]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/isdn/hardware/mISDN/hfcsusb.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2 * mISDN driver for Colognechip HFC-S USB chip
3 *
4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 *
22 * module params
23 * debug=<n>, default=0, with n=0xHHHHGGGG
24 * H - l1 driver flags described in hfcsusb.h
25 * G - common mISDN debug flags described at mISDNhw.h
26 *
27 * poll=<n>, default 128
28 * n : burst size of PH_DATA_IND at transparent rx data
29 *
30 * Revision: 0.3.3 (socket), 2008-11-05
31 */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 if (debug & DBG_HFC_CALL_TRACE)
70 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72 if (hw->ctrl_cnt) {
73 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 hw->ctrl_urb->transfer_buffer = NULL;
76 hw->ctrl_urb->transfer_buffer_length = 0;
77 hw->ctrl_write.wIndex =
78 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 hw->ctrl_write.wValue =
80 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 }
84 }
85
86 /*
87 * queue a control transfer request to write HFC-S USB
88 * chip register using CTRL resuest queue
89 */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 struct ctrl_buf *buf;
93
94 if (debug & DBG_HFC_CALL_TRACE)
95 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 hw->name, __func__, reg, val);
97
98 spin_lock(&hw->ctrl_lock);
99 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 spin_unlock(&hw->ctrl_lock);
101 return 1;
102 }
103 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 buf->hfcs_reg = reg;
105 buf->reg_val = val;
106 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 hw->ctrl_in_idx = 0;
108 if (++hw->ctrl_cnt == 1)
109 ctrl_start_transfer(hw);
110 spin_unlock(&hw->ctrl_lock);
111
112 return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121 if (debug & DBG_HFC_CALL_TRACE)
122 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124 urb->dev = hw->dev;
125 if (hw->ctrl_cnt) {
126 hw->ctrl_cnt--; /* decrement actual count */
127 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 hw->ctrl_out_idx = 0; /* pointer wrap */
129
130 ctrl_start_transfer(hw); /* start next transfer */
131 }
132 }
133
134 /* handle LED bits */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 if (set_on) {
139 if (led_bits < 0)
140 hw->led_state &= ~abs(led_bits);
141 else
142 hw->led_state |= led_bits;
143 } else {
144 if (led_bits < 0)
145 hw->led_state |= abs(led_bits);
146 else
147 hw->led_state &= ~led_bits;
148 }
149 }
150
151 /* handle LED requests */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 hfcsusb_idtab[hw->vend_idx].driver_info;
157 __u8 tmpled;
158
159 if (driver_info->led_scheme == LED_OFF)
160 return;
161 tmpled = hw->led_state;
162
163 switch (event) {
164 case LED_POWER_ON:
165 set_led_bit(hw, driver_info->led_bits[0], 1);
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 set_led_bit(hw, driver_info->led_bits[2], 0);
168 set_led_bit(hw, driver_info->led_bits[3], 0);
169 break;
170 case LED_POWER_OFF:
171 set_led_bit(hw, driver_info->led_bits[0], 0);
172 set_led_bit(hw, driver_info->led_bits[1], 0);
173 set_led_bit(hw, driver_info->led_bits[2], 0);
174 set_led_bit(hw, driver_info->led_bits[3], 0);
175 break;
176 case LED_S0_ON:
177 set_led_bit(hw, driver_info->led_bits[1], 1);
178 break;
179 case LED_S0_OFF:
180 set_led_bit(hw, driver_info->led_bits[1], 0);
181 break;
182 case LED_B1_ON:
183 set_led_bit(hw, driver_info->led_bits[2], 1);
184 break;
185 case LED_B1_OFF:
186 set_led_bit(hw, driver_info->led_bits[2], 0);
187 break;
188 case LED_B2_ON:
189 set_led_bit(hw, driver_info->led_bits[3], 1);
190 break;
191 case LED_B2_OFF:
192 set_led_bit(hw, driver_info->led_bits[3], 0);
193 break;
194 }
195
196 if (hw->led_state != tmpled) {
197 if (debug & DBG_HFC_CALL_TRACE)
198 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 hw->name, __func__,
200 HFCUSB_P_DATA, hw->led_state);
201
202 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 }
204 }
205
206 /*
207 * Layer2 -> Layer 1 Bchannel data
208 */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 struct bchannel *bch = container_of(ch, struct bchannel, ch);
213 struct hfcsusb *hw = bch->hw;
214 int ret = -EINVAL;
215 struct mISDNhead *hh = mISDN_HEAD_P(skb);
216 u_long flags;
217
218 if (debug & DBG_HFC_CALL_TRACE)
219 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221 switch (hh->prim) {
222 case PH_DATA_REQ:
223 spin_lock_irqsave(&hw->lock, flags);
224 ret = bchannel_senddata(bch, skb);
225 spin_unlock_irqrestore(&hw->lock, flags);
226 if (debug & DBG_HFC_CALL_TRACE)
227 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 hw->name, __func__, ret);
229 if (ret > 0)
230 ret = 0;
231 return ret;
232 case PH_ACTIVATE_REQ:
233 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234 hfcsusb_start_endpoint(hw, bch->nr - 1);
235 ret = hfcsusb_setup_bch(bch, ch->protocol);
236 } else
237 ret = 0;
238 if (!ret)
239 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240 0, NULL, GFP_KERNEL);
241 break;
242 case PH_DEACTIVATE_REQ:
243 deactivate_bchannel(bch);
244 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245 0, NULL, GFP_KERNEL);
246 ret = 0;
247 break;
248 }
249 if (!ret)
250 dev_kfree_skb(skb);
251 return ret;
252 }
253
254 /*
255 * send full D/B channel status information
256 * as MPH_INFORMATION_IND
257 */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261 struct ph_info *phi;
262 struct dchannel *dch = &hw->dch;
263 int i;
264
265 phi = kzalloc(sizeof(struct ph_info) +
266 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267 phi->dch.ch.protocol = hw->protocol;
268 phi->dch.ch.Flags = dch->Flags;
269 phi->dch.state = dch->state;
270 phi->dch.num_bch = dch->dev.nrbchan;
271 for (i = 0; i < dch->dev.nrbchan; i++) {
272 phi->bch[i].protocol = hw->bch[i].ch.protocol;
273 phi->bch[i].Flags = hw->bch[i].Flags;
274 }
275 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278 kfree(phi);
279 }
280
281 /*
282 * Layer2 -> Layer 1 Dchannel data
283 */
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
288 struct dchannel *dch = container_of(dev, struct dchannel, dev);
289 struct mISDNhead *hh = mISDN_HEAD_P(skb);
290 struct hfcsusb *hw = dch->hw;
291 int ret = -EINVAL;
292 u_long flags;
293
294 switch (hh->prim) {
295 case PH_DATA_REQ:
296 if (debug & DBG_HFC_CALL_TRACE)
297 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298 hw->name, __func__);
299
300 spin_lock_irqsave(&hw->lock, flags);
301 ret = dchannel_senddata(dch, skb);
302 spin_unlock_irqrestore(&hw->lock, flags);
303 if (ret > 0) {
304 ret = 0;
305 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306 }
307 break;
308
309 case PH_ACTIVATE_REQ:
310 if (debug & DBG_HFC_CALL_TRACE)
311 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312 hw->name, __func__,
313 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314
315 if (hw->protocol == ISDN_P_NT_S0) {
316 ret = 0;
317 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318 _queue_data(&dch->dev.D,
319 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320 NULL, GFP_ATOMIC);
321 } else {
322 hfcsusb_ph_command(hw,
323 HFC_L1_ACTIVATE_NT);
324 test_and_set_bit(FLG_L2_ACTIVATED,
325 &dch->Flags);
326 }
327 } else {
328 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329 ret = l1_event(dch->l1, hh->prim);
330 }
331 break;
332
333 case PH_DEACTIVATE_REQ:
334 if (debug & DBG_HFC_CALL_TRACE)
335 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336 hw->name, __func__);
337 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338
339 if (hw->protocol == ISDN_P_NT_S0) {
340 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341 spin_lock_irqsave(&hw->lock, flags);
342 skb_queue_purge(&dch->squeue);
343 if (dch->tx_skb) {
344 dev_kfree_skb(dch->tx_skb);
345 dch->tx_skb = NULL;
346 }
347 dch->tx_idx = 0;
348 if (dch->rx_skb) {
349 dev_kfree_skb(dch->rx_skb);
350 dch->rx_skb = NULL;
351 }
352 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
353 spin_unlock_irqrestore(&hw->lock, flags);
354 #ifdef FIXME
355 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
356 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357 #endif
358 ret = 0;
359 } else
360 ret = l1_event(dch->l1, hh->prim);
361 break;
362 case MPH_INFORMATION_REQ:
363 hfcsusb_ph_info(hw);
364 ret = 0;
365 break;
366 }
367
368 return ret;
369 }
370
371 /*
372 * Layer 1 callback function
373 */
374 static int
375 hfc_l1callback(struct dchannel *dch, u_int cmd)
376 {
377 struct hfcsusb *hw = dch->hw;
378
379 if (debug & DBG_HFC_CALL_TRACE)
380 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381 hw->name, __func__, cmd);
382
383 switch (cmd) {
384 case INFO3_P8:
385 case INFO3_P10:
386 case HW_RESET_REQ:
387 case HW_POWERUP_REQ:
388 break;
389
390 case HW_DEACT_REQ:
391 skb_queue_purge(&dch->squeue);
392 if (dch->tx_skb) {
393 dev_kfree_skb(dch->tx_skb);
394 dch->tx_skb = NULL;
395 }
396 dch->tx_idx = 0;
397 if (dch->rx_skb) {
398 dev_kfree_skb(dch->rx_skb);
399 dch->rx_skb = NULL;
400 }
401 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
402 break;
403 case PH_ACTIVATE_IND:
404 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
405 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406 GFP_ATOMIC);
407 break;
408 case PH_DEACTIVATE_IND:
409 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
410 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411 GFP_ATOMIC);
412 break;
413 default:
414 if (dch->debug & DEBUG_HW)
415 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416 hw->name, __func__, cmd);
417 return -1;
418 }
419 hfcsusb_ph_info(hw);
420 return 0;
421 }
422
423 static int
424 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425 struct channel_req *rq)
426 {
427 int err = 0;
428
429 if (debug & DEBUG_HW_OPEN)
430 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432 __builtin_return_address(0));
433 if (rq->protocol == ISDN_P_NONE)
434 return -EINVAL;
435
436 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
439
440 /* E-Channel logging */
441 if (rq->adr.channel == 1) {
442 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444 set_bit(FLG_ACTIVE, &hw->ech.Flags);
445 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
446 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
447 } else
448 return -EINVAL;
449 }
450
451 if (!hw->initdone) {
452 hw->protocol = rq->protocol;
453 if (rq->protocol == ISDN_P_TE_S0) {
454 err = create_l1(&hw->dch, hfc_l1callback);
455 if (err)
456 return err;
457 }
458 setPortMode(hw);
459 ch->protocol = rq->protocol;
460 hw->initdone = 1;
461 } else {
462 if (rq->protocol != ch->protocol)
463 return -EPROTONOSUPPORT;
464 }
465
466 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469 0, NULL, GFP_KERNEL);
470 rq->ch = ch;
471 if (!try_module_get(THIS_MODULE))
472 printk(KERN_WARNING "%s: %s: cannot get module\n",
473 hw->name, __func__);
474 return 0;
475 }
476
477 static int
478 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
479 {
480 struct bchannel *bch;
481
482 if (rq->adr.channel == 0 || rq->adr.channel > 2)
483 return -EINVAL;
484 if (rq->protocol == ISDN_P_NONE)
485 return -EINVAL;
486
487 if (debug & DBG_HFC_CALL_TRACE)
488 printk(KERN_DEBUG "%s: %s B%i\n",
489 hw->name, __func__, rq->adr.channel);
490
491 bch = &hw->bch[rq->adr.channel - 1];
492 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493 return -EBUSY; /* b-channel can be only open once */
494 bch->ch.protocol = rq->protocol;
495 rq->ch = &bch->ch;
496
497 if (!try_module_get(THIS_MODULE))
498 printk(KERN_WARNING "%s: %s:cannot get module\n",
499 hw->name, __func__);
500 return 0;
501 }
502
503 static int
504 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
505 {
506 int ret = 0;
507
508 if (debug & DBG_HFC_CALL_TRACE)
509 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510 hw->name, __func__, (cq->op), (cq->channel));
511
512 switch (cq->op) {
513 case MISDN_CTRL_GETOP:
514 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
515 MISDN_CTRL_DISCONNECT;
516 break;
517 default:
518 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519 hw->name, __func__, cq->op);
520 ret = -EINVAL;
521 break;
522 }
523 return ret;
524 }
525
526 /*
527 * device control function
528 */
529 static int
530 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
531 {
532 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
533 struct dchannel *dch = container_of(dev, struct dchannel, dev);
534 struct hfcsusb *hw = dch->hw;
535 struct channel_req *rq;
536 int err = 0;
537
538 if (dch->debug & DEBUG_HW)
539 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540 hw->name, __func__, cmd, arg);
541 switch (cmd) {
542 case OPEN_CHANNEL:
543 rq = arg;
544 if ((rq->protocol == ISDN_P_TE_S0) ||
545 (rq->protocol == ISDN_P_NT_S0))
546 err = open_dchannel(hw, ch, rq);
547 else
548 err = open_bchannel(hw, rq);
549 if (!err)
550 hw->open++;
551 break;
552 case CLOSE_CHANNEL:
553 hw->open--;
554 if (debug & DEBUG_HW_OPEN)
555 printk(KERN_DEBUG
556 "%s: %s: dev(%d) close from %p (open %d)\n",
557 hw->name, __func__, hw->dch.dev.id,
558 __builtin_return_address(0), hw->open);
559 if (!hw->open) {
560 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561 if (hw->fifos[HFCUSB_PCM_RX].pipe)
562 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563 handle_led(hw, LED_POWER_ON);
564 }
565 module_put(THIS_MODULE);
566 break;
567 case CONTROL_CHANNEL:
568 err = channel_ctrl(hw, arg);
569 break;
570 default:
571 if (dch->debug & DEBUG_HW)
572 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573 hw->name, __func__, cmd);
574 return -EINVAL;
575 }
576 return err;
577 }
578
579 /*
580 * S0 TE state change event handler
581 */
582 static void
583 ph_state_te(struct dchannel *dch)
584 {
585 struct hfcsusb *hw = dch->hw;
586
587 if (debug & DEBUG_HW) {
588 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590 HFC_TE_LAYER1_STATES[dch->state]);
591 else
592 printk(KERN_DEBUG "%s: %s: TE F%d\n",
593 hw->name, __func__, dch->state);
594 }
595
596 switch (dch->state) {
597 case 0:
598 l1_event(dch->l1, HW_RESET_IND);
599 break;
600 case 3:
601 l1_event(dch->l1, HW_DEACT_IND);
602 break;
603 case 5:
604 case 8:
605 l1_event(dch->l1, ANYSIGNAL);
606 break;
607 case 6:
608 l1_event(dch->l1, INFO2);
609 break;
610 case 7:
611 l1_event(dch->l1, INFO4_P8);
612 break;
613 }
614 if (dch->state == 7)
615 handle_led(hw, LED_S0_ON);
616 else
617 handle_led(hw, LED_S0_OFF);
618 }
619
620 /*
621 * S0 NT state change event handler
622 */
623 static void
624 ph_state_nt(struct dchannel *dch)
625 {
626 struct hfcsusb *hw = dch->hw;
627
628 if (debug & DEBUG_HW) {
629 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630 printk(KERN_DEBUG "%s: %s: %s\n",
631 hw->name, __func__,
632 HFC_NT_LAYER1_STATES[dch->state]);
633
634 else
635 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636 hw->name, __func__, dch->state);
637 }
638
639 switch (dch->state) {
640 case (1):
641 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
642 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
643 hw->nt_timer = 0;
644 hw->timers &= ~NT_ACTIVATION_TIMER;
645 handle_led(hw, LED_S0_OFF);
646 break;
647
648 case (2):
649 if (hw->nt_timer < 0) {
650 hw->nt_timer = 0;
651 hw->timers &= ~NT_ACTIVATION_TIMER;
652 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653 } else {
654 hw->timers |= NT_ACTIVATION_TIMER;
655 hw->nt_timer = NT_T1_COUNT;
656 /* allow G2 -> G3 transition */
657 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
658 }
659 break;
660 case (3):
661 hw->nt_timer = 0;
662 hw->timers &= ~NT_ACTIVATION_TIMER;
663 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
664 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
665 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
666 handle_led(hw, LED_S0_ON);
667 break;
668 case (4):
669 hw->nt_timer = 0;
670 hw->timers &= ~NT_ACTIVATION_TIMER;
671 break;
672 default:
673 break;
674 }
675 hfcsusb_ph_info(hw);
676 }
677
678 static void
679 ph_state(struct dchannel *dch)
680 {
681 struct hfcsusb *hw = dch->hw;
682
683 if (hw->protocol == ISDN_P_NT_S0)
684 ph_state_nt(dch);
685 else if (hw->protocol == ISDN_P_TE_S0)
686 ph_state_te(dch);
687 }
688
689 /*
690 * disable/enable BChannel for desired protocoll
691 */
692 static int
693 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
694 {
695 struct hfcsusb *hw = bch->hw;
696 __u8 conhdlc, sctrl, sctrl_r;
697
698 if (debug & DEBUG_HW)
699 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700 hw->name, __func__, bch->state, protocol,
701 bch->nr);
702
703 /* setup val for CON_HDLC */
704 conhdlc = 0;
705 if (protocol > ISDN_P_NONE)
706 conhdlc = 8; /* enable FIFO */
707
708 switch (protocol) {
709 case (-1): /* used for init */
710 bch->state = -1;
711 /* fall through */
712 case (ISDN_P_NONE):
713 if (bch->state == ISDN_P_NONE)
714 return 0; /* already in idle state */
715 bch->state = ISDN_P_NONE;
716 clear_bit(FLG_HDLC, &bch->Flags);
717 clear_bit(FLG_TRANSPARENT, &bch->Flags);
718 break;
719 case (ISDN_P_B_RAW):
720 conhdlc |= 2;
721 bch->state = protocol;
722 set_bit(FLG_TRANSPARENT, &bch->Flags);
723 break;
724 case (ISDN_P_B_HDLC):
725 bch->state = protocol;
726 set_bit(FLG_HDLC, &bch->Flags);
727 break;
728 default:
729 if (debug & DEBUG_HW)
730 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731 hw->name, __func__, protocol);
732 return -ENOPROTOOPT;
733 }
734
735 if (protocol >= ISDN_P_NONE) {
736 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738 write_reg(hw, HFCUSB_INC_RES_F, 2);
739 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741 write_reg(hw, HFCUSB_INC_RES_F, 2);
742
743 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744 sctrl_r = 0x0;
745 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746 sctrl |= 1;
747 sctrl_r |= 1;
748 }
749 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750 sctrl |= 2;
751 sctrl_r |= 2;
752 }
753 write_reg(hw, HFCUSB_SCTRL, sctrl);
754 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
755
756 if (protocol > ISDN_P_NONE)
757 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758 else
759 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760 LED_B2_OFF);
761 }
762 hfcsusb_ph_info(hw);
763 return 0;
764 }
765
766 static void
767 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
768 {
769 if (debug & DEBUG_HW)
770 printk(KERN_DEBUG "%s: %s: %x\n",
771 hw->name, __func__, command);
772
773 switch (command) {
774 case HFC_L1_ACTIVATE_TE:
775 /* force sending sending INFO1 */
776 write_reg(hw, HFCUSB_STATES, 0x14);
777 /* start l1 activation */
778 write_reg(hw, HFCUSB_STATES, 0x04);
779 break;
780
781 case HFC_L1_FORCE_DEACTIVATE_TE:
782 write_reg(hw, HFCUSB_STATES, 0x10);
783 write_reg(hw, HFCUSB_STATES, 0x03);
784 break;
785
786 case HFC_L1_ACTIVATE_NT:
787 if (hw->dch.state == 3)
788 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
789 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
790 else
791 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
792 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
793 break;
794
795 case HFC_L1_DEACTIVATE_NT:
796 write_reg(hw, HFCUSB_STATES,
797 HFCUSB_DO_ACTION);
798 break;
799 }
800 }
801
802 /*
803 * Layer 1 B-channel hardware access
804 */
805 static int
806 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
807 {
808 return mISDN_ctrl_bchannel(bch, cq);
809 }
810
811 /* collect data from incoming interrupt or isochron USB data */
812 static void
813 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814 int finish)
815 {
816 struct hfcsusb *hw = fifo->hw;
817 struct sk_buff *rx_skb = NULL;
818 int maxlen = 0;
819 int fifon = fifo->fifonum;
820 int i;
821 int hdlc = 0;
822 unsigned long flags;
823
824 if (debug & DBG_HFC_CALL_TRACE)
825 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
826 "dch(%p) bch(%p) ech(%p)\n",
827 hw->name, __func__, fifon, len,
828 fifo->dch, fifo->bch, fifo->ech);
829
830 if (!len)
831 return;
832
833 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
834 printk(KERN_DEBUG "%s: %s: undefined channel\n",
835 hw->name, __func__);
836 return;
837 }
838
839 spin_lock_irqsave(&hw->lock, flags);
840 if (fifo->dch) {
841 rx_skb = fifo->dch->rx_skb;
842 maxlen = fifo->dch->maxlen;
843 hdlc = 1;
844 }
845 if (fifo->bch) {
846 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
847 fifo->bch->dropcnt += len;
848 spin_unlock_irqrestore(&hw->lock, flags);
849 return;
850 }
851 maxlen = bchannel_get_rxbuf(fifo->bch, len);
852 rx_skb = fifo->bch->rx_skb;
853 if (maxlen < 0) {
854 if (rx_skb)
855 skb_trim(rx_skb, 0);
856 pr_warning("%s.B%d: No bufferspace for %d bytes\n",
857 hw->name, fifo->bch->nr, len);
858 spin_unlock_irqrestore(&hw->lock, flags);
859 return;
860 }
861 maxlen = fifo->bch->maxlen;
862 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
863 }
864 if (fifo->ech) {
865 rx_skb = fifo->ech->rx_skb;
866 maxlen = fifo->ech->maxlen;
867 hdlc = 1;
868 }
869
870 if (fifo->dch || fifo->ech) {
871 if (!rx_skb) {
872 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
873 if (rx_skb) {
874 if (fifo->dch)
875 fifo->dch->rx_skb = rx_skb;
876 if (fifo->ech)
877 fifo->ech->rx_skb = rx_skb;
878 skb_trim(rx_skb, 0);
879 } else {
880 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
881 hw->name, __func__);
882 spin_unlock_irqrestore(&hw->lock, flags);
883 return;
884 }
885 }
886 /* D/E-Channel SKB range check */
887 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
888 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
889 "for fifo(%d) HFCUSB_D_RX\n",
890 hw->name, __func__, fifon);
891 skb_trim(rx_skb, 0);
892 spin_unlock_irqrestore(&hw->lock, flags);
893 return;
894 }
895 }
896
897 skb_put_data(rx_skb, data, len);
898
899 if (hdlc) {
900 /* we have a complete hdlc packet */
901 if (finish) {
902 if ((rx_skb->len > 3) &&
903 (!(rx_skb->data[rx_skb->len - 1]))) {
904 if (debug & DBG_HFC_FIFO_VERBOSE) {
905 printk(KERN_DEBUG "%s: %s: fifon(%i)"
906 " new RX len(%i): ",
907 hw->name, __func__, fifon,
908 rx_skb->len);
909 i = 0;
910 while (i < rx_skb->len)
911 printk("%02x ",
912 rx_skb->data[i++]);
913 printk("\n");
914 }
915
916 /* remove CRC & status */
917 skb_trim(rx_skb, rx_skb->len - 3);
918
919 if (fifo->dch)
920 recv_Dchannel(fifo->dch);
921 if (fifo->bch)
922 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
923 0);
924 if (fifo->ech)
925 recv_Echannel(fifo->ech,
926 &hw->dch);
927 } else {
928 if (debug & DBG_HFC_FIFO_VERBOSE) {
929 printk(KERN_DEBUG
930 "%s: CRC or minlen ERROR fifon(%i) "
931 "RX len(%i): ",
932 hw->name, fifon, rx_skb->len);
933 i = 0;
934 while (i < rx_skb->len)
935 printk("%02x ",
936 rx_skb->data[i++]);
937 printk("\n");
938 }
939 skb_trim(rx_skb, 0);
940 }
941 }
942 } else {
943 /* deliver transparent data to layer2 */
944 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
945 }
946 spin_unlock_irqrestore(&hw->lock, flags);
947 }
948
949 static void
950 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
951 void *buf, int num_packets, int packet_size, int interval,
952 usb_complete_t complete, void *context)
953 {
954 int k;
955
956 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
957 complete, context);
958
959 urb->number_of_packets = num_packets;
960 urb->transfer_flags = URB_ISO_ASAP;
961 urb->actual_length = 0;
962 urb->interval = interval;
963
964 for (k = 0; k < num_packets; k++) {
965 urb->iso_frame_desc[k].offset = packet_size * k;
966 urb->iso_frame_desc[k].length = packet_size;
967 urb->iso_frame_desc[k].actual_length = 0;
968 }
969 }
970
971 /* receive completion routine for all ISO tx fifos */
972 static void
973 rx_iso_complete(struct urb *urb)
974 {
975 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
976 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
977 struct hfcsusb *hw = fifo->hw;
978 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
979 status, iso_status, i;
980 __u8 *buf;
981 static __u8 eof[8];
982 __u8 s0_state;
983 unsigned long flags;
984
985 fifon = fifo->fifonum;
986 status = urb->status;
987
988 spin_lock_irqsave(&hw->lock, flags);
989 if (fifo->stop_gracefull) {
990 fifo->stop_gracefull = 0;
991 fifo->active = 0;
992 spin_unlock_irqrestore(&hw->lock, flags);
993 return;
994 }
995 spin_unlock_irqrestore(&hw->lock, flags);
996
997 /*
998 * ISO transfer only partially completed,
999 * look at individual frame status for details
1000 */
1001 if (status == -EXDEV) {
1002 if (debug & DEBUG_HW)
1003 printk(KERN_DEBUG "%s: %s: with -EXDEV "
1004 "urb->status %d, fifonum %d\n",
1005 hw->name, __func__, status, fifon);
1006
1007 /* clear status, so go on with ISO transfers */
1008 status = 0;
1009 }
1010
1011 s0_state = 0;
1012 if (fifo->active && !status) {
1013 num_isoc_packets = iso_packets[fifon];
1014 maxlen = fifo->usb_packet_maxlen;
1015
1016 for (k = 0; k < num_isoc_packets; ++k) {
1017 len = urb->iso_frame_desc[k].actual_length;
1018 offset = urb->iso_frame_desc[k].offset;
1019 buf = context_iso_urb->buffer + offset;
1020 iso_status = urb->iso_frame_desc[k].status;
1021
1022 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1023 printk(KERN_DEBUG "%s: %s: "
1024 "ISO packet %i, status: %i\n",
1025 hw->name, __func__, k, iso_status);
1026 }
1027
1028 /* USB data log for every D ISO in */
1029 if ((fifon == HFCUSB_D_RX) &&
1030 (debug & DBG_HFC_USB_VERBOSE)) {
1031 printk(KERN_DEBUG
1032 "%s: %s: %d (%d/%d) len(%d) ",
1033 hw->name, __func__, urb->start_frame,
1034 k, num_isoc_packets - 1,
1035 len);
1036 for (i = 0; i < len; i++)
1037 printk("%x ", buf[i]);
1038 printk("\n");
1039 }
1040
1041 if (!iso_status) {
1042 if (fifo->last_urblen != maxlen) {
1043 /*
1044 * save fifo fill-level threshold bits
1045 * to use them later in TX ISO URB
1046 * completions
1047 */
1048 hw->threshold_mask = buf[1];
1049
1050 if (fifon == HFCUSB_D_RX)
1051 s0_state = (buf[0] >> 4);
1052
1053 eof[fifon] = buf[0] & 1;
1054 if (len > 2)
1055 hfcsusb_rx_frame(fifo, buf + 2,
1056 len - 2, (len < maxlen)
1057 ? eof[fifon] : 0);
1058 } else
1059 hfcsusb_rx_frame(fifo, buf, len,
1060 (len < maxlen) ?
1061 eof[fifon] : 0);
1062 fifo->last_urblen = len;
1063 }
1064 }
1065
1066 /* signal S0 layer1 state change */
1067 if ((s0_state) && (hw->initdone) &&
1068 (s0_state != hw->dch.state)) {
1069 hw->dch.state = s0_state;
1070 schedule_event(&hw->dch, FLG_PHCHANGE);
1071 }
1072
1073 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1074 context_iso_urb->buffer, num_isoc_packets,
1075 fifo->usb_packet_maxlen, fifo->intervall,
1076 (usb_complete_t)rx_iso_complete, urb->context);
1077 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1078 if (errcode < 0) {
1079 if (debug & DEBUG_HW)
1080 printk(KERN_DEBUG "%s: %s: error submitting "
1081 "ISO URB: %d\n",
1082 hw->name, __func__, errcode);
1083 }
1084 } else {
1085 if (status && (debug & DBG_HFC_URB_INFO))
1086 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1087 "urb->status %d, fifonum %d\n",
1088 hw->name, __func__, status, fifon);
1089 }
1090 }
1091
1092 /* receive completion routine for all interrupt rx fifos */
1093 static void
1094 rx_int_complete(struct urb *urb)
1095 {
1096 int len, status, i;
1097 __u8 *buf, maxlen, fifon;
1098 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1099 struct hfcsusb *hw = fifo->hw;
1100 static __u8 eof[8];
1101 unsigned long flags;
1102
1103 spin_lock_irqsave(&hw->lock, flags);
1104 if (fifo->stop_gracefull) {
1105 fifo->stop_gracefull = 0;
1106 fifo->active = 0;
1107 spin_unlock_irqrestore(&hw->lock, flags);
1108 return;
1109 }
1110 spin_unlock_irqrestore(&hw->lock, flags);
1111
1112 fifon = fifo->fifonum;
1113 if ((!fifo->active) || (urb->status)) {
1114 if (debug & DBG_HFC_URB_ERROR)
1115 printk(KERN_DEBUG
1116 "%s: %s: RX-Fifo %i is going down (%i)\n",
1117 hw->name, __func__, fifon, urb->status);
1118
1119 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1120 return;
1121 }
1122 len = urb->actual_length;
1123 buf = fifo->buffer;
1124 maxlen = fifo->usb_packet_maxlen;
1125
1126 /* USB data log for every D INT in */
1127 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1128 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1129 hw->name, __func__, len);
1130 for (i = 0; i < len; i++)
1131 printk("%02x ", buf[i]);
1132 printk("\n");
1133 }
1134
1135 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1136 /* the threshold mask is in the 2nd status byte */
1137 hw->threshold_mask = buf[1];
1138
1139 /* signal S0 layer1 state change */
1140 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1141 hw->dch.state = (buf[0] >> 4);
1142 schedule_event(&hw->dch, FLG_PHCHANGE);
1143 }
1144
1145 eof[fifon] = buf[0] & 1;
1146 /* if we have more than the 2 status bytes -> collect data */
1147 if (len > 2)
1148 hfcsusb_rx_frame(fifo, buf + 2,
1149 urb->actual_length - 2,
1150 (len < maxlen) ? eof[fifon] : 0);
1151 } else {
1152 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1153 (len < maxlen) ? eof[fifon] : 0);
1154 }
1155 fifo->last_urblen = urb->actual_length;
1156
1157 status = usb_submit_urb(urb, GFP_ATOMIC);
1158 if (status) {
1159 if (debug & DEBUG_HW)
1160 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1161 hw->name, __func__);
1162 }
1163 }
1164
1165 /* transmit completion routine for all ISO tx fifos */
1166 static void
1167 tx_iso_complete(struct urb *urb)
1168 {
1169 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1170 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1171 struct hfcsusb *hw = fifo->hw;
1172 struct sk_buff *tx_skb;
1173 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1174 errcode, hdlc, i;
1175 int *tx_idx;
1176 int frame_complete, fifon, status, fillempty = 0;
1177 __u8 threshbit, *p;
1178 unsigned long flags;
1179
1180 spin_lock_irqsave(&hw->lock, flags);
1181 if (fifo->stop_gracefull) {
1182 fifo->stop_gracefull = 0;
1183 fifo->active = 0;
1184 spin_unlock_irqrestore(&hw->lock, flags);
1185 return;
1186 }
1187
1188 if (fifo->dch) {
1189 tx_skb = fifo->dch->tx_skb;
1190 tx_idx = &fifo->dch->tx_idx;
1191 hdlc = 1;
1192 } else if (fifo->bch) {
1193 tx_skb = fifo->bch->tx_skb;
1194 tx_idx = &fifo->bch->tx_idx;
1195 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1196 if (!tx_skb && !hdlc &&
1197 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1198 fillempty = 1;
1199 } else {
1200 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1201 hw->name, __func__);
1202 spin_unlock_irqrestore(&hw->lock, flags);
1203 return;
1204 }
1205
1206 fifon = fifo->fifonum;
1207 status = urb->status;
1208
1209 tx_offset = 0;
1210
1211 /*
1212 * ISO transfer only partially completed,
1213 * look at individual frame status for details
1214 */
1215 if (status == -EXDEV) {
1216 if (debug & DBG_HFC_URB_ERROR)
1217 printk(KERN_DEBUG "%s: %s: "
1218 "-EXDEV (%i) fifon (%d)\n",
1219 hw->name, __func__, status, fifon);
1220
1221 /* clear status, so go on with ISO transfers */
1222 status = 0;
1223 }
1224
1225 if (fifo->active && !status) {
1226 /* is FifoFull-threshold set for our channel? */
1227 threshbit = (hw->threshold_mask & (1 << fifon));
1228 num_isoc_packets = iso_packets[fifon];
1229
1230 /* predict dataflow to avoid fifo overflow */
1231 if (fifon >= HFCUSB_D_TX)
1232 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1233 else
1234 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1235 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1236 context_iso_urb->buffer, num_isoc_packets,
1237 fifo->usb_packet_maxlen, fifo->intervall,
1238 (usb_complete_t)tx_iso_complete, urb->context);
1239 memset(context_iso_urb->buffer, 0,
1240 sizeof(context_iso_urb->buffer));
1241 frame_complete = 0;
1242
1243 for (k = 0; k < num_isoc_packets; ++k) {
1244 /* analyze tx success of previous ISO packets */
1245 if (debug & DBG_HFC_URB_ERROR) {
1246 errcode = urb->iso_frame_desc[k].status;
1247 if (errcode) {
1248 printk(KERN_DEBUG "%s: %s: "
1249 "ISO packet %i, status: %i\n",
1250 hw->name, __func__, k, errcode);
1251 }
1252 }
1253
1254 /* Generate next ISO Packets */
1255 if (tx_skb)
1256 remain = tx_skb->len - *tx_idx;
1257 else if (fillempty)
1258 remain = 15; /* > not complete */
1259 else
1260 remain = 0;
1261
1262 if (remain > 0) {
1263 fifo->bit_line -= sink;
1264 current_len = (0 - fifo->bit_line) / 8;
1265 if (current_len > 14)
1266 current_len = 14;
1267 if (current_len < 0)
1268 current_len = 0;
1269 if (remain < current_len)
1270 current_len = remain;
1271
1272 /* how much bit do we put on the line? */
1273 fifo->bit_line += current_len * 8;
1274
1275 context_iso_urb->buffer[tx_offset] = 0;
1276 if (current_len == remain) {
1277 if (hdlc) {
1278 /* signal frame completion */
1279 context_iso_urb->
1280 buffer[tx_offset] = 1;
1281 /* add 2 byte flags and 16bit
1282 * CRC at end of ISDN frame */
1283 fifo->bit_line += 32;
1284 }
1285 frame_complete = 1;
1286 }
1287
1288 /* copy tx data to iso-urb buffer */
1289 p = context_iso_urb->buffer + tx_offset + 1;
1290 if (fillempty) {
1291 memset(p, fifo->bch->fill[0],
1292 current_len);
1293 } else {
1294 memcpy(p, (tx_skb->data + *tx_idx),
1295 current_len);
1296 *tx_idx += current_len;
1297 }
1298 urb->iso_frame_desc[k].offset = tx_offset;
1299 urb->iso_frame_desc[k].length = current_len + 1;
1300
1301 /* USB data log for every D ISO out */
1302 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1303 (debug & DBG_HFC_USB_VERBOSE)) {
1304 printk(KERN_DEBUG
1305 "%s: %s (%d/%d) offs(%d) len(%d) ",
1306 hw->name, __func__,
1307 k, num_isoc_packets - 1,
1308 urb->iso_frame_desc[k].offset,
1309 urb->iso_frame_desc[k].length);
1310
1311 for (i = urb->iso_frame_desc[k].offset;
1312 i < (urb->iso_frame_desc[k].offset
1313 + urb->iso_frame_desc[k].length);
1314 i++)
1315 printk("%x ",
1316 context_iso_urb->buffer[i]);
1317
1318 printk(" skb->len(%i) tx-idx(%d)\n",
1319 tx_skb->len, *tx_idx);
1320 }
1321
1322 tx_offset += (current_len + 1);
1323 } else {
1324 urb->iso_frame_desc[k].offset = tx_offset++;
1325 urb->iso_frame_desc[k].length = 1;
1326 /* we lower data margin every msec */
1327 fifo->bit_line -= sink;
1328 if (fifo->bit_line < BITLINE_INF)
1329 fifo->bit_line = BITLINE_INF;
1330 }
1331
1332 if (frame_complete) {
1333 frame_complete = 0;
1334
1335 if (debug & DBG_HFC_FIFO_VERBOSE) {
1336 printk(KERN_DEBUG "%s: %s: "
1337 "fifon(%i) new TX len(%i): ",
1338 hw->name, __func__,
1339 fifon, tx_skb->len);
1340 i = 0;
1341 while (i < tx_skb->len)
1342 printk("%02x ",
1343 tx_skb->data[i++]);
1344 printk("\n");
1345 }
1346
1347 dev_kfree_skb(tx_skb);
1348 tx_skb = NULL;
1349 if (fifo->dch && get_next_dframe(fifo->dch))
1350 tx_skb = fifo->dch->tx_skb;
1351 else if (fifo->bch &&
1352 get_next_bframe(fifo->bch))
1353 tx_skb = fifo->bch->tx_skb;
1354 }
1355 }
1356 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1357 if (errcode < 0) {
1358 if (debug & DEBUG_HW)
1359 printk(KERN_DEBUG
1360 "%s: %s: error submitting ISO URB: %d \n",
1361 hw->name, __func__, errcode);
1362 }
1363
1364 /*
1365 * abuse DChannel tx iso completion to trigger NT mode state
1366 * changes tx_iso_complete is assumed to be called every
1367 * fifo->intervall (ms)
1368 */
1369 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1370 && (hw->timers & NT_ACTIVATION_TIMER)) {
1371 if ((--hw->nt_timer) < 0)
1372 schedule_event(&hw->dch, FLG_PHCHANGE);
1373 }
1374
1375 } else {
1376 if (status && (debug & DBG_HFC_URB_ERROR))
1377 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1378 "fifonum=%d\n",
1379 hw->name, __func__,
1380 symbolic(urb_errlist, status), status, fifon);
1381 }
1382 spin_unlock_irqrestore(&hw->lock, flags);
1383 }
1384
1385 /*
1386 * allocs urbs and start isoc transfer with two pending urbs to avoid
1387 * gaps in the transfer chain
1388 */
1389 static int
1390 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1391 usb_complete_t complete, int packet_size)
1392 {
1393 struct hfcsusb *hw = fifo->hw;
1394 int i, k, errcode;
1395
1396 if (debug)
1397 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1398 hw->name, __func__, fifo->fifonum);
1399
1400 /* allocate Memory for Iso out Urbs */
1401 for (i = 0; i < 2; i++) {
1402 if (!(fifo->iso[i].urb)) {
1403 fifo->iso[i].urb =
1404 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1405 if (!(fifo->iso[i].urb)) {
1406 printk(KERN_DEBUG
1407 "%s: %s: alloc urb for fifo %i failed",
1408 hw->name, __func__, fifo->fifonum);
1409 }
1410 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1411 fifo->iso[i].indx = i;
1412
1413 /* Init the first iso */
1414 if (ISO_BUFFER_SIZE >=
1415 (fifo->usb_packet_maxlen *
1416 num_packets_per_urb)) {
1417 fill_isoc_urb(fifo->iso[i].urb,
1418 fifo->hw->dev, fifo->pipe,
1419 fifo->iso[i].buffer,
1420 num_packets_per_urb,
1421 fifo->usb_packet_maxlen,
1422 fifo->intervall, complete,
1423 &fifo->iso[i]);
1424 memset(fifo->iso[i].buffer, 0,
1425 sizeof(fifo->iso[i].buffer));
1426
1427 for (k = 0; k < num_packets_per_urb; k++) {
1428 fifo->iso[i].urb->
1429 iso_frame_desc[k].offset =
1430 k * packet_size;
1431 fifo->iso[i].urb->
1432 iso_frame_desc[k].length =
1433 packet_size;
1434 }
1435 } else {
1436 printk(KERN_DEBUG
1437 "%s: %s: ISO Buffer size to small!\n",
1438 hw->name, __func__);
1439 }
1440 }
1441 fifo->bit_line = BITLINE_INF;
1442
1443 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1444 fifo->active = (errcode >= 0) ? 1 : 0;
1445 fifo->stop_gracefull = 0;
1446 if (errcode < 0) {
1447 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1448 hw->name, __func__,
1449 symbolic(urb_errlist, errcode), i);
1450 }
1451 }
1452 return fifo->active;
1453 }
1454
1455 static void
1456 stop_iso_gracefull(struct usb_fifo *fifo)
1457 {
1458 struct hfcsusb *hw = fifo->hw;
1459 int i, timeout;
1460 u_long flags;
1461
1462 for (i = 0; i < 2; i++) {
1463 spin_lock_irqsave(&hw->lock, flags);
1464 if (debug)
1465 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1466 hw->name, __func__, fifo->fifonum, i);
1467 fifo->stop_gracefull = 1;
1468 spin_unlock_irqrestore(&hw->lock, flags);
1469 }
1470
1471 for (i = 0; i < 2; i++) {
1472 timeout = 3;
1473 while (fifo->stop_gracefull && timeout--)
1474 schedule_timeout_interruptible((HZ / 1000) * 16);
1475 if (debug && fifo->stop_gracefull)
1476 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1477 hw->name, __func__, fifo->fifonum, i);
1478 }
1479 }
1480
1481 static void
1482 stop_int_gracefull(struct usb_fifo *fifo)
1483 {
1484 struct hfcsusb *hw = fifo->hw;
1485 int timeout;
1486 u_long flags;
1487
1488 spin_lock_irqsave(&hw->lock, flags);
1489 if (debug)
1490 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1491 hw->name, __func__, fifo->fifonum);
1492 fifo->stop_gracefull = 1;
1493 spin_unlock_irqrestore(&hw->lock, flags);
1494
1495 timeout = 3;
1496 while (fifo->stop_gracefull && timeout--)
1497 schedule_timeout_interruptible((HZ / 1000) * 3);
1498 if (debug && fifo->stop_gracefull)
1499 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1500 hw->name, __func__, fifo->fifonum);
1501 }
1502
1503 /* start the interrupt transfer for the given fifo */
1504 static void
1505 start_int_fifo(struct usb_fifo *fifo)
1506 {
1507 struct hfcsusb *hw = fifo->hw;
1508 int errcode;
1509
1510 if (debug)
1511 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1512 hw->name, __func__, fifo->fifonum);
1513
1514 if (!fifo->urb) {
1515 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1516 if (!fifo->urb)
1517 return;
1518 }
1519 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1520 fifo->buffer, fifo->usb_packet_maxlen,
1521 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1522 fifo->active = 1;
1523 fifo->stop_gracefull = 0;
1524 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1525 if (errcode) {
1526 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1527 hw->name, __func__, errcode);
1528 fifo->active = 0;
1529 }
1530 }
1531
1532 static void
1533 setPortMode(struct hfcsusb *hw)
1534 {
1535 if (debug & DEBUG_HW)
1536 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1537 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1538
1539 if (hw->protocol == ISDN_P_TE_S0) {
1540 write_reg(hw, HFCUSB_SCTRL, 0x40);
1541 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1542 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1543 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1544 write_reg(hw, HFCUSB_STATES, 3);
1545 } else {
1546 write_reg(hw, HFCUSB_SCTRL, 0x44);
1547 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1548 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1549 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1550 write_reg(hw, HFCUSB_STATES, 1);
1551 }
1552 }
1553
1554 static void
1555 reset_hfcsusb(struct hfcsusb *hw)
1556 {
1557 struct usb_fifo *fifo;
1558 int i;
1559
1560 if (debug & DEBUG_HW)
1561 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1562
1563 /* do Chip reset */
1564 write_reg(hw, HFCUSB_CIRM, 8);
1565
1566 /* aux = output, reset off */
1567 write_reg(hw, HFCUSB_CIRM, 0x10);
1568
1569 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1570 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1571 ((hw->packet_size / 8) << 4));
1572
1573 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1574 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1575
1576 /* enable PCM/GCI master mode */
1577 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1578 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1579
1580 /* init the fifos */
1581 write_reg(hw, HFCUSB_F_THRES,
1582 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1583
1584 fifo = hw->fifos;
1585 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1586 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1587 fifo[i].max_size =
1588 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1589 fifo[i].last_urblen = 0;
1590
1591 /* set 2 bit for D- & E-channel */
1592 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1593
1594 /* enable all fifos */
1595 if (i == HFCUSB_D_TX)
1596 write_reg(hw, HFCUSB_CON_HDLC,
1597 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1598 else
1599 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1600 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1601 }
1602
1603 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1604 handle_led(hw, LED_POWER_ON);
1605 }
1606
1607 /* start USB data pipes dependand on device's endpoint configuration */
1608 static void
1609 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1610 {
1611 /* quick check if endpoint already running */
1612 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1613 return;
1614 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1615 return;
1616 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1617 return;
1618 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1619 return;
1620
1621 /* start rx endpoints using USB INT IN method */
1622 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1623 start_int_fifo(hw->fifos + channel * 2 + 1);
1624
1625 /* start rx endpoints using USB ISO IN method */
1626 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1627 switch (channel) {
1628 case HFC_CHAN_D:
1629 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1630 ISOC_PACKETS_D,
1631 (usb_complete_t)rx_iso_complete,
1632 16);
1633 break;
1634 case HFC_CHAN_E:
1635 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1636 ISOC_PACKETS_D,
1637 (usb_complete_t)rx_iso_complete,
1638 16);
1639 break;
1640 case HFC_CHAN_B1:
1641 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1642 ISOC_PACKETS_B,
1643 (usb_complete_t)rx_iso_complete,
1644 16);
1645 break;
1646 case HFC_CHAN_B2:
1647 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1648 ISOC_PACKETS_B,
1649 (usb_complete_t)rx_iso_complete,
1650 16);
1651 break;
1652 }
1653 }
1654
1655 /* start tx endpoints using USB ISO OUT method */
1656 switch (channel) {
1657 case HFC_CHAN_D:
1658 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1659 ISOC_PACKETS_B,
1660 (usb_complete_t)tx_iso_complete, 1);
1661 break;
1662 case HFC_CHAN_B1:
1663 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1664 ISOC_PACKETS_D,
1665 (usb_complete_t)tx_iso_complete, 1);
1666 break;
1667 case HFC_CHAN_B2:
1668 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1669 ISOC_PACKETS_B,
1670 (usb_complete_t)tx_iso_complete, 1);
1671 break;
1672 }
1673 }
1674
1675 /* stop USB data pipes dependand on device's endpoint configuration */
1676 static void
1677 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1678 {
1679 /* quick check if endpoint currently running */
1680 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1681 return;
1682 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1683 return;
1684 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1685 return;
1686 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1687 return;
1688
1689 /* rx endpoints using USB INT IN method */
1690 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1691 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1692
1693 /* rx endpoints using USB ISO IN method */
1694 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1695 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1696
1697 /* tx endpoints using USB ISO OUT method */
1698 if (channel != HFC_CHAN_E)
1699 stop_iso_gracefull(hw->fifos + channel * 2);
1700 }
1701
1702
1703 /* Hardware Initialization */
1704 static int
1705 setup_hfcsusb(struct hfcsusb *hw)
1706 {
1707 u_char b;
1708
1709 if (debug & DBG_HFC_CALL_TRACE)
1710 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1711
1712 /* check the chip id */
1713 if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1714 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1715 hw->name, __func__);
1716 return 1;
1717 }
1718 if (b != HFCUSB_CHIPID) {
1719 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1720 hw->name, __func__, b);
1721 return 1;
1722 }
1723
1724 /* first set the needed config, interface and alternate */
1725 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1726
1727 hw->led_state = 0;
1728
1729 /* init the background machinery for control requests */
1730 hw->ctrl_read.bRequestType = 0xc0;
1731 hw->ctrl_read.bRequest = 1;
1732 hw->ctrl_read.wLength = cpu_to_le16(1);
1733 hw->ctrl_write.bRequestType = 0x40;
1734 hw->ctrl_write.bRequest = 0;
1735 hw->ctrl_write.wLength = 0;
1736 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1737 (u_char *)&hw->ctrl_write, NULL, 0,
1738 (usb_complete_t)ctrl_complete, hw);
1739
1740 reset_hfcsusb(hw);
1741 return 0;
1742 }
1743
1744 static void
1745 release_hw(struct hfcsusb *hw)
1746 {
1747 if (debug & DBG_HFC_CALL_TRACE)
1748 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1749
1750 /*
1751 * stop all endpoints gracefully
1752 * TODO: mISDN_core should generate CLOSE_CHANNEL
1753 * signals after calling mISDN_unregister_device()
1754 */
1755 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1756 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1757 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1758 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1759 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1760 if (hw->protocol == ISDN_P_TE_S0)
1761 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1762
1763 mISDN_unregister_device(&hw->dch.dev);
1764 mISDN_freebchannel(&hw->bch[1]);
1765 mISDN_freebchannel(&hw->bch[0]);
1766 mISDN_freedchannel(&hw->dch);
1767
1768 if (hw->ctrl_urb) {
1769 usb_kill_urb(hw->ctrl_urb);
1770 usb_free_urb(hw->ctrl_urb);
1771 hw->ctrl_urb = NULL;
1772 }
1773
1774 if (hw->intf)
1775 usb_set_intfdata(hw->intf, NULL);
1776 list_del(&hw->list);
1777 kfree(hw);
1778 hw = NULL;
1779 }
1780
1781 static void
1782 deactivate_bchannel(struct bchannel *bch)
1783 {
1784 struct hfcsusb *hw = bch->hw;
1785 u_long flags;
1786
1787 if (bch->debug & DEBUG_HW)
1788 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1789 hw->name, __func__, bch->nr);
1790
1791 spin_lock_irqsave(&hw->lock, flags);
1792 mISDN_clear_bchannel(bch);
1793 spin_unlock_irqrestore(&hw->lock, flags);
1794 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1795 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1796 }
1797
1798 /*
1799 * Layer 1 B-channel hardware access
1800 */
1801 static int
1802 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1803 {
1804 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1805 int ret = -EINVAL;
1806
1807 if (bch->debug & DEBUG_HW)
1808 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1809
1810 switch (cmd) {
1811 case HW_TESTRX_RAW:
1812 case HW_TESTRX_HDLC:
1813 case HW_TESTRX_OFF:
1814 ret = -EINVAL;
1815 break;
1816
1817 case CLOSE_CHANNEL:
1818 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1819 deactivate_bchannel(bch);
1820 ch->protocol = ISDN_P_NONE;
1821 ch->peer = NULL;
1822 module_put(THIS_MODULE);
1823 ret = 0;
1824 break;
1825 case CONTROL_CHANNEL:
1826 ret = channel_bctrl(bch, arg);
1827 break;
1828 default:
1829 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1830 __func__, cmd);
1831 }
1832 return ret;
1833 }
1834
1835 static int
1836 setup_instance(struct hfcsusb *hw, struct device *parent)
1837 {
1838 u_long flags;
1839 int err, i;
1840
1841 if (debug & DBG_HFC_CALL_TRACE)
1842 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1843
1844 spin_lock_init(&hw->ctrl_lock);
1845 spin_lock_init(&hw->lock);
1846
1847 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1848 hw->dch.debug = debug & 0xFFFF;
1849 hw->dch.hw = hw;
1850 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1851 hw->dch.dev.D.send = hfcusb_l2l1D;
1852 hw->dch.dev.D.ctrl = hfc_dctrl;
1853
1854 /* enable E-Channel logging */
1855 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1856 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1857
1858 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1859 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1860 hw->dch.dev.nrbchan = 2;
1861 for (i = 0; i < 2; i++) {
1862 hw->bch[i].nr = i + 1;
1863 set_channelmap(i + 1, hw->dch.dev.channelmap);
1864 hw->bch[i].debug = debug;
1865 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1866 hw->bch[i].hw = hw;
1867 hw->bch[i].ch.send = hfcusb_l2l1B;
1868 hw->bch[i].ch.ctrl = hfc_bctrl;
1869 hw->bch[i].ch.nr = i + 1;
1870 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1871 }
1872
1873 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1874 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1875 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1876 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1877 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1878 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1879 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1880 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1881
1882 err = setup_hfcsusb(hw);
1883 if (err)
1884 goto out;
1885
1886 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1887 hfcsusb_cnt + 1);
1888 printk(KERN_INFO "%s: registered as '%s'\n",
1889 DRIVER_NAME, hw->name);
1890
1891 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1892 if (err)
1893 goto out;
1894
1895 hfcsusb_cnt++;
1896 write_lock_irqsave(&HFClock, flags);
1897 list_add_tail(&hw->list, &HFClist);
1898 write_unlock_irqrestore(&HFClock, flags);
1899 return 0;
1900
1901 out:
1902 mISDN_freebchannel(&hw->bch[1]);
1903 mISDN_freebchannel(&hw->bch[0]);
1904 mISDN_freedchannel(&hw->dch);
1905 kfree(hw);
1906 return err;
1907 }
1908
1909 static int
1910 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1911 {
1912 struct hfcsusb *hw;
1913 struct usb_device *dev = interface_to_usbdev(intf);
1914 struct usb_host_interface *iface = intf->cur_altsetting;
1915 struct usb_host_interface *iface_used = NULL;
1916 struct usb_host_endpoint *ep;
1917 struct hfcsusb_vdata *driver_info;
1918 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1919 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1920 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1921 alt_used = 0;
1922
1923 vend_idx = 0xffff;
1924 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1925 if ((le16_to_cpu(dev->descriptor.idVendor)
1926 == hfcsusb_idtab[i].idVendor) &&
1927 (le16_to_cpu(dev->descriptor.idProduct)
1928 == hfcsusb_idtab[i].idProduct)) {
1929 vend_idx = i;
1930 continue;
1931 }
1932 }
1933
1934 printk(KERN_DEBUG
1935 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1936 __func__, ifnum, iface->desc.bAlternateSetting,
1937 intf->minor, vend_idx);
1938
1939 if (vend_idx == 0xffff) {
1940 printk(KERN_WARNING
1941 "%s: no valid vendor found in USB descriptor\n",
1942 __func__);
1943 return -EIO;
1944 }
1945 /* if vendor and product ID is OK, start probing alternate settings */
1946 alt_idx = 0;
1947 small_match = -1;
1948
1949 /* default settings */
1950 iso_packet_size = 16;
1951 packet_size = 64;
1952
1953 while (alt_idx < intf->num_altsetting) {
1954 iface = intf->altsetting + alt_idx;
1955 probe_alt_setting = iface->desc.bAlternateSetting;
1956 cfg_used = 0;
1957
1958 while (validconf[cfg_used][0]) {
1959 cfg_found = 1;
1960 vcf = validconf[cfg_used];
1961 ep = iface->endpoint;
1962 memcpy(cmptbl, vcf, 16 * sizeof(int));
1963
1964 /* check for all endpoints in this alternate setting */
1965 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1966 ep_addr = ep->desc.bEndpointAddress;
1967
1968 /* get endpoint base */
1969 idx = ((ep_addr & 0x7f) - 1) * 2;
1970 if (ep_addr & 0x80)
1971 idx++;
1972 attr = ep->desc.bmAttributes;
1973
1974 if (cmptbl[idx] != EP_NOP) {
1975 if (cmptbl[idx] == EP_NUL)
1976 cfg_found = 0;
1977 if (attr == USB_ENDPOINT_XFER_INT
1978 && cmptbl[idx] == EP_INT)
1979 cmptbl[idx] = EP_NUL;
1980 if (attr == USB_ENDPOINT_XFER_BULK
1981 && cmptbl[idx] == EP_BLK)
1982 cmptbl[idx] = EP_NUL;
1983 if (attr == USB_ENDPOINT_XFER_ISOC
1984 && cmptbl[idx] == EP_ISO)
1985 cmptbl[idx] = EP_NUL;
1986
1987 if (attr == USB_ENDPOINT_XFER_INT &&
1988 ep->desc.bInterval < vcf[17]) {
1989 cfg_found = 0;
1990 }
1991 }
1992 ep++;
1993 }
1994
1995 for (i = 0; i < 16; i++)
1996 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1997 cfg_found = 0;
1998
1999 if (cfg_found) {
2000 if (small_match < cfg_used) {
2001 small_match = cfg_used;
2002 alt_used = probe_alt_setting;
2003 iface_used = iface;
2004 }
2005 }
2006 cfg_used++;
2007 }
2008 alt_idx++;
2009 } /* (alt_idx < intf->num_altsetting) */
2010
2011 /* not found a valid USB Ta Endpoint config */
2012 if (small_match == -1)
2013 return -EIO;
2014
2015 iface = iface_used;
2016 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2017 if (!hw)
2018 return -ENOMEM; /* got no mem */
2019 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2020
2021 ep = iface->endpoint;
2022 vcf = validconf[small_match];
2023
2024 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2025 struct usb_fifo *f;
2026
2027 ep_addr = ep->desc.bEndpointAddress;
2028 /* get endpoint base */
2029 idx = ((ep_addr & 0x7f) - 1) * 2;
2030 if (ep_addr & 0x80)
2031 idx++;
2032 f = &hw->fifos[idx & 7];
2033
2034 /* init Endpoints */
2035 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2036 ep++;
2037 continue;
2038 }
2039 switch (ep->desc.bmAttributes) {
2040 case USB_ENDPOINT_XFER_INT:
2041 f->pipe = usb_rcvintpipe(dev,
2042 ep->desc.bEndpointAddress);
2043 f->usb_transfer_mode = USB_INT;
2044 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2045 break;
2046 case USB_ENDPOINT_XFER_BULK:
2047 if (ep_addr & 0x80)
2048 f->pipe = usb_rcvbulkpipe(dev,
2049 ep->desc.bEndpointAddress);
2050 else
2051 f->pipe = usb_sndbulkpipe(dev,
2052 ep->desc.bEndpointAddress);
2053 f->usb_transfer_mode = USB_BULK;
2054 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2055 break;
2056 case USB_ENDPOINT_XFER_ISOC:
2057 if (ep_addr & 0x80)
2058 f->pipe = usb_rcvisocpipe(dev,
2059 ep->desc.bEndpointAddress);
2060 else
2061 f->pipe = usb_sndisocpipe(dev,
2062 ep->desc.bEndpointAddress);
2063 f->usb_transfer_mode = USB_ISOC;
2064 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2065 break;
2066 default:
2067 f->pipe = 0;
2068 }
2069
2070 if (f->pipe) {
2071 f->fifonum = idx & 7;
2072 f->hw = hw;
2073 f->usb_packet_maxlen =
2074 le16_to_cpu(ep->desc.wMaxPacketSize);
2075 f->intervall = ep->desc.bInterval;
2076 }
2077 ep++;
2078 }
2079 hw->dev = dev; /* save device */
2080 hw->if_used = ifnum; /* save used interface */
2081 hw->alt_used = alt_used; /* and alternate config */
2082 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2083 hw->cfg_used = vcf[16]; /* store used config */
2084 hw->vend_idx = vend_idx; /* store found vendor */
2085 hw->packet_size = packet_size;
2086 hw->iso_packet_size = iso_packet_size;
2087
2088 /* create the control pipes needed for register access */
2089 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2090 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2091
2092 driver_info = (struct hfcsusb_vdata *)
2093 hfcsusb_idtab[vend_idx].driver_info;
2094
2095 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2096 if (!hw->ctrl_urb) {
2097 pr_warn("%s: No memory for control urb\n",
2098 driver_info->vend_name);
2099 kfree(hw);
2100 return -ENOMEM;
2101 }
2102
2103 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2104 hw->name, __func__, driver_info->vend_name,
2105 conf_str[small_match], ifnum, alt_used);
2106
2107 if (setup_instance(hw, dev->dev.parent))
2108 return -EIO;
2109
2110 hw->intf = intf;
2111 usb_set_intfdata(hw->intf, hw);
2112 return 0;
2113 }
2114
2115 /* function called when an active device is removed */
2116 static void
2117 hfcsusb_disconnect(struct usb_interface *intf)
2118 {
2119 struct hfcsusb *hw = usb_get_intfdata(intf);
2120 struct hfcsusb *next;
2121 int cnt = 0;
2122
2123 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2124
2125 handle_led(hw, LED_POWER_OFF);
2126 release_hw(hw);
2127
2128 list_for_each_entry_safe(hw, next, &HFClist, list)
2129 cnt++;
2130 if (!cnt)
2131 hfcsusb_cnt = 0;
2132
2133 usb_set_intfdata(intf, NULL);
2134 }
2135
2136 static struct usb_driver hfcsusb_drv = {
2137 .name = DRIVER_NAME,
2138 .id_table = hfcsusb_idtab,
2139 .probe = hfcsusb_probe,
2140 .disconnect = hfcsusb_disconnect,
2141 .disable_hub_initiated_lpm = 1,
2142 };
2143
2144 module_usb_driver(hfcsusb_drv);