]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/isdn/hisax/avm_pci.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-focal-kernel.git] / drivers / isdn / hisax / avm_pci.c
1 /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
2 *
3 * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
4 *
5 * Author Karsten Keil
6 * Copyright by Karsten Keil <keil@isdn4linux.de>
7 *
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
10 *
11 * Thanks to AVM, Berlin for information
12 *
13 */
14
15 #include <linux/init.h>
16 #include "hisax.h"
17 #include "isac.h"
18 #include "isdnl1.h"
19 #include <linux/pci.h>
20 #include <linux/isapnp.h>
21 #include <linux/interrupt.h>
22
23 static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
24
25 #define AVM_FRITZ_PCI 1
26 #define AVM_FRITZ_PNP 2
27
28 #define HDLC_FIFO 0x0
29 #define HDLC_STATUS 0x4
30
31 #define AVM_HDLC_1 0x00
32 #define AVM_HDLC_2 0x01
33 #define AVM_ISAC_FIFO 0x02
34 #define AVM_ISAC_REG_LOW 0x04
35 #define AVM_ISAC_REG_HIGH 0x06
36
37 #define AVM_STATUS0_IRQ_ISAC 0x01
38 #define AVM_STATUS0_IRQ_HDLC 0x02
39 #define AVM_STATUS0_IRQ_TIMER 0x04
40 #define AVM_STATUS0_IRQ_MASK 0x07
41
42 #define AVM_STATUS0_RESET 0x01
43 #define AVM_STATUS0_DIS_TIMER 0x02
44 #define AVM_STATUS0_RES_TIMER 0x04
45 #define AVM_STATUS0_ENA_IRQ 0x08
46 #define AVM_STATUS0_TESTBIT 0x10
47
48 #define AVM_STATUS1_INT_SEL 0x0f
49 #define AVM_STATUS1_ENA_IOM 0x80
50
51 #define HDLC_MODE_ITF_FLG 0x01
52 #define HDLC_MODE_TRANS 0x02
53 #define HDLC_MODE_CCR_7 0x04
54 #define HDLC_MODE_CCR_16 0x08
55 #define HDLC_MODE_TESTLOOP 0x80
56
57 #define HDLC_INT_XPR 0x80
58 #define HDLC_INT_XDU 0x40
59 #define HDLC_INT_RPR 0x20
60 #define HDLC_INT_MASK 0xE0
61
62 #define HDLC_STAT_RME 0x01
63 #define HDLC_STAT_RDO 0x10
64 #define HDLC_STAT_CRCVFRRAB 0x0E
65 #define HDLC_STAT_CRCVFR 0x06
66 #define HDLC_STAT_RML_MASK 0x3f00
67
68 #define HDLC_CMD_XRS 0x80
69 #define HDLC_CMD_XME 0x01
70 #define HDLC_CMD_RRS 0x20
71 #define HDLC_CMD_XML_MASK 0x3f00
72
73
74 /* Interface functions */
75
76 static u_char
77 ReadISAC(struct IsdnCardState *cs, u_char offset)
78 {
79 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
80 register u_char val;
81
82 outb(idx, cs->hw.avm.cfg_reg + 4);
83 val = inb(cs->hw.avm.isac + (offset & 0xf));
84 return (val);
85 }
86
87 static void
88 WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
89 {
90 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
91
92 outb(idx, cs->hw.avm.cfg_reg + 4);
93 outb(value, cs->hw.avm.isac + (offset & 0xf));
94 }
95
96 static void
97 ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
98 {
99 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
100 insb(cs->hw.avm.isac, data, size);
101 }
102
103 static void
104 WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
105 {
106 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
107 outsb(cs->hw.avm.isac, data, size);
108 }
109
110 static inline u_int
111 ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
112 {
113 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
114 register u_int val;
115
116 outl(idx, cs->hw.avm.cfg_reg + 4);
117 val = inl(cs->hw.avm.isac + offset);
118 return (val);
119 }
120
121 static inline void
122 WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
123 {
124 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
125
126 outl(idx, cs->hw.avm.cfg_reg + 4);
127 outl(value, cs->hw.avm.isac + offset);
128 }
129
130 static inline u_char
131 ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
132 {
133 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
134 register u_char val;
135
136 outb(idx, cs->hw.avm.cfg_reg + 4);
137 val = inb(cs->hw.avm.isac + offset);
138 return (val);
139 }
140
141 static inline void
142 WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
143 {
144 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
145
146 outb(idx, cs->hw.avm.cfg_reg + 4);
147 outb(value, cs->hw.avm.isac + offset);
148 }
149
150 static u_char
151 ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
152 {
153 return(0xff & ReadHDLCPCI(cs, chan, offset));
154 }
155
156 static void
157 WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
158 {
159 WriteHDLCPCI(cs, chan, offset, value);
160 }
161
162 static inline
163 struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
164 {
165 if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
166 return(&cs->bcs[0]);
167 else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
168 return(&cs->bcs[1]);
169 else
170 return(NULL);
171 }
172
173 static void
174 write_ctrl(struct BCState *bcs, int which) {
175
176 if (bcs->cs->debug & L1_DEB_HSCX)
177 debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
178 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
179 if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
180 WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
181 } else {
182 if (which & 4)
183 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
184 bcs->hw.hdlc.ctrl.sr.mode);
185 if (which & 2)
186 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
187 bcs->hw.hdlc.ctrl.sr.xml);
188 if (which & 1)
189 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
190 bcs->hw.hdlc.ctrl.sr.cmd);
191 }
192 }
193
194 static void
195 modehdlc(struct BCState *bcs, int mode, int bc)
196 {
197 struct IsdnCardState *cs = bcs->cs;
198 int hdlc = bcs->channel;
199
200 if (cs->debug & L1_DEB_HSCX)
201 debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
202 'A' + hdlc, bcs->mode, mode, hdlc, bc);
203 bcs->hw.hdlc.ctrl.ctrl = 0;
204 switch (mode) {
205 case (-1): /* used for init */
206 bcs->mode = 1;
207 bcs->channel = bc;
208 bc = 0;
209 case (L1_MODE_NULL):
210 if (bcs->mode == L1_MODE_NULL)
211 return;
212 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
213 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
214 write_ctrl(bcs, 5);
215 bcs->mode = L1_MODE_NULL;
216 bcs->channel = bc;
217 break;
218 case (L1_MODE_TRANS):
219 bcs->mode = mode;
220 bcs->channel = bc;
221 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
222 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
223 write_ctrl(bcs, 5);
224 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
225 write_ctrl(bcs, 1);
226 bcs->hw.hdlc.ctrl.sr.cmd = 0;
227 schedule_event(bcs, B_XMTBUFREADY);
228 break;
229 case (L1_MODE_HDLC):
230 bcs->mode = mode;
231 bcs->channel = bc;
232 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
233 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
234 write_ctrl(bcs, 5);
235 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
236 write_ctrl(bcs, 1);
237 bcs->hw.hdlc.ctrl.sr.cmd = 0;
238 schedule_event(bcs, B_XMTBUFREADY);
239 break;
240 }
241 }
242
243 static inline void
244 hdlc_empty_fifo(struct BCState *bcs, int count)
245 {
246 register u_int *ptr;
247 u_char *p;
248 u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
249 int cnt=0;
250 struct IsdnCardState *cs = bcs->cs;
251
252 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
253 debugl1(cs, "hdlc_empty_fifo %d", count);
254 if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
255 if (cs->debug & L1_DEB_WARN)
256 debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
257 return;
258 }
259 p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
260 ptr = (u_int *)p;
261 bcs->hw.hdlc.rcvidx += count;
262 if (cs->subtyp == AVM_FRITZ_PCI) {
263 outl(idx, cs->hw.avm.cfg_reg + 4);
264 while (cnt < count) {
265 #ifdef __powerpc__
266 #ifdef CONFIG_APUS
267 *ptr++ = in_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
268 #else
269 *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
270 #endif /* CONFIG_APUS */
271 #else
272 *ptr++ = inl(cs->hw.avm.isac);
273 #endif /* __powerpc__ */
274 cnt += 4;
275 }
276 } else {
277 outb(idx, cs->hw.avm.cfg_reg + 4);
278 while (cnt < count) {
279 *p++ = inb(cs->hw.avm.isac);
280 cnt++;
281 }
282 }
283 if (cs->debug & L1_DEB_HSCX_FIFO) {
284 char *t = bcs->blog;
285
286 if (cs->subtyp == AVM_FRITZ_PNP)
287 p = (u_char *) ptr;
288 t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
289 bcs->channel ? 'B' : 'A', count);
290 QuickHex(t, p, count);
291 debugl1(cs, bcs->blog);
292 }
293 }
294
295 static inline void
296 hdlc_fill_fifo(struct BCState *bcs)
297 {
298 struct IsdnCardState *cs = bcs->cs;
299 int count, cnt =0;
300 int fifo_size = 32;
301 u_char *p;
302 u_int *ptr;
303
304 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
305 debugl1(cs, "hdlc_fill_fifo");
306 if (!bcs->tx_skb)
307 return;
308 if (bcs->tx_skb->len <= 0)
309 return;
310
311 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
312 if (bcs->tx_skb->len > fifo_size) {
313 count = fifo_size;
314 } else {
315 count = bcs->tx_skb->len;
316 if (bcs->mode != L1_MODE_TRANS)
317 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
318 }
319 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
320 debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
321 p = bcs->tx_skb->data;
322 ptr = (u_int *)p;
323 skb_pull(bcs->tx_skb, count);
324 bcs->tx_cnt -= count;
325 bcs->hw.hdlc.count += count;
326 bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
327 write_ctrl(bcs, 3); /* sets the correct index too */
328 if (cs->subtyp == AVM_FRITZ_PCI) {
329 while (cnt<count) {
330 #ifdef __powerpc__
331 #ifdef CONFIG_APUS
332 out_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
333 #else
334 out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
335 #endif /* CONFIG_APUS */
336 #else
337 outl(*ptr++, cs->hw.avm.isac);
338 #endif /* __powerpc__ */
339 cnt += 4;
340 }
341 } else {
342 while (cnt<count) {
343 outb(*p++, cs->hw.avm.isac);
344 cnt++;
345 }
346 }
347 if (cs->debug & L1_DEB_HSCX_FIFO) {
348 char *t = bcs->blog;
349
350 if (cs->subtyp == AVM_FRITZ_PNP)
351 p = (u_char *) ptr;
352 t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
353 bcs->channel ? 'B' : 'A', count);
354 QuickHex(t, p, count);
355 debugl1(cs, bcs->blog);
356 }
357 }
358
359 static void
360 HDLC_irq(struct BCState *bcs, u_int stat) {
361 int len;
362 struct sk_buff *skb;
363
364 if (bcs->cs->debug & L1_DEB_HSCX)
365 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
366 if (stat & HDLC_INT_RPR) {
367 if (stat & HDLC_STAT_RDO) {
368 if (bcs->cs->debug & L1_DEB_HSCX)
369 debugl1(bcs->cs, "RDO");
370 else
371 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
372 bcs->hw.hdlc.ctrl.sr.xml = 0;
373 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
374 write_ctrl(bcs, 1);
375 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
376 write_ctrl(bcs, 1);
377 bcs->hw.hdlc.rcvidx = 0;
378 } else {
379 if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
380 len = 32;
381 hdlc_empty_fifo(bcs, len);
382 if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
383 if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
384 (bcs->mode == L1_MODE_TRANS)) {
385 if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
386 printk(KERN_WARNING "HDLC: receive out of memory\n");
387 else {
388 memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
389 bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
390 skb_queue_tail(&bcs->rqueue, skb);
391 }
392 bcs->hw.hdlc.rcvidx = 0;
393 schedule_event(bcs, B_RCVBUFREADY);
394 } else {
395 if (bcs->cs->debug & L1_DEB_HSCX)
396 debugl1(bcs->cs, "invalid frame");
397 else
398 debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
399 bcs->hw.hdlc.rcvidx = 0;
400 }
401 }
402 }
403 }
404 if (stat & HDLC_INT_XDU) {
405 /* Here we lost an TX interrupt, so
406 * restart transmitting the whole frame.
407 */
408 if (bcs->tx_skb) {
409 skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
410 bcs->tx_cnt += bcs->hw.hdlc.count;
411 bcs->hw.hdlc.count = 0;
412 if (bcs->cs->debug & L1_DEB_WARN)
413 debugl1(bcs->cs, "ch%d XDU", bcs->channel);
414 } else if (bcs->cs->debug & L1_DEB_WARN)
415 debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
416 bcs->hw.hdlc.ctrl.sr.xml = 0;
417 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
418 write_ctrl(bcs, 1);
419 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
420 write_ctrl(bcs, 1);
421 hdlc_fill_fifo(bcs);
422 } else if (stat & HDLC_INT_XPR) {
423 if (bcs->tx_skb) {
424 if (bcs->tx_skb->len) {
425 hdlc_fill_fifo(bcs);
426 return;
427 } else {
428 if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
429 (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
430 u_long flags;
431 spin_lock_irqsave(&bcs->aclock, flags);
432 bcs->ackcnt += bcs->hw.hdlc.count;
433 spin_unlock_irqrestore(&bcs->aclock, flags);
434 schedule_event(bcs, B_ACKPENDING);
435 }
436 dev_kfree_skb_irq(bcs->tx_skb);
437 bcs->hw.hdlc.count = 0;
438 bcs->tx_skb = NULL;
439 }
440 }
441 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
442 bcs->hw.hdlc.count = 0;
443 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
444 hdlc_fill_fifo(bcs);
445 } else {
446 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
447 schedule_event(bcs, B_XMTBUFREADY);
448 }
449 }
450 }
451
452 static inline void
453 HDLC_irq_main(struct IsdnCardState *cs)
454 {
455 u_int stat;
456 struct BCState *bcs;
457
458 if (cs->subtyp == AVM_FRITZ_PCI) {
459 stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
460 } else {
461 stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
462 if (stat & HDLC_INT_RPR)
463 stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
464 }
465 if (stat & HDLC_INT_MASK) {
466 if (!(bcs = Sel_BCS(cs, 0))) {
467 if (cs->debug)
468 debugl1(cs, "hdlc spurious channel 0 IRQ");
469 } else
470 HDLC_irq(bcs, stat);
471 }
472 if (cs->subtyp == AVM_FRITZ_PCI) {
473 stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
474 } else {
475 stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
476 if (stat & HDLC_INT_RPR)
477 stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
478 }
479 if (stat & HDLC_INT_MASK) {
480 if (!(bcs = Sel_BCS(cs, 1))) {
481 if (cs->debug)
482 debugl1(cs, "hdlc spurious channel 1 IRQ");
483 } else
484 HDLC_irq(bcs, stat);
485 }
486 }
487
488 static void
489 hdlc_l2l1(struct PStack *st, int pr, void *arg)
490 {
491 struct BCState *bcs = st->l1.bcs;
492 struct sk_buff *skb = arg;
493 u_long flags;
494
495 switch (pr) {
496 case (PH_DATA | REQUEST):
497 spin_lock_irqsave(&bcs->cs->lock, flags);
498 if (bcs->tx_skb) {
499 skb_queue_tail(&bcs->squeue, skb);
500 } else {
501 bcs->tx_skb = skb;
502 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
503 bcs->hw.hdlc.count = 0;
504 bcs->cs->BC_Send_Data(bcs);
505 }
506 spin_unlock_irqrestore(&bcs->cs->lock, flags);
507 break;
508 case (PH_PULL | INDICATION):
509 spin_lock_irqsave(&bcs->cs->lock, flags);
510 if (bcs->tx_skb) {
511 printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
512 } else {
513 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
514 bcs->tx_skb = skb;
515 bcs->hw.hdlc.count = 0;
516 bcs->cs->BC_Send_Data(bcs);
517 }
518 spin_unlock_irqrestore(&bcs->cs->lock, flags);
519 break;
520 case (PH_PULL | REQUEST):
521 if (!bcs->tx_skb) {
522 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
523 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
524 } else
525 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
526 break;
527 case (PH_ACTIVATE | REQUEST):
528 spin_lock_irqsave(&bcs->cs->lock, flags);
529 test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
530 modehdlc(bcs, st->l1.mode, st->l1.bc);
531 spin_unlock_irqrestore(&bcs->cs->lock, flags);
532 l1_msg_b(st, pr, arg);
533 break;
534 case (PH_DEACTIVATE | REQUEST):
535 l1_msg_b(st, pr, arg);
536 break;
537 case (PH_DEACTIVATE | CONFIRM):
538 spin_lock_irqsave(&bcs->cs->lock, flags);
539 test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
540 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
541 modehdlc(bcs, 0, st->l1.bc);
542 spin_unlock_irqrestore(&bcs->cs->lock, flags);
543 st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
544 break;
545 }
546 }
547
548 static void
549 close_hdlcstate(struct BCState *bcs)
550 {
551 modehdlc(bcs, 0, 0);
552 if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
553 kfree(bcs->hw.hdlc.rcvbuf);
554 bcs->hw.hdlc.rcvbuf = NULL;
555 kfree(bcs->blog);
556 bcs->blog = NULL;
557 skb_queue_purge(&bcs->rqueue);
558 skb_queue_purge(&bcs->squeue);
559 if (bcs->tx_skb) {
560 dev_kfree_skb_any(bcs->tx_skb);
561 bcs->tx_skb = NULL;
562 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
563 }
564 }
565 }
566
567 static int
568 open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
569 {
570 if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
571 if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
572 printk(KERN_WARNING
573 "HiSax: No memory for hdlc.rcvbuf\n");
574 return (1);
575 }
576 if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
577 printk(KERN_WARNING
578 "HiSax: No memory for bcs->blog\n");
579 test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
580 kfree(bcs->hw.hdlc.rcvbuf);
581 bcs->hw.hdlc.rcvbuf = NULL;
582 return (2);
583 }
584 skb_queue_head_init(&bcs->rqueue);
585 skb_queue_head_init(&bcs->squeue);
586 }
587 bcs->tx_skb = NULL;
588 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
589 bcs->event = 0;
590 bcs->hw.hdlc.rcvidx = 0;
591 bcs->tx_cnt = 0;
592 return (0);
593 }
594
595 static int
596 setstack_hdlc(struct PStack *st, struct BCState *bcs)
597 {
598 bcs->channel = st->l1.bc;
599 if (open_hdlcstate(st->l1.hardware, bcs))
600 return (-1);
601 st->l1.bcs = bcs;
602 st->l2.l2l1 = hdlc_l2l1;
603 setstack_manager(st);
604 bcs->st = st;
605 setstack_l1_B(st);
606 return (0);
607 }
608
609 #if 0
610 void __init
611 clear_pending_hdlc_ints(struct IsdnCardState *cs)
612 {
613 u_int val;
614
615 if (cs->subtyp == AVM_FRITZ_PCI) {
616 val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
617 debugl1(cs, "HDLC 1 STA %x", val);
618 val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
619 debugl1(cs, "HDLC 2 STA %x", val);
620 } else {
621 val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
622 debugl1(cs, "HDLC 1 STA %x", val);
623 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
624 debugl1(cs, "HDLC 1 RML %x", val);
625 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
626 debugl1(cs, "HDLC 1 MODE %x", val);
627 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
628 debugl1(cs, "HDLC 1 VIN %x", val);
629 val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
630 debugl1(cs, "HDLC 2 STA %x", val);
631 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
632 debugl1(cs, "HDLC 2 RML %x", val);
633 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
634 debugl1(cs, "HDLC 2 MODE %x", val);
635 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
636 debugl1(cs, "HDLC 2 VIN %x", val);
637 }
638 }
639 #endif /* 0 */
640
641 static void
642 inithdlc(struct IsdnCardState *cs)
643 {
644 cs->bcs[0].BC_SetStack = setstack_hdlc;
645 cs->bcs[1].BC_SetStack = setstack_hdlc;
646 cs->bcs[0].BC_Close = close_hdlcstate;
647 cs->bcs[1].BC_Close = close_hdlcstate;
648 modehdlc(cs->bcs, -1, 0);
649 modehdlc(cs->bcs + 1, -1, 1);
650 }
651
652 static irqreturn_t
653 avm_pcipnp_interrupt(int intno, void *dev_id)
654 {
655 struct IsdnCardState *cs = dev_id;
656 u_long flags;
657 u_char val;
658 u_char sval;
659
660 spin_lock_irqsave(&cs->lock, flags);
661 sval = inb(cs->hw.avm.cfg_reg + 2);
662 if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
663 /* possible a shared IRQ reqest */
664 spin_unlock_irqrestore(&cs->lock, flags);
665 return IRQ_NONE;
666 }
667 if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
668 val = ReadISAC(cs, ISAC_ISTA);
669 isac_interrupt(cs, val);
670 }
671 if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
672 HDLC_irq_main(cs);
673 }
674 WriteISAC(cs, ISAC_MASK, 0xFF);
675 WriteISAC(cs, ISAC_MASK, 0x0);
676 spin_unlock_irqrestore(&cs->lock, flags);
677 return IRQ_HANDLED;
678 }
679
680 static void
681 reset_avmpcipnp(struct IsdnCardState *cs)
682 {
683 printk(KERN_INFO "AVM PCI/PnP: reset\n");
684 outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
685 mdelay(10);
686 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
687 outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
688 mdelay(10);
689 printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
690 }
691
692 static int
693 AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
694 {
695 u_long flags;
696
697 switch (mt) {
698 case CARD_RESET:
699 spin_lock_irqsave(&cs->lock, flags);
700 reset_avmpcipnp(cs);
701 spin_unlock_irqrestore(&cs->lock, flags);
702 return(0);
703 case CARD_RELEASE:
704 outb(0, cs->hw.avm.cfg_reg + 2);
705 release_region(cs->hw.avm.cfg_reg, 32);
706 return(0);
707 case CARD_INIT:
708 spin_lock_irqsave(&cs->lock, flags);
709 reset_avmpcipnp(cs);
710 clear_pending_isac_ints(cs);
711 initisac(cs);
712 inithdlc(cs);
713 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
714 cs->hw.avm.cfg_reg + 2);
715 WriteISAC(cs, ISAC_MASK, 0);
716 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
717 AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
718 /* RESET Receiver and Transmitter */
719 WriteISAC(cs, ISAC_CMDR, 0x41);
720 spin_unlock_irqrestore(&cs->lock, flags);
721 return(0);
722 case CARD_TEST:
723 return(0);
724 }
725 return(0);
726 }
727
728 static int __devinit avm_setup_rest(struct IsdnCardState *cs)
729 {
730 u_int val, ver;
731
732 cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
733 if (!request_region(cs->hw.avm.cfg_reg, 32,
734 (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
735 printk(KERN_WARNING
736 "HiSax: Fritz!PCI/PNP config port %x-%x already in use\n",
737 cs->hw.avm.cfg_reg,
738 cs->hw.avm.cfg_reg + 31);
739 return (0);
740 }
741 switch (cs->subtyp) {
742 case AVM_FRITZ_PCI:
743 val = inl(cs->hw.avm.cfg_reg);
744 printk(KERN_INFO "AVM PCI: stat %#x\n", val);
745 printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
746 val & 0xff, (val>>8) & 0xff);
747 cs->BC_Read_Reg = &ReadHDLC_s;
748 cs->BC_Write_Reg = &WriteHDLC_s;
749 break;
750 case AVM_FRITZ_PNP:
751 val = inb(cs->hw.avm.cfg_reg);
752 ver = inb(cs->hw.avm.cfg_reg + 1);
753 printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
754 cs->BC_Read_Reg = &ReadHDLCPnP;
755 cs->BC_Write_Reg = &WriteHDLCPnP;
756 break;
757 default:
758 printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
759 return(0);
760 }
761 printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
762 (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
763 cs->irq, cs->hw.avm.cfg_reg);
764
765 setup_isac(cs);
766 cs->readisac = &ReadISAC;
767 cs->writeisac = &WriteISAC;
768 cs->readisacfifo = &ReadISACfifo;
769 cs->writeisacfifo = &WriteISACfifo;
770 cs->BC_Send_Data = &hdlc_fill_fifo;
771 cs->cardmsg = &AVM_card_msg;
772 cs->irq_func = &avm_pcipnp_interrupt;
773 cs->writeisac(cs, ISAC_MASK, 0xFF);
774 ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
775 return (1);
776 }
777
778 #ifndef __ISAPNP__
779
780 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
781 {
782 return(1); /* no-op: success */
783 }
784
785 #else
786
787 static struct pnp_card *pnp_avm_c __devinitdata = NULL;
788
789 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
790 {
791 struct pnp_dev *pnp_avm_d = NULL;
792
793 if (!isapnp_present())
794 return(1); /* no-op: success */
795
796 if ((pnp_avm_c = pnp_find_card(
797 ISAPNP_VENDOR('A', 'V', 'M'),
798 ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
799 if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
800 ISAPNP_VENDOR('A', 'V', 'M'),
801 ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
802 int err;
803
804 pnp_disable_dev(pnp_avm_d);
805 err = pnp_activate_dev(pnp_avm_d);
806 if (err<0) {
807 printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
808 __FUNCTION__, err);
809 return(0);
810 }
811 cs->hw.avm.cfg_reg =
812 pnp_port_start(pnp_avm_d, 0);
813 cs->irq = pnp_irq(pnp_avm_d, 0);
814 if (!cs->irq) {
815 printk(KERN_ERR "FritzPnP:No IRQ\n");
816 return(0);
817 }
818 if (!cs->hw.avm.cfg_reg) {
819 printk(KERN_ERR "FritzPnP:No IO address\n");
820 return(0);
821 }
822 cs->subtyp = AVM_FRITZ_PNP;
823
824 return (2); /* goto 'ready' label */
825 }
826 }
827
828 return (1);
829 }
830
831 #endif /* __ISAPNP__ */
832
833 #ifndef CONFIG_PCI_LEGACY
834
835 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
836 {
837 return(1); /* no-op: success */
838 }
839
840 #else
841
842 static struct pci_dev *dev_avm __devinitdata = NULL;
843
844 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
845 {
846 if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
847 PCI_DEVICE_ID_AVM_A1, dev_avm))) {
848
849 if (pci_enable_device(dev_avm))
850 return(0);
851
852 cs->irq = dev_avm->irq;
853 if (!cs->irq) {
854 printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
855 return(0);
856 }
857
858 cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
859 if (!cs->hw.avm.cfg_reg) {
860 printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
861 return(0);
862 }
863
864 cs->subtyp = AVM_FRITZ_PCI;
865 } else {
866 printk(KERN_WARNING "FritzPCI: No PCI card found\n");
867 return(0);
868 }
869
870 cs->irq_flags |= IRQF_SHARED;
871
872 return (1);
873 }
874
875 #endif /* CONFIG_PCI_LEGACY */
876
877 int __devinit
878 setup_avm_pcipnp(struct IsdnCard *card)
879 {
880 struct IsdnCardState *cs = card->cs;
881 char tmp[64];
882 int rc;
883
884 strcpy(tmp, avm_pci_rev);
885 printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
886
887 if (cs->typ != ISDN_CTYPE_FRITZPCI)
888 return (0);
889
890 if (card->para[1]) {
891 /* old manual method */
892 cs->hw.avm.cfg_reg = card->para[1];
893 cs->irq = card->para[0];
894 cs->subtyp = AVM_FRITZ_PNP;
895 goto ready;
896 }
897
898 rc = avm_pnp_setup(cs);
899 if (rc < 1)
900 return (0);
901 if (rc == 2)
902 goto ready;
903
904 rc = avm_pci_setup(cs);
905 if (rc < 1)
906 return (0);
907
908 ready:
909 return avm_setup_rest(cs);
910 }