]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/kvm_main.c
sched: guest CPU accounting: maintain guest state in KVM
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42
43 #include <asm/processor.h>
44 #include <asm/msr.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/desc.h>
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static DEFINE_SPINLOCK(kvm_lock);
53 static LIST_HEAD(vm_list);
54
55 static cpumask_t cpus_hardware_enabled;
56
57 struct kvm_x86_ops *kvm_x86_ops;
58 struct kmem_cache *kvm_vcpu_cache;
59 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
60
61 static __read_mostly struct preempt_ops kvm_preempt_ops;
62
63 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
64
65 static struct kvm_stats_debugfs_item {
66 const char *name;
67 int offset;
68 struct dentry *dentry;
69 } debugfs_entries[] = {
70 { "pf_fixed", STAT_OFFSET(pf_fixed) },
71 { "pf_guest", STAT_OFFSET(pf_guest) },
72 { "tlb_flush", STAT_OFFSET(tlb_flush) },
73 { "invlpg", STAT_OFFSET(invlpg) },
74 { "exits", STAT_OFFSET(exits) },
75 { "io_exits", STAT_OFFSET(io_exits) },
76 { "mmio_exits", STAT_OFFSET(mmio_exits) },
77 { "signal_exits", STAT_OFFSET(signal_exits) },
78 { "irq_window", STAT_OFFSET(irq_window_exits) },
79 { "halt_exits", STAT_OFFSET(halt_exits) },
80 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
81 { "request_irq", STAT_OFFSET(request_irq_exits) },
82 { "irq_exits", STAT_OFFSET(irq_exits) },
83 { "light_exits", STAT_OFFSET(light_exits) },
84 { "efer_reload", STAT_OFFSET(efer_reload) },
85 { NULL }
86 };
87
88 static struct dentry *debugfs_dir;
89
90 #define MAX_IO_MSRS 256
91
92 #define CR0_RESERVED_BITS \
93 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
94 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
95 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
96 #define CR4_RESERVED_BITS \
97 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
98 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
99 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
100 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
101
102 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
103 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
104
105 #ifdef CONFIG_X86_64
106 // LDT or TSS descriptor in the GDT. 16 bytes.
107 struct segment_descriptor_64 {
108 struct segment_descriptor s;
109 u32 base_higher;
110 u32 pad_zero;
111 };
112
113 #endif
114
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117
118 unsigned long segment_base(u16 selector)
119 {
120 struct descriptor_table gdt;
121 struct segment_descriptor *d;
122 unsigned long table_base;
123 typedef unsigned long ul;
124 unsigned long v;
125
126 if (selector == 0)
127 return 0;
128
129 asm ("sgdt %0" : "=m"(gdt));
130 table_base = gdt.base;
131
132 if (selector & 4) { /* from ldt */
133 u16 ldt_selector;
134
135 asm ("sldt %0" : "=g"(ldt_selector));
136 table_base = segment_base(ldt_selector);
137 }
138 d = (struct segment_descriptor *)(table_base + (selector & ~7));
139 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
140 #ifdef CONFIG_X86_64
141 if (d->system == 0
142 && (d->type == 2 || d->type == 9 || d->type == 11))
143 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
144 #endif
145 return v;
146 }
147 EXPORT_SYMBOL_GPL(segment_base);
148
149 static inline int valid_vcpu(int n)
150 {
151 return likely(n >= 0 && n < KVM_MAX_VCPUS);
152 }
153
154 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
155 {
156 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
157 return;
158
159 vcpu->guest_fpu_loaded = 1;
160 fx_save(&vcpu->host_fx_image);
161 fx_restore(&vcpu->guest_fx_image);
162 }
163 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
164
165 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
166 {
167 if (!vcpu->guest_fpu_loaded)
168 return;
169
170 vcpu->guest_fpu_loaded = 0;
171 fx_save(&vcpu->guest_fx_image);
172 fx_restore(&vcpu->host_fx_image);
173 }
174 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
175
176 /*
177 * Switches to specified vcpu, until a matching vcpu_put()
178 */
179 static void vcpu_load(struct kvm_vcpu *vcpu)
180 {
181 int cpu;
182
183 mutex_lock(&vcpu->mutex);
184 cpu = get_cpu();
185 preempt_notifier_register(&vcpu->preempt_notifier);
186 kvm_x86_ops->vcpu_load(vcpu, cpu);
187 put_cpu();
188 }
189
190 static void vcpu_put(struct kvm_vcpu *vcpu)
191 {
192 preempt_disable();
193 kvm_x86_ops->vcpu_put(vcpu);
194 preempt_notifier_unregister(&vcpu->preempt_notifier);
195 preempt_enable();
196 mutex_unlock(&vcpu->mutex);
197 }
198
199 static void ack_flush(void *_completed)
200 {
201 atomic_t *completed = _completed;
202
203 atomic_inc(completed);
204 }
205
206 void kvm_flush_remote_tlbs(struct kvm *kvm)
207 {
208 int i, cpu, needed;
209 cpumask_t cpus;
210 struct kvm_vcpu *vcpu;
211 atomic_t completed;
212
213 atomic_set(&completed, 0);
214 cpus_clear(cpus);
215 needed = 0;
216 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
217 vcpu = kvm->vcpus[i];
218 if (!vcpu)
219 continue;
220 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
221 continue;
222 cpu = vcpu->cpu;
223 if (cpu != -1 && cpu != raw_smp_processor_id())
224 if (!cpu_isset(cpu, cpus)) {
225 cpu_set(cpu, cpus);
226 ++needed;
227 }
228 }
229
230 /*
231 * We really want smp_call_function_mask() here. But that's not
232 * available, so ipi all cpus in parallel and wait for them
233 * to complete.
234 */
235 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
236 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
237 while (atomic_read(&completed) != needed) {
238 cpu_relax();
239 barrier();
240 }
241 }
242
243 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
244 {
245 struct page *page;
246 int r;
247
248 mutex_init(&vcpu->mutex);
249 vcpu->cpu = -1;
250 vcpu->mmu.root_hpa = INVALID_PAGE;
251 vcpu->kvm = kvm;
252 vcpu->vcpu_id = id;
253 if (!irqchip_in_kernel(kvm) || id == 0)
254 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
255 else
256 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
257 init_waitqueue_head(&vcpu->wq);
258
259 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
260 if (!page) {
261 r = -ENOMEM;
262 goto fail;
263 }
264 vcpu->run = page_address(page);
265
266 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
267 if (!page) {
268 r = -ENOMEM;
269 goto fail_free_run;
270 }
271 vcpu->pio_data = page_address(page);
272
273 r = kvm_mmu_create(vcpu);
274 if (r < 0)
275 goto fail_free_pio_data;
276
277 return 0;
278
279 fail_free_pio_data:
280 free_page((unsigned long)vcpu->pio_data);
281 fail_free_run:
282 free_page((unsigned long)vcpu->run);
283 fail:
284 return -ENOMEM;
285 }
286 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
287
288 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
289 {
290 kvm_mmu_destroy(vcpu);
291 if (vcpu->apic)
292 hrtimer_cancel(&vcpu->apic->timer.dev);
293 kvm_free_apic(vcpu->apic);
294 free_page((unsigned long)vcpu->pio_data);
295 free_page((unsigned long)vcpu->run);
296 }
297 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
298
299 static struct kvm *kvm_create_vm(void)
300 {
301 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
302
303 if (!kvm)
304 return ERR_PTR(-ENOMEM);
305
306 kvm_io_bus_init(&kvm->pio_bus);
307 mutex_init(&kvm->lock);
308 INIT_LIST_HEAD(&kvm->active_mmu_pages);
309 kvm_io_bus_init(&kvm->mmio_bus);
310 spin_lock(&kvm_lock);
311 list_add(&kvm->vm_list, &vm_list);
312 spin_unlock(&kvm_lock);
313 return kvm;
314 }
315
316 /*
317 * Free any memory in @free but not in @dont.
318 */
319 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
320 struct kvm_memory_slot *dont)
321 {
322 int i;
323
324 if (!dont || free->phys_mem != dont->phys_mem)
325 if (free->phys_mem) {
326 for (i = 0; i < free->npages; ++i)
327 if (free->phys_mem[i])
328 __free_page(free->phys_mem[i]);
329 vfree(free->phys_mem);
330 }
331
332 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
333 vfree(free->dirty_bitmap);
334
335 free->phys_mem = NULL;
336 free->npages = 0;
337 free->dirty_bitmap = NULL;
338 }
339
340 static void kvm_free_physmem(struct kvm *kvm)
341 {
342 int i;
343
344 for (i = 0; i < kvm->nmemslots; ++i)
345 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
346 }
347
348 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
349 {
350 int i;
351
352 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
353 if (vcpu->pio.guest_pages[i]) {
354 __free_page(vcpu->pio.guest_pages[i]);
355 vcpu->pio.guest_pages[i] = NULL;
356 }
357 }
358
359 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
360 {
361 vcpu_load(vcpu);
362 kvm_mmu_unload(vcpu);
363 vcpu_put(vcpu);
364 }
365
366 static void kvm_free_vcpus(struct kvm *kvm)
367 {
368 unsigned int i;
369
370 /*
371 * Unpin any mmu pages first.
372 */
373 for (i = 0; i < KVM_MAX_VCPUS; ++i)
374 if (kvm->vcpus[i])
375 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
376 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
377 if (kvm->vcpus[i]) {
378 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
379 kvm->vcpus[i] = NULL;
380 }
381 }
382
383 }
384
385 static void kvm_destroy_vm(struct kvm *kvm)
386 {
387 spin_lock(&kvm_lock);
388 list_del(&kvm->vm_list);
389 spin_unlock(&kvm_lock);
390 kvm_io_bus_destroy(&kvm->pio_bus);
391 kvm_io_bus_destroy(&kvm->mmio_bus);
392 kfree(kvm->vpic);
393 kfree(kvm->vioapic);
394 kvm_free_vcpus(kvm);
395 kvm_free_physmem(kvm);
396 kfree(kvm);
397 }
398
399 static int kvm_vm_release(struct inode *inode, struct file *filp)
400 {
401 struct kvm *kvm = filp->private_data;
402
403 kvm_destroy_vm(kvm);
404 return 0;
405 }
406
407 static void inject_gp(struct kvm_vcpu *vcpu)
408 {
409 kvm_x86_ops->inject_gp(vcpu, 0);
410 }
411
412 /*
413 * Load the pae pdptrs. Return true is they are all valid.
414 */
415 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
416 {
417 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
418 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
419 int i;
420 u64 *pdpt;
421 int ret;
422 struct page *page;
423 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
424
425 mutex_lock(&vcpu->kvm->lock);
426 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
427 if (!page) {
428 ret = 0;
429 goto out;
430 }
431
432 pdpt = kmap_atomic(page, KM_USER0);
433 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
434 kunmap_atomic(pdpt, KM_USER0);
435
436 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
438 ret = 0;
439 goto out;
440 }
441 }
442 ret = 1;
443
444 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
445 out:
446 mutex_unlock(&vcpu->kvm->lock);
447
448 return ret;
449 }
450
451 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
452 {
453 if (cr0 & CR0_RESERVED_BITS) {
454 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
455 cr0, vcpu->cr0);
456 inject_gp(vcpu);
457 return;
458 }
459
460 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
461 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
462 inject_gp(vcpu);
463 return;
464 }
465
466 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
467 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
468 "and a clear PE flag\n");
469 inject_gp(vcpu);
470 return;
471 }
472
473 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
474 #ifdef CONFIG_X86_64
475 if ((vcpu->shadow_efer & EFER_LME)) {
476 int cs_db, cs_l;
477
478 if (!is_pae(vcpu)) {
479 printk(KERN_DEBUG "set_cr0: #GP, start paging "
480 "in long mode while PAE is disabled\n");
481 inject_gp(vcpu);
482 return;
483 }
484 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
485 if (cs_l) {
486 printk(KERN_DEBUG "set_cr0: #GP, start paging "
487 "in long mode while CS.L == 1\n");
488 inject_gp(vcpu);
489 return;
490
491 }
492 } else
493 #endif
494 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
495 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
496 "reserved bits\n");
497 inject_gp(vcpu);
498 return;
499 }
500
501 }
502
503 kvm_x86_ops->set_cr0(vcpu, cr0);
504 vcpu->cr0 = cr0;
505
506 mutex_lock(&vcpu->kvm->lock);
507 kvm_mmu_reset_context(vcpu);
508 mutex_unlock(&vcpu->kvm->lock);
509 return;
510 }
511 EXPORT_SYMBOL_GPL(set_cr0);
512
513 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
514 {
515 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
516 }
517 EXPORT_SYMBOL_GPL(lmsw);
518
519 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
520 {
521 if (cr4 & CR4_RESERVED_BITS) {
522 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
523 inject_gp(vcpu);
524 return;
525 }
526
527 if (is_long_mode(vcpu)) {
528 if (!(cr4 & X86_CR4_PAE)) {
529 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
530 "in long mode\n");
531 inject_gp(vcpu);
532 return;
533 }
534 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
535 && !load_pdptrs(vcpu, vcpu->cr3)) {
536 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
537 inject_gp(vcpu);
538 return;
539 }
540
541 if (cr4 & X86_CR4_VMXE) {
542 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
543 inject_gp(vcpu);
544 return;
545 }
546 kvm_x86_ops->set_cr4(vcpu, cr4);
547 vcpu->cr4 = cr4;
548 mutex_lock(&vcpu->kvm->lock);
549 kvm_mmu_reset_context(vcpu);
550 mutex_unlock(&vcpu->kvm->lock);
551 }
552 EXPORT_SYMBOL_GPL(set_cr4);
553
554 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
555 {
556 if (is_long_mode(vcpu)) {
557 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
558 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
559 inject_gp(vcpu);
560 return;
561 }
562 } else {
563 if (is_pae(vcpu)) {
564 if (cr3 & CR3_PAE_RESERVED_BITS) {
565 printk(KERN_DEBUG
566 "set_cr3: #GP, reserved bits\n");
567 inject_gp(vcpu);
568 return;
569 }
570 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
571 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
572 "reserved bits\n");
573 inject_gp(vcpu);
574 return;
575 }
576 } else {
577 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
578 printk(KERN_DEBUG
579 "set_cr3: #GP, reserved bits\n");
580 inject_gp(vcpu);
581 return;
582 }
583 }
584 }
585
586 mutex_lock(&vcpu->kvm->lock);
587 /*
588 * Does the new cr3 value map to physical memory? (Note, we
589 * catch an invalid cr3 even in real-mode, because it would
590 * cause trouble later on when we turn on paging anyway.)
591 *
592 * A real CPU would silently accept an invalid cr3 and would
593 * attempt to use it - with largely undefined (and often hard
594 * to debug) behavior on the guest side.
595 */
596 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
597 inject_gp(vcpu);
598 else {
599 vcpu->cr3 = cr3;
600 vcpu->mmu.new_cr3(vcpu);
601 }
602 mutex_unlock(&vcpu->kvm->lock);
603 }
604 EXPORT_SYMBOL_GPL(set_cr3);
605
606 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
607 {
608 if (cr8 & CR8_RESERVED_BITS) {
609 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
610 inject_gp(vcpu);
611 return;
612 }
613 if (irqchip_in_kernel(vcpu->kvm))
614 kvm_lapic_set_tpr(vcpu, cr8);
615 else
616 vcpu->cr8 = cr8;
617 }
618 EXPORT_SYMBOL_GPL(set_cr8);
619
620 unsigned long get_cr8(struct kvm_vcpu *vcpu)
621 {
622 if (irqchip_in_kernel(vcpu->kvm))
623 return kvm_lapic_get_cr8(vcpu);
624 else
625 return vcpu->cr8;
626 }
627 EXPORT_SYMBOL_GPL(get_cr8);
628
629 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
630 {
631 if (irqchip_in_kernel(vcpu->kvm))
632 return vcpu->apic_base;
633 else
634 return vcpu->apic_base;
635 }
636 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
637
638 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
639 {
640 /* TODO: reserve bits check */
641 if (irqchip_in_kernel(vcpu->kvm))
642 kvm_lapic_set_base(vcpu, data);
643 else
644 vcpu->apic_base = data;
645 }
646 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
647
648 void fx_init(struct kvm_vcpu *vcpu)
649 {
650 unsigned after_mxcsr_mask;
651
652 /* Initialize guest FPU by resetting ours and saving into guest's */
653 preempt_disable();
654 fx_save(&vcpu->host_fx_image);
655 fpu_init();
656 fx_save(&vcpu->guest_fx_image);
657 fx_restore(&vcpu->host_fx_image);
658 preempt_enable();
659
660 vcpu->cr0 |= X86_CR0_ET;
661 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
662 vcpu->guest_fx_image.mxcsr = 0x1f80;
663 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
664 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
665 }
666 EXPORT_SYMBOL_GPL(fx_init);
667
668 /*
669 * Allocate some memory and give it an address in the guest physical address
670 * space.
671 *
672 * Discontiguous memory is allowed, mostly for framebuffers.
673 */
674 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
675 struct kvm_memory_region *mem)
676 {
677 int r;
678 gfn_t base_gfn;
679 unsigned long npages;
680 unsigned long i;
681 struct kvm_memory_slot *memslot;
682 struct kvm_memory_slot old, new;
683
684 r = -EINVAL;
685 /* General sanity checks */
686 if (mem->memory_size & (PAGE_SIZE - 1))
687 goto out;
688 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
689 goto out;
690 if (mem->slot >= KVM_MEMORY_SLOTS)
691 goto out;
692 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
693 goto out;
694
695 memslot = &kvm->memslots[mem->slot];
696 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
697 npages = mem->memory_size >> PAGE_SHIFT;
698
699 if (!npages)
700 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
701
702 mutex_lock(&kvm->lock);
703
704 new = old = *memslot;
705
706 new.base_gfn = base_gfn;
707 new.npages = npages;
708 new.flags = mem->flags;
709
710 /* Disallow changing a memory slot's size. */
711 r = -EINVAL;
712 if (npages && old.npages && npages != old.npages)
713 goto out_unlock;
714
715 /* Check for overlaps */
716 r = -EEXIST;
717 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
718 struct kvm_memory_slot *s = &kvm->memslots[i];
719
720 if (s == memslot)
721 continue;
722 if (!((base_gfn + npages <= s->base_gfn) ||
723 (base_gfn >= s->base_gfn + s->npages)))
724 goto out_unlock;
725 }
726
727 /* Deallocate if slot is being removed */
728 if (!npages)
729 new.phys_mem = NULL;
730
731 /* Free page dirty bitmap if unneeded */
732 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
733 new.dirty_bitmap = NULL;
734
735 r = -ENOMEM;
736
737 /* Allocate if a slot is being created */
738 if (npages && !new.phys_mem) {
739 new.phys_mem = vmalloc(npages * sizeof(struct page *));
740
741 if (!new.phys_mem)
742 goto out_unlock;
743
744 memset(new.phys_mem, 0, npages * sizeof(struct page *));
745 for (i = 0; i < npages; ++i) {
746 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
747 | __GFP_ZERO);
748 if (!new.phys_mem[i])
749 goto out_unlock;
750 set_page_private(new.phys_mem[i],0);
751 }
752 }
753
754 /* Allocate page dirty bitmap if needed */
755 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
756 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
757
758 new.dirty_bitmap = vmalloc(dirty_bytes);
759 if (!new.dirty_bitmap)
760 goto out_unlock;
761 memset(new.dirty_bitmap, 0, dirty_bytes);
762 }
763
764 if (mem->slot >= kvm->nmemslots)
765 kvm->nmemslots = mem->slot + 1;
766
767 *memslot = new;
768
769 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
770 kvm_flush_remote_tlbs(kvm);
771
772 mutex_unlock(&kvm->lock);
773
774 kvm_free_physmem_slot(&old, &new);
775 return 0;
776
777 out_unlock:
778 mutex_unlock(&kvm->lock);
779 kvm_free_physmem_slot(&new, &old);
780 out:
781 return r;
782 }
783
784 /*
785 * Get (and clear) the dirty memory log for a memory slot.
786 */
787 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
788 struct kvm_dirty_log *log)
789 {
790 struct kvm_memory_slot *memslot;
791 int r, i;
792 int n;
793 unsigned long any = 0;
794
795 mutex_lock(&kvm->lock);
796
797 r = -EINVAL;
798 if (log->slot >= KVM_MEMORY_SLOTS)
799 goto out;
800
801 memslot = &kvm->memslots[log->slot];
802 r = -ENOENT;
803 if (!memslot->dirty_bitmap)
804 goto out;
805
806 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
807
808 for (i = 0; !any && i < n/sizeof(long); ++i)
809 any = memslot->dirty_bitmap[i];
810
811 r = -EFAULT;
812 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
813 goto out;
814
815 /* If nothing is dirty, don't bother messing with page tables. */
816 if (any) {
817 kvm_mmu_slot_remove_write_access(kvm, log->slot);
818 kvm_flush_remote_tlbs(kvm);
819 memset(memslot->dirty_bitmap, 0, n);
820 }
821
822 r = 0;
823
824 out:
825 mutex_unlock(&kvm->lock);
826 return r;
827 }
828
829 /*
830 * Set a new alias region. Aliases map a portion of physical memory into
831 * another portion. This is useful for memory windows, for example the PC
832 * VGA region.
833 */
834 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
835 struct kvm_memory_alias *alias)
836 {
837 int r, n;
838 struct kvm_mem_alias *p;
839
840 r = -EINVAL;
841 /* General sanity checks */
842 if (alias->memory_size & (PAGE_SIZE - 1))
843 goto out;
844 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
845 goto out;
846 if (alias->slot >= KVM_ALIAS_SLOTS)
847 goto out;
848 if (alias->guest_phys_addr + alias->memory_size
849 < alias->guest_phys_addr)
850 goto out;
851 if (alias->target_phys_addr + alias->memory_size
852 < alias->target_phys_addr)
853 goto out;
854
855 mutex_lock(&kvm->lock);
856
857 p = &kvm->aliases[alias->slot];
858 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
859 p->npages = alias->memory_size >> PAGE_SHIFT;
860 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
861
862 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
863 if (kvm->aliases[n - 1].npages)
864 break;
865 kvm->naliases = n;
866
867 kvm_mmu_zap_all(kvm);
868
869 mutex_unlock(&kvm->lock);
870
871 return 0;
872
873 out:
874 return r;
875 }
876
877 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
878 {
879 int r;
880
881 r = 0;
882 switch (chip->chip_id) {
883 case KVM_IRQCHIP_PIC_MASTER:
884 memcpy (&chip->chip.pic,
885 &pic_irqchip(kvm)->pics[0],
886 sizeof(struct kvm_pic_state));
887 break;
888 case KVM_IRQCHIP_PIC_SLAVE:
889 memcpy (&chip->chip.pic,
890 &pic_irqchip(kvm)->pics[1],
891 sizeof(struct kvm_pic_state));
892 break;
893 case KVM_IRQCHIP_IOAPIC:
894 memcpy (&chip->chip.ioapic,
895 ioapic_irqchip(kvm),
896 sizeof(struct kvm_ioapic_state));
897 break;
898 default:
899 r = -EINVAL;
900 break;
901 }
902 return r;
903 }
904
905 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
906 {
907 int r;
908
909 r = 0;
910 switch (chip->chip_id) {
911 case KVM_IRQCHIP_PIC_MASTER:
912 memcpy (&pic_irqchip(kvm)->pics[0],
913 &chip->chip.pic,
914 sizeof(struct kvm_pic_state));
915 break;
916 case KVM_IRQCHIP_PIC_SLAVE:
917 memcpy (&pic_irqchip(kvm)->pics[1],
918 &chip->chip.pic,
919 sizeof(struct kvm_pic_state));
920 break;
921 case KVM_IRQCHIP_IOAPIC:
922 memcpy (ioapic_irqchip(kvm),
923 &chip->chip.ioapic,
924 sizeof(struct kvm_ioapic_state));
925 break;
926 default:
927 r = -EINVAL;
928 break;
929 }
930 kvm_pic_update_irq(pic_irqchip(kvm));
931 return r;
932 }
933
934 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
935 {
936 int i;
937 struct kvm_mem_alias *alias;
938
939 for (i = 0; i < kvm->naliases; ++i) {
940 alias = &kvm->aliases[i];
941 if (gfn >= alias->base_gfn
942 && gfn < alias->base_gfn + alias->npages)
943 return alias->target_gfn + gfn - alias->base_gfn;
944 }
945 return gfn;
946 }
947
948 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
949 {
950 int i;
951
952 for (i = 0; i < kvm->nmemslots; ++i) {
953 struct kvm_memory_slot *memslot = &kvm->memslots[i];
954
955 if (gfn >= memslot->base_gfn
956 && gfn < memslot->base_gfn + memslot->npages)
957 return memslot;
958 }
959 return NULL;
960 }
961
962 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
963 {
964 gfn = unalias_gfn(kvm, gfn);
965 return __gfn_to_memslot(kvm, gfn);
966 }
967
968 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
969 {
970 struct kvm_memory_slot *slot;
971
972 gfn = unalias_gfn(kvm, gfn);
973 slot = __gfn_to_memslot(kvm, gfn);
974 if (!slot)
975 return NULL;
976 return slot->phys_mem[gfn - slot->base_gfn];
977 }
978 EXPORT_SYMBOL_GPL(gfn_to_page);
979
980 /* WARNING: Does not work on aliased pages. */
981 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
982 {
983 struct kvm_memory_slot *memslot;
984
985 memslot = __gfn_to_memslot(kvm, gfn);
986 if (memslot && memslot->dirty_bitmap) {
987 unsigned long rel_gfn = gfn - memslot->base_gfn;
988
989 /* avoid RMW */
990 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
991 set_bit(rel_gfn, memslot->dirty_bitmap);
992 }
993 }
994
995 int emulator_read_std(unsigned long addr,
996 void *val,
997 unsigned int bytes,
998 struct kvm_vcpu *vcpu)
999 {
1000 void *data = val;
1001
1002 while (bytes) {
1003 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1004 unsigned offset = addr & (PAGE_SIZE-1);
1005 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1006 unsigned long pfn;
1007 struct page *page;
1008 void *page_virt;
1009
1010 if (gpa == UNMAPPED_GVA)
1011 return X86EMUL_PROPAGATE_FAULT;
1012 pfn = gpa >> PAGE_SHIFT;
1013 page = gfn_to_page(vcpu->kvm, pfn);
1014 if (!page)
1015 return X86EMUL_UNHANDLEABLE;
1016 page_virt = kmap_atomic(page, KM_USER0);
1017
1018 memcpy(data, page_virt + offset, tocopy);
1019
1020 kunmap_atomic(page_virt, KM_USER0);
1021
1022 bytes -= tocopy;
1023 data += tocopy;
1024 addr += tocopy;
1025 }
1026
1027 return X86EMUL_CONTINUE;
1028 }
1029 EXPORT_SYMBOL_GPL(emulator_read_std);
1030
1031 static int emulator_write_std(unsigned long addr,
1032 const void *val,
1033 unsigned int bytes,
1034 struct kvm_vcpu *vcpu)
1035 {
1036 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1037 return X86EMUL_UNHANDLEABLE;
1038 }
1039
1040 /*
1041 * Only apic need an MMIO device hook, so shortcut now..
1042 */
1043 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1044 gpa_t addr)
1045 {
1046 struct kvm_io_device *dev;
1047
1048 if (vcpu->apic) {
1049 dev = &vcpu->apic->dev;
1050 if (dev->in_range(dev, addr))
1051 return dev;
1052 }
1053 return NULL;
1054 }
1055
1056 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1057 gpa_t addr)
1058 {
1059 struct kvm_io_device *dev;
1060
1061 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1062 if (dev == NULL)
1063 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1064 return dev;
1065 }
1066
1067 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1068 gpa_t addr)
1069 {
1070 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1071 }
1072
1073 static int emulator_read_emulated(unsigned long addr,
1074 void *val,
1075 unsigned int bytes,
1076 struct kvm_vcpu *vcpu)
1077 {
1078 struct kvm_io_device *mmio_dev;
1079 gpa_t gpa;
1080
1081 if (vcpu->mmio_read_completed) {
1082 memcpy(val, vcpu->mmio_data, bytes);
1083 vcpu->mmio_read_completed = 0;
1084 return X86EMUL_CONTINUE;
1085 } else if (emulator_read_std(addr, val, bytes, vcpu)
1086 == X86EMUL_CONTINUE)
1087 return X86EMUL_CONTINUE;
1088
1089 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1090 if (gpa == UNMAPPED_GVA)
1091 return X86EMUL_PROPAGATE_FAULT;
1092
1093 /*
1094 * Is this MMIO handled locally?
1095 */
1096 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1097 if (mmio_dev) {
1098 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1099 return X86EMUL_CONTINUE;
1100 }
1101
1102 vcpu->mmio_needed = 1;
1103 vcpu->mmio_phys_addr = gpa;
1104 vcpu->mmio_size = bytes;
1105 vcpu->mmio_is_write = 0;
1106
1107 return X86EMUL_UNHANDLEABLE;
1108 }
1109
1110 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1111 const void *val, int bytes)
1112 {
1113 struct page *page;
1114 void *virt;
1115
1116 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1117 return 0;
1118 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1119 if (!page)
1120 return 0;
1121 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1122 virt = kmap_atomic(page, KM_USER0);
1123 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1124 memcpy(virt + offset_in_page(gpa), val, bytes);
1125 kunmap_atomic(virt, KM_USER0);
1126 return 1;
1127 }
1128
1129 static int emulator_write_emulated_onepage(unsigned long addr,
1130 const void *val,
1131 unsigned int bytes,
1132 struct kvm_vcpu *vcpu)
1133 {
1134 struct kvm_io_device *mmio_dev;
1135 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1136
1137 if (gpa == UNMAPPED_GVA) {
1138 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1139 return X86EMUL_PROPAGATE_FAULT;
1140 }
1141
1142 if (emulator_write_phys(vcpu, gpa, val, bytes))
1143 return X86EMUL_CONTINUE;
1144
1145 /*
1146 * Is this MMIO handled locally?
1147 */
1148 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1149 if (mmio_dev) {
1150 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1151 return X86EMUL_CONTINUE;
1152 }
1153
1154 vcpu->mmio_needed = 1;
1155 vcpu->mmio_phys_addr = gpa;
1156 vcpu->mmio_size = bytes;
1157 vcpu->mmio_is_write = 1;
1158 memcpy(vcpu->mmio_data, val, bytes);
1159
1160 return X86EMUL_CONTINUE;
1161 }
1162
1163 int emulator_write_emulated(unsigned long addr,
1164 const void *val,
1165 unsigned int bytes,
1166 struct kvm_vcpu *vcpu)
1167 {
1168 /* Crossing a page boundary? */
1169 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1170 int rc, now;
1171
1172 now = -addr & ~PAGE_MASK;
1173 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1174 if (rc != X86EMUL_CONTINUE)
1175 return rc;
1176 addr += now;
1177 val += now;
1178 bytes -= now;
1179 }
1180 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1181 }
1182 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1183
1184 static int emulator_cmpxchg_emulated(unsigned long addr,
1185 const void *old,
1186 const void *new,
1187 unsigned int bytes,
1188 struct kvm_vcpu *vcpu)
1189 {
1190 static int reported;
1191
1192 if (!reported) {
1193 reported = 1;
1194 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1195 }
1196 return emulator_write_emulated(addr, new, bytes, vcpu);
1197 }
1198
1199 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1200 {
1201 return kvm_x86_ops->get_segment_base(vcpu, seg);
1202 }
1203
1204 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1205 {
1206 return X86EMUL_CONTINUE;
1207 }
1208
1209 int emulate_clts(struct kvm_vcpu *vcpu)
1210 {
1211 vcpu->cr0 &= ~X86_CR0_TS;
1212 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0);
1213 return X86EMUL_CONTINUE;
1214 }
1215
1216 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1217 {
1218 struct kvm_vcpu *vcpu = ctxt->vcpu;
1219
1220 switch (dr) {
1221 case 0 ... 3:
1222 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1223 return X86EMUL_CONTINUE;
1224 default:
1225 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1226 return X86EMUL_UNHANDLEABLE;
1227 }
1228 }
1229
1230 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1231 {
1232 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1233 int exception;
1234
1235 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1236 if (exception) {
1237 /* FIXME: better handling */
1238 return X86EMUL_UNHANDLEABLE;
1239 }
1240 return X86EMUL_CONTINUE;
1241 }
1242
1243 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1244 {
1245 static int reported;
1246 u8 opcodes[4];
1247 unsigned long rip = vcpu->rip;
1248 unsigned long rip_linear;
1249
1250 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1251
1252 if (reported)
1253 return;
1254
1255 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1256
1257 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1258 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1259 reported = 1;
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1262
1263 struct x86_emulate_ops emulate_ops = {
1264 .read_std = emulator_read_std,
1265 .write_std = emulator_write_std,
1266 .read_emulated = emulator_read_emulated,
1267 .write_emulated = emulator_write_emulated,
1268 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1269 };
1270
1271 int emulate_instruction(struct kvm_vcpu *vcpu,
1272 struct kvm_run *run,
1273 unsigned long cr2,
1274 u16 error_code)
1275 {
1276 struct x86_emulate_ctxt emulate_ctxt;
1277 int r;
1278 int cs_db, cs_l;
1279
1280 vcpu->mmio_fault_cr2 = cr2;
1281 kvm_x86_ops->cache_regs(vcpu);
1282
1283 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1284
1285 emulate_ctxt.vcpu = vcpu;
1286 emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1287 emulate_ctxt.cr2 = cr2;
1288 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1289 ? X86EMUL_MODE_REAL : cs_l
1290 ? X86EMUL_MODE_PROT64 : cs_db
1291 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1292
1293 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1294 emulate_ctxt.cs_base = 0;
1295 emulate_ctxt.ds_base = 0;
1296 emulate_ctxt.es_base = 0;
1297 emulate_ctxt.ss_base = 0;
1298 } else {
1299 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1300 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1301 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1302 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1303 }
1304
1305 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1306 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1307
1308 vcpu->mmio_is_write = 0;
1309 vcpu->pio.string = 0;
1310 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1311 if (vcpu->pio.string)
1312 return EMULATE_DO_MMIO;
1313
1314 if ((r || vcpu->mmio_is_write) && run) {
1315 run->exit_reason = KVM_EXIT_MMIO;
1316 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1317 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1318 run->mmio.len = vcpu->mmio_size;
1319 run->mmio.is_write = vcpu->mmio_is_write;
1320 }
1321
1322 if (r) {
1323 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1324 return EMULATE_DONE;
1325 if (!vcpu->mmio_needed) {
1326 kvm_report_emulation_failure(vcpu, "mmio");
1327 return EMULATE_FAIL;
1328 }
1329 return EMULATE_DO_MMIO;
1330 }
1331
1332 kvm_x86_ops->decache_regs(vcpu);
1333 kvm_x86_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1334
1335 if (vcpu->mmio_is_write) {
1336 vcpu->mmio_needed = 0;
1337 return EMULATE_DO_MMIO;
1338 }
1339
1340 return EMULATE_DONE;
1341 }
1342 EXPORT_SYMBOL_GPL(emulate_instruction);
1343
1344 /*
1345 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1346 */
1347 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1348 {
1349 DECLARE_WAITQUEUE(wait, current);
1350
1351 add_wait_queue(&vcpu->wq, &wait);
1352
1353 /*
1354 * We will block until either an interrupt or a signal wakes us up
1355 */
1356 while (!kvm_cpu_has_interrupt(vcpu)
1357 && !signal_pending(current)
1358 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1359 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1360 set_current_state(TASK_INTERRUPTIBLE);
1361 vcpu_put(vcpu);
1362 schedule();
1363 vcpu_load(vcpu);
1364 }
1365
1366 __set_current_state(TASK_RUNNING);
1367 remove_wait_queue(&vcpu->wq, &wait);
1368 }
1369
1370 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1371 {
1372 ++vcpu->stat.halt_exits;
1373 if (irqchip_in_kernel(vcpu->kvm)) {
1374 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1375 kvm_vcpu_block(vcpu);
1376 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1377 return -EINTR;
1378 return 1;
1379 } else {
1380 vcpu->run->exit_reason = KVM_EXIT_HLT;
1381 return 0;
1382 }
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1385
1386 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1387 {
1388 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1389
1390 kvm_x86_ops->cache_regs(vcpu);
1391 ret = -KVM_EINVAL;
1392 #ifdef CONFIG_X86_64
1393 if (is_long_mode(vcpu)) {
1394 nr = vcpu->regs[VCPU_REGS_RAX];
1395 a0 = vcpu->regs[VCPU_REGS_RDI];
1396 a1 = vcpu->regs[VCPU_REGS_RSI];
1397 a2 = vcpu->regs[VCPU_REGS_RDX];
1398 a3 = vcpu->regs[VCPU_REGS_RCX];
1399 a4 = vcpu->regs[VCPU_REGS_R8];
1400 a5 = vcpu->regs[VCPU_REGS_R9];
1401 } else
1402 #endif
1403 {
1404 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1405 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1406 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1407 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1408 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1409 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1410 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1411 }
1412 switch (nr) {
1413 default:
1414 run->hypercall.nr = nr;
1415 run->hypercall.args[0] = a0;
1416 run->hypercall.args[1] = a1;
1417 run->hypercall.args[2] = a2;
1418 run->hypercall.args[3] = a3;
1419 run->hypercall.args[4] = a4;
1420 run->hypercall.args[5] = a5;
1421 run->hypercall.ret = ret;
1422 run->hypercall.longmode = is_long_mode(vcpu);
1423 kvm_x86_ops->decache_regs(vcpu);
1424 return 0;
1425 }
1426 vcpu->regs[VCPU_REGS_RAX] = ret;
1427 kvm_x86_ops->decache_regs(vcpu);
1428 return 1;
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_hypercall);
1431
1432 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1433 {
1434 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1435 }
1436
1437 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1438 {
1439 struct descriptor_table dt = { limit, base };
1440
1441 kvm_x86_ops->set_gdt(vcpu, &dt);
1442 }
1443
1444 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1445 {
1446 struct descriptor_table dt = { limit, base };
1447
1448 kvm_x86_ops->set_idt(vcpu, &dt);
1449 }
1450
1451 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1452 unsigned long *rflags)
1453 {
1454 lmsw(vcpu, msw);
1455 *rflags = kvm_x86_ops->get_rflags(vcpu);
1456 }
1457
1458 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1459 {
1460 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1461 switch (cr) {
1462 case 0:
1463 return vcpu->cr0;
1464 case 2:
1465 return vcpu->cr2;
1466 case 3:
1467 return vcpu->cr3;
1468 case 4:
1469 return vcpu->cr4;
1470 default:
1471 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1472 return 0;
1473 }
1474 }
1475
1476 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1477 unsigned long *rflags)
1478 {
1479 switch (cr) {
1480 case 0:
1481 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1482 *rflags = kvm_x86_ops->get_rflags(vcpu);
1483 break;
1484 case 2:
1485 vcpu->cr2 = val;
1486 break;
1487 case 3:
1488 set_cr3(vcpu, val);
1489 break;
1490 case 4:
1491 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1492 break;
1493 default:
1494 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1495 }
1496 }
1497
1498 /*
1499 * Register the para guest with the host:
1500 */
1501 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1502 {
1503 struct kvm_vcpu_para_state *para_state;
1504 hpa_t para_state_hpa, hypercall_hpa;
1505 struct page *para_state_page;
1506 unsigned char *hypercall;
1507 gpa_t hypercall_gpa;
1508
1509 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1510 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1511
1512 /*
1513 * Needs to be page aligned:
1514 */
1515 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1516 goto err_gp;
1517
1518 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1519 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1520 if (is_error_hpa(para_state_hpa))
1521 goto err_gp;
1522
1523 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1524 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1525 para_state = kmap(para_state_page);
1526
1527 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1528 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1529
1530 para_state->host_version = KVM_PARA_API_VERSION;
1531 /*
1532 * We cannot support guests that try to register themselves
1533 * with a newer API version than the host supports:
1534 */
1535 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1536 para_state->ret = -KVM_EINVAL;
1537 goto err_kunmap_skip;
1538 }
1539
1540 hypercall_gpa = para_state->hypercall_gpa;
1541 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1542 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1543 if (is_error_hpa(hypercall_hpa)) {
1544 para_state->ret = -KVM_EINVAL;
1545 goto err_kunmap_skip;
1546 }
1547
1548 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1549 vcpu->para_state_page = para_state_page;
1550 vcpu->para_state_gpa = para_state_gpa;
1551 vcpu->hypercall_gpa = hypercall_gpa;
1552
1553 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1554 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1555 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1556 kvm_x86_ops->patch_hypercall(vcpu, hypercall);
1557 kunmap_atomic(hypercall, KM_USER1);
1558
1559 para_state->ret = 0;
1560 err_kunmap_skip:
1561 kunmap(para_state_page);
1562 return 0;
1563 err_gp:
1564 return 1;
1565 }
1566
1567 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1568 {
1569 u64 data;
1570
1571 switch (msr) {
1572 case 0xc0010010: /* SYSCFG */
1573 case 0xc0010015: /* HWCR */
1574 case MSR_IA32_PLATFORM_ID:
1575 case MSR_IA32_P5_MC_ADDR:
1576 case MSR_IA32_P5_MC_TYPE:
1577 case MSR_IA32_MC0_CTL:
1578 case MSR_IA32_MCG_STATUS:
1579 case MSR_IA32_MCG_CAP:
1580 case MSR_IA32_MC0_MISC:
1581 case MSR_IA32_MC0_MISC+4:
1582 case MSR_IA32_MC0_MISC+8:
1583 case MSR_IA32_MC0_MISC+12:
1584 case MSR_IA32_MC0_MISC+16:
1585 case MSR_IA32_UCODE_REV:
1586 case MSR_IA32_PERF_STATUS:
1587 case MSR_IA32_EBL_CR_POWERON:
1588 /* MTRR registers */
1589 case 0xfe:
1590 case 0x200 ... 0x2ff:
1591 data = 0;
1592 break;
1593 case 0xcd: /* fsb frequency */
1594 data = 3;
1595 break;
1596 case MSR_IA32_APICBASE:
1597 data = kvm_get_apic_base(vcpu);
1598 break;
1599 case MSR_IA32_MISC_ENABLE:
1600 data = vcpu->ia32_misc_enable_msr;
1601 break;
1602 #ifdef CONFIG_X86_64
1603 case MSR_EFER:
1604 data = vcpu->shadow_efer;
1605 break;
1606 #endif
1607 default:
1608 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1609 return 1;
1610 }
1611 *pdata = data;
1612 return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1615
1616 /*
1617 * Reads an msr value (of 'msr_index') into 'pdata'.
1618 * Returns 0 on success, non-0 otherwise.
1619 * Assumes vcpu_load() was already called.
1620 */
1621 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1622 {
1623 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1624 }
1625
1626 #ifdef CONFIG_X86_64
1627
1628 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1629 {
1630 if (efer & EFER_RESERVED_BITS) {
1631 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1632 efer);
1633 inject_gp(vcpu);
1634 return;
1635 }
1636
1637 if (is_paging(vcpu)
1638 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1639 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1640 inject_gp(vcpu);
1641 return;
1642 }
1643
1644 kvm_x86_ops->set_efer(vcpu, efer);
1645
1646 efer &= ~EFER_LMA;
1647 efer |= vcpu->shadow_efer & EFER_LMA;
1648
1649 vcpu->shadow_efer = efer;
1650 }
1651
1652 #endif
1653
1654 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1655 {
1656 switch (msr) {
1657 #ifdef CONFIG_X86_64
1658 case MSR_EFER:
1659 set_efer(vcpu, data);
1660 break;
1661 #endif
1662 case MSR_IA32_MC0_STATUS:
1663 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1664 __FUNCTION__, data);
1665 break;
1666 case MSR_IA32_MCG_STATUS:
1667 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1668 __FUNCTION__, data);
1669 break;
1670 case MSR_IA32_UCODE_REV:
1671 case MSR_IA32_UCODE_WRITE:
1672 case 0x200 ... 0x2ff: /* MTRRs */
1673 break;
1674 case MSR_IA32_APICBASE:
1675 kvm_set_apic_base(vcpu, data);
1676 break;
1677 case MSR_IA32_MISC_ENABLE:
1678 vcpu->ia32_misc_enable_msr = data;
1679 break;
1680 /*
1681 * This is the 'probe whether the host is KVM' logic:
1682 */
1683 case MSR_KVM_API_MAGIC:
1684 return vcpu_register_para(vcpu, data);
1685
1686 default:
1687 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1688 return 1;
1689 }
1690 return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1693
1694 /*
1695 * Writes msr value into into the appropriate "register".
1696 * Returns 0 on success, non-0 otherwise.
1697 * Assumes vcpu_load() was already called.
1698 */
1699 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1700 {
1701 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1702 }
1703
1704 void kvm_resched(struct kvm_vcpu *vcpu)
1705 {
1706 if (!need_resched())
1707 return;
1708 cond_resched();
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_resched);
1711
1712 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1713 {
1714 int i;
1715 u32 function;
1716 struct kvm_cpuid_entry *e, *best;
1717
1718 kvm_x86_ops->cache_regs(vcpu);
1719 function = vcpu->regs[VCPU_REGS_RAX];
1720 vcpu->regs[VCPU_REGS_RAX] = 0;
1721 vcpu->regs[VCPU_REGS_RBX] = 0;
1722 vcpu->regs[VCPU_REGS_RCX] = 0;
1723 vcpu->regs[VCPU_REGS_RDX] = 0;
1724 best = NULL;
1725 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1726 e = &vcpu->cpuid_entries[i];
1727 if (e->function == function) {
1728 best = e;
1729 break;
1730 }
1731 /*
1732 * Both basic or both extended?
1733 */
1734 if (((e->function ^ function) & 0x80000000) == 0)
1735 if (!best || e->function > best->function)
1736 best = e;
1737 }
1738 if (best) {
1739 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1740 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1741 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1742 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1743 }
1744 kvm_x86_ops->decache_regs(vcpu);
1745 kvm_x86_ops->skip_emulated_instruction(vcpu);
1746 }
1747 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1748
1749 static int pio_copy_data(struct kvm_vcpu *vcpu)
1750 {
1751 void *p = vcpu->pio_data;
1752 void *q;
1753 unsigned bytes;
1754 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1755
1756 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1757 PAGE_KERNEL);
1758 if (!q) {
1759 free_pio_guest_pages(vcpu);
1760 return -ENOMEM;
1761 }
1762 q += vcpu->pio.guest_page_offset;
1763 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1764 if (vcpu->pio.in)
1765 memcpy(q, p, bytes);
1766 else
1767 memcpy(p, q, bytes);
1768 q -= vcpu->pio.guest_page_offset;
1769 vunmap(q);
1770 free_pio_guest_pages(vcpu);
1771 return 0;
1772 }
1773
1774 static int complete_pio(struct kvm_vcpu *vcpu)
1775 {
1776 struct kvm_pio_request *io = &vcpu->pio;
1777 long delta;
1778 int r;
1779
1780 kvm_x86_ops->cache_regs(vcpu);
1781
1782 if (!io->string) {
1783 if (io->in)
1784 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1785 io->size);
1786 } else {
1787 if (io->in) {
1788 r = pio_copy_data(vcpu);
1789 if (r) {
1790 kvm_x86_ops->cache_regs(vcpu);
1791 return r;
1792 }
1793 }
1794
1795 delta = 1;
1796 if (io->rep) {
1797 delta *= io->cur_count;
1798 /*
1799 * The size of the register should really depend on
1800 * current address size.
1801 */
1802 vcpu->regs[VCPU_REGS_RCX] -= delta;
1803 }
1804 if (io->down)
1805 delta = -delta;
1806 delta *= io->size;
1807 if (io->in)
1808 vcpu->regs[VCPU_REGS_RDI] += delta;
1809 else
1810 vcpu->regs[VCPU_REGS_RSI] += delta;
1811 }
1812
1813 kvm_x86_ops->decache_regs(vcpu);
1814
1815 io->count -= io->cur_count;
1816 io->cur_count = 0;
1817
1818 return 0;
1819 }
1820
1821 static void kernel_pio(struct kvm_io_device *pio_dev,
1822 struct kvm_vcpu *vcpu,
1823 void *pd)
1824 {
1825 /* TODO: String I/O for in kernel device */
1826
1827 mutex_lock(&vcpu->kvm->lock);
1828 if (vcpu->pio.in)
1829 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1830 vcpu->pio.size,
1831 pd);
1832 else
1833 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1834 vcpu->pio.size,
1835 pd);
1836 mutex_unlock(&vcpu->kvm->lock);
1837 }
1838
1839 static void pio_string_write(struct kvm_io_device *pio_dev,
1840 struct kvm_vcpu *vcpu)
1841 {
1842 struct kvm_pio_request *io = &vcpu->pio;
1843 void *pd = vcpu->pio_data;
1844 int i;
1845
1846 mutex_lock(&vcpu->kvm->lock);
1847 for (i = 0; i < io->cur_count; i++) {
1848 kvm_iodevice_write(pio_dev, io->port,
1849 io->size,
1850 pd);
1851 pd += io->size;
1852 }
1853 mutex_unlock(&vcpu->kvm->lock);
1854 }
1855
1856 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1857 int size, unsigned port)
1858 {
1859 struct kvm_io_device *pio_dev;
1860
1861 vcpu->run->exit_reason = KVM_EXIT_IO;
1862 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1863 vcpu->run->io.size = vcpu->pio.size = size;
1864 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1865 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1866 vcpu->run->io.port = vcpu->pio.port = port;
1867 vcpu->pio.in = in;
1868 vcpu->pio.string = 0;
1869 vcpu->pio.down = 0;
1870 vcpu->pio.guest_page_offset = 0;
1871 vcpu->pio.rep = 0;
1872
1873 kvm_x86_ops->cache_regs(vcpu);
1874 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1875 kvm_x86_ops->decache_regs(vcpu);
1876
1877 kvm_x86_ops->skip_emulated_instruction(vcpu);
1878
1879 pio_dev = vcpu_find_pio_dev(vcpu, port);
1880 if (pio_dev) {
1881 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1882 complete_pio(vcpu);
1883 return 1;
1884 }
1885 return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1888
1889 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1890 int size, unsigned long count, int down,
1891 gva_t address, int rep, unsigned port)
1892 {
1893 unsigned now, in_page;
1894 int i, ret = 0;
1895 int nr_pages = 1;
1896 struct page *page;
1897 struct kvm_io_device *pio_dev;
1898
1899 vcpu->run->exit_reason = KVM_EXIT_IO;
1900 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1901 vcpu->run->io.size = vcpu->pio.size = size;
1902 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1903 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1904 vcpu->run->io.port = vcpu->pio.port = port;
1905 vcpu->pio.in = in;
1906 vcpu->pio.string = 1;
1907 vcpu->pio.down = down;
1908 vcpu->pio.guest_page_offset = offset_in_page(address);
1909 vcpu->pio.rep = rep;
1910
1911 if (!count) {
1912 kvm_x86_ops->skip_emulated_instruction(vcpu);
1913 return 1;
1914 }
1915
1916 if (!down)
1917 in_page = PAGE_SIZE - offset_in_page(address);
1918 else
1919 in_page = offset_in_page(address) + size;
1920 now = min(count, (unsigned long)in_page / size);
1921 if (!now) {
1922 /*
1923 * String I/O straddles page boundary. Pin two guest pages
1924 * so that we satisfy atomicity constraints. Do just one
1925 * transaction to avoid complexity.
1926 */
1927 nr_pages = 2;
1928 now = 1;
1929 }
1930 if (down) {
1931 /*
1932 * String I/O in reverse. Yuck. Kill the guest, fix later.
1933 */
1934 pr_unimpl(vcpu, "guest string pio down\n");
1935 inject_gp(vcpu);
1936 return 1;
1937 }
1938 vcpu->run->io.count = now;
1939 vcpu->pio.cur_count = now;
1940
1941 if (vcpu->pio.cur_count == vcpu->pio.count)
1942 kvm_x86_ops->skip_emulated_instruction(vcpu);
1943
1944 for (i = 0; i < nr_pages; ++i) {
1945 mutex_lock(&vcpu->kvm->lock);
1946 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1947 if (page)
1948 get_page(page);
1949 vcpu->pio.guest_pages[i] = page;
1950 mutex_unlock(&vcpu->kvm->lock);
1951 if (!page) {
1952 inject_gp(vcpu);
1953 free_pio_guest_pages(vcpu);
1954 return 1;
1955 }
1956 }
1957
1958 pio_dev = vcpu_find_pio_dev(vcpu, port);
1959 if (!vcpu->pio.in) {
1960 /* string PIO write */
1961 ret = pio_copy_data(vcpu);
1962 if (ret >= 0 && pio_dev) {
1963 pio_string_write(pio_dev, vcpu);
1964 complete_pio(vcpu);
1965 if (vcpu->pio.count == 0)
1966 ret = 1;
1967 }
1968 } else if (pio_dev)
1969 pr_unimpl(vcpu, "no string pio read support yet, "
1970 "port %x size %d count %ld\n",
1971 port, size, count);
1972
1973 return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1976
1977 /*
1978 * Check if userspace requested an interrupt window, and that the
1979 * interrupt window is open.
1980 *
1981 * No need to exit to userspace if we already have an interrupt queued.
1982 */
1983 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1984 struct kvm_run *kvm_run)
1985 {
1986 return (!vcpu->irq_summary &&
1987 kvm_run->request_interrupt_window &&
1988 vcpu->interrupt_window_open &&
1989 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
1990 }
1991
1992 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1993 struct kvm_run *kvm_run)
1994 {
1995 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
1996 kvm_run->cr8 = get_cr8(vcpu);
1997 kvm_run->apic_base = kvm_get_apic_base(vcpu);
1998 if (irqchip_in_kernel(vcpu->kvm))
1999 kvm_run->ready_for_interrupt_injection = 1;
2000 else
2001 kvm_run->ready_for_interrupt_injection =
2002 (vcpu->interrupt_window_open &&
2003 vcpu->irq_summary == 0);
2004 }
2005
2006 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2007 {
2008 int r;
2009
2010 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2011 printk("vcpu %d received sipi with vector # %x\n",
2012 vcpu->vcpu_id, vcpu->sipi_vector);
2013 kvm_lapic_reset(vcpu);
2014 kvm_x86_ops->vcpu_reset(vcpu);
2015 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2016 }
2017
2018 preempted:
2019 if (vcpu->guest_debug.enabled)
2020 kvm_x86_ops->guest_debug_pre(vcpu);
2021
2022 again:
2023 r = kvm_mmu_reload(vcpu);
2024 if (unlikely(r))
2025 goto out;
2026
2027 preempt_disable();
2028
2029 kvm_x86_ops->prepare_guest_switch(vcpu);
2030 kvm_load_guest_fpu(vcpu);
2031
2032 local_irq_disable();
2033
2034 if (signal_pending(current)) {
2035 local_irq_enable();
2036 preempt_enable();
2037 r = -EINTR;
2038 kvm_run->exit_reason = KVM_EXIT_INTR;
2039 ++vcpu->stat.signal_exits;
2040 goto out;
2041 }
2042
2043 if (irqchip_in_kernel(vcpu->kvm))
2044 kvm_x86_ops->inject_pending_irq(vcpu);
2045 else if (!vcpu->mmio_read_completed)
2046 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2047
2048 vcpu->guest_mode = 1;
2049 kvm_guest_enter();
2050
2051 if (vcpu->requests)
2052 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2053 kvm_x86_ops->tlb_flush(vcpu);
2054
2055 kvm_x86_ops->run(vcpu, kvm_run);
2056
2057 kvm_guest_exit();
2058 vcpu->guest_mode = 0;
2059 local_irq_enable();
2060
2061 ++vcpu->stat.exits;
2062
2063 preempt_enable();
2064
2065 /*
2066 * Profile KVM exit RIPs:
2067 */
2068 if (unlikely(prof_on == KVM_PROFILING)) {
2069 kvm_x86_ops->cache_regs(vcpu);
2070 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2071 }
2072
2073 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2074
2075 if (r > 0) {
2076 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2077 r = -EINTR;
2078 kvm_run->exit_reason = KVM_EXIT_INTR;
2079 ++vcpu->stat.request_irq_exits;
2080 goto out;
2081 }
2082 if (!need_resched()) {
2083 ++vcpu->stat.light_exits;
2084 goto again;
2085 }
2086 }
2087
2088 out:
2089 if (r > 0) {
2090 kvm_resched(vcpu);
2091 goto preempted;
2092 }
2093
2094 post_kvm_run_save(vcpu, kvm_run);
2095
2096 return r;
2097 }
2098
2099
2100 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2101 {
2102 int r;
2103 sigset_t sigsaved;
2104
2105 vcpu_load(vcpu);
2106
2107 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2108 kvm_vcpu_block(vcpu);
2109 vcpu_put(vcpu);
2110 return -EAGAIN;
2111 }
2112
2113 if (vcpu->sigset_active)
2114 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2115
2116 /* re-sync apic's tpr */
2117 if (!irqchip_in_kernel(vcpu->kvm))
2118 set_cr8(vcpu, kvm_run->cr8);
2119
2120 if (vcpu->pio.cur_count) {
2121 r = complete_pio(vcpu);
2122 if (r)
2123 goto out;
2124 }
2125
2126 if (vcpu->mmio_needed) {
2127 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2128 vcpu->mmio_read_completed = 1;
2129 vcpu->mmio_needed = 0;
2130 r = emulate_instruction(vcpu, kvm_run,
2131 vcpu->mmio_fault_cr2, 0);
2132 if (r == EMULATE_DO_MMIO) {
2133 /*
2134 * Read-modify-write. Back to userspace.
2135 */
2136 r = 0;
2137 goto out;
2138 }
2139 }
2140
2141 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2142 kvm_x86_ops->cache_regs(vcpu);
2143 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2144 kvm_x86_ops->decache_regs(vcpu);
2145 }
2146
2147 r = __vcpu_run(vcpu, kvm_run);
2148
2149 out:
2150 if (vcpu->sigset_active)
2151 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2152
2153 vcpu_put(vcpu);
2154 return r;
2155 }
2156
2157 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2158 struct kvm_regs *regs)
2159 {
2160 vcpu_load(vcpu);
2161
2162 kvm_x86_ops->cache_regs(vcpu);
2163
2164 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2165 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2166 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2167 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2168 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2169 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2170 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2171 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2172 #ifdef CONFIG_X86_64
2173 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2174 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2175 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2176 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2177 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2178 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2179 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2180 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2181 #endif
2182
2183 regs->rip = vcpu->rip;
2184 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2185
2186 /*
2187 * Don't leak debug flags in case they were set for guest debugging
2188 */
2189 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2190 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2191
2192 vcpu_put(vcpu);
2193
2194 return 0;
2195 }
2196
2197 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2198 struct kvm_regs *regs)
2199 {
2200 vcpu_load(vcpu);
2201
2202 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2203 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2204 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2205 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2206 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2207 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2208 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2209 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2210 #ifdef CONFIG_X86_64
2211 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2212 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2213 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2214 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2215 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2216 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2217 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2218 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2219 #endif
2220
2221 vcpu->rip = regs->rip;
2222 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2223
2224 kvm_x86_ops->decache_regs(vcpu);
2225
2226 vcpu_put(vcpu);
2227
2228 return 0;
2229 }
2230
2231 static void get_segment(struct kvm_vcpu *vcpu,
2232 struct kvm_segment *var, int seg)
2233 {
2234 return kvm_x86_ops->get_segment(vcpu, var, seg);
2235 }
2236
2237 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2238 struct kvm_sregs *sregs)
2239 {
2240 struct descriptor_table dt;
2241 int pending_vec;
2242
2243 vcpu_load(vcpu);
2244
2245 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2246 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2247 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2248 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2249 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2250 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2251
2252 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2253 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2254
2255 kvm_x86_ops->get_idt(vcpu, &dt);
2256 sregs->idt.limit = dt.limit;
2257 sregs->idt.base = dt.base;
2258 kvm_x86_ops->get_gdt(vcpu, &dt);
2259 sregs->gdt.limit = dt.limit;
2260 sregs->gdt.base = dt.base;
2261
2262 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2263 sregs->cr0 = vcpu->cr0;
2264 sregs->cr2 = vcpu->cr2;
2265 sregs->cr3 = vcpu->cr3;
2266 sregs->cr4 = vcpu->cr4;
2267 sregs->cr8 = get_cr8(vcpu);
2268 sregs->efer = vcpu->shadow_efer;
2269 sregs->apic_base = kvm_get_apic_base(vcpu);
2270
2271 if (irqchip_in_kernel(vcpu->kvm)) {
2272 memset(sregs->interrupt_bitmap, 0,
2273 sizeof sregs->interrupt_bitmap);
2274 pending_vec = kvm_x86_ops->get_irq(vcpu);
2275 if (pending_vec >= 0)
2276 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2277 } else
2278 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2279 sizeof sregs->interrupt_bitmap);
2280
2281 vcpu_put(vcpu);
2282
2283 return 0;
2284 }
2285
2286 static void set_segment(struct kvm_vcpu *vcpu,
2287 struct kvm_segment *var, int seg)
2288 {
2289 return kvm_x86_ops->set_segment(vcpu, var, seg);
2290 }
2291
2292 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2293 struct kvm_sregs *sregs)
2294 {
2295 int mmu_reset_needed = 0;
2296 int i, pending_vec, max_bits;
2297 struct descriptor_table dt;
2298
2299 vcpu_load(vcpu);
2300
2301 dt.limit = sregs->idt.limit;
2302 dt.base = sregs->idt.base;
2303 kvm_x86_ops->set_idt(vcpu, &dt);
2304 dt.limit = sregs->gdt.limit;
2305 dt.base = sregs->gdt.base;
2306 kvm_x86_ops->set_gdt(vcpu, &dt);
2307
2308 vcpu->cr2 = sregs->cr2;
2309 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2310 vcpu->cr3 = sregs->cr3;
2311
2312 set_cr8(vcpu, sregs->cr8);
2313
2314 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2315 #ifdef CONFIG_X86_64
2316 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2317 #endif
2318 kvm_set_apic_base(vcpu, sregs->apic_base);
2319
2320 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2321
2322 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2323 vcpu->cr0 = sregs->cr0;
2324 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2325
2326 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2327 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2328 if (!is_long_mode(vcpu) && is_pae(vcpu))
2329 load_pdptrs(vcpu, vcpu->cr3);
2330
2331 if (mmu_reset_needed)
2332 kvm_mmu_reset_context(vcpu);
2333
2334 if (!irqchip_in_kernel(vcpu->kvm)) {
2335 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2336 sizeof vcpu->irq_pending);
2337 vcpu->irq_summary = 0;
2338 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2339 if (vcpu->irq_pending[i])
2340 __set_bit(i, &vcpu->irq_summary);
2341 } else {
2342 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2343 pending_vec = find_first_bit(
2344 (const unsigned long *)sregs->interrupt_bitmap,
2345 max_bits);
2346 /* Only pending external irq is handled here */
2347 if (pending_vec < max_bits) {
2348 kvm_x86_ops->set_irq(vcpu, pending_vec);
2349 printk("Set back pending irq %d\n", pending_vec);
2350 }
2351 }
2352
2353 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2354 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2355 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2356 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2357 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2358 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2359
2360 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2361 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2362
2363 vcpu_put(vcpu);
2364
2365 return 0;
2366 }
2367
2368 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2369 {
2370 struct kvm_segment cs;
2371
2372 get_segment(vcpu, &cs, VCPU_SREG_CS);
2373 *db = cs.db;
2374 *l = cs.l;
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2377
2378 /*
2379 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2380 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2381 *
2382 * This list is modified at module load time to reflect the
2383 * capabilities of the host cpu.
2384 */
2385 static u32 msrs_to_save[] = {
2386 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2387 MSR_K6_STAR,
2388 #ifdef CONFIG_X86_64
2389 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2390 #endif
2391 MSR_IA32_TIME_STAMP_COUNTER,
2392 };
2393
2394 static unsigned num_msrs_to_save;
2395
2396 static u32 emulated_msrs[] = {
2397 MSR_IA32_MISC_ENABLE,
2398 };
2399
2400 static __init void kvm_init_msr_list(void)
2401 {
2402 u32 dummy[2];
2403 unsigned i, j;
2404
2405 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2406 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2407 continue;
2408 if (j < i)
2409 msrs_to_save[j] = msrs_to_save[i];
2410 j++;
2411 }
2412 num_msrs_to_save = j;
2413 }
2414
2415 /*
2416 * Adapt set_msr() to msr_io()'s calling convention
2417 */
2418 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2419 {
2420 return kvm_set_msr(vcpu, index, *data);
2421 }
2422
2423 /*
2424 * Read or write a bunch of msrs. All parameters are kernel addresses.
2425 *
2426 * @return number of msrs set successfully.
2427 */
2428 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2429 struct kvm_msr_entry *entries,
2430 int (*do_msr)(struct kvm_vcpu *vcpu,
2431 unsigned index, u64 *data))
2432 {
2433 int i;
2434
2435 vcpu_load(vcpu);
2436
2437 for (i = 0; i < msrs->nmsrs; ++i)
2438 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2439 break;
2440
2441 vcpu_put(vcpu);
2442
2443 return i;
2444 }
2445
2446 /*
2447 * Read or write a bunch of msrs. Parameters are user addresses.
2448 *
2449 * @return number of msrs set successfully.
2450 */
2451 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2452 int (*do_msr)(struct kvm_vcpu *vcpu,
2453 unsigned index, u64 *data),
2454 int writeback)
2455 {
2456 struct kvm_msrs msrs;
2457 struct kvm_msr_entry *entries;
2458 int r, n;
2459 unsigned size;
2460
2461 r = -EFAULT;
2462 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2463 goto out;
2464
2465 r = -E2BIG;
2466 if (msrs.nmsrs >= MAX_IO_MSRS)
2467 goto out;
2468
2469 r = -ENOMEM;
2470 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2471 entries = vmalloc(size);
2472 if (!entries)
2473 goto out;
2474
2475 r = -EFAULT;
2476 if (copy_from_user(entries, user_msrs->entries, size))
2477 goto out_free;
2478
2479 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2480 if (r < 0)
2481 goto out_free;
2482
2483 r = -EFAULT;
2484 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2485 goto out_free;
2486
2487 r = n;
2488
2489 out_free:
2490 vfree(entries);
2491 out:
2492 return r;
2493 }
2494
2495 /*
2496 * Translate a guest virtual address to a guest physical address.
2497 */
2498 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2499 struct kvm_translation *tr)
2500 {
2501 unsigned long vaddr = tr->linear_address;
2502 gpa_t gpa;
2503
2504 vcpu_load(vcpu);
2505 mutex_lock(&vcpu->kvm->lock);
2506 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2507 tr->physical_address = gpa;
2508 tr->valid = gpa != UNMAPPED_GVA;
2509 tr->writeable = 1;
2510 tr->usermode = 0;
2511 mutex_unlock(&vcpu->kvm->lock);
2512 vcpu_put(vcpu);
2513
2514 return 0;
2515 }
2516
2517 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2518 struct kvm_interrupt *irq)
2519 {
2520 if (irq->irq < 0 || irq->irq >= 256)
2521 return -EINVAL;
2522 if (irqchip_in_kernel(vcpu->kvm))
2523 return -ENXIO;
2524 vcpu_load(vcpu);
2525
2526 set_bit(irq->irq, vcpu->irq_pending);
2527 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2528
2529 vcpu_put(vcpu);
2530
2531 return 0;
2532 }
2533
2534 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2535 struct kvm_debug_guest *dbg)
2536 {
2537 int r;
2538
2539 vcpu_load(vcpu);
2540
2541 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2542
2543 vcpu_put(vcpu);
2544
2545 return r;
2546 }
2547
2548 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2549 unsigned long address,
2550 int *type)
2551 {
2552 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2553 unsigned long pgoff;
2554 struct page *page;
2555
2556 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2557 if (pgoff == 0)
2558 page = virt_to_page(vcpu->run);
2559 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2560 page = virt_to_page(vcpu->pio_data);
2561 else
2562 return NOPAGE_SIGBUS;
2563 get_page(page);
2564 if (type != NULL)
2565 *type = VM_FAULT_MINOR;
2566
2567 return page;
2568 }
2569
2570 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2571 .nopage = kvm_vcpu_nopage,
2572 };
2573
2574 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2575 {
2576 vma->vm_ops = &kvm_vcpu_vm_ops;
2577 return 0;
2578 }
2579
2580 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2581 {
2582 struct kvm_vcpu *vcpu = filp->private_data;
2583
2584 fput(vcpu->kvm->filp);
2585 return 0;
2586 }
2587
2588 static struct file_operations kvm_vcpu_fops = {
2589 .release = kvm_vcpu_release,
2590 .unlocked_ioctl = kvm_vcpu_ioctl,
2591 .compat_ioctl = kvm_vcpu_ioctl,
2592 .mmap = kvm_vcpu_mmap,
2593 };
2594
2595 /*
2596 * Allocates an inode for the vcpu.
2597 */
2598 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2599 {
2600 int fd, r;
2601 struct inode *inode;
2602 struct file *file;
2603
2604 r = anon_inode_getfd(&fd, &inode, &file,
2605 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2606 if (r)
2607 return r;
2608 atomic_inc(&vcpu->kvm->filp->f_count);
2609 return fd;
2610 }
2611
2612 /*
2613 * Creates some virtual cpus. Good luck creating more than one.
2614 */
2615 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2616 {
2617 int r;
2618 struct kvm_vcpu *vcpu;
2619
2620 if (!valid_vcpu(n))
2621 return -EINVAL;
2622
2623 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2624 if (IS_ERR(vcpu))
2625 return PTR_ERR(vcpu);
2626
2627 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2628
2629 /* We do fxsave: this must be aligned. */
2630 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2631
2632 vcpu_load(vcpu);
2633 r = kvm_mmu_setup(vcpu);
2634 vcpu_put(vcpu);
2635 if (r < 0)
2636 goto free_vcpu;
2637
2638 mutex_lock(&kvm->lock);
2639 if (kvm->vcpus[n]) {
2640 r = -EEXIST;
2641 mutex_unlock(&kvm->lock);
2642 goto mmu_unload;
2643 }
2644 kvm->vcpus[n] = vcpu;
2645 mutex_unlock(&kvm->lock);
2646
2647 /* Now it's all set up, let userspace reach it */
2648 r = create_vcpu_fd(vcpu);
2649 if (r < 0)
2650 goto unlink;
2651 return r;
2652
2653 unlink:
2654 mutex_lock(&kvm->lock);
2655 kvm->vcpus[n] = NULL;
2656 mutex_unlock(&kvm->lock);
2657
2658 mmu_unload:
2659 vcpu_load(vcpu);
2660 kvm_mmu_unload(vcpu);
2661 vcpu_put(vcpu);
2662
2663 free_vcpu:
2664 kvm_x86_ops->vcpu_free(vcpu);
2665 return r;
2666 }
2667
2668 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2669 {
2670 u64 efer;
2671 int i;
2672 struct kvm_cpuid_entry *e, *entry;
2673
2674 rdmsrl(MSR_EFER, efer);
2675 entry = NULL;
2676 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2677 e = &vcpu->cpuid_entries[i];
2678 if (e->function == 0x80000001) {
2679 entry = e;
2680 break;
2681 }
2682 }
2683 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2684 entry->edx &= ~(1 << 20);
2685 printk(KERN_INFO "kvm: guest NX capability removed\n");
2686 }
2687 }
2688
2689 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2690 struct kvm_cpuid *cpuid,
2691 struct kvm_cpuid_entry __user *entries)
2692 {
2693 int r;
2694
2695 r = -E2BIG;
2696 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2697 goto out;
2698 r = -EFAULT;
2699 if (copy_from_user(&vcpu->cpuid_entries, entries,
2700 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2701 goto out;
2702 vcpu->cpuid_nent = cpuid->nent;
2703 cpuid_fix_nx_cap(vcpu);
2704 return 0;
2705
2706 out:
2707 return r;
2708 }
2709
2710 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2711 {
2712 if (sigset) {
2713 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2714 vcpu->sigset_active = 1;
2715 vcpu->sigset = *sigset;
2716 } else
2717 vcpu->sigset_active = 0;
2718 return 0;
2719 }
2720
2721 /*
2722 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2723 * we have asm/x86/processor.h
2724 */
2725 struct fxsave {
2726 u16 cwd;
2727 u16 swd;
2728 u16 twd;
2729 u16 fop;
2730 u64 rip;
2731 u64 rdp;
2732 u32 mxcsr;
2733 u32 mxcsr_mask;
2734 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2735 #ifdef CONFIG_X86_64
2736 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2737 #else
2738 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2739 #endif
2740 };
2741
2742 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2743 {
2744 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2745
2746 vcpu_load(vcpu);
2747
2748 memcpy(fpu->fpr, fxsave->st_space, 128);
2749 fpu->fcw = fxsave->cwd;
2750 fpu->fsw = fxsave->swd;
2751 fpu->ftwx = fxsave->twd;
2752 fpu->last_opcode = fxsave->fop;
2753 fpu->last_ip = fxsave->rip;
2754 fpu->last_dp = fxsave->rdp;
2755 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2756
2757 vcpu_put(vcpu);
2758
2759 return 0;
2760 }
2761
2762 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2763 {
2764 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2765
2766 vcpu_load(vcpu);
2767
2768 memcpy(fxsave->st_space, fpu->fpr, 128);
2769 fxsave->cwd = fpu->fcw;
2770 fxsave->swd = fpu->fsw;
2771 fxsave->twd = fpu->ftwx;
2772 fxsave->fop = fpu->last_opcode;
2773 fxsave->rip = fpu->last_ip;
2774 fxsave->rdp = fpu->last_dp;
2775 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2776
2777 vcpu_put(vcpu);
2778
2779 return 0;
2780 }
2781
2782 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2783 struct kvm_lapic_state *s)
2784 {
2785 vcpu_load(vcpu);
2786 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2787 vcpu_put(vcpu);
2788
2789 return 0;
2790 }
2791
2792 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2793 struct kvm_lapic_state *s)
2794 {
2795 vcpu_load(vcpu);
2796 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2797 kvm_apic_post_state_restore(vcpu);
2798 vcpu_put(vcpu);
2799
2800 return 0;
2801 }
2802
2803 static long kvm_vcpu_ioctl(struct file *filp,
2804 unsigned int ioctl, unsigned long arg)
2805 {
2806 struct kvm_vcpu *vcpu = filp->private_data;
2807 void __user *argp = (void __user *)arg;
2808 int r = -EINVAL;
2809
2810 switch (ioctl) {
2811 case KVM_RUN:
2812 r = -EINVAL;
2813 if (arg)
2814 goto out;
2815 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2816 break;
2817 case KVM_GET_REGS: {
2818 struct kvm_regs kvm_regs;
2819
2820 memset(&kvm_regs, 0, sizeof kvm_regs);
2821 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2822 if (r)
2823 goto out;
2824 r = -EFAULT;
2825 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2826 goto out;
2827 r = 0;
2828 break;
2829 }
2830 case KVM_SET_REGS: {
2831 struct kvm_regs kvm_regs;
2832
2833 r = -EFAULT;
2834 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2835 goto out;
2836 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2837 if (r)
2838 goto out;
2839 r = 0;
2840 break;
2841 }
2842 case KVM_GET_SREGS: {
2843 struct kvm_sregs kvm_sregs;
2844
2845 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2846 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2847 if (r)
2848 goto out;
2849 r = -EFAULT;
2850 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2851 goto out;
2852 r = 0;
2853 break;
2854 }
2855 case KVM_SET_SREGS: {
2856 struct kvm_sregs kvm_sregs;
2857
2858 r = -EFAULT;
2859 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2860 goto out;
2861 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2862 if (r)
2863 goto out;
2864 r = 0;
2865 break;
2866 }
2867 case KVM_TRANSLATE: {
2868 struct kvm_translation tr;
2869
2870 r = -EFAULT;
2871 if (copy_from_user(&tr, argp, sizeof tr))
2872 goto out;
2873 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2874 if (r)
2875 goto out;
2876 r = -EFAULT;
2877 if (copy_to_user(argp, &tr, sizeof tr))
2878 goto out;
2879 r = 0;
2880 break;
2881 }
2882 case KVM_INTERRUPT: {
2883 struct kvm_interrupt irq;
2884
2885 r = -EFAULT;
2886 if (copy_from_user(&irq, argp, sizeof irq))
2887 goto out;
2888 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2889 if (r)
2890 goto out;
2891 r = 0;
2892 break;
2893 }
2894 case KVM_DEBUG_GUEST: {
2895 struct kvm_debug_guest dbg;
2896
2897 r = -EFAULT;
2898 if (copy_from_user(&dbg, argp, sizeof dbg))
2899 goto out;
2900 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2901 if (r)
2902 goto out;
2903 r = 0;
2904 break;
2905 }
2906 case KVM_GET_MSRS:
2907 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2908 break;
2909 case KVM_SET_MSRS:
2910 r = msr_io(vcpu, argp, do_set_msr, 0);
2911 break;
2912 case KVM_SET_CPUID: {
2913 struct kvm_cpuid __user *cpuid_arg = argp;
2914 struct kvm_cpuid cpuid;
2915
2916 r = -EFAULT;
2917 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2918 goto out;
2919 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2920 if (r)
2921 goto out;
2922 break;
2923 }
2924 case KVM_SET_SIGNAL_MASK: {
2925 struct kvm_signal_mask __user *sigmask_arg = argp;
2926 struct kvm_signal_mask kvm_sigmask;
2927 sigset_t sigset, *p;
2928
2929 p = NULL;
2930 if (argp) {
2931 r = -EFAULT;
2932 if (copy_from_user(&kvm_sigmask, argp,
2933 sizeof kvm_sigmask))
2934 goto out;
2935 r = -EINVAL;
2936 if (kvm_sigmask.len != sizeof sigset)
2937 goto out;
2938 r = -EFAULT;
2939 if (copy_from_user(&sigset, sigmask_arg->sigset,
2940 sizeof sigset))
2941 goto out;
2942 p = &sigset;
2943 }
2944 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2945 break;
2946 }
2947 case KVM_GET_FPU: {
2948 struct kvm_fpu fpu;
2949
2950 memset(&fpu, 0, sizeof fpu);
2951 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2952 if (r)
2953 goto out;
2954 r = -EFAULT;
2955 if (copy_to_user(argp, &fpu, sizeof fpu))
2956 goto out;
2957 r = 0;
2958 break;
2959 }
2960 case KVM_SET_FPU: {
2961 struct kvm_fpu fpu;
2962
2963 r = -EFAULT;
2964 if (copy_from_user(&fpu, argp, sizeof fpu))
2965 goto out;
2966 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2967 if (r)
2968 goto out;
2969 r = 0;
2970 break;
2971 }
2972 case KVM_GET_LAPIC: {
2973 struct kvm_lapic_state lapic;
2974
2975 memset(&lapic, 0, sizeof lapic);
2976 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
2977 if (r)
2978 goto out;
2979 r = -EFAULT;
2980 if (copy_to_user(argp, &lapic, sizeof lapic))
2981 goto out;
2982 r = 0;
2983 break;
2984 }
2985 case KVM_SET_LAPIC: {
2986 struct kvm_lapic_state lapic;
2987
2988 r = -EFAULT;
2989 if (copy_from_user(&lapic, argp, sizeof lapic))
2990 goto out;
2991 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
2992 if (r)
2993 goto out;
2994 r = 0;
2995 break;
2996 }
2997 default:
2998 ;
2999 }
3000 out:
3001 return r;
3002 }
3003
3004 static long kvm_vm_ioctl(struct file *filp,
3005 unsigned int ioctl, unsigned long arg)
3006 {
3007 struct kvm *kvm = filp->private_data;
3008 void __user *argp = (void __user *)arg;
3009 int r = -EINVAL;
3010
3011 switch (ioctl) {
3012 case KVM_CREATE_VCPU:
3013 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3014 if (r < 0)
3015 goto out;
3016 break;
3017 case KVM_SET_MEMORY_REGION: {
3018 struct kvm_memory_region kvm_mem;
3019
3020 r = -EFAULT;
3021 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
3022 goto out;
3023 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
3024 if (r)
3025 goto out;
3026 break;
3027 }
3028 case KVM_GET_DIRTY_LOG: {
3029 struct kvm_dirty_log log;
3030
3031 r = -EFAULT;
3032 if (copy_from_user(&log, argp, sizeof log))
3033 goto out;
3034 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3035 if (r)
3036 goto out;
3037 break;
3038 }
3039 case KVM_SET_MEMORY_ALIAS: {
3040 struct kvm_memory_alias alias;
3041
3042 r = -EFAULT;
3043 if (copy_from_user(&alias, argp, sizeof alias))
3044 goto out;
3045 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
3046 if (r)
3047 goto out;
3048 break;
3049 }
3050 case KVM_CREATE_IRQCHIP:
3051 r = -ENOMEM;
3052 kvm->vpic = kvm_create_pic(kvm);
3053 if (kvm->vpic) {
3054 r = kvm_ioapic_init(kvm);
3055 if (r) {
3056 kfree(kvm->vpic);
3057 kvm->vpic = NULL;
3058 goto out;
3059 }
3060 }
3061 else
3062 goto out;
3063 break;
3064 case KVM_IRQ_LINE: {
3065 struct kvm_irq_level irq_event;
3066
3067 r = -EFAULT;
3068 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3069 goto out;
3070 if (irqchip_in_kernel(kvm)) {
3071 mutex_lock(&kvm->lock);
3072 if (irq_event.irq < 16)
3073 kvm_pic_set_irq(pic_irqchip(kvm),
3074 irq_event.irq,
3075 irq_event.level);
3076 kvm_ioapic_set_irq(kvm->vioapic,
3077 irq_event.irq,
3078 irq_event.level);
3079 mutex_unlock(&kvm->lock);
3080 r = 0;
3081 }
3082 break;
3083 }
3084 case KVM_GET_IRQCHIP: {
3085 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3086 struct kvm_irqchip chip;
3087
3088 r = -EFAULT;
3089 if (copy_from_user(&chip, argp, sizeof chip))
3090 goto out;
3091 r = -ENXIO;
3092 if (!irqchip_in_kernel(kvm))
3093 goto out;
3094 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3095 if (r)
3096 goto out;
3097 r = -EFAULT;
3098 if (copy_to_user(argp, &chip, sizeof chip))
3099 goto out;
3100 r = 0;
3101 break;
3102 }
3103 case KVM_SET_IRQCHIP: {
3104 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3105 struct kvm_irqchip chip;
3106
3107 r = -EFAULT;
3108 if (copy_from_user(&chip, argp, sizeof chip))
3109 goto out;
3110 r = -ENXIO;
3111 if (!irqchip_in_kernel(kvm))
3112 goto out;
3113 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3114 if (r)
3115 goto out;
3116 r = 0;
3117 break;
3118 }
3119 default:
3120 ;
3121 }
3122 out:
3123 return r;
3124 }
3125
3126 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3127 unsigned long address,
3128 int *type)
3129 {
3130 struct kvm *kvm = vma->vm_file->private_data;
3131 unsigned long pgoff;
3132 struct page *page;
3133
3134 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3135 page = gfn_to_page(kvm, pgoff);
3136 if (!page)
3137 return NOPAGE_SIGBUS;
3138 get_page(page);
3139 if (type != NULL)
3140 *type = VM_FAULT_MINOR;
3141
3142 return page;
3143 }
3144
3145 static struct vm_operations_struct kvm_vm_vm_ops = {
3146 .nopage = kvm_vm_nopage,
3147 };
3148
3149 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3150 {
3151 vma->vm_ops = &kvm_vm_vm_ops;
3152 return 0;
3153 }
3154
3155 static struct file_operations kvm_vm_fops = {
3156 .release = kvm_vm_release,
3157 .unlocked_ioctl = kvm_vm_ioctl,
3158 .compat_ioctl = kvm_vm_ioctl,
3159 .mmap = kvm_vm_mmap,
3160 };
3161
3162 static int kvm_dev_ioctl_create_vm(void)
3163 {
3164 int fd, r;
3165 struct inode *inode;
3166 struct file *file;
3167 struct kvm *kvm;
3168
3169 kvm = kvm_create_vm();
3170 if (IS_ERR(kvm))
3171 return PTR_ERR(kvm);
3172 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3173 if (r) {
3174 kvm_destroy_vm(kvm);
3175 return r;
3176 }
3177
3178 kvm->filp = file;
3179
3180 return fd;
3181 }
3182
3183 static long kvm_dev_ioctl(struct file *filp,
3184 unsigned int ioctl, unsigned long arg)
3185 {
3186 void __user *argp = (void __user *)arg;
3187 long r = -EINVAL;
3188
3189 switch (ioctl) {
3190 case KVM_GET_API_VERSION:
3191 r = -EINVAL;
3192 if (arg)
3193 goto out;
3194 r = KVM_API_VERSION;
3195 break;
3196 case KVM_CREATE_VM:
3197 r = -EINVAL;
3198 if (arg)
3199 goto out;
3200 r = kvm_dev_ioctl_create_vm();
3201 break;
3202 case KVM_GET_MSR_INDEX_LIST: {
3203 struct kvm_msr_list __user *user_msr_list = argp;
3204 struct kvm_msr_list msr_list;
3205 unsigned n;
3206
3207 r = -EFAULT;
3208 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3209 goto out;
3210 n = msr_list.nmsrs;
3211 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3212 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3213 goto out;
3214 r = -E2BIG;
3215 if (n < num_msrs_to_save)
3216 goto out;
3217 r = -EFAULT;
3218 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3219 num_msrs_to_save * sizeof(u32)))
3220 goto out;
3221 if (copy_to_user(user_msr_list->indices
3222 + num_msrs_to_save * sizeof(u32),
3223 &emulated_msrs,
3224 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3225 goto out;
3226 r = 0;
3227 break;
3228 }
3229 case KVM_CHECK_EXTENSION: {
3230 int ext = (long)argp;
3231
3232 switch (ext) {
3233 case KVM_CAP_IRQCHIP:
3234 case KVM_CAP_HLT:
3235 r = 1;
3236 break;
3237 default:
3238 r = 0;
3239 break;
3240 }
3241 break;
3242 }
3243 case KVM_GET_VCPU_MMAP_SIZE:
3244 r = -EINVAL;
3245 if (arg)
3246 goto out;
3247 r = 2 * PAGE_SIZE;
3248 break;
3249 default:
3250 ;
3251 }
3252 out:
3253 return r;
3254 }
3255
3256 static struct file_operations kvm_chardev_ops = {
3257 .unlocked_ioctl = kvm_dev_ioctl,
3258 .compat_ioctl = kvm_dev_ioctl,
3259 };
3260
3261 static struct miscdevice kvm_dev = {
3262 KVM_MINOR,
3263 "kvm",
3264 &kvm_chardev_ops,
3265 };
3266
3267 /*
3268 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3269 * cached on it.
3270 */
3271 static void decache_vcpus_on_cpu(int cpu)
3272 {
3273 struct kvm *vm;
3274 struct kvm_vcpu *vcpu;
3275 int i;
3276
3277 spin_lock(&kvm_lock);
3278 list_for_each_entry(vm, &vm_list, vm_list)
3279 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3280 vcpu = vm->vcpus[i];
3281 if (!vcpu)
3282 continue;
3283 /*
3284 * If the vcpu is locked, then it is running on some
3285 * other cpu and therefore it is not cached on the
3286 * cpu in question.
3287 *
3288 * If it's not locked, check the last cpu it executed
3289 * on.
3290 */
3291 if (mutex_trylock(&vcpu->mutex)) {
3292 if (vcpu->cpu == cpu) {
3293 kvm_x86_ops->vcpu_decache(vcpu);
3294 vcpu->cpu = -1;
3295 }
3296 mutex_unlock(&vcpu->mutex);
3297 }
3298 }
3299 spin_unlock(&kvm_lock);
3300 }
3301
3302 static void hardware_enable(void *junk)
3303 {
3304 int cpu = raw_smp_processor_id();
3305
3306 if (cpu_isset(cpu, cpus_hardware_enabled))
3307 return;
3308 cpu_set(cpu, cpus_hardware_enabled);
3309 kvm_x86_ops->hardware_enable(NULL);
3310 }
3311
3312 static void hardware_disable(void *junk)
3313 {
3314 int cpu = raw_smp_processor_id();
3315
3316 if (!cpu_isset(cpu, cpus_hardware_enabled))
3317 return;
3318 cpu_clear(cpu, cpus_hardware_enabled);
3319 decache_vcpus_on_cpu(cpu);
3320 kvm_x86_ops->hardware_disable(NULL);
3321 }
3322
3323 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3324 void *v)
3325 {
3326 int cpu = (long)v;
3327
3328 switch (val) {
3329 case CPU_DYING:
3330 case CPU_DYING_FROZEN:
3331 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3332 cpu);
3333 hardware_disable(NULL);
3334 break;
3335 case CPU_UP_CANCELED:
3336 case CPU_UP_CANCELED_FROZEN:
3337 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3338 cpu);
3339 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3340 break;
3341 case CPU_ONLINE:
3342 case CPU_ONLINE_FROZEN:
3343 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3344 cpu);
3345 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3346 break;
3347 }
3348 return NOTIFY_OK;
3349 }
3350
3351 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3352 void *v)
3353 {
3354 if (val == SYS_RESTART) {
3355 /*
3356 * Some (well, at least mine) BIOSes hang on reboot if
3357 * in vmx root mode.
3358 */
3359 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3360 on_each_cpu(hardware_disable, NULL, 0, 1);
3361 }
3362 return NOTIFY_OK;
3363 }
3364
3365 static struct notifier_block kvm_reboot_notifier = {
3366 .notifier_call = kvm_reboot,
3367 .priority = 0,
3368 };
3369
3370 void kvm_io_bus_init(struct kvm_io_bus *bus)
3371 {
3372 memset(bus, 0, sizeof(*bus));
3373 }
3374
3375 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3376 {
3377 int i;
3378
3379 for (i = 0; i < bus->dev_count; i++) {
3380 struct kvm_io_device *pos = bus->devs[i];
3381
3382 kvm_iodevice_destructor(pos);
3383 }
3384 }
3385
3386 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3387 {
3388 int i;
3389
3390 for (i = 0; i < bus->dev_count; i++) {
3391 struct kvm_io_device *pos = bus->devs[i];
3392
3393 if (pos->in_range(pos, addr))
3394 return pos;
3395 }
3396
3397 return NULL;
3398 }
3399
3400 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3401 {
3402 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3403
3404 bus->devs[bus->dev_count++] = dev;
3405 }
3406
3407 static struct notifier_block kvm_cpu_notifier = {
3408 .notifier_call = kvm_cpu_hotplug,
3409 .priority = 20, /* must be > scheduler priority */
3410 };
3411
3412 static u64 stat_get(void *_offset)
3413 {
3414 unsigned offset = (long)_offset;
3415 u64 total = 0;
3416 struct kvm *kvm;
3417 struct kvm_vcpu *vcpu;
3418 int i;
3419
3420 spin_lock(&kvm_lock);
3421 list_for_each_entry(kvm, &vm_list, vm_list)
3422 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3423 vcpu = kvm->vcpus[i];
3424 if (vcpu)
3425 total += *(u32 *)((void *)vcpu + offset);
3426 }
3427 spin_unlock(&kvm_lock);
3428 return total;
3429 }
3430
3431 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3432
3433 static __init void kvm_init_debug(void)
3434 {
3435 struct kvm_stats_debugfs_item *p;
3436
3437 debugfs_dir = debugfs_create_dir("kvm", NULL);
3438 for (p = debugfs_entries; p->name; ++p)
3439 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3440 (void *)(long)p->offset,
3441 &stat_fops);
3442 }
3443
3444 static void kvm_exit_debug(void)
3445 {
3446 struct kvm_stats_debugfs_item *p;
3447
3448 for (p = debugfs_entries; p->name; ++p)
3449 debugfs_remove(p->dentry);
3450 debugfs_remove(debugfs_dir);
3451 }
3452
3453 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3454 {
3455 hardware_disable(NULL);
3456 return 0;
3457 }
3458
3459 static int kvm_resume(struct sys_device *dev)
3460 {
3461 hardware_enable(NULL);
3462 return 0;
3463 }
3464
3465 static struct sysdev_class kvm_sysdev_class = {
3466 set_kset_name("kvm"),
3467 .suspend = kvm_suspend,
3468 .resume = kvm_resume,
3469 };
3470
3471 static struct sys_device kvm_sysdev = {
3472 .id = 0,
3473 .cls = &kvm_sysdev_class,
3474 };
3475
3476 hpa_t bad_page_address;
3477
3478 static inline
3479 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3480 {
3481 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3482 }
3483
3484 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3485 {
3486 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3487
3488 kvm_x86_ops->vcpu_load(vcpu, cpu);
3489 }
3490
3491 static void kvm_sched_out(struct preempt_notifier *pn,
3492 struct task_struct *next)
3493 {
3494 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3495
3496 kvm_x86_ops->vcpu_put(vcpu);
3497 }
3498
3499 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3500 struct module *module)
3501 {
3502 int r;
3503 int cpu;
3504
3505 if (kvm_x86_ops) {
3506 printk(KERN_ERR "kvm: already loaded the other module\n");
3507 return -EEXIST;
3508 }
3509
3510 if (!ops->cpu_has_kvm_support()) {
3511 printk(KERN_ERR "kvm: no hardware support\n");
3512 return -EOPNOTSUPP;
3513 }
3514 if (ops->disabled_by_bios()) {
3515 printk(KERN_ERR "kvm: disabled by bios\n");
3516 return -EOPNOTSUPP;
3517 }
3518
3519 kvm_x86_ops = ops;
3520
3521 r = kvm_x86_ops->hardware_setup();
3522 if (r < 0)
3523 goto out;
3524
3525 for_each_online_cpu(cpu) {
3526 smp_call_function_single(cpu,
3527 kvm_x86_ops->check_processor_compatibility,
3528 &r, 0, 1);
3529 if (r < 0)
3530 goto out_free_0;
3531 }
3532
3533 on_each_cpu(hardware_enable, NULL, 0, 1);
3534 r = register_cpu_notifier(&kvm_cpu_notifier);
3535 if (r)
3536 goto out_free_1;
3537 register_reboot_notifier(&kvm_reboot_notifier);
3538
3539 r = sysdev_class_register(&kvm_sysdev_class);
3540 if (r)
3541 goto out_free_2;
3542
3543 r = sysdev_register(&kvm_sysdev);
3544 if (r)
3545 goto out_free_3;
3546
3547 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3548 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3549 __alignof__(struct kvm_vcpu), 0, 0);
3550 if (!kvm_vcpu_cache) {
3551 r = -ENOMEM;
3552 goto out_free_4;
3553 }
3554
3555 kvm_chardev_ops.owner = module;
3556
3557 r = misc_register(&kvm_dev);
3558 if (r) {
3559 printk (KERN_ERR "kvm: misc device register failed\n");
3560 goto out_free;
3561 }
3562
3563 kvm_preempt_ops.sched_in = kvm_sched_in;
3564 kvm_preempt_ops.sched_out = kvm_sched_out;
3565
3566 return r;
3567
3568 out_free:
3569 kmem_cache_destroy(kvm_vcpu_cache);
3570 out_free_4:
3571 sysdev_unregister(&kvm_sysdev);
3572 out_free_3:
3573 sysdev_class_unregister(&kvm_sysdev_class);
3574 out_free_2:
3575 unregister_reboot_notifier(&kvm_reboot_notifier);
3576 unregister_cpu_notifier(&kvm_cpu_notifier);
3577 out_free_1:
3578 on_each_cpu(hardware_disable, NULL, 0, 1);
3579 out_free_0:
3580 kvm_x86_ops->hardware_unsetup();
3581 out:
3582 kvm_x86_ops = NULL;
3583 return r;
3584 }
3585
3586 void kvm_exit_x86(void)
3587 {
3588 misc_deregister(&kvm_dev);
3589 kmem_cache_destroy(kvm_vcpu_cache);
3590 sysdev_unregister(&kvm_sysdev);
3591 sysdev_class_unregister(&kvm_sysdev_class);
3592 unregister_reboot_notifier(&kvm_reboot_notifier);
3593 unregister_cpu_notifier(&kvm_cpu_notifier);
3594 on_each_cpu(hardware_disable, NULL, 0, 1);
3595 kvm_x86_ops->hardware_unsetup();
3596 kvm_x86_ops = NULL;
3597 }
3598
3599 static __init int kvm_init(void)
3600 {
3601 static struct page *bad_page;
3602 int r;
3603
3604 r = kvm_mmu_module_init();
3605 if (r)
3606 goto out4;
3607
3608 kvm_init_debug();
3609
3610 kvm_init_msr_list();
3611
3612 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3613 r = -ENOMEM;
3614 goto out;
3615 }
3616
3617 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3618 memset(__va(bad_page_address), 0, PAGE_SIZE);
3619
3620 return 0;
3621
3622 out:
3623 kvm_exit_debug();
3624 kvm_mmu_module_exit();
3625 out4:
3626 return r;
3627 }
3628
3629 static __exit void kvm_exit(void)
3630 {
3631 kvm_exit_debug();
3632 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3633 kvm_mmu_module_exit();
3634 }
3635
3636 module_init(kvm_init)
3637 module_exit(kvm_exit)
3638
3639 EXPORT_SYMBOL_GPL(kvm_init_x86);
3640 EXPORT_SYMBOL_GPL(kvm_exit_x86);