
87 * queue a control transfer request to write HFC-S USB
88 * chip register using CTRL resuest queue
89 */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 struct ctrl_buf *buf;
93
94 if (debug & DBG_HFC_CALL_TRACE)
95 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 hw->name, __func__, reg, val);
97
98 spin_lock(&hw->ctrl_lock);
99 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 spin_unlock(&hw->ctrl_lock);
101 return 1;
102 }
103 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 buf->hfcs_reg = reg;
105 buf->reg_val = val;
106 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 hw->ctrl_in_idx = 0;
108 if (++hw->ctrl_cnt == 1)
109 ctrl_start_transfer(hw);
110 spin_unlock(&hw->ctrl_lock);
111
112 return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121 if (debug & DBG_HFC_CALL_TRACE)
122 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124 urb->dev = hw->dev;
125 if (hw->ctrl_cnt) {
126 hw->ctrl_cnt--; /* decrement actual count */
127 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 hw->ctrl_out_idx = 0; /* pointer wrap */
129
130 ctrl_start_transfer(hw); /* start next transfer */
131 }
132 }
133
134 /* handle LED bits */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 if (set_on) {
139 if (led_bits < 0)
140 hw->led_state &= ~abs(led_bits);
141 else
142 hw->led_state |= led_bits;
143 } else {
144 if (led_bits < 0)
145 hw->led_state |= abs(led_bits);
146 else
147 hw->led_state &= ~led_bits;
148 }
149 }
150
151 /* handle LED requests */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 hfcsusb_idtab[hw->vend_idx].driver_info;
157 __u8 tmpled;
158
159 if (driver_info->led_scheme == LED_OFF)
160 return;
161 tmpled = hw->led_state;
162
163 switch (event) {
164 case LED_POWER_ON:
165 set_led_bit(hw, driver_info->led_bits[0], 1);
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 set_led_bit(hw, driver_info->led_bits[2], 0);
168 set_led_bit(hw, driver_info->led_bits[3], 0);
169 break;
170 case LED_POWER_OFF:
171 set_led_bit(hw, driver_info->led_bits[0], 0);
172 set_led_bit(hw, driver_info->led_bits[1], 0);
173 set_led_bit(hw, driver_info->led_bits[2], 0);
174 set_led_bit(hw, driver_info->led_bits[3], 0);
175 break;
176 case LED_S0_ON:
177 set_led_bit(hw, driver_info->led_bits[1], 1);
178 break;
179 case LED_S0_OFF:
180 set_led_bit(hw, driver_info->led_bits[1], 0);
181 break;
182 case LED_B1_ON:
183 set_led_bit(hw, driver_info->led_bits[2], 1);
184 break;
185 case LED_B1_OFF:
186 set_led_bit(hw, driver_info->led_bits[2], 0);
187 break;
188 case LED_B2_ON:
189 set_led_bit(hw, driver_info->led_bits[3], 1);
190 break;
191 case LED_B2_OFF:
192 set_led_bit(hw, driver_info->led_bits[3], 0);
193 break;
194 }
195
196 if (hw->led_state != tmpled) {
197 if (debug & DBG_HFC_CALL_TRACE)
198 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 hw->name, __func__,
200 HFCUSB_P_DATA, hw->led_state);
201
202 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 }
204 }
205
206 /*
207 * Layer2 -> Layer 1 Bchannel data
208 */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 struct bchannel *bch = container_of(ch, struct bchannel, ch);
213 struct hfcsusb *hw = bch->hw;
214 int ret = -EINVAL;
215 struct mISDNhead *hh = mISDN_HEAD_P(skb);
216 u_long flags;
217
218 if (debug & DBG_HFC_CALL_TRACE)
219 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221 switch (hh->prim) {
222 case PH_DATA_REQ:
223 spin_lock_irqsave(&hw->lock, flags);
224 ret = bchannel_senddata(bch, skb);
225 spin_unlock_irqrestore(&hw->lock, flags);
226 if (debug & DBG_HFC_CALL_TRACE)
227 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 hw->name, __func__, ret);
229 if (ret > 0) {
230 /*
231 * other l1 drivers don't send early confirms on
232 * transp data, but hfcsusb does because tx_next
233 * skb is needed in tx_iso_complete()
234 */
235 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
236 ret = 0;
237 }
238 return ret;
239 case PH_ACTIVATE_REQ:
240 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
241 hfcsusb_start_endpoint(hw, bch->nr);
242 ret = hfcsusb_setup_bch(bch, ch->protocol);
243 } else
244 ret = 0;
245 if (!ret)
246 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
247 0, NULL, GFP_KERNEL);
248 break;
249 case PH_DEACTIVATE_REQ:
250 deactivate_bchannel(bch);
251 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
252 0, NULL, GFP_KERNEL);
253 ret = 0;
254 break;
255 }
256 if (!ret)
257 dev_kfree_skb(skb);
258 return ret;
259 }
260
261 /*
262 * send full D/B channel status information
263 * as MPH_INFORMATION_IND
264 */
265 static void
266 hfcsusb_ph_info(struct hfcsusb *hw)
267 {
268 struct ph_info *phi;
269 struct dchannel *dch = &hw->dch;
270 int i;
271
272 phi = kzalloc(sizeof(struct ph_info) +
273 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
274 phi->dch.ch.protocol = hw->protocol;
275 phi->dch.ch.Flags = dch->Flags;
276 phi->dch.state = dch->state;
277 phi->dch.num_bch = dch->dev.nrbchan;
278 for (i = 0; i < dch->dev.nrbchan; i++) {
279 phi->bch[i].protocol = hw->bch[i].ch.protocol;
280 phi->bch[i].Flags = hw->bch[i].Flags;
281 }
282 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
283 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
284 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
285 kfree(phi);
286 }
287
288 /*
289 * Layer2 -> Layer 1 Dchannel data
290 */
291 static int
292 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
293 {
294 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
295 struct dchannel *dch = container_of(dev, struct dchannel, dev);
296 struct mISDNhead *hh = mISDN_HEAD_P(skb);
297 struct hfcsusb *hw = dch->hw;
298 int ret = -EINVAL;
299 u_long flags;
300
301 switch (hh->prim) {
302 case PH_DATA_REQ:
303 if (debug & DBG_HFC_CALL_TRACE)
304 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
305 hw->name, __func__);
306
307 spin_lock_irqsave(&hw->lock, flags);
308 ret = dchannel_senddata(dch, skb);
309 spin_unlock_irqrestore(&hw->lock, flags);
310 if (ret > 0) {
311 ret = 0;
312 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
313 }
314 break;
315
316 case PH_ACTIVATE_REQ:
317 if (debug & DBG_HFC_CALL_TRACE)
318 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
319 hw->name, __func__,
320 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
321
322 if (hw->protocol == ISDN_P_NT_S0) {
323 ret = 0;
324 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
325 _queue_data(&dch->dev.D,
326 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
327 NULL, GFP_ATOMIC);
328 } else {
329 hfcsusb_ph_command(hw,
330 HFC_L1_ACTIVATE_NT);
331 test_and_set_bit(FLG_L2_ACTIVATED,
332 &dch->Flags);
333 }
334 } else {
335 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
336 ret = l1_event(dch->l1, hh->prim);
337 }
338 break;
339
340 case PH_DEACTIVATE_REQ:
341 if (debug & DBG_HFC_CALL_TRACE)
342 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
343 hw->name, __func__);
344 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
345
346 if (hw->protocol == ISDN_P_NT_S0) {
347 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
348 spin_lock_irqsave(&hw->lock, flags);
349 skb_queue_purge(&dch->squeue);
350 if (dch->tx_skb) {
351 dev_kfree_skb(dch->tx_skb);
352 dch->tx_skb = NULL;
353 }
354 dch->tx_idx = 0;
355 if (dch->rx_skb) {
356 dev_kfree_skb(dch->rx_skb);
357 dch->rx_skb = NULL;
358 }
359 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
360 spin_unlock_irqrestore(&hw->lock, flags);
361 #ifdef FIXME
362 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
363 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
364 #endif
365 ret = 0;
366 } else
367 ret = l1_event(dch->l1, hh->prim);
368 break;
369 case MPH_INFORMATION_REQ:
370 hfcsusb_ph_info(hw);
371 ret = 0;
372 break;
373 }
374
375 return ret;
376 }
377
378 /*
379 * Layer 1 callback function
380 */
381 static int
382 hfc_l1callback(struct dchannel *dch, u_int cmd)
383 {
384 struct hfcsusb *hw = dch->hw;
385
386 if (debug & DBG_HFC_CALL_TRACE)
387 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
388 hw->name, __func__, cmd);
389
390 switch (cmd) {
391 case INFO3_P8:
392 case INFO3_P10:
393 case HW_RESET_REQ:
394 case HW_POWERUP_REQ:
395 break;
396
397 case HW_DEACT_REQ:
398 skb_queue_purge(&dch->squeue);
399 if (dch->tx_skb) {
400 dev_kfree_skb(dch->tx_skb);
401 dch->tx_skb = NULL;
402 }
403 dch->tx_idx = 0;
404 if (dch->rx_skb) {
405 dev_kfree_skb(dch->rx_skb);
406 dch->rx_skb = NULL;
407 }
408 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
409 break;
410 case PH_ACTIVATE_IND:
411 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
412 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
413 GFP_ATOMIC);
414 break;
415 case PH_DEACTIVATE_IND:
416 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
417 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
418 GFP_ATOMIC);
419 break;
420 default:
421 if (dch->debug & DEBUG_HW)
422 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
423 hw->name, __func__, cmd);
424 return -1;
425 }
426 hfcsusb_ph_info(hw);
427 return 0;
428 }
429
430 static int
431 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
432 struct channel_req *rq)
433 {
434 int err = 0;
435
436 if (debug & DEBUG_HW_OPEN)
437 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
438 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
439 __builtin_return_address(0));
440 if (rq->protocol == ISDN_P_NONE)
441 return -EINVAL;
442
443 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
444 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
445 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
446
447 /* E-Channel logging */
448 if (rq->adr.channel == 1) {
449 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
450 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
451 set_bit(FLG_ACTIVE, &hw->ech.Flags);
452 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
453 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
454 } else
455 return -EINVAL;
456 }
457
458 if (!hw->initdone) {
459 hw->protocol = rq->protocol;
460 if (rq->protocol == ISDN_P_TE_S0) {
461 err = create_l1(&hw->dch, hfc_l1callback);
462 if (err)
463 return err;
464 }
465 setPortMode(hw);
466 ch->protocol = rq->protocol;
467 hw->initdone = 1;
468 } else {
469 if (rq->protocol != ch->protocol)
470 return -EPROTONOSUPPORT;
471 }
472
473 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
474 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
475 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
476 0, NULL, GFP_KERNEL);
477 rq->ch = ch;
478 if (!try_module_get(THIS_MODULE))
479 printk(KERN_WARNING "%s: %s: cannot get module\n",
480 hw->name, __func__);
481 return 0;
482 }
483
484 static int
485 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
486 {
487 struct bchannel *bch;
488
489 if (rq->adr.channel > 2)
490 return -EINVAL;
491 if (rq->protocol == ISDN_P_NONE)
492 return -EINVAL;
493
494 if (debug & DBG_HFC_CALL_TRACE)
495 printk(KERN_DEBUG "%s: %s B%i\n",
496 hw->name, __func__, rq->adr.channel);
497
498 bch = &hw->bch[rq->adr.channel - 1];
499 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
500 return -EBUSY; /* b-channel can be only open once */
501 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
502 bch->ch.protocol = rq->protocol;
503 rq->ch = &bch->ch;
504
505 /* start USB endpoint for bchannel */
506 if (rq->adr.channel == 1)
507 hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
508 else
509 hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
510
511 if (!try_module_get(THIS_MODULE))
512 printk(KERN_WARNING "%s: %s:cannot get module\n",
513 hw->name, __func__);
514 return 0;
515 }
516
517 static int
518 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
519 {
520 int ret = 0;
521
522 if (debug & DBG_HFC_CALL_TRACE)
523 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
524 hw->name, __func__, (cq->op), (cq->channel));
525
526 switch (cq->op) {
527 case MISDN_CTRL_GETOP:
528 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
529 MISDN_CTRL_DISCONNECT;
530 break;
531 default:
532 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
533 hw->name, __func__, cq->op);
534 ret = -EINVAL;
535 break;
536 }
537 return ret;
538 }
539
540 /*
541 * device control function
542 */
543 static int
544 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
545 {
546 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
547 struct dchannel *dch = container_of(dev, struct dchannel, dev);
548 struct hfcsusb *hw = dch->hw;
549 struct channel_req *rq;
550 int err = 0;
551
552 if (dch->debug & DEBUG_HW)
553 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
554 hw->name, __func__, cmd, arg);
555 switch (cmd) {
556 case OPEN_CHANNEL:
557 rq = arg;
558 if ((rq->protocol == ISDN_P_TE_S0) ||
559 (rq->protocol == ISDN_P_NT_S0))
560 err = open_dchannel(hw, ch, rq);
561 else
562 err = open_bchannel(hw, rq);
563 if (!err)
564 hw->open++;
565 break;
566 case CLOSE_CHANNEL:
567 hw->open--;
568 if (debug & DEBUG_HW_OPEN)
569 printk(KERN_DEBUG
570 "%s: %s: dev(%d) close from %p (open %d)\n",
571 hw->name, __func__, hw->dch.dev.id,
572 __builtin_return_address(0), hw->open);
573 if (!hw->open) {
574 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
575 if (hw->fifos[HFCUSB_PCM_RX].pipe)
576 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
577 handle_led(hw, LED_POWER_ON);
578 }
579 module_put(THIS_MODULE);
580 break;
581 case CONTROL_CHANNEL:
582 err = channel_ctrl(hw, arg);
583 break;
584 default:
585 if (dch->debug & DEBUG_HW)
586 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
587 hw->name, __func__, cmd);
588 return -EINVAL;
589 }
590 return err;
591 }
592
593 /*
594 * S0 TE state change event handler
595 */
596 static void
597 ph_state_te(struct dchannel *dch)
598 {
599 struct hfcsusb *hw = dch->hw;
600
601 if (debug & DEBUG_HW) {
602 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
603 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
604 HFC_TE_LAYER1_STATES[dch->state]);
605 else
606 printk(KERN_DEBUG "%s: %s: TE F%d\n",
607 hw->name, __func__, dch->state);
608 }
609
610 switch (dch->state) {
611 case 0:
612 l1_event(dch->l1, HW_RESET_IND);
613 break;
614 case 3:
615 l1_event(dch->l1, HW_DEACT_IND);
616 break;
617 case 5:
618 case 8:
619 l1_event(dch->l1, ANYSIGNAL);
620 break;
621 case 6:
622 l1_event(dch->l1, INFO2);
623 break;
624 case 7:
625 l1_event(dch->l1, INFO4_P8);
626 break;
627 }
628 if (dch->state == 7)
629 handle_led(hw, LED_S0_ON);
630 else
631 handle_led(hw, LED_S0_OFF);
632 }
633
634 /*
635 * S0 NT state change event handler
636 */
637 static void
638 ph_state_nt(struct dchannel *dch)
639 {
640 struct hfcsusb *hw = dch->hw;
641
642 if (debug & DEBUG_HW) {
643 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
644 printk(KERN_DEBUG "%s: %s: %s\n",
645 hw->name, __func__,
646 HFC_NT_LAYER1_STATES[dch->state]);
647
648 else
649 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
650 hw->name, __func__, dch->state);
651 }
652
653 switch (dch->state) {
654 case (1):
655 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
656 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
657 hw->nt_timer = 0;
658 hw->timers &= ~NT_ACTIVATION_TIMER;
659 handle_led(hw, LED_S0_OFF);
660 break;
661
662 case (2):
663 if (hw->nt_timer < 0) {
664 hw->nt_timer = 0;
665 hw->timers &= ~NT_ACTIVATION_TIMER;
666 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
667 } else {
668 hw->timers |= NT_ACTIVATION_TIMER;
669 hw->nt_timer = NT_T1_COUNT;
670 /* allow G2 -> G3 transition */
671 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
672 }
673 break;
674 case (3):
675 hw->nt_timer = 0;
676 hw->timers &= ~NT_ACTIVATION_TIMER;
677 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
678 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
679 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
680 handle_led(hw, LED_S0_ON);
681 break;
682 case (4):
683 hw->nt_timer = 0;
684 hw->timers &= ~NT_ACTIVATION_TIMER;
685 break;
686 default:
687 break;
688 }
689 hfcsusb_ph_info(hw);
690 }
691
692 static void
693 ph_state(struct dchannel *dch)
694 {
695 struct hfcsusb *hw = dch->hw;
696
697 if (hw->protocol == ISDN_P_NT_S0)
698 ph_state_nt(dch);
699 else if (hw->protocol == ISDN_P_TE_S0)
700 ph_state_te(dch);
701 }
702
703 /*
704 * disable/enable BChannel for desired protocoll
705 */
706 static int
707 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
708 {
709 struct hfcsusb *hw = bch->hw;
710 __u8 conhdlc, sctrl, sctrl_r;
711
712 if (debug & DEBUG_HW)
713 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
714 hw->name, __func__, bch->state, protocol,
715 bch->nr);
716
717 /* setup val for CON_HDLC */
718 conhdlc = 0;
719 if (protocol > ISDN_P_NONE)
720 conhdlc = 8; /* enable FIFO */
721
722 switch (protocol) {
723 case (-1): /* used for init */
724 bch->state = -1;
725 /* fall through */
726 case (ISDN_P_NONE):
727 if (bch->state == ISDN_P_NONE)
728 return 0; /* already in idle state */
729 bch->state = ISDN_P_NONE;
730 clear_bit(FLG_HDLC, &bch->Flags);
731 clear_bit(FLG_TRANSPARENT, &bch->Flags);
732 break;
733 case (ISDN_P_B_RAW):
734 conhdlc |= 2;
735 bch->state = protocol;
736 set_bit(FLG_TRANSPARENT, &bch->Flags);
737 break;
738 case (ISDN_P_B_HDLC):
739 bch->state = protocol;
740 set_bit(FLG_HDLC, &bch->Flags);
741 break;
742 default:
743 if (debug & DEBUG_HW)
744 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
745 hw->name, __func__, protocol);
746 return -ENOPROTOOPT;
747 }
748
749 if (protocol >= ISDN_P_NONE) {
750 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
751 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
752 write_reg(hw, HFCUSB_INC_RES_F, 2);
753 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
754 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
755 write_reg(hw, HFCUSB_INC_RES_F, 2);
756
757 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
758 sctrl_r = 0x0;
759 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
760 sctrl |= 1;
761 sctrl_r |= 1;
762 }
763 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
764 sctrl |= 2;
765 sctrl_r |= 2;
766 }
767 write_reg(hw, HFCUSB_SCTRL, sctrl);
768 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
769
770 if (protocol > ISDN_P_NONE)
771 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
772 else
773 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
774 LED_B2_OFF);
775 }
776 hfcsusb_ph_info(hw);
777 return 0;
778 }
779
780 static void
781 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
782 {
783 if (debug & DEBUG_HW)
784 printk(KERN_DEBUG "%s: %s: %x\n",
785 hw->name, __func__, command);
786
787 switch (command) {
788 case HFC_L1_ACTIVATE_TE:
789 /* force sending sending INFO1 */
790 write_reg(hw, HFCUSB_STATES, 0x14);
791 /* start l1 activation */
792 write_reg(hw, HFCUSB_STATES, 0x04);
793 break;
794
795 case HFC_L1_FORCE_DEACTIVATE_TE:
796 write_reg(hw, HFCUSB_STATES, 0x10);
797 write_reg(hw, HFCUSB_STATES, 0x03);
798 break;
799
800 case HFC_L1_ACTIVATE_NT:
801 if (hw->dch.state == 3)
802 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
803 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
804 else
805 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
806 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
807 break;
808
809 case HFC_L1_DEACTIVATE_NT:
810 write_reg(hw, HFCUSB_STATES,
811 HFCUSB_DO_ACTION);
812 break;
813 }
814 }
815
816 /*
817 * Layer 1 B-channel hardware access
818 */
819 static int
820 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
821 {
822 int ret = 0;
823
824 switch (cq->op) {
825 case MISDN_CTRL_GETOP:
826 cq->op = MISDN_CTRL_FILL_EMPTY;
827 break;
828 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
829 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
830 if (debug & DEBUG_HW_OPEN)
831 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
832 "off=%d)\n", __func__, bch->nr, !!cq->p1);
833 break;
834 default:
835 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
836 ret = -EINVAL;
837 break;
838 }
839 return ret;
840 }
841
842 /* collect data from incoming interrupt or isochron USB data */
843 static void
844 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
845 int finish)
846 {
847 struct hfcsusb *hw = fifo->hw;
848 struct sk_buff *rx_skb = NULL;
849 int maxlen = 0;
850 int fifon = fifo->fifonum;
851 int i;
852 int hdlc = 0;
853
854 if (debug & DBG_HFC_CALL_TRACE)
855 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
856 "dch(%p) bch(%p) ech(%p)\n",
857 hw->name, __func__, fifon, len,
858 fifo->dch, fifo->bch, fifo->ech);
859
860 if (!len)
861 return;
862
863 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
864 printk(KERN_DEBUG "%s: %s: undefined channel\n",
865 hw->name, __func__);
866 return;
867 }
868
869 spin_lock(&hw->lock);
870 if (fifo->dch) {
871 rx_skb = fifo->dch->rx_skb;
872 maxlen = fifo->dch->maxlen;
873 hdlc = 1;
874 }
875 if (fifo->bch) {
876 rx_skb = fifo->bch->rx_skb;
877 maxlen = fifo->bch->maxlen;
878 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
879 }
880 if (fifo->ech) {
881 rx_skb = fifo->ech->rx_skb;
882 maxlen = fifo->ech->maxlen;
883 hdlc = 1;
884 }
885
886 if (!rx_skb) {
887 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
888 if (rx_skb) {
889 if (fifo->dch)
890 fifo->dch->rx_skb = rx_skb;
891 if (fifo->bch)
892 fifo->bch->rx_skb = rx_skb;
893 if (fifo->ech)
894 fifo->ech->rx_skb = rx_skb;
895 skb_trim(rx_skb, 0);
896 } else {
897 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
898 hw->name, __func__);
899 spin_unlock(&hw->lock);
900 return;
901 }
902 }
903
904 if (fifo->dch || fifo->ech) {
905 /* D/E-Channel SKB range check */
906 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
907 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
908 "for fifo(%d) HFCUSB_D_RX\n",
909 hw->name, __func__, fifon);
910 skb_trim(rx_skb, 0);
911 spin_unlock(&hw->lock);
912 return;
913 }
914 } else if (fifo->bch) {
915 /* B-Channel SKB range check */
916 if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
917 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
918 "for fifo(%d) HFCUSB_B_RX\n",
919 hw->name, __func__, fifon);
920 skb_trim(rx_skb, 0);
921 spin_unlock(&hw->lock);
922 return;
923 }
924 }
925
926 memcpy(skb_put(rx_skb, len), data, len);
927
928 if (hdlc) {
929 /* we have a complete hdlc packet */
930 if (finish) {
931 if ((rx_skb->len > 3) &&
932 (!(rx_skb->data[rx_skb->len - 1]))) {
933 if (debug & DBG_HFC_FIFO_VERBOSE) {
934 printk(KERN_DEBUG "%s: %s: fifon(%i)"
935 " new RX len(%i): ",
936 hw->name, __func__, fifon,
937 rx_skb->len);
938 i = 0;
939 while (i < rx_skb->len)
940 printk("%02x ",
941 rx_skb->data[i++]);
942 printk("\n");
943 }
944
945 /* remove CRC & status */
946 skb_trim(rx_skb, rx_skb->len - 3);
947
948 if (fifo->dch)
949 recv_Dchannel(fifo->dch);
950 if (fifo->bch)
951 recv_Bchannel(fifo->bch, MISDN_ID_ANY);
952 if (fifo->ech)
953 recv_Echannel(fifo->ech,
954 &hw->dch);
955 } else {
956 if (debug & DBG_HFC_FIFO_VERBOSE) {
957 printk(KERN_DEBUG
958 "%s: CRC or minlen ERROR fifon(%i) "
959 "RX len(%i): ",
960 hw->name, fifon, rx_skb->len);
961 i = 0;
962 while (i < rx_skb->len)
963 printk("%02x ",
964 rx_skb->data[i++]);
965 printk("\n");
966 }
967 skb_trim(rx_skb, 0);
968 }
969 }
970 } else {
971 /* deliver transparent data to layer2 */
972 if (rx_skb->len >= poll)
973 recv_Bchannel(fifo->bch, MISDN_ID_ANY);
974 }
975 spin_unlock(&hw->lock);
976 }
977
978 static void
979 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
980 void *buf, int num_packets, int packet_size, int interval,
981 usb_complete_t complete, void *context)
982 {
983 int k;
984
985 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
986 complete, context);
987
988 urb->number_of_packets = num_packets;
989 urb->transfer_flags = URB_ISO_ASAP;
990 urb->actual_length = 0;
991 urb->interval = interval;
992
993 for (k = 0; k < num_packets; k++) {
994 urb->iso_frame_desc[k].offset = packet_size * k;
995 urb->iso_frame_desc[k].length = packet_size;
996 urb->iso_frame_desc[k].actual_length = 0;
997 }
998 }
999
1000 /* receive completion routine for all ISO tx fifos */
1001 static void
1002 rx_iso_complete(struct urb *urb)
1003 {
1004 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1005 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1006 struct hfcsusb *hw = fifo->hw;
1007 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1008 status, iso_status, i;
1009 __u8 *buf;
1010 static __u8 eof[8];
1011 __u8 s0_state;
1012
1013 fifon = fifo->fifonum;
1014 status = urb->status;
1015
1016 spin_lock(&hw->lock);
1017 if (fifo->stop_gracefull) {
1018 fifo->stop_gracefull = 0;
1019 fifo->active = 0;
1020 spin_unlock(&hw->lock);
1021 return;
1022 }
1023 spin_unlock(&hw->lock);
1024
1025 /*
1026 * ISO transfer only partially completed,
1027 * look at individual frame status for details
1028 */
1029 if (status == -EXDEV) {
1030 if (debug & DEBUG_HW)
1031 printk(KERN_DEBUG "%s: %s: with -EXDEV "
1032 "urb->status %d, fifonum %d\n",
1033 hw->name, __func__, status, fifon);
1034
1035 /* clear status, so go on with ISO transfers */
1036 status = 0;
1037 }
1038
1039 s0_state = 0;
1040 if (fifo->active && !status) {
1041 num_isoc_packets = iso_packets[fifon];
1042 maxlen = fifo->usb_packet_maxlen;
1043
1044 for (k = 0; k < num_isoc_packets; ++k) {
1045 len = urb->iso_frame_desc[k].actual_length;
1046 offset = urb->iso_frame_desc[k].offset;
1047 buf = context_iso_urb->buffer + offset;
1048 iso_status = urb->iso_frame_desc[k].status;
1049
1050 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1051 printk(KERN_DEBUG "%s: %s: "
1052 "ISO packet %i, status: %i\n",
1053 hw->name, __func__, k, iso_status);
1054 }
1055
1056 /* USB data log for every D ISO in */
1057 if ((fifon == HFCUSB_D_RX) &&
1058 (debug & DBG_HFC_USB_VERBOSE)) {
1059 printk(KERN_DEBUG
1060 "%s: %s: %d (%d/%d) len(%d) ",
1061 hw->name, __func__, urb->start_frame,
1062 k, num_isoc_packets - 1,
1063 len);
1064 for (i = 0; i < len; i++)
1065 printk("%x ", buf[i]);
1066 printk("\n");
1067 }
1068
1069 if (!iso_status) {
1070 if (fifo->last_urblen != maxlen) {
1071 /*
1072 * save fifo fill-level threshold bits
1073 * to use them later in TX ISO URB
1074 * completions
1075 */
1076 hw->threshold_mask = buf[1];
1077
1078 if (fifon == HFCUSB_D_RX)
1079 s0_state = (buf[0] >> 4);
1080
1081 eof[fifon] = buf[0] & 1;
1082 if (len > 2)
1083 hfcsusb_rx_frame(fifo, buf + 2,
1084 len - 2, (len < maxlen)
1085 ? eof[fifon] : 0);
1086 } else
1087 hfcsusb_rx_frame(fifo, buf, len,
1088 (len < maxlen) ?
1089 eof[fifon] : 0);
1090 fifo->last_urblen = len;
1091 }
1092 }
1093
1094 /* signal S0 layer1 state change */
1095 if ((s0_state) && (hw->initdone) &&
1096 (s0_state != hw->dch.state)) {
1097 hw->dch.state = s0_state;
1098 schedule_event(&hw->dch, FLG_PHCHANGE);
1099 }
1100
1101 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1102 context_iso_urb->buffer, num_isoc_packets,
1103 fifo->usb_packet_maxlen, fifo->intervall,
1104 (usb_complete_t)rx_iso_complete, urb->context);
1105 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1106 if (errcode < 0) {
1107 if (debug & DEBUG_HW)
1108 printk(KERN_DEBUG "%s: %s: error submitting "
1109 "ISO URB: %d\n",
1110 hw->name, __func__, errcode);
1111 }
1112 } else {
1113 if (status && (debug & DBG_HFC_URB_INFO))
1114 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1115 "urb->status %d, fifonum %d\n",
1116 hw->name, __func__, status, fifon);
1117 }
1118 }
1119
1120 /* receive completion routine for all interrupt rx fifos */
1121 static void
1122 rx_int_complete(struct urb *urb)
1123 {
1124 int len, status, i;
1125 __u8 *buf, maxlen, fifon;
1126 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1127 struct hfcsusb *hw = fifo->hw;
1128 static __u8 eof[8];
1129
1130 spin_lock(&hw->lock);
1131 if (fifo->stop_gracefull) {
1132 fifo->stop_gracefull = 0;
1133 fifo->active = 0;
1134 spin_unlock(&hw->lock);
1135 return;
1136 }
1137 spin_unlock(&hw->lock);
1138
1139 fifon = fifo->fifonum;
1140 if ((!fifo->active) || (urb->status)) {
1141 if (debug & DBG_HFC_URB_ERROR)
1142 printk(KERN_DEBUG
1143 "%s: %s: RX-Fifo %i is going down (%i)\n",
1144 hw->name, __func__, fifon, urb->status);
1145
1146 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1147 return;
1148 }
1149 len = urb->actual_length;
1150 buf = fifo->buffer;
1151 maxlen = fifo->usb_packet_maxlen;
1152
1153 /* USB data log for every D INT in */
1154 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1155 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1156 hw->name, __func__, len);
1157 for (i = 0; i < len; i++)
1158 printk("%02x ", buf[i]);
1159 printk("\n");
1160 }
1161
1162 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1163 /* the threshold mask is in the 2nd status byte */
1164 hw->threshold_mask = buf[1];
1165
1166 /* signal S0 layer1 state change */
1167 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1168 hw->dch.state = (buf[0] >> 4);
1169 schedule_event(&hw->dch, FLG_PHCHANGE);
1170 }
1171
1172 eof[fifon] = buf[0] & 1;
1173 /* if we have more than the 2 status bytes -> collect data */
1174 if (len > 2)
1175 hfcsusb_rx_frame(fifo, buf + 2,
1176 urb->actual_length - 2,
1177 (len < maxlen) ? eof[fifon] : 0);
1178 } else {
1179 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1180 (len < maxlen) ? eof[fifon] : 0);
1181 }
1182 fifo->last_urblen = urb->actual_length;
1183
1184 status = usb_submit_urb(urb, GFP_ATOMIC);
1185 if (status) {
1186 if (debug & DEBUG_HW)
1187 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1188 hw->name, __func__);
1189 }
1190 }
1191
1192 /* transmit completion routine for all ISO tx fifos */
1193 static void
1194 tx_iso_complete(struct urb *urb)
1195 {
1196 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1197 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1198 struct hfcsusb *hw = fifo->hw;
1199 struct sk_buff *tx_skb;
1200 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1201 errcode, hdlc, i;
1202 int *tx_idx;
1203 int frame_complete, fifon, status;
1204 __u8 threshbit;
1205
1206 spin_lock(&hw->lock);
1207 if (fifo->stop_gracefull) {
1208 fifo->stop_gracefull = 0;
1209 fifo->active = 0;
1210 spin_unlock(&hw->lock);
1211 return;
1212 }
1213
1214 if (fifo->dch) {
1215 tx_skb = fifo->dch->tx_skb;
1216 tx_idx = &fifo->dch->tx_idx;
1217 hdlc = 1;
1218 } else if (fifo->bch) {
1219 tx_skb = fifo->bch->tx_skb;
1220 tx_idx = &fifo->bch->tx_idx;
1221 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1222 } else {
1223 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1224 hw->name, __func__);
1225 spin_unlock(&hw->lock);
1226 return;
1227 }
1228
1229 fifon = fifo->fifonum;
1230 status = urb->status;
1231
1232 tx_offset = 0;
1233
1234 /*
1235 * ISO transfer only partially completed,
1236 * look at individual frame status for details
1237 */
1238 if (status == -EXDEV) {
1239 if (debug & DBG_HFC_URB_ERROR)
1240 printk(KERN_DEBUG "%s: %s: "
1241 "-EXDEV (%i) fifon (%d)\n",
1242 hw->name, __func__, status, fifon);
1243
1244 /* clear status, so go on with ISO transfers */
1245 status = 0;
1246 }
1247
1248 if (fifo->active && !status) {
1249 /* is FifoFull-threshold set for our channel? */
1250 threshbit = (hw->threshold_mask & (1 << fifon));
1251 num_isoc_packets = iso_packets[fifon];
1252
1253 /* predict dataflow to avoid fifo overflow */
1254 if (fifon >= HFCUSB_D_TX)
1255 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1256 else
1257 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1258 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1259 context_iso_urb->buffer, num_isoc_packets,
1260 fifo->usb_packet_maxlen, fifo->intervall,
1261 (usb_complete_t)tx_iso_complete, urb->context);
1262 memset(context_iso_urb->buffer, 0,
1263 sizeof(context_iso_urb->buffer));
1264 frame_complete = 0;
1265
1266 for (k = 0; k < num_isoc_packets; ++k) {
1267 /* analyze tx success of previous ISO packets */
1268 if (debug & DBG_HFC_URB_ERROR) {
1269 errcode = urb->iso_frame_desc[k].status;
1270 if (errcode) {
1271 printk(KERN_DEBUG "%s: %s: "
1272 "ISO packet %i, status: %i\n",
1273 hw->name, __func__, k, errcode);
1274 }
1275 }
1276
1277 /* Generate next ISO Packets */
1278 if (tx_skb)
1279 remain = tx_skb->len - *tx_idx;
1280 else
1281 remain = 0;
1282
1283 if (remain > 0) {
1284 fifo->bit_line -= sink;
1285 current_len = (0 - fifo->bit_line) / 8;
1286 if (current_len > 14)
1287 current_len = 14;
1288 if (current_len < 0)
1289 current_len = 0;
1290 if (remain < current_len)
1291 current_len = remain;
1292
1293 /* how much bit do we put on the line? */
1294 fifo->bit_line += current_len * 8;
1295
1296 context_iso_urb->buffer[tx_offset] = 0;
1297 if (current_len == remain) {
1298 if (hdlc) {
1299 /* signal frame completion */
1300 context_iso_urb->
1301 buffer[tx_offset] = 1;
1302 /* add 2 byte flags and 16bit
1303 * CRC at end of ISDN frame */
1304 fifo->bit_line += 32;
1305 }
1306 frame_complete = 1;
1307 }
1308
1309 /* copy tx data to iso-urb buffer */
1310 memcpy(context_iso_urb->buffer + tx_offset + 1,
1311 (tx_skb->data + *tx_idx), current_len);
1312 *tx_idx += current_len;
1313
1314 urb->iso_frame_desc[k].offset = tx_offset;
1315 urb->iso_frame_desc[k].length = current_len + 1;
1316
1317 /* USB data log for every D ISO out */
1318 if ((fifon == HFCUSB_D_RX) &&
1319 (debug & DBG_HFC_USB_VERBOSE)) {
1320 printk(KERN_DEBUG
1321 "%s: %s (%d/%d) offs(%d) len(%d) ",
1322 hw->name, __func__,
1323 k, num_isoc_packets - 1,
1324 urb->iso_frame_desc[k].offset,
1325 urb->iso_frame_desc[k].length);
1326
1327 for (i = urb->iso_frame_desc[k].offset;
1328 i < (urb->iso_frame_desc[k].offset
1329 + urb->iso_frame_desc[k].length);
1330 i++)
1331 printk("%x ",
1332 context_iso_urb->buffer[i]);
1333
1334 printk(" skb->len(%i) tx-idx(%d)\n",
1335 tx_skb->len, *tx_idx);
1336 }
1337
1338 tx_offset += (current_len + 1);
1339 } else {
1340 urb->iso_frame_desc[k].offset = tx_offset++;
1341 urb->iso_frame_desc[k].length = 1;
1342 /* we lower data margin every msec */
1343 fifo->bit_line -= sink;
1344 if (fifo->bit_line < BITLINE_INF)
1345 fifo->bit_line = BITLINE_INF;
1346 }
1347
1348 if (frame_complete) {
1349 frame_complete = 0;
1350
1351 if (debug & DBG_HFC_FIFO_VERBOSE) {
1352 printk(KERN_DEBUG "%s: %s: "
1353 "fifon(%i) new TX len(%i): ",
1354 hw->name, __func__,
1355 fifon, tx_skb->len);
1356 i = 0;
1357 while (i < tx_skb->len)
1358 printk("%02x ",
1359 tx_skb->data[i++]);
1360 printk("\n");
1361 }
1362
1363 dev_kfree_skb(tx_skb);
1364 tx_skb = NULL;
1365 if (fifo->dch && get_next_dframe(fifo->dch))
1366 tx_skb = fifo->dch->tx_skb;
1367 else if (fifo->bch &&
1368 get_next_bframe(fifo->bch)) {
1369 if (test_bit(FLG_TRANSPARENT,
1370 &fifo->bch->Flags))
1371 confirm_Bsend(fifo->bch);
1372 tx_skb = fifo->bch->tx_skb;
1373 }
1374 }
1375 }
1376 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1377 if (errcode < 0) {
1378 if (debug & DEBUG_HW)
1379 printk(KERN_DEBUG
1380 "%s: %s: error submitting ISO URB: %d \n",
1381 hw->name, __func__, errcode);
1382 }
1383
1384 /*
1385 * abuse DChannel tx iso completion to trigger NT mode state
1386 * changes tx_iso_complete is assumed to be called every
1387 * fifo->intervall (ms)
1388 */
1389 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1390 && (hw->timers & NT_ACTIVATION_TIMER)) {
1391 if ((--hw->nt_timer) < 0)
1392 schedule_event(&hw->dch, FLG_PHCHANGE);
1393 }
1394
1395 } else {
1396 if (status && (debug & DBG_HFC_URB_ERROR))
1397 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1398 "fifonum=%d\n",
1399 hw->name, __func__,
1400 symbolic(urb_errlist, status), status, fifon);
1401 }
1402 spin_unlock(&hw->lock);
1403 }
1404
1405 /*
1406 * allocs urbs and start isoc transfer with two pending urbs to avoid
1407 * gaps in the transfer chain
1408 */
1409 static int
1410 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1411 usb_complete_t complete, int packet_size)
1412 {
1413 struct hfcsusb *hw = fifo->hw;
1414 int i, k, errcode;
1415
1416 if (debug)
1417 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1418 hw->name, __func__, fifo->fifonum);
1419
1420 /* allocate Memory for Iso out Urbs */
1421 for (i = 0; i < 2; i++) {
1422 if (!(fifo->iso[i].urb)) {
1423 fifo->iso[i].urb =
1424 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1425 if (!(fifo->iso[i].urb)) {
1426 printk(KERN_DEBUG
1427 "%s: %s: alloc urb for fifo %i failed",
1428 hw->name, __func__, fifo->fifonum);
1429 }
1430 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1431 fifo->iso[i].indx = i;
1432
1433 /* Init the first iso */
1434 if (ISO_BUFFER_SIZE >=
1435 (fifo->usb_packet_maxlen *
1436 num_packets_per_urb)) {
1437 fill_isoc_urb(fifo->iso[i].urb,
1438 fifo->hw->dev, fifo->pipe,
1439 fifo->iso[i].buffer,
1440 num_packets_per_urb,
1441 fifo->usb_packet_maxlen,
1442 fifo->intervall, complete,
1443 &fifo->iso[i]);
1444 memset(fifo->iso[i].buffer, 0,
1445 sizeof(fifo->iso[i].buffer));
1446
1447 for (k = 0; k < num_packets_per_urb; k++) {
1448 fifo->iso[i].urb->
1449 iso_frame_desc[k].offset =
1450 k * packet_size;
1451 fifo->iso[i].urb->
1452 iso_frame_desc[k].length =
1453 packet_size;
1454 }
1455 } else {
1456 printk(KERN_DEBUG
1457 "%s: %s: ISO Buffer size to small!\n",
1458 hw->name, __func__);
1459 }
1460 }
1461 fifo->bit_line = BITLINE_INF;
1462
1463 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1464 fifo->active = (errcode >= 0) ? 1 : 0;
1465 fifo->stop_gracefull = 0;
1466 if (errcode < 0) {
1467 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1468 hw->name, __func__,
1469 symbolic(urb_errlist, errcode), i);
1470 }
1471 }
1472 return fifo->active;
1473 }
1474
1475 static void
1476 stop_iso_gracefull(struct usb_fifo *fifo)
1477 {
1478 struct hfcsusb *hw = fifo->hw;
1479 int i, timeout;
1480 u_long flags;
1481
1482 for (i = 0; i < 2; i++) {
1483 spin_lock_irqsave(&hw->lock, flags);
1484 if (debug)
1485 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1486 hw->name, __func__, fifo->fifonum, i);
1487 fifo->stop_gracefull = 1;
1488 spin_unlock_irqrestore(&hw->lock, flags);
1489 }
1490
1491 for (i = 0; i < 2; i++) {
1492 timeout = 3;
1493 while (fifo->stop_gracefull && timeout--)
1494 schedule_timeout_interruptible((HZ / 1000) * 16);
1495 if (debug && fifo->stop_gracefull)
1496 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1497 hw->name, __func__, fifo->fifonum, i);
1498 }
1499 }
1500
1501 static void
1502 stop_int_gracefull(struct usb_fifo *fifo)
1503 {
1504 struct hfcsusb *hw = fifo->hw;
1505 int timeout;
1506 u_long flags;
1507
1508 spin_lock_irqsave(&hw->lock, flags);
1509 if (debug)
1510 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1511 hw->name, __func__, fifo->fifonum);
1512 fifo->stop_gracefull = 1;
1513 spin_unlock_irqrestore(&hw->lock, flags);
1514
1515 timeout = 3;
1516 while (fifo->stop_gracefull && timeout--)
1517 schedule_timeout_interruptible((HZ / 1000) * 3);
1518 if (debug && fifo->stop_gracefull)
1519 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1520 hw->name, __func__, fifo->fifonum);
1521 }
1522
1523 /* start the interrupt transfer for the given fifo */
1524 static void
1525 start_int_fifo(struct usb_fifo *fifo)
1526 {
1527 struct hfcsusb *hw = fifo->hw;
1528 int errcode;
1529
1530 if (debug)
1531 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1532 hw->name, __func__, fifo->fifonum);
1533
1534 if (!fifo->urb) {
1535 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1536 if (!fifo->urb)
1537 return;
1538 }
1539 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1540 fifo->buffer, fifo->usb_packet_maxlen,
1541 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1542 fifo->active = 1;
1543 fifo->stop_gracefull = 0;
1544 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1545 if (errcode) {
1546 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1547 hw->name, __func__, errcode);
1548 fifo->active = 0;
1549 }
1550 }
1551
1552 static void
1553 setPortMode(struct hfcsusb *hw)
1554 {
1555 if (debug & DEBUG_HW)
1556 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1557 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1558
1559 if (hw->protocol == ISDN_P_TE_S0) {
1560 write_reg(hw, HFCUSB_SCTRL, 0x40);
1561 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1562 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1563 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1564 write_reg(hw, HFCUSB_STATES, 3);
1565 } else {
1566 write_reg(hw, HFCUSB_SCTRL, 0x44);
1567 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1568 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1569 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1570 write_reg(hw, HFCUSB_STATES, 1);
1571 }
1572 }
1573
1574 static void
1575 reset_hfcsusb(struct hfcsusb *hw)
1576 {
1577 struct usb_fifo *fifo;
1578 int i;
1579
1580 if (debug & DEBUG_HW)
1581 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1582
1583 /* do Chip reset */
1584 write_reg(hw, HFCUSB_CIRM, 8);
1585
1586 /* aux = output, reset off */
1587 write_reg(hw, HFCUSB_CIRM, 0x10);
1588
1589 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1590 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1591 ((hw->packet_size / 8) << 4));
1592
1593 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1594 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1595
1596 /* enable PCM/GCI master mode */
1597 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1598 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1599
1600 /* init the fifos */
1601 write_reg(hw, HFCUSB_F_THRES,
1602 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1603
1604 fifo = hw->fifos;
1605 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1606 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1607 fifo[i].max_size =
1608 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1609 fifo[i].last_urblen = 0;
1610
1611 /* set 2 bit for D- & E-channel */
1612 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1613
1614 /* enable all fifos */
1615 if (i == HFCUSB_D_TX)
1616 write_reg(hw, HFCUSB_CON_HDLC,
1617 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1618 else
1619 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1620 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1621 }
1622
1623 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1624 handle_led(hw, LED_POWER_ON);
1625 }
1626
1627 /* start USB data pipes dependand on device's endpoint configuration */
1628 static void
1629 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1630 {
1631 /* quick check if endpoint already running */
1632 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1633 return;
1634 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1635 return;
1636 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1637 return;
1638 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1639 return;
1640
1641 /* start rx endpoints using USB INT IN method */
1642 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1643 start_int_fifo(hw->fifos + channel * 2 + 1);
1644
1645 /* start rx endpoints using USB ISO IN method */
1646 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1647 switch (channel) {
1648 case HFC_CHAN_D:
1649 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1650 ISOC_PACKETS_D,
1651 (usb_complete_t)rx_iso_complete,
1652 16);
1653 break;
1654 case HFC_CHAN_E:
1655 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1656 ISOC_PACKETS_D,
1657 (usb_complete_t)rx_iso_complete,
1658 16);
1659 break;
1660 case HFC_CHAN_B1:
1661 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1662 ISOC_PACKETS_B,
1663 (usb_complete_t)rx_iso_complete,
1664 16);
1665 break;
1666 case HFC_CHAN_B2:
1667 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1668 ISOC_PACKETS_B,
1669 (usb_complete_t)rx_iso_complete,
1670 16);
1671 break;
1672 }
1673 }
1674
1675 /* start tx endpoints using USB ISO OUT method */
1676 switch (channel) {
1677 case HFC_CHAN_D:
1678 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1679 ISOC_PACKETS_B,
1680 (usb_complete_t)tx_iso_complete, 1);
1681 break;
1682 case HFC_CHAN_B1:
1683 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1684 ISOC_PACKETS_D,
1685 (usb_complete_t)tx_iso_complete, 1);
1686 break;
1687 case HFC_CHAN_B2:
1688 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1689 ISOC_PACKETS_B,
1690 (usb_complete_t)tx_iso_complete, 1);
1691 break;
1692 }
1693 }
1694
1695 /* stop USB data pipes dependand on device's endpoint configuration */
1696 static void
1697 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1698 {
1699 /* quick check if endpoint currently running */
1700 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1701 return;
1702 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1703 return;
1704 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1705 return;
1706 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1707 return;
1708
1709 /* rx endpoints using USB INT IN method */
1710 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1711 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1712
1713 /* rx endpoints using USB ISO IN method */
1714 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1715 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1716
1717 /* tx endpoints using USB ISO OUT method */
1718 if (channel != HFC_CHAN_E)
1719 stop_iso_gracefull(hw->fifos + channel * 2);
1720 }
1721
1722
1723 /* Hardware Initialization */
1724 static int
1725 setup_hfcsusb(struct hfcsusb *hw)
1726 {
1727 u_char b;
1728
1729 if (debug & DBG_HFC_CALL_TRACE)
1730 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1731
1732 /* check the chip id */
1733 if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1734 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1735 hw->name, __func__);
1736 return 1;
1737 }
1738 if (b != HFCUSB_CHIPID) {
1739 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1740 hw->name, __func__, b);
1741 return 1;
1742 }
1743
1744 /* first set the needed config, interface and alternate */
1745 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1746
1747 hw->led_state = 0;
1748
1749 /* init the background machinery for control requests */
1750 hw->ctrl_read.bRequestType = 0xc0;
1751 hw->ctrl_read.bRequest = 1;
1752 hw->ctrl_read.wLength = cpu_to_le16(1);
1753 hw->ctrl_write.bRequestType = 0x40;
1754 hw->ctrl_write.bRequest = 0;
1755 hw->ctrl_write.wLength = 0;
1756 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1757 (u_char *)&hw->ctrl_write, NULL, 0,
1758 (usb_complete_t)ctrl_complete, hw);
1759
1760 reset_hfcsusb(hw);
1761 return 0;
1762 }
1763
1764 static void
1765 release_hw(struct hfcsusb *hw)
1766 {
1767 if (debug & DBG_HFC_CALL_TRACE)
1768 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1769
1770 /*
1771 * stop all endpoints gracefully
1772 * TODO: mISDN_core should generate CLOSE_CHANNEL
1773 * signals after calling mISDN_unregister_device()
1774 */
1775 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1776 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1777 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1778 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1779 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1780 if (hw->protocol == ISDN_P_TE_S0)
1781 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1782
1783 mISDN_unregister_device(&hw->dch.dev);
1784 mISDN_freebchannel(&hw->bch[1]);
1785 mISDN_freebchannel(&hw->bch[0]);
1786 mISDN_freedchannel(&hw->dch);
1787
1788 if (hw->ctrl_urb) {
1789 usb_kill_urb(hw->ctrl_urb);
1790 usb_free_urb(hw->ctrl_urb);
1791 hw->ctrl_urb = NULL;
1792 }
1793
1794 if (hw->intf)
1795 usb_set_intfdata(hw->intf, NULL);
1796 list_del(&hw->list);
1797 kfree(hw);
1798 hw = NULL;
1799 }
1800
1801 static void
1802 deactivate_bchannel(struct bchannel *bch)
1803 {
1804 struct hfcsusb *hw = bch->hw;
1805 u_long flags;
1806
1807 if (bch->debug & DEBUG_HW)
1808 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1809 hw->name, __func__, bch->nr);
1810
1811 spin_lock_irqsave(&hw->lock, flags);
1812 mISDN_clear_bchannel(bch);
1813 spin_unlock_irqrestore(&hw->lock, flags);
1814 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1815 hfcsusb_stop_endpoint(hw, bch->nr);
1816 }
1817
1818 /*
1819 * Layer 1 B-channel hardware access
1820 */
1821 static int
1822 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1823 {
1824 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1825 int ret = -EINVAL;
1826
1827 if (bch->debug & DEBUG_HW)
1828 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1829
1830 switch (cmd) {
1831 case HW_TESTRX_RAW:
1832 case HW_TESTRX_HDLC:
1833 case HW_TESTRX_OFF:
1834 ret = -EINVAL;
1835 break;
1836
1837 case CLOSE_CHANNEL:
1838 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1839 if (test_bit(FLG_ACTIVE, &bch->Flags))
1840 deactivate_bchannel(bch);
1841 ch->protocol = ISDN_P_NONE;
1842 ch->peer = NULL;
1843 module_put(THIS_MODULE);
1844 ret = 0;
1845 break;
1846 case CONTROL_CHANNEL:
1847 ret = channel_bctrl(bch, arg);
1848 break;
1849 default:
1850 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1851 __func__, cmd);
1852 }
1853 return ret;
1854 }
1855
1856 static int
1857 setup_instance(struct hfcsusb *hw, struct device *parent)
1858 {
1859 u_long flags;
1860 int err, i;
1861
1862 if (debug & DBG_HFC_CALL_TRACE)
1863 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1864
1865 spin_lock_init(&hw->ctrl_lock);
1866 spin_lock_init(&hw->lock);
1867
1868 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1869 hw->dch.debug = debug & 0xFFFF;
1870 hw->dch.hw = hw;
1871 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1872 hw->dch.dev.D.send = hfcusb_l2l1D;
1873 hw->dch.dev.D.ctrl = hfc_dctrl;
1874
1875 /* enable E-Channel logging */
1876 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1877 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1878
1879 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1880 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1881 hw->dch.dev.nrbchan = 2;
1882 for (i = 0; i < 2; i++) {
1883 hw->bch[i].nr = i + 1;
1884 set_channelmap(i + 1, hw->dch.dev.channelmap);
1885 hw->bch[i].debug = debug;
1886 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1887 hw->bch[i].hw = hw;
1888 hw->bch[i].ch.send = hfcusb_l2l1B;
1889 hw->bch[i].ch.ctrl = hfc_bctrl;
1890 hw->bch[i].ch.nr = i + 1;
1891 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1892 }
1893
1894 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1895 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1896 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1897 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1898 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1899 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1900 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1901 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1902
1903 err = setup_hfcsusb(hw);
1904 if (err)
1905 goto out;
1906
1907 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1908 hfcsusb_cnt + 1);
1909 printk(KERN_INFO "%s: registered as '%s'\n",
1910 DRIVER_NAME, hw->name);
1911
1912 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1913 if (err)
1914 goto out;
1915
1916 hfcsusb_cnt++;
1917 write_lock_irqsave(&HFClock, flags);
1918 list_add_tail(&hw->list, &HFClist);
1919 write_unlock_irqrestore(&HFClock, flags);
1920 return 0;
1921
1922 out:
1923 mISDN_freebchannel(&hw->bch[1]);
1924 mISDN_freebchannel(&hw->bch[0]);
1925 mISDN_freedchannel(&hw->dch);
1926 kfree(hw);
1927 return err;
1928 }
1929
1930 static int
1931 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1932 {
1933 struct hfcsusb *hw;
1934 struct usb_device *dev = interface_to_usbdev(intf);
1935 struct usb_host_interface *iface = intf->cur_altsetting;
1936 struct usb_host_interface *iface_used = NULL;
1937 struct usb_host_endpoint *ep;
1938 struct hfcsusb_vdata *driver_info;
1939 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1940 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1941 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1942 alt_used = 0;
1943
1944 vend_idx = 0xffff;
1945 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1946 if ((le16_to_cpu(dev->descriptor.idVendor)
1947 == hfcsusb_idtab[i].idVendor) &&
1948 (le16_to_cpu(dev->descriptor.idProduct)
1949 == hfcsusb_idtab[i].idProduct)) {
1950 vend_idx = i;
1951 continue;
1952 }
1953 }
1954
1955 printk(KERN_DEBUG
1956 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1957 __func__, ifnum, iface->desc.bAlternateSetting,
1958 intf->minor, vend_idx);
1959
1960 if (vend_idx == 0xffff) {
1961 printk(KERN_WARNING
1962 "%s: no valid vendor found in USB descriptor\n",
1963 __func__);
1964 return -EIO;
1965 }
1966 /* if vendor and product ID is OK, start probing alternate settings */
1967 alt_idx = 0;
1968 small_match = -1;
1969
1970 /* default settings */
1971 iso_packet_size = 16;
1972 packet_size = 64;
1973
1974 while (alt_idx < intf->num_altsetting) {
1975 iface = intf->altsetting + alt_idx;
1976 probe_alt_setting = iface->desc.bAlternateSetting;
1977 cfg_used = 0;
1978
1979 while (validconf[cfg_used][0]) {
1980 cfg_found = 1;
1981 vcf = validconf[cfg_used];
1982 ep = iface->endpoint;
1983 memcpy(cmptbl, vcf, 16 * sizeof(int));
1984
1985 /* check for all endpoints in this alternate setting */
1986 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1987 ep_addr = ep->desc.bEndpointAddress;
1988
1989 /* get endpoint base */
1990 idx = ((ep_addr & 0x7f) - 1) * 2;
1991 if (ep_addr & 0x80)
1992 idx++;
1993 attr = ep->desc.bmAttributes;
1994
1995 if (cmptbl[idx] != EP_NOP) {
1996 if (cmptbl[idx] == EP_NUL)
1997 cfg_found = 0;
1998 if (attr == USB_ENDPOINT_XFER_INT
1999 && cmptbl[idx] == EP_INT)
2000 cmptbl[idx] = EP_NUL;
2001 if (attr == USB_ENDPOINT_XFER_BULK
2002 && cmptbl[idx] == EP_BLK)
2003 cmptbl[idx] = EP_NUL;
2004 if (attr == USB_ENDPOINT_XFER_ISOC
2005 && cmptbl[idx] == EP_ISO)
2006 cmptbl[idx] = EP_NUL;
2007
2008 if (attr == USB_ENDPOINT_XFER_INT &&
2009 ep->desc.bInterval < vcf[17]) {
2010 cfg_found = 0;
2011 }
2012 }
2013 ep++;
2014 }
2015
2016 for (i = 0; i < 16; i++)
2017 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2018 cfg_found = 0;
2019
2020 if (cfg_found) {
2021 if (small_match < cfg_used) {
2022 small_match = cfg_used;
2023 alt_used = probe_alt_setting;
2024 iface_used = iface;
2025 }
2026 }
2027 cfg_used++;
2028 }
2029 alt_idx++;
2030 } /* (alt_idx < intf->num_altsetting) */
2031
2032 /* not found a valid USB Ta Endpoint config */
2033 if (small_match == -1)
2034 return -EIO;
2035
2036 iface = iface_used;
2037 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2038 if (!hw)
2039 return -ENOMEM; /* got no mem */
2040 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2041
2042 ep = iface->endpoint;
2043 vcf = validconf[small_match];
2044
2045 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2046 struct usb_fifo *f;
2047
2048 ep_addr = ep->desc.bEndpointAddress;
2049 /* get endpoint base */
2050 idx = ((ep_addr & 0x7f) - 1) * 2;
2051 if (ep_addr & 0x80)
2052 idx++;
2053 f = &hw->fifos[idx & 7];
2054
2055 /* init Endpoints */
2056 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2057 ep++;
2058 continue;
2059 }
2060 switch (ep->desc.bmAttributes) {
2061 case USB_ENDPOINT_XFER_INT:
2062 f->pipe = usb_rcvintpipe(dev,
2063 ep->desc.bEndpointAddress);
2064 f->usb_transfer_mode = USB_INT;
2065 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2066 break;
2067 case USB_ENDPOINT_XFER_BULK:
2068 if (ep_addr & 0x80)
2069 f->pipe = usb_rcvbulkpipe(dev,
2070 ep->desc.bEndpointAddress);
2071 else
2072 f->pipe = usb_sndbulkpipe(dev,
2073 ep->desc.bEndpointAddress);
2074 f->usb_transfer_mode = USB_BULK;
2075 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2076 break;
2077 case USB_ENDPOINT_XFER_ISOC:
2078 if (ep_addr & 0x80)
2079 f->pipe = usb_rcvisocpipe(dev,
2080 ep->desc.bEndpointAddress);
2081 else
2082 f->pipe = usb_sndisocpipe(dev,
2083 ep->desc.bEndpointAddress);
2084 f->usb_transfer_mode = USB_ISOC;
2085 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2086 break;
2087 default:
2088 f->pipe = 0;
2089 }
2090
2091 if (f->pipe) {
2092 f->fifonum = idx & 7;
2093 f->hw = hw;
2094 f->usb_packet_maxlen =
2095 le16_to_cpu(ep->desc.wMaxPacketSize);
2096 f->intervall = ep->desc.bInterval;
2097 }
2098 ep++;
2099 }
2100 hw->dev = dev; /* save device */
2101 hw->if_used = ifnum; /* save used interface */
2102 hw->alt_used = alt_used; /* and alternate config */
2103 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2104 hw->cfg_used = vcf[16]; /* store used config */
2105 hw->vend_idx = vend_idx; /* store found vendor */
2106 hw->packet_size = packet_size;
2107 hw->iso_packet_size = iso_packet_size;
2108
2109 /* create the control pipes needed for register access */
2110 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2111 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2112 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2113
2114 driver_info =
2115 (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2116 printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2117 hw->name, __func__, driver_info->vend_name,
2118 conf_str[small_match], ifnum, alt_used);
2119
2120 if (setup_instance(hw, dev->dev.parent))
2121 return -EIO;
2122
2123 hw->intf = intf;
2124 usb_set_intfdata(hw->intf, hw);
2125 return 0;
2126 }
2127
2128 /* function called when an active device is removed */
2129 static void
2130 hfcsusb_disconnect(struct usb_interface *intf)
2131 {
2132 struct hfcsusb *hw = usb_get_intfdata(intf);
2133 struct hfcsusb *next;
2134 int cnt = 0;
2135
2136 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2137
2138 handle_led(hw, LED_POWER_OFF);
2139 release_hw(hw);
2140
2141 list_for_each_entry_safe(hw, next, &HFClist, list)
2142 cnt++;
2143 if (!cnt)
2144 hfcsusb_cnt = 0;
2145
2146 usb_set_intfdata(intf, NULL);
2147 }
2148
2149 static struct usb_driver hfcsusb_drv = {
2150 .name = DRIVER_NAME,
2151 .id_table = hfcsusb_idtab,
2152 .probe = hfcsusb_probe,
2153 .disconnect = hfcsusb_disconnect,
2154 };
2155
2156 module_usb_driver(hfcsusb_drv);