]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/isdn/hardware/mISDN/hfcsusb.c
treewide: Use fallthrough pseudo-keyword
[mirror_ubuntu-jammy-kernel.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3 * mISDN driver for Colognechip HFC-S USB chip
4 *
5 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7 *
8 * module params
9 * debug=<n>, default=0, with n=0xHHHHGGGG
10 * H - l1 driver flags described in hfcsusb.h
11 * G - common mISDN debug flags described at mISDNhw.h
12 *
13 * poll=<n>, default 128
14 * n : burst size of PH_DATA_IND at transparent rx data
15 *
16 * Revision: 0.3.3 (socket), 2008-11-05
17 */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static void hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55 if (debug & DBG_HFC_CALL_TRACE)
56 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58 if (hw->ctrl_cnt) {
59 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 hw->ctrl_urb->transfer_buffer = NULL;
62 hw->ctrl_urb->transfer_buffer_length = 0;
63 hw->ctrl_write.wIndex =
64 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 hw->ctrl_write.wValue =
66 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69 }
70 }
71
72 /*
73 * queue a control transfer request to write HFC-S USB
74 * chip register using CTRL resuest queue
75 */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78 struct ctrl_buf *buf;
79
80 if (debug & DBG_HFC_CALL_TRACE)
81 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 hw->name, __func__, reg, val);
83
84 spin_lock(&hw->ctrl_lock);
85 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 spin_unlock(&hw->ctrl_lock);
87 return 1;
88 }
89 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 buf->hfcs_reg = reg;
91 buf->reg_val = val;
92 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 hw->ctrl_in_idx = 0;
94 if (++hw->ctrl_cnt == 1)
95 ctrl_start_transfer(hw);
96 spin_unlock(&hw->ctrl_lock);
97
98 return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107 if (debug & DBG_HFC_CALL_TRACE)
108 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110 urb->dev = hw->dev;
111 if (hw->ctrl_cnt) {
112 hw->ctrl_cnt--; /* decrement actual count */
113 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 hw->ctrl_out_idx = 0; /* pointer wrap */
115
116 ctrl_start_transfer(hw); /* start next transfer */
117 }
118 }
119
120 /* handle LED bits */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124 if (set_on) {
125 if (led_bits < 0)
126 hw->led_state &= ~abs(led_bits);
127 else
128 hw->led_state |= led_bits;
129 } else {
130 if (led_bits < 0)
131 hw->led_state |= abs(led_bits);
132 else
133 hw->led_state &= ~led_bits;
134 }
135 }
136
137 /* handle LED requests */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 hfcsusb_idtab[hw->vend_idx].driver_info;
143 __u8 tmpled;
144
145 if (driver_info->led_scheme == LED_OFF)
146 return;
147 tmpled = hw->led_state;
148
149 switch (event) {
150 case LED_POWER_ON:
151 set_led_bit(hw, driver_info->led_bits[0], 1);
152 set_led_bit(hw, driver_info->led_bits[1], 0);
153 set_led_bit(hw, driver_info->led_bits[2], 0);
154 set_led_bit(hw, driver_info->led_bits[3], 0);
155 break;
156 case LED_POWER_OFF:
157 set_led_bit(hw, driver_info->led_bits[0], 0);
158 set_led_bit(hw, driver_info->led_bits[1], 0);
159 set_led_bit(hw, driver_info->led_bits[2], 0);
160 set_led_bit(hw, driver_info->led_bits[3], 0);
161 break;
162 case LED_S0_ON:
163 set_led_bit(hw, driver_info->led_bits[1], 1);
164 break;
165 case LED_S0_OFF:
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 break;
168 case LED_B1_ON:
169 set_led_bit(hw, driver_info->led_bits[2], 1);
170 break;
171 case LED_B1_OFF:
172 set_led_bit(hw, driver_info->led_bits[2], 0);
173 break;
174 case LED_B2_ON:
175 set_led_bit(hw, driver_info->led_bits[3], 1);
176 break;
177 case LED_B2_OFF:
178 set_led_bit(hw, driver_info->led_bits[3], 0);
179 break;
180 }
181
182 if (hw->led_state != tmpled) {
183 if (debug & DBG_HFC_CALL_TRACE)
184 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 hw->name, __func__,
186 HFCUSB_P_DATA, hw->led_state);
187
188 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189 }
190 }
191
192 /*
193 * Layer2 -> Layer 1 Bchannel data
194 */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198 struct bchannel *bch = container_of(ch, struct bchannel, ch);
199 struct hfcsusb *hw = bch->hw;
200 int ret = -EINVAL;
201 struct mISDNhead *hh = mISDN_HEAD_P(skb);
202 u_long flags;
203
204 if (debug & DBG_HFC_CALL_TRACE)
205 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207 switch (hh->prim) {
208 case PH_DATA_REQ:
209 spin_lock_irqsave(&hw->lock, flags);
210 ret = bchannel_senddata(bch, skb);
211 spin_unlock_irqrestore(&hw->lock, flags);
212 if (debug & DBG_HFC_CALL_TRACE)
213 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 hw->name, __func__, ret);
215 if (ret > 0)
216 ret = 0;
217 return ret;
218 case PH_ACTIVATE_REQ:
219 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 hfcsusb_start_endpoint(hw, bch->nr - 1);
221 ret = hfcsusb_setup_bch(bch, ch->protocol);
222 } else
223 ret = 0;
224 if (!ret)
225 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 0, NULL, GFP_KERNEL);
227 break;
228 case PH_DEACTIVATE_REQ:
229 deactivate_bchannel(bch);
230 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 0, NULL, GFP_KERNEL);
232 ret = 0;
233 break;
234 }
235 if (!ret)
236 dev_kfree_skb(skb);
237 return ret;
238 }
239
240 /*
241 * send full D/B channel status information
242 * as MPH_INFORMATION_IND
243 */
244 static void
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247 struct ph_info *phi;
248 struct dchannel *dch = &hw->dch;
249 int i;
250
251 phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 if (!phi)
253 return;
254
255 phi->dch.ch.protocol = hw->protocol;
256 phi->dch.ch.Flags = dch->Flags;
257 phi->dch.state = dch->state;
258 phi->dch.num_bch = dch->dev.nrbchan;
259 for (i = 0; i < dch->dev.nrbchan; i++) {
260 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 phi->bch[i].Flags = hw->bch[i].Flags;
262 }
263 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265 kfree(phi);
266 }
267
268 /*
269 * Layer2 -> Layer 1 Dchannel data
270 */
271 static int
272 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
273 {
274 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
275 struct dchannel *dch = container_of(dev, struct dchannel, dev);
276 struct mISDNhead *hh = mISDN_HEAD_P(skb);
277 struct hfcsusb *hw = dch->hw;
278 int ret = -EINVAL;
279 u_long flags;
280
281 switch (hh->prim) {
282 case PH_DATA_REQ:
283 if (debug & DBG_HFC_CALL_TRACE)
284 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
285 hw->name, __func__);
286
287 spin_lock_irqsave(&hw->lock, flags);
288 ret = dchannel_senddata(dch, skb);
289 spin_unlock_irqrestore(&hw->lock, flags);
290 if (ret > 0) {
291 ret = 0;
292 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
293 }
294 break;
295
296 case PH_ACTIVATE_REQ:
297 if (debug & DBG_HFC_CALL_TRACE)
298 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
299 hw->name, __func__,
300 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
301
302 if (hw->protocol == ISDN_P_NT_S0) {
303 ret = 0;
304 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
305 _queue_data(&dch->dev.D,
306 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
307 NULL, GFP_ATOMIC);
308 } else {
309 hfcsusb_ph_command(hw,
310 HFC_L1_ACTIVATE_NT);
311 test_and_set_bit(FLG_L2_ACTIVATED,
312 &dch->Flags);
313 }
314 } else {
315 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
316 ret = l1_event(dch->l1, hh->prim);
317 }
318 break;
319
320 case PH_DEACTIVATE_REQ:
321 if (debug & DBG_HFC_CALL_TRACE)
322 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
323 hw->name, __func__);
324 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
325
326 if (hw->protocol == ISDN_P_NT_S0) {
327 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
328 spin_lock_irqsave(&hw->lock, flags);
329 skb_queue_purge(&dch->squeue);
330 if (dch->tx_skb) {
331 dev_kfree_skb(dch->tx_skb);
332 dch->tx_skb = NULL;
333 }
334 dch->tx_idx = 0;
335 if (dch->rx_skb) {
336 dev_kfree_skb(dch->rx_skb);
337 dch->rx_skb = NULL;
338 }
339 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
340 spin_unlock_irqrestore(&hw->lock, flags);
341 #ifdef FIXME
342 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
343 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
344 #endif
345 ret = 0;
346 } else
347 ret = l1_event(dch->l1, hh->prim);
348 break;
349 case MPH_INFORMATION_REQ:
350 hfcsusb_ph_info(hw);
351 ret = 0;
352 break;
353 }
354
355 return ret;
356 }
357
358 /*
359 * Layer 1 callback function
360 */
361 static int
362 hfc_l1callback(struct dchannel *dch, u_int cmd)
363 {
364 struct hfcsusb *hw = dch->hw;
365
366 if (debug & DBG_HFC_CALL_TRACE)
367 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
368 hw->name, __func__, cmd);
369
370 switch (cmd) {
371 case INFO3_P8:
372 case INFO3_P10:
373 case HW_RESET_REQ:
374 case HW_POWERUP_REQ:
375 break;
376
377 case HW_DEACT_REQ:
378 skb_queue_purge(&dch->squeue);
379 if (dch->tx_skb) {
380 dev_kfree_skb(dch->tx_skb);
381 dch->tx_skb = NULL;
382 }
383 dch->tx_idx = 0;
384 if (dch->rx_skb) {
385 dev_kfree_skb(dch->rx_skb);
386 dch->rx_skb = NULL;
387 }
388 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
389 break;
390 case PH_ACTIVATE_IND:
391 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
392 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
393 GFP_ATOMIC);
394 break;
395 case PH_DEACTIVATE_IND:
396 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
397 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398 GFP_ATOMIC);
399 break;
400 default:
401 if (dch->debug & DEBUG_HW)
402 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
403 hw->name, __func__, cmd);
404 return -1;
405 }
406 hfcsusb_ph_info(hw);
407 return 0;
408 }
409
410 static int
411 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
412 struct channel_req *rq)
413 {
414 int err = 0;
415
416 if (debug & DEBUG_HW_OPEN)
417 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
418 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
419 __builtin_return_address(0));
420 if (rq->protocol == ISDN_P_NONE)
421 return -EINVAL;
422
423 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
424 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
425 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
426
427 /* E-Channel logging */
428 if (rq->adr.channel == 1) {
429 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
430 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
431 set_bit(FLG_ACTIVE, &hw->ech.Flags);
432 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
433 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
434 } else
435 return -EINVAL;
436 }
437
438 if (!hw->initdone) {
439 hw->protocol = rq->protocol;
440 if (rq->protocol == ISDN_P_TE_S0) {
441 err = create_l1(&hw->dch, hfc_l1callback);
442 if (err)
443 return err;
444 }
445 setPortMode(hw);
446 ch->protocol = rq->protocol;
447 hw->initdone = 1;
448 } else {
449 if (rq->protocol != ch->protocol)
450 return -EPROTONOSUPPORT;
451 }
452
453 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
454 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
455 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
456 0, NULL, GFP_KERNEL);
457 rq->ch = ch;
458 if (!try_module_get(THIS_MODULE))
459 printk(KERN_WARNING "%s: %s: cannot get module\n",
460 hw->name, __func__);
461 return 0;
462 }
463
464 static int
465 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
466 {
467 struct bchannel *bch;
468
469 if (rq->adr.channel == 0 || rq->adr.channel > 2)
470 return -EINVAL;
471 if (rq->protocol == ISDN_P_NONE)
472 return -EINVAL;
473
474 if (debug & DBG_HFC_CALL_TRACE)
475 printk(KERN_DEBUG "%s: %s B%i\n",
476 hw->name, __func__, rq->adr.channel);
477
478 bch = &hw->bch[rq->adr.channel - 1];
479 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
480 return -EBUSY; /* b-channel can be only open once */
481 bch->ch.protocol = rq->protocol;
482 rq->ch = &bch->ch;
483
484 if (!try_module_get(THIS_MODULE))
485 printk(KERN_WARNING "%s: %s:cannot get module\n",
486 hw->name, __func__);
487 return 0;
488 }
489
490 static int
491 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
492 {
493 int ret = 0;
494
495 if (debug & DBG_HFC_CALL_TRACE)
496 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
497 hw->name, __func__, (cq->op), (cq->channel));
498
499 switch (cq->op) {
500 case MISDN_CTRL_GETOP:
501 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
502 MISDN_CTRL_DISCONNECT;
503 break;
504 default:
505 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
506 hw->name, __func__, cq->op);
507 ret = -EINVAL;
508 break;
509 }
510 return ret;
511 }
512
513 /*
514 * device control function
515 */
516 static int
517 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
518 {
519 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
520 struct dchannel *dch = container_of(dev, struct dchannel, dev);
521 struct hfcsusb *hw = dch->hw;
522 struct channel_req *rq;
523 int err = 0;
524
525 if (dch->debug & DEBUG_HW)
526 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
527 hw->name, __func__, cmd, arg);
528 switch (cmd) {
529 case OPEN_CHANNEL:
530 rq = arg;
531 if ((rq->protocol == ISDN_P_TE_S0) ||
532 (rq->protocol == ISDN_P_NT_S0))
533 err = open_dchannel(hw, ch, rq);
534 else
535 err = open_bchannel(hw, rq);
536 if (!err)
537 hw->open++;
538 break;
539 case CLOSE_CHANNEL:
540 hw->open--;
541 if (debug & DEBUG_HW_OPEN)
542 printk(KERN_DEBUG
543 "%s: %s: dev(%d) close from %p (open %d)\n",
544 hw->name, __func__, hw->dch.dev.id,
545 __builtin_return_address(0), hw->open);
546 if (!hw->open) {
547 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
548 if (hw->fifos[HFCUSB_PCM_RX].pipe)
549 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
550 handle_led(hw, LED_POWER_ON);
551 }
552 module_put(THIS_MODULE);
553 break;
554 case CONTROL_CHANNEL:
555 err = channel_ctrl(hw, arg);
556 break;
557 default:
558 if (dch->debug & DEBUG_HW)
559 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
560 hw->name, __func__, cmd);
561 return -EINVAL;
562 }
563 return err;
564 }
565
566 /*
567 * S0 TE state change event handler
568 */
569 static void
570 ph_state_te(struct dchannel *dch)
571 {
572 struct hfcsusb *hw = dch->hw;
573
574 if (debug & DEBUG_HW) {
575 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
576 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
577 HFC_TE_LAYER1_STATES[dch->state]);
578 else
579 printk(KERN_DEBUG "%s: %s: TE F%d\n",
580 hw->name, __func__, dch->state);
581 }
582
583 switch (dch->state) {
584 case 0:
585 l1_event(dch->l1, HW_RESET_IND);
586 break;
587 case 3:
588 l1_event(dch->l1, HW_DEACT_IND);
589 break;
590 case 5:
591 case 8:
592 l1_event(dch->l1, ANYSIGNAL);
593 break;
594 case 6:
595 l1_event(dch->l1, INFO2);
596 break;
597 case 7:
598 l1_event(dch->l1, INFO4_P8);
599 break;
600 }
601 if (dch->state == 7)
602 handle_led(hw, LED_S0_ON);
603 else
604 handle_led(hw, LED_S0_OFF);
605 }
606
607 /*
608 * S0 NT state change event handler
609 */
610 static void
611 ph_state_nt(struct dchannel *dch)
612 {
613 struct hfcsusb *hw = dch->hw;
614
615 if (debug & DEBUG_HW) {
616 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
617 printk(KERN_DEBUG "%s: %s: %s\n",
618 hw->name, __func__,
619 HFC_NT_LAYER1_STATES[dch->state]);
620
621 else
622 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
623 hw->name, __func__, dch->state);
624 }
625
626 switch (dch->state) {
627 case (1):
628 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
629 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
630 hw->nt_timer = 0;
631 hw->timers &= ~NT_ACTIVATION_TIMER;
632 handle_led(hw, LED_S0_OFF);
633 break;
634
635 case (2):
636 if (hw->nt_timer < 0) {
637 hw->nt_timer = 0;
638 hw->timers &= ~NT_ACTIVATION_TIMER;
639 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
640 } else {
641 hw->timers |= NT_ACTIVATION_TIMER;
642 hw->nt_timer = NT_T1_COUNT;
643 /* allow G2 -> G3 transition */
644 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
645 }
646 break;
647 case (3):
648 hw->nt_timer = 0;
649 hw->timers &= ~NT_ACTIVATION_TIMER;
650 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
651 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
652 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
653 handle_led(hw, LED_S0_ON);
654 break;
655 case (4):
656 hw->nt_timer = 0;
657 hw->timers &= ~NT_ACTIVATION_TIMER;
658 break;
659 default:
660 break;
661 }
662 hfcsusb_ph_info(hw);
663 }
664
665 static void
666 ph_state(struct dchannel *dch)
667 {
668 struct hfcsusb *hw = dch->hw;
669
670 if (hw->protocol == ISDN_P_NT_S0)
671 ph_state_nt(dch);
672 else if (hw->protocol == ISDN_P_TE_S0)
673 ph_state_te(dch);
674 }
675
676 /*
677 * disable/enable BChannel for desired protocoll
678 */
679 static int
680 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
681 {
682 struct hfcsusb *hw = bch->hw;
683 __u8 conhdlc, sctrl, sctrl_r;
684
685 if (debug & DEBUG_HW)
686 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
687 hw->name, __func__, bch->state, protocol,
688 bch->nr);
689
690 /* setup val for CON_HDLC */
691 conhdlc = 0;
692 if (protocol > ISDN_P_NONE)
693 conhdlc = 8; /* enable FIFO */
694
695 switch (protocol) {
696 case (-1): /* used for init */
697 bch->state = -1;
698 fallthrough;
699 case (ISDN_P_NONE):
700 if (bch->state == ISDN_P_NONE)
701 return 0; /* already in idle state */
702 bch->state = ISDN_P_NONE;
703 clear_bit(FLG_HDLC, &bch->Flags);
704 clear_bit(FLG_TRANSPARENT, &bch->Flags);
705 break;
706 case (ISDN_P_B_RAW):
707 conhdlc |= 2;
708 bch->state = protocol;
709 set_bit(FLG_TRANSPARENT, &bch->Flags);
710 break;
711 case (ISDN_P_B_HDLC):
712 bch->state = protocol;
713 set_bit(FLG_HDLC, &bch->Flags);
714 break;
715 default:
716 if (debug & DEBUG_HW)
717 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
718 hw->name, __func__, protocol);
719 return -ENOPROTOOPT;
720 }
721
722 if (protocol >= ISDN_P_NONE) {
723 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
724 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
725 write_reg(hw, HFCUSB_INC_RES_F, 2);
726 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
727 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
728 write_reg(hw, HFCUSB_INC_RES_F, 2);
729
730 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
731 sctrl_r = 0x0;
732 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
733 sctrl |= 1;
734 sctrl_r |= 1;
735 }
736 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
737 sctrl |= 2;
738 sctrl_r |= 2;
739 }
740 write_reg(hw, HFCUSB_SCTRL, sctrl);
741 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
742
743 if (protocol > ISDN_P_NONE)
744 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
745 else
746 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
747 LED_B2_OFF);
748 }
749 hfcsusb_ph_info(hw);
750 return 0;
751 }
752
753 static void
754 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
755 {
756 if (debug & DEBUG_HW)
757 printk(KERN_DEBUG "%s: %s: %x\n",
758 hw->name, __func__, command);
759
760 switch (command) {
761 case HFC_L1_ACTIVATE_TE:
762 /* force sending sending INFO1 */
763 write_reg(hw, HFCUSB_STATES, 0x14);
764 /* start l1 activation */
765 write_reg(hw, HFCUSB_STATES, 0x04);
766 break;
767
768 case HFC_L1_FORCE_DEACTIVATE_TE:
769 write_reg(hw, HFCUSB_STATES, 0x10);
770 write_reg(hw, HFCUSB_STATES, 0x03);
771 break;
772
773 case HFC_L1_ACTIVATE_NT:
774 if (hw->dch.state == 3)
775 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
776 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
777 else
778 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
779 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
780 break;
781
782 case HFC_L1_DEACTIVATE_NT:
783 write_reg(hw, HFCUSB_STATES,
784 HFCUSB_DO_ACTION);
785 break;
786 }
787 }
788
789 /*
790 * Layer 1 B-channel hardware access
791 */
792 static int
793 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
794 {
795 return mISDN_ctrl_bchannel(bch, cq);
796 }
797
798 /* collect data from incoming interrupt or isochron USB data */
799 static void
800 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
801 int finish)
802 {
803 struct hfcsusb *hw = fifo->hw;
804 struct sk_buff *rx_skb = NULL;
805 int maxlen = 0;
806 int fifon = fifo->fifonum;
807 int i;
808 int hdlc = 0;
809 unsigned long flags;
810
811 if (debug & DBG_HFC_CALL_TRACE)
812 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
813 "dch(%p) bch(%p) ech(%p)\n",
814 hw->name, __func__, fifon, len,
815 fifo->dch, fifo->bch, fifo->ech);
816
817 if (!len)
818 return;
819
820 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
821 printk(KERN_DEBUG "%s: %s: undefined channel\n",
822 hw->name, __func__);
823 return;
824 }
825
826 spin_lock_irqsave(&hw->lock, flags);
827 if (fifo->dch) {
828 rx_skb = fifo->dch->rx_skb;
829 maxlen = fifo->dch->maxlen;
830 hdlc = 1;
831 }
832 if (fifo->bch) {
833 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
834 fifo->bch->dropcnt += len;
835 spin_unlock_irqrestore(&hw->lock, flags);
836 return;
837 }
838 maxlen = bchannel_get_rxbuf(fifo->bch, len);
839 rx_skb = fifo->bch->rx_skb;
840 if (maxlen < 0) {
841 if (rx_skb)
842 skb_trim(rx_skb, 0);
843 pr_warn("%s.B%d: No bufferspace for %d bytes\n",
844 hw->name, fifo->bch->nr, len);
845 spin_unlock_irqrestore(&hw->lock, flags);
846 return;
847 }
848 maxlen = fifo->bch->maxlen;
849 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
850 }
851 if (fifo->ech) {
852 rx_skb = fifo->ech->rx_skb;
853 maxlen = fifo->ech->maxlen;
854 hdlc = 1;
855 }
856
857 if (fifo->dch || fifo->ech) {
858 if (!rx_skb) {
859 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
860 if (rx_skb) {
861 if (fifo->dch)
862 fifo->dch->rx_skb = rx_skb;
863 if (fifo->ech)
864 fifo->ech->rx_skb = rx_skb;
865 skb_trim(rx_skb, 0);
866 } else {
867 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
868 hw->name, __func__);
869 spin_unlock_irqrestore(&hw->lock, flags);
870 return;
871 }
872 }
873 /* D/E-Channel SKB range check */
874 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
875 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
876 "for fifo(%d) HFCUSB_D_RX\n",
877 hw->name, __func__, fifon);
878 skb_trim(rx_skb, 0);
879 spin_unlock_irqrestore(&hw->lock, flags);
880 return;
881 }
882 }
883
884 skb_put_data(rx_skb, data, len);
885
886 if (hdlc) {
887 /* we have a complete hdlc packet */
888 if (finish) {
889 if ((rx_skb->len > 3) &&
890 (!(rx_skb->data[rx_skb->len - 1]))) {
891 if (debug & DBG_HFC_FIFO_VERBOSE) {
892 printk(KERN_DEBUG "%s: %s: fifon(%i)"
893 " new RX len(%i): ",
894 hw->name, __func__, fifon,
895 rx_skb->len);
896 i = 0;
897 while (i < rx_skb->len)
898 printk("%02x ",
899 rx_skb->data[i++]);
900 printk("\n");
901 }
902
903 /* remove CRC & status */
904 skb_trim(rx_skb, rx_skb->len - 3);
905
906 if (fifo->dch)
907 recv_Dchannel(fifo->dch);
908 if (fifo->bch)
909 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
910 0);
911 if (fifo->ech)
912 recv_Echannel(fifo->ech,
913 &hw->dch);
914 } else {
915 if (debug & DBG_HFC_FIFO_VERBOSE) {
916 printk(KERN_DEBUG
917 "%s: CRC or minlen ERROR fifon(%i) "
918 "RX len(%i): ",
919 hw->name, fifon, rx_skb->len);
920 i = 0;
921 while (i < rx_skb->len)
922 printk("%02x ",
923 rx_skb->data[i++]);
924 printk("\n");
925 }
926 skb_trim(rx_skb, 0);
927 }
928 }
929 } else {
930 /* deliver transparent data to layer2 */
931 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
932 }
933 spin_unlock_irqrestore(&hw->lock, flags);
934 }
935
936 static void
937 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
938 void *buf, int num_packets, int packet_size, int interval,
939 usb_complete_t complete, void *context)
940 {
941 int k;
942
943 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
944 complete, context);
945
946 urb->number_of_packets = num_packets;
947 urb->transfer_flags = URB_ISO_ASAP;
948 urb->actual_length = 0;
949 urb->interval = interval;
950
951 for (k = 0; k < num_packets; k++) {
952 urb->iso_frame_desc[k].offset = packet_size * k;
953 urb->iso_frame_desc[k].length = packet_size;
954 urb->iso_frame_desc[k].actual_length = 0;
955 }
956 }
957
958 /* receive completion routine for all ISO tx fifos */
959 static void
960 rx_iso_complete(struct urb *urb)
961 {
962 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
963 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
964 struct hfcsusb *hw = fifo->hw;
965 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
966 status, iso_status, i;
967 __u8 *buf;
968 static __u8 eof[8];
969 __u8 s0_state;
970 unsigned long flags;
971
972 fifon = fifo->fifonum;
973 status = urb->status;
974
975 spin_lock_irqsave(&hw->lock, flags);
976 if (fifo->stop_gracefull) {
977 fifo->stop_gracefull = 0;
978 fifo->active = 0;
979 spin_unlock_irqrestore(&hw->lock, flags);
980 return;
981 }
982 spin_unlock_irqrestore(&hw->lock, flags);
983
984 /*
985 * ISO transfer only partially completed,
986 * look at individual frame status for details
987 */
988 if (status == -EXDEV) {
989 if (debug & DEBUG_HW)
990 printk(KERN_DEBUG "%s: %s: with -EXDEV "
991 "urb->status %d, fifonum %d\n",
992 hw->name, __func__, status, fifon);
993
994 /* clear status, so go on with ISO transfers */
995 status = 0;
996 }
997
998 s0_state = 0;
999 if (fifo->active && !status) {
1000 num_isoc_packets = iso_packets[fifon];
1001 maxlen = fifo->usb_packet_maxlen;
1002
1003 for (k = 0; k < num_isoc_packets; ++k) {
1004 len = urb->iso_frame_desc[k].actual_length;
1005 offset = urb->iso_frame_desc[k].offset;
1006 buf = context_iso_urb->buffer + offset;
1007 iso_status = urb->iso_frame_desc[k].status;
1008
1009 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1010 printk(KERN_DEBUG "%s: %s: "
1011 "ISO packet %i, status: %i\n",
1012 hw->name, __func__, k, iso_status);
1013 }
1014
1015 /* USB data log for every D ISO in */
1016 if ((fifon == HFCUSB_D_RX) &&
1017 (debug & DBG_HFC_USB_VERBOSE)) {
1018 printk(KERN_DEBUG
1019 "%s: %s: %d (%d/%d) len(%d) ",
1020 hw->name, __func__, urb->start_frame,
1021 k, num_isoc_packets - 1,
1022 len);
1023 for (i = 0; i < len; i++)
1024 printk("%x ", buf[i]);
1025 printk("\n");
1026 }
1027
1028 if (!iso_status) {
1029 if (fifo->last_urblen != maxlen) {
1030 /*
1031 * save fifo fill-level threshold bits
1032 * to use them later in TX ISO URB
1033 * completions
1034 */
1035 hw->threshold_mask = buf[1];
1036
1037 if (fifon == HFCUSB_D_RX)
1038 s0_state = (buf[0] >> 4);
1039
1040 eof[fifon] = buf[0] & 1;
1041 if (len > 2)
1042 hfcsusb_rx_frame(fifo, buf + 2,
1043 len - 2, (len < maxlen)
1044 ? eof[fifon] : 0);
1045 } else
1046 hfcsusb_rx_frame(fifo, buf, len,
1047 (len < maxlen) ?
1048 eof[fifon] : 0);
1049 fifo->last_urblen = len;
1050 }
1051 }
1052
1053 /* signal S0 layer1 state change */
1054 if ((s0_state) && (hw->initdone) &&
1055 (s0_state != hw->dch.state)) {
1056 hw->dch.state = s0_state;
1057 schedule_event(&hw->dch, FLG_PHCHANGE);
1058 }
1059
1060 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1061 context_iso_urb->buffer, num_isoc_packets,
1062 fifo->usb_packet_maxlen, fifo->intervall,
1063 (usb_complete_t)rx_iso_complete, urb->context);
1064 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1065 if (errcode < 0) {
1066 if (debug & DEBUG_HW)
1067 printk(KERN_DEBUG "%s: %s: error submitting "
1068 "ISO URB: %d\n",
1069 hw->name, __func__, errcode);
1070 }
1071 } else {
1072 if (status && (debug & DBG_HFC_URB_INFO))
1073 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1074 "urb->status %d, fifonum %d\n",
1075 hw->name, __func__, status, fifon);
1076 }
1077 }
1078
1079 /* receive completion routine for all interrupt rx fifos */
1080 static void
1081 rx_int_complete(struct urb *urb)
1082 {
1083 int len, status, i;
1084 __u8 *buf, maxlen, fifon;
1085 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1086 struct hfcsusb *hw = fifo->hw;
1087 static __u8 eof[8];
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&hw->lock, flags);
1091 if (fifo->stop_gracefull) {
1092 fifo->stop_gracefull = 0;
1093 fifo->active = 0;
1094 spin_unlock_irqrestore(&hw->lock, flags);
1095 return;
1096 }
1097 spin_unlock_irqrestore(&hw->lock, flags);
1098
1099 fifon = fifo->fifonum;
1100 if ((!fifo->active) || (urb->status)) {
1101 if (debug & DBG_HFC_URB_ERROR)
1102 printk(KERN_DEBUG
1103 "%s: %s: RX-Fifo %i is going down (%i)\n",
1104 hw->name, __func__, fifon, urb->status);
1105
1106 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1107 return;
1108 }
1109 len = urb->actual_length;
1110 buf = fifo->buffer;
1111 maxlen = fifo->usb_packet_maxlen;
1112
1113 /* USB data log for every D INT in */
1114 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1115 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1116 hw->name, __func__, len);
1117 for (i = 0; i < len; i++)
1118 printk("%02x ", buf[i]);
1119 printk("\n");
1120 }
1121
1122 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1123 /* the threshold mask is in the 2nd status byte */
1124 hw->threshold_mask = buf[1];
1125
1126 /* signal S0 layer1 state change */
1127 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1128 hw->dch.state = (buf[0] >> 4);
1129 schedule_event(&hw->dch, FLG_PHCHANGE);
1130 }
1131
1132 eof[fifon] = buf[0] & 1;
1133 /* if we have more than the 2 status bytes -> collect data */
1134 if (len > 2)
1135 hfcsusb_rx_frame(fifo, buf + 2,
1136 urb->actual_length - 2,
1137 (len < maxlen) ? eof[fifon] : 0);
1138 } else {
1139 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1140 (len < maxlen) ? eof[fifon] : 0);
1141 }
1142 fifo->last_urblen = urb->actual_length;
1143
1144 status = usb_submit_urb(urb, GFP_ATOMIC);
1145 if (status) {
1146 if (debug & DEBUG_HW)
1147 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1148 hw->name, __func__);
1149 }
1150 }
1151
1152 /* transmit completion routine for all ISO tx fifos */
1153 static void
1154 tx_iso_complete(struct urb *urb)
1155 {
1156 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1157 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1158 struct hfcsusb *hw = fifo->hw;
1159 struct sk_buff *tx_skb;
1160 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1161 errcode, hdlc, i;
1162 int *tx_idx;
1163 int frame_complete, fifon, status, fillempty = 0;
1164 __u8 threshbit, *p;
1165 unsigned long flags;
1166
1167 spin_lock_irqsave(&hw->lock, flags);
1168 if (fifo->stop_gracefull) {
1169 fifo->stop_gracefull = 0;
1170 fifo->active = 0;
1171 spin_unlock_irqrestore(&hw->lock, flags);
1172 return;
1173 }
1174
1175 if (fifo->dch) {
1176 tx_skb = fifo->dch->tx_skb;
1177 tx_idx = &fifo->dch->tx_idx;
1178 hdlc = 1;
1179 } else if (fifo->bch) {
1180 tx_skb = fifo->bch->tx_skb;
1181 tx_idx = &fifo->bch->tx_idx;
1182 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1183 if (!tx_skb && !hdlc &&
1184 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1185 fillempty = 1;
1186 } else {
1187 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1188 hw->name, __func__);
1189 spin_unlock_irqrestore(&hw->lock, flags);
1190 return;
1191 }
1192
1193 fifon = fifo->fifonum;
1194 status = urb->status;
1195
1196 tx_offset = 0;
1197
1198 /*
1199 * ISO transfer only partially completed,
1200 * look at individual frame status for details
1201 */
1202 if (status == -EXDEV) {
1203 if (debug & DBG_HFC_URB_ERROR)
1204 printk(KERN_DEBUG "%s: %s: "
1205 "-EXDEV (%i) fifon (%d)\n",
1206 hw->name, __func__, status, fifon);
1207
1208 /* clear status, so go on with ISO transfers */
1209 status = 0;
1210 }
1211
1212 if (fifo->active && !status) {
1213 /* is FifoFull-threshold set for our channel? */
1214 threshbit = (hw->threshold_mask & (1 << fifon));
1215 num_isoc_packets = iso_packets[fifon];
1216
1217 /* predict dataflow to avoid fifo overflow */
1218 if (fifon >= HFCUSB_D_TX)
1219 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1220 else
1221 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1222 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1223 context_iso_urb->buffer, num_isoc_packets,
1224 fifo->usb_packet_maxlen, fifo->intervall,
1225 (usb_complete_t)tx_iso_complete, urb->context);
1226 memset(context_iso_urb->buffer, 0,
1227 sizeof(context_iso_urb->buffer));
1228 frame_complete = 0;
1229
1230 for (k = 0; k < num_isoc_packets; ++k) {
1231 /* analyze tx success of previous ISO packets */
1232 if (debug & DBG_HFC_URB_ERROR) {
1233 errcode = urb->iso_frame_desc[k].status;
1234 if (errcode) {
1235 printk(KERN_DEBUG "%s: %s: "
1236 "ISO packet %i, status: %i\n",
1237 hw->name, __func__, k, errcode);
1238 }
1239 }
1240
1241 /* Generate next ISO Packets */
1242 if (tx_skb)
1243 remain = tx_skb->len - *tx_idx;
1244 else if (fillempty)
1245 remain = 15; /* > not complete */
1246 else
1247 remain = 0;
1248
1249 if (remain > 0) {
1250 fifo->bit_line -= sink;
1251 current_len = (0 - fifo->bit_line) / 8;
1252 if (current_len > 14)
1253 current_len = 14;
1254 if (current_len < 0)
1255 current_len = 0;
1256 if (remain < current_len)
1257 current_len = remain;
1258
1259 /* how much bit do we put on the line? */
1260 fifo->bit_line += current_len * 8;
1261
1262 context_iso_urb->buffer[tx_offset] = 0;
1263 if (current_len == remain) {
1264 if (hdlc) {
1265 /* signal frame completion */
1266 context_iso_urb->
1267 buffer[tx_offset] = 1;
1268 /* add 2 byte flags and 16bit
1269 * CRC at end of ISDN frame */
1270 fifo->bit_line += 32;
1271 }
1272 frame_complete = 1;
1273 }
1274
1275 /* copy tx data to iso-urb buffer */
1276 p = context_iso_urb->buffer + tx_offset + 1;
1277 if (fillempty) {
1278 memset(p, fifo->bch->fill[0],
1279 current_len);
1280 } else {
1281 memcpy(p, (tx_skb->data + *tx_idx),
1282 current_len);
1283 *tx_idx += current_len;
1284 }
1285 urb->iso_frame_desc[k].offset = tx_offset;
1286 urb->iso_frame_desc[k].length = current_len + 1;
1287
1288 /* USB data log for every D ISO out */
1289 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1290 (debug & DBG_HFC_USB_VERBOSE)) {
1291 printk(KERN_DEBUG
1292 "%s: %s (%d/%d) offs(%d) len(%d) ",
1293 hw->name, __func__,
1294 k, num_isoc_packets - 1,
1295 urb->iso_frame_desc[k].offset,
1296 urb->iso_frame_desc[k].length);
1297
1298 for (i = urb->iso_frame_desc[k].offset;
1299 i < (urb->iso_frame_desc[k].offset
1300 + urb->iso_frame_desc[k].length);
1301 i++)
1302 printk("%x ",
1303 context_iso_urb->buffer[i]);
1304
1305 printk(" skb->len(%i) tx-idx(%d)\n",
1306 tx_skb->len, *tx_idx);
1307 }
1308
1309 tx_offset += (current_len + 1);
1310 } else {
1311 urb->iso_frame_desc[k].offset = tx_offset++;
1312 urb->iso_frame_desc[k].length = 1;
1313 /* we lower data margin every msec */
1314 fifo->bit_line -= sink;
1315 if (fifo->bit_line < BITLINE_INF)
1316 fifo->bit_line = BITLINE_INF;
1317 }
1318
1319 if (frame_complete) {
1320 frame_complete = 0;
1321
1322 if (debug & DBG_HFC_FIFO_VERBOSE) {
1323 printk(KERN_DEBUG "%s: %s: "
1324 "fifon(%i) new TX len(%i): ",
1325 hw->name, __func__,
1326 fifon, tx_skb->len);
1327 i = 0;
1328 while (i < tx_skb->len)
1329 printk("%02x ",
1330 tx_skb->data[i++]);
1331 printk("\n");
1332 }
1333
1334 dev_kfree_skb(tx_skb);
1335 tx_skb = NULL;
1336 if (fifo->dch && get_next_dframe(fifo->dch))
1337 tx_skb = fifo->dch->tx_skb;
1338 else if (fifo->bch &&
1339 get_next_bframe(fifo->bch))
1340 tx_skb = fifo->bch->tx_skb;
1341 }
1342 }
1343 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1344 if (errcode < 0) {
1345 if (debug & DEBUG_HW)
1346 printk(KERN_DEBUG
1347 "%s: %s: error submitting ISO URB: %d \n",
1348 hw->name, __func__, errcode);
1349 }
1350
1351 /*
1352 * abuse DChannel tx iso completion to trigger NT mode state
1353 * changes tx_iso_complete is assumed to be called every
1354 * fifo->intervall (ms)
1355 */
1356 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1357 && (hw->timers & NT_ACTIVATION_TIMER)) {
1358 if ((--hw->nt_timer) < 0)
1359 schedule_event(&hw->dch, FLG_PHCHANGE);
1360 }
1361
1362 } else {
1363 if (status && (debug & DBG_HFC_URB_ERROR))
1364 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1365 "fifonum=%d\n",
1366 hw->name, __func__,
1367 symbolic(urb_errlist, status), status, fifon);
1368 }
1369 spin_unlock_irqrestore(&hw->lock, flags);
1370 }
1371
1372 /*
1373 * allocs urbs and start isoc transfer with two pending urbs to avoid
1374 * gaps in the transfer chain
1375 */
1376 static int
1377 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1378 usb_complete_t complete, int packet_size)
1379 {
1380 struct hfcsusb *hw = fifo->hw;
1381 int i, k, errcode;
1382
1383 if (debug)
1384 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1385 hw->name, __func__, fifo->fifonum);
1386
1387 /* allocate Memory for Iso out Urbs */
1388 for (i = 0; i < 2; i++) {
1389 if (!(fifo->iso[i].urb)) {
1390 fifo->iso[i].urb =
1391 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1392 if (!(fifo->iso[i].urb)) {
1393 printk(KERN_DEBUG
1394 "%s: %s: alloc urb for fifo %i failed",
1395 hw->name, __func__, fifo->fifonum);
1396 continue;
1397 }
1398 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1399 fifo->iso[i].indx = i;
1400
1401 /* Init the first iso */
1402 if (ISO_BUFFER_SIZE >=
1403 (fifo->usb_packet_maxlen *
1404 num_packets_per_urb)) {
1405 fill_isoc_urb(fifo->iso[i].urb,
1406 fifo->hw->dev, fifo->pipe,
1407 fifo->iso[i].buffer,
1408 num_packets_per_urb,
1409 fifo->usb_packet_maxlen,
1410 fifo->intervall, complete,
1411 &fifo->iso[i]);
1412 memset(fifo->iso[i].buffer, 0,
1413 sizeof(fifo->iso[i].buffer));
1414
1415 for (k = 0; k < num_packets_per_urb; k++) {
1416 fifo->iso[i].urb->
1417 iso_frame_desc[k].offset =
1418 k * packet_size;
1419 fifo->iso[i].urb->
1420 iso_frame_desc[k].length =
1421 packet_size;
1422 }
1423 } else {
1424 printk(KERN_DEBUG
1425 "%s: %s: ISO Buffer size to small!\n",
1426 hw->name, __func__);
1427 }
1428 }
1429 fifo->bit_line = BITLINE_INF;
1430
1431 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1432 fifo->active = (errcode >= 0) ? 1 : 0;
1433 fifo->stop_gracefull = 0;
1434 if (errcode < 0) {
1435 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1436 hw->name, __func__,
1437 symbolic(urb_errlist, errcode), i);
1438 }
1439 }
1440 return fifo->active;
1441 }
1442
1443 static void
1444 stop_iso_gracefull(struct usb_fifo *fifo)
1445 {
1446 struct hfcsusb *hw = fifo->hw;
1447 int i, timeout;
1448 u_long flags;
1449
1450 for (i = 0; i < 2; i++) {
1451 spin_lock_irqsave(&hw->lock, flags);
1452 if (debug)
1453 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1454 hw->name, __func__, fifo->fifonum, i);
1455 fifo->stop_gracefull = 1;
1456 spin_unlock_irqrestore(&hw->lock, flags);
1457 }
1458
1459 for (i = 0; i < 2; i++) {
1460 timeout = 3;
1461 while (fifo->stop_gracefull && timeout--)
1462 schedule_timeout_interruptible((HZ / 1000) * 16);
1463 if (debug && fifo->stop_gracefull)
1464 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1465 hw->name, __func__, fifo->fifonum, i);
1466 }
1467 }
1468
1469 static void
1470 stop_int_gracefull(struct usb_fifo *fifo)
1471 {
1472 struct hfcsusb *hw = fifo->hw;
1473 int timeout;
1474 u_long flags;
1475
1476 spin_lock_irqsave(&hw->lock, flags);
1477 if (debug)
1478 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1479 hw->name, __func__, fifo->fifonum);
1480 fifo->stop_gracefull = 1;
1481 spin_unlock_irqrestore(&hw->lock, flags);
1482
1483 timeout = 3;
1484 while (fifo->stop_gracefull && timeout--)
1485 schedule_timeout_interruptible((HZ / 1000) * 3);
1486 if (debug && fifo->stop_gracefull)
1487 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1488 hw->name, __func__, fifo->fifonum);
1489 }
1490
1491 /* start the interrupt transfer for the given fifo */
1492 static void
1493 start_int_fifo(struct usb_fifo *fifo)
1494 {
1495 struct hfcsusb *hw = fifo->hw;
1496 int errcode;
1497
1498 if (debug)
1499 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1500 hw->name, __func__, fifo->fifonum);
1501
1502 if (!fifo->urb) {
1503 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1504 if (!fifo->urb)
1505 return;
1506 }
1507 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1508 fifo->buffer, fifo->usb_packet_maxlen,
1509 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1510 fifo->active = 1;
1511 fifo->stop_gracefull = 0;
1512 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1513 if (errcode) {
1514 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1515 hw->name, __func__, errcode);
1516 fifo->active = 0;
1517 }
1518 }
1519
1520 static void
1521 setPortMode(struct hfcsusb *hw)
1522 {
1523 if (debug & DEBUG_HW)
1524 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1525 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1526
1527 if (hw->protocol == ISDN_P_TE_S0) {
1528 write_reg(hw, HFCUSB_SCTRL, 0x40);
1529 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1530 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1531 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1532 write_reg(hw, HFCUSB_STATES, 3);
1533 } else {
1534 write_reg(hw, HFCUSB_SCTRL, 0x44);
1535 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1536 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1537 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1538 write_reg(hw, HFCUSB_STATES, 1);
1539 }
1540 }
1541
1542 static void
1543 reset_hfcsusb(struct hfcsusb *hw)
1544 {
1545 struct usb_fifo *fifo;
1546 int i;
1547
1548 if (debug & DEBUG_HW)
1549 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1550
1551 /* do Chip reset */
1552 write_reg(hw, HFCUSB_CIRM, 8);
1553
1554 /* aux = output, reset off */
1555 write_reg(hw, HFCUSB_CIRM, 0x10);
1556
1557 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1558 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1559 ((hw->packet_size / 8) << 4));
1560
1561 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1562 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1563
1564 /* enable PCM/GCI master mode */
1565 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1566 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1567
1568 /* init the fifos */
1569 write_reg(hw, HFCUSB_F_THRES,
1570 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1571
1572 fifo = hw->fifos;
1573 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1574 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1575 fifo[i].max_size =
1576 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1577 fifo[i].last_urblen = 0;
1578
1579 /* set 2 bit for D- & E-channel */
1580 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1581
1582 /* enable all fifos */
1583 if (i == HFCUSB_D_TX)
1584 write_reg(hw, HFCUSB_CON_HDLC,
1585 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1586 else
1587 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1588 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1589 }
1590
1591 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1592 handle_led(hw, LED_POWER_ON);
1593 }
1594
1595 /* start USB data pipes dependand on device's endpoint configuration */
1596 static void
1597 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1598 {
1599 /* quick check if endpoint already running */
1600 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1601 return;
1602 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1603 return;
1604 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1605 return;
1606 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1607 return;
1608
1609 /* start rx endpoints using USB INT IN method */
1610 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1611 start_int_fifo(hw->fifos + channel * 2 + 1);
1612
1613 /* start rx endpoints using USB ISO IN method */
1614 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1615 switch (channel) {
1616 case HFC_CHAN_D:
1617 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1618 ISOC_PACKETS_D,
1619 (usb_complete_t)rx_iso_complete,
1620 16);
1621 break;
1622 case HFC_CHAN_E:
1623 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1624 ISOC_PACKETS_D,
1625 (usb_complete_t)rx_iso_complete,
1626 16);
1627 break;
1628 case HFC_CHAN_B1:
1629 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1630 ISOC_PACKETS_B,
1631 (usb_complete_t)rx_iso_complete,
1632 16);
1633 break;
1634 case HFC_CHAN_B2:
1635 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1636 ISOC_PACKETS_B,
1637 (usb_complete_t)rx_iso_complete,
1638 16);
1639 break;
1640 }
1641 }
1642
1643 /* start tx endpoints using USB ISO OUT method */
1644 switch (channel) {
1645 case HFC_CHAN_D:
1646 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1647 ISOC_PACKETS_B,
1648 (usb_complete_t)tx_iso_complete, 1);
1649 break;
1650 case HFC_CHAN_B1:
1651 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1652 ISOC_PACKETS_D,
1653 (usb_complete_t)tx_iso_complete, 1);
1654 break;
1655 case HFC_CHAN_B2:
1656 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1657 ISOC_PACKETS_B,
1658 (usb_complete_t)tx_iso_complete, 1);
1659 break;
1660 }
1661 }
1662
1663 /* stop USB data pipes dependand on device's endpoint configuration */
1664 static void
1665 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1666 {
1667 /* quick check if endpoint currently running */
1668 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1669 return;
1670 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1671 return;
1672 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1673 return;
1674 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1675 return;
1676
1677 /* rx endpoints using USB INT IN method */
1678 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1679 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1680
1681 /* rx endpoints using USB ISO IN method */
1682 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1683 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1684
1685 /* tx endpoints using USB ISO OUT method */
1686 if (channel != HFC_CHAN_E)
1687 stop_iso_gracefull(hw->fifos + channel * 2);
1688 }
1689
1690
1691 /* Hardware Initialization */
1692 static int
1693 setup_hfcsusb(struct hfcsusb *hw)
1694 {
1695 void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1696 u_char b;
1697 int ret;
1698
1699 if (debug & DBG_HFC_CALL_TRACE)
1700 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1701
1702 if (!dmabuf)
1703 return -ENOMEM;
1704
1705 ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1706
1707 memcpy(&b, dmabuf, sizeof(u_char));
1708 kfree(dmabuf);
1709
1710 /* check the chip id */
1711 if (ret != 1) {
1712 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1713 hw->name, __func__);
1714 return 1;
1715 }
1716 if (b != HFCUSB_CHIPID) {
1717 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1718 hw->name, __func__, b);
1719 return 1;
1720 }
1721
1722 /* first set the needed config, interface and alternate */
1723 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1724
1725 hw->led_state = 0;
1726
1727 /* init the background machinery for control requests */
1728 hw->ctrl_read.bRequestType = 0xc0;
1729 hw->ctrl_read.bRequest = 1;
1730 hw->ctrl_read.wLength = cpu_to_le16(1);
1731 hw->ctrl_write.bRequestType = 0x40;
1732 hw->ctrl_write.bRequest = 0;
1733 hw->ctrl_write.wLength = 0;
1734 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1735 (u_char *)&hw->ctrl_write, NULL, 0,
1736 (usb_complete_t)ctrl_complete, hw);
1737
1738 reset_hfcsusb(hw);
1739 return 0;
1740 }
1741
1742 static void
1743 release_hw(struct hfcsusb *hw)
1744 {
1745 if (debug & DBG_HFC_CALL_TRACE)
1746 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1747
1748 /*
1749 * stop all endpoints gracefully
1750 * TODO: mISDN_core should generate CLOSE_CHANNEL
1751 * signals after calling mISDN_unregister_device()
1752 */
1753 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1754 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1755 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1756 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1757 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1758 if (hw->protocol == ISDN_P_TE_S0)
1759 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1760
1761 mISDN_unregister_device(&hw->dch.dev);
1762 mISDN_freebchannel(&hw->bch[1]);
1763 mISDN_freebchannel(&hw->bch[0]);
1764 mISDN_freedchannel(&hw->dch);
1765
1766 if (hw->ctrl_urb) {
1767 usb_kill_urb(hw->ctrl_urb);
1768 usb_free_urb(hw->ctrl_urb);
1769 hw->ctrl_urb = NULL;
1770 }
1771
1772 if (hw->intf)
1773 usb_set_intfdata(hw->intf, NULL);
1774 list_del(&hw->list);
1775 kfree(hw);
1776 hw = NULL;
1777 }
1778
1779 static void
1780 deactivate_bchannel(struct bchannel *bch)
1781 {
1782 struct hfcsusb *hw = bch->hw;
1783 u_long flags;
1784
1785 if (bch->debug & DEBUG_HW)
1786 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1787 hw->name, __func__, bch->nr);
1788
1789 spin_lock_irqsave(&hw->lock, flags);
1790 mISDN_clear_bchannel(bch);
1791 spin_unlock_irqrestore(&hw->lock, flags);
1792 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1793 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1794 }
1795
1796 /*
1797 * Layer 1 B-channel hardware access
1798 */
1799 static int
1800 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1801 {
1802 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1803 int ret = -EINVAL;
1804
1805 if (bch->debug & DEBUG_HW)
1806 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1807
1808 switch (cmd) {
1809 case HW_TESTRX_RAW:
1810 case HW_TESTRX_HDLC:
1811 case HW_TESTRX_OFF:
1812 ret = -EINVAL;
1813 break;
1814
1815 case CLOSE_CHANNEL:
1816 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1817 deactivate_bchannel(bch);
1818 ch->protocol = ISDN_P_NONE;
1819 ch->peer = NULL;
1820 module_put(THIS_MODULE);
1821 ret = 0;
1822 break;
1823 case CONTROL_CHANNEL:
1824 ret = channel_bctrl(bch, arg);
1825 break;
1826 default:
1827 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1828 __func__, cmd);
1829 }
1830 return ret;
1831 }
1832
1833 static int
1834 setup_instance(struct hfcsusb *hw, struct device *parent)
1835 {
1836 u_long flags;
1837 int err, i;
1838
1839 if (debug & DBG_HFC_CALL_TRACE)
1840 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1841
1842 spin_lock_init(&hw->ctrl_lock);
1843 spin_lock_init(&hw->lock);
1844
1845 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1846 hw->dch.debug = debug & 0xFFFF;
1847 hw->dch.hw = hw;
1848 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1849 hw->dch.dev.D.send = hfcusb_l2l1D;
1850 hw->dch.dev.D.ctrl = hfc_dctrl;
1851
1852 /* enable E-Channel logging */
1853 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1854 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1855
1856 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1857 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1858 hw->dch.dev.nrbchan = 2;
1859 for (i = 0; i < 2; i++) {
1860 hw->bch[i].nr = i + 1;
1861 set_channelmap(i + 1, hw->dch.dev.channelmap);
1862 hw->bch[i].debug = debug;
1863 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1864 hw->bch[i].hw = hw;
1865 hw->bch[i].ch.send = hfcusb_l2l1B;
1866 hw->bch[i].ch.ctrl = hfc_bctrl;
1867 hw->bch[i].ch.nr = i + 1;
1868 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1869 }
1870
1871 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1872 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1873 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1874 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1875 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1876 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1877 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1878 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1879
1880 err = setup_hfcsusb(hw);
1881 if (err)
1882 goto out;
1883
1884 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1885 hfcsusb_cnt + 1);
1886 printk(KERN_INFO "%s: registered as '%s'\n",
1887 DRIVER_NAME, hw->name);
1888
1889 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1890 if (err)
1891 goto out;
1892
1893 hfcsusb_cnt++;
1894 write_lock_irqsave(&HFClock, flags);
1895 list_add_tail(&hw->list, &HFClist);
1896 write_unlock_irqrestore(&HFClock, flags);
1897 return 0;
1898
1899 out:
1900 mISDN_freebchannel(&hw->bch[1]);
1901 mISDN_freebchannel(&hw->bch[0]);
1902 mISDN_freedchannel(&hw->dch);
1903 kfree(hw);
1904 return err;
1905 }
1906
1907 static int
1908 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1909 {
1910 struct hfcsusb *hw;
1911 struct usb_device *dev = interface_to_usbdev(intf);
1912 struct usb_host_interface *iface = intf->cur_altsetting;
1913 struct usb_host_interface *iface_used = NULL;
1914 struct usb_host_endpoint *ep;
1915 struct hfcsusb_vdata *driver_info;
1916 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1917 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1918 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1919 alt_used = 0;
1920
1921 vend_idx = 0xffff;
1922 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1923 if ((le16_to_cpu(dev->descriptor.idVendor)
1924 == hfcsusb_idtab[i].idVendor) &&
1925 (le16_to_cpu(dev->descriptor.idProduct)
1926 == hfcsusb_idtab[i].idProduct)) {
1927 vend_idx = i;
1928 continue;
1929 }
1930 }
1931
1932 printk(KERN_DEBUG
1933 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1934 __func__, ifnum, iface->desc.bAlternateSetting,
1935 intf->minor, vend_idx);
1936
1937 if (vend_idx == 0xffff) {
1938 printk(KERN_WARNING
1939 "%s: no valid vendor found in USB descriptor\n",
1940 __func__);
1941 return -EIO;
1942 }
1943 /* if vendor and product ID is OK, start probing alternate settings */
1944 alt_idx = 0;
1945 small_match = -1;
1946
1947 /* default settings */
1948 iso_packet_size = 16;
1949 packet_size = 64;
1950
1951 while (alt_idx < intf->num_altsetting) {
1952 iface = intf->altsetting + alt_idx;
1953 probe_alt_setting = iface->desc.bAlternateSetting;
1954 cfg_used = 0;
1955
1956 while (validconf[cfg_used][0]) {
1957 cfg_found = 1;
1958 vcf = validconf[cfg_used];
1959 ep = iface->endpoint;
1960 memcpy(cmptbl, vcf, 16 * sizeof(int));
1961
1962 /* check for all endpoints in this alternate setting */
1963 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1964 ep_addr = ep->desc.bEndpointAddress;
1965
1966 /* get endpoint base */
1967 idx = ((ep_addr & 0x7f) - 1) * 2;
1968 if (idx > 15)
1969 return -EIO;
1970
1971 if (ep_addr & 0x80)
1972 idx++;
1973 attr = ep->desc.bmAttributes;
1974
1975 if (cmptbl[idx] != EP_NOP) {
1976 if (cmptbl[idx] == EP_NUL)
1977 cfg_found = 0;
1978 if (attr == USB_ENDPOINT_XFER_INT
1979 && cmptbl[idx] == EP_INT)
1980 cmptbl[idx] = EP_NUL;
1981 if (attr == USB_ENDPOINT_XFER_BULK
1982 && cmptbl[idx] == EP_BLK)
1983 cmptbl[idx] = EP_NUL;
1984 if (attr == USB_ENDPOINT_XFER_ISOC
1985 && cmptbl[idx] == EP_ISO)
1986 cmptbl[idx] = EP_NUL;
1987
1988 if (attr == USB_ENDPOINT_XFER_INT &&
1989 ep->desc.bInterval < vcf[17]) {
1990 cfg_found = 0;
1991 }
1992 }
1993 ep++;
1994 }
1995
1996 for (i = 0; i < 16; i++)
1997 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1998 cfg_found = 0;
1999
2000 if (cfg_found) {
2001 if (small_match < cfg_used) {
2002 small_match = cfg_used;
2003 alt_used = probe_alt_setting;
2004 iface_used = iface;
2005 }
2006 }
2007 cfg_used++;
2008 }
2009 alt_idx++;
2010 } /* (alt_idx < intf->num_altsetting) */
2011
2012 /* not found a valid USB Ta Endpoint config */
2013 if (small_match == -1)
2014 return -EIO;
2015
2016 iface = iface_used;
2017 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2018 if (!hw)
2019 return -ENOMEM; /* got no mem */
2020 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2021
2022 ep = iface->endpoint;
2023 vcf = validconf[small_match];
2024
2025 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2026 struct usb_fifo *f;
2027
2028 ep_addr = ep->desc.bEndpointAddress;
2029 /* get endpoint base */
2030 idx = ((ep_addr & 0x7f) - 1) * 2;
2031 if (ep_addr & 0x80)
2032 idx++;
2033 f = &hw->fifos[idx & 7];
2034
2035 /* init Endpoints */
2036 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2037 ep++;
2038 continue;
2039 }
2040 switch (ep->desc.bmAttributes) {
2041 case USB_ENDPOINT_XFER_INT:
2042 f->pipe = usb_rcvintpipe(dev,
2043 ep->desc.bEndpointAddress);
2044 f->usb_transfer_mode = USB_INT;
2045 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2046 break;
2047 case USB_ENDPOINT_XFER_BULK:
2048 if (ep_addr & 0x80)
2049 f->pipe = usb_rcvbulkpipe(dev,
2050 ep->desc.bEndpointAddress);
2051 else
2052 f->pipe = usb_sndbulkpipe(dev,
2053 ep->desc.bEndpointAddress);
2054 f->usb_transfer_mode = USB_BULK;
2055 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2056 break;
2057 case USB_ENDPOINT_XFER_ISOC:
2058 if (ep_addr & 0x80)
2059 f->pipe = usb_rcvisocpipe(dev,
2060 ep->desc.bEndpointAddress);
2061 else
2062 f->pipe = usb_sndisocpipe(dev,
2063 ep->desc.bEndpointAddress);
2064 f->usb_transfer_mode = USB_ISOC;
2065 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2066 break;
2067 default:
2068 f->pipe = 0;
2069 }
2070
2071 if (f->pipe) {
2072 f->fifonum = idx & 7;
2073 f->hw = hw;
2074 f->usb_packet_maxlen =
2075 le16_to_cpu(ep->desc.wMaxPacketSize);
2076 f->intervall = ep->desc.bInterval;
2077 }
2078 ep++;
2079 }
2080 hw->dev = dev; /* save device */
2081 hw->if_used = ifnum; /* save used interface */
2082 hw->alt_used = alt_used; /* and alternate config */
2083 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2084 hw->cfg_used = vcf[16]; /* store used config */
2085 hw->vend_idx = vend_idx; /* store found vendor */
2086 hw->packet_size = packet_size;
2087 hw->iso_packet_size = iso_packet_size;
2088
2089 /* create the control pipes needed for register access */
2090 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2091 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2092
2093 driver_info = (struct hfcsusb_vdata *)
2094 hfcsusb_idtab[vend_idx].driver_info;
2095
2096 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2097 if (!hw->ctrl_urb) {
2098 pr_warn("%s: No memory for control urb\n",
2099 driver_info->vend_name);
2100 kfree(hw);
2101 return -ENOMEM;
2102 }
2103
2104 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2105 hw->name, __func__, driver_info->vend_name,
2106 conf_str[small_match], ifnum, alt_used);
2107
2108 if (setup_instance(hw, dev->dev.parent))
2109 return -EIO;
2110
2111 hw->intf = intf;
2112 usb_set_intfdata(hw->intf, hw);
2113 return 0;
2114 }
2115
2116 /* function called when an active device is removed */
2117 static void
2118 hfcsusb_disconnect(struct usb_interface *intf)
2119 {
2120 struct hfcsusb *hw = usb_get_intfdata(intf);
2121 struct hfcsusb *next;
2122 int cnt = 0;
2123
2124 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2125
2126 handle_led(hw, LED_POWER_OFF);
2127 release_hw(hw);
2128
2129 list_for_each_entry_safe(hw, next, &HFClist, list)
2130 cnt++;
2131 if (!cnt)
2132 hfcsusb_cnt = 0;
2133
2134 usb_set_intfdata(intf, NULL);
2135 }
2136
2137 static struct usb_driver hfcsusb_drv = {
2138 .name = DRIVER_NAME,
2139 .id_table = hfcsusb_idtab,
2140 .probe = hfcsusb_probe,
2141 .disconnect = hfcsusb_disconnect,
2142 .disable_hub_initiated_lpm = 1,
2143 };
2144
2145 module_usb_driver(hfcsusb_drv);