]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/kvm_main.c
[PATCH] KVM: Prevent stale bits in cr0 and cr4
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49 const char *name;
50 u32 *data;
51 struct dentry *dentry;
52 } debugfs_entries[] = {
53 { "pf_fixed", &kvm_stat.pf_fixed },
54 { "pf_guest", &kvm_stat.pf_guest },
55 { "tlb_flush", &kvm_stat.tlb_flush },
56 { "invlpg", &kvm_stat.invlpg },
57 { "exits", &kvm_stat.exits },
58 { "io_exits", &kvm_stat.io_exits },
59 { "mmio_exits", &kvm_stat.mmio_exits },
60 { "signal_exits", &kvm_stat.signal_exits },
61 { "irq_window", &kvm_stat.irq_window_exits },
62 { "halt_exits", &kvm_stat.halt_exits },
63 { "request_irq", &kvm_stat.request_irq_exits },
64 { "irq_exits", &kvm_stat.irq_exits },
65 { 0, 0 }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81 struct segment_descriptor s;
82 u32 base_higher;
83 u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90 struct descriptor_table gdt;
91 struct segment_descriptor *d;
92 unsigned long table_base;
93 typedef unsigned long ul;
94 unsigned long v;
95
96 if (selector == 0)
97 return 0;
98
99 asm ("sgdt %0" : "=m"(gdt));
100 table_base = gdt.base;
101
102 if (selector & 4) { /* from ldt */
103 u16 ldt_selector;
104
105 asm ("sldt %0" : "=g"(ldt_selector));
106 table_base = segment_base(ldt_selector);
107 }
108 d = (struct segment_descriptor *)(table_base + (selector & ~7));
109 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111 if (d->system == 0
112 && (d->type == 2 || d->type == 9 || d->type == 11))
113 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115 return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121 return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125 gva_t addr,
126 unsigned long size,
127 void *dest)
128 {
129 unsigned char *host_buf = dest;
130 unsigned long req_size = size;
131
132 while (size) {
133 hpa_t paddr;
134 unsigned now;
135 unsigned offset;
136 hva_t guest_buf;
137
138 paddr = gva_to_hpa(vcpu, addr);
139
140 if (is_error_hpa(paddr))
141 break;
142
143 guest_buf = (hva_t)kmap_atomic(
144 pfn_to_page(paddr >> PAGE_SHIFT),
145 KM_USER0);
146 offset = addr & ~PAGE_MASK;
147 guest_buf |= offset;
148 now = min(size, PAGE_SIZE - offset);
149 memcpy(host_buf, (void*)guest_buf, now);
150 host_buf += now;
151 addr += now;
152 size -= now;
153 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154 }
155 return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160 gva_t addr,
161 unsigned long size,
162 void *data)
163 {
164 unsigned char *host_buf = data;
165 unsigned long req_size = size;
166
167 while (size) {
168 hpa_t paddr;
169 unsigned now;
170 unsigned offset;
171 hva_t guest_buf;
172
173 paddr = gva_to_hpa(vcpu, addr);
174
175 if (is_error_hpa(paddr))
176 break;
177
178 guest_buf = (hva_t)kmap_atomic(
179 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180 offset = addr & ~PAGE_MASK;
181 guest_buf |= offset;
182 now = min(size, PAGE_SIZE - offset);
183 memcpy((void*)guest_buf, host_buf, now);
184 host_buf += now;
185 addr += now;
186 size -= now;
187 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188 }
189 return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195 return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199 * Switches to specified vcpu, until a matching vcpu_put()
200 */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205 mutex_lock(&vcpu->mutex);
206 if (unlikely(!vcpu->vmcs)) {
207 mutex_unlock(&vcpu->mutex);
208 return 0;
209 }
210 return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215 kvm_arch_ops->vcpu_put(vcpu);
216 mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222 int i;
223
224 if (!kvm)
225 return -ENOMEM;
226
227 spin_lock_init(&kvm->lock);
228 INIT_LIST_HEAD(&kvm->active_mmu_pages);
229 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232 mutex_init(&vcpu->mutex);
233 vcpu->mmu.root_hpa = INVALID_PAGE;
234 INIT_LIST_HEAD(&vcpu->free_pages);
235 }
236 filp->private_data = kvm;
237 return 0;
238 }
239
240 /*
241 * Free any memory in @free but not in @dont.
242 */
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244 struct kvm_memory_slot *dont)
245 {
246 int i;
247
248 if (!dont || free->phys_mem != dont->phys_mem)
249 if (free->phys_mem) {
250 for (i = 0; i < free->npages; ++i)
251 if (free->phys_mem[i])
252 __free_page(free->phys_mem[i]);
253 vfree(free->phys_mem);
254 }
255
256 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257 vfree(free->dirty_bitmap);
258
259 free->phys_mem = 0;
260 free->npages = 0;
261 free->dirty_bitmap = 0;
262 }
263
264 static void kvm_free_physmem(struct kvm *kvm)
265 {
266 int i;
267
268 for (i = 0; i < kvm->nmemslots; ++i)
269 kvm_free_physmem_slot(&kvm->memslots[i], 0);
270 }
271
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
273 {
274 kvm_arch_ops->vcpu_free(vcpu);
275 kvm_mmu_destroy(vcpu);
276 }
277
278 static void kvm_free_vcpus(struct kvm *kvm)
279 {
280 unsigned int i;
281
282 for (i = 0; i < KVM_MAX_VCPUS; ++i)
283 kvm_free_vcpu(&kvm->vcpus[i]);
284 }
285
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
287 {
288 struct kvm *kvm = filp->private_data;
289
290 kvm_free_vcpus(kvm);
291 kvm_free_physmem(kvm);
292 kfree(kvm);
293 return 0;
294 }
295
296 static void inject_gp(struct kvm_vcpu *vcpu)
297 {
298 kvm_arch_ops->inject_gp(vcpu, 0);
299 }
300
301 static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
302 unsigned long cr3)
303 {
304 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
305 unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
306 int i;
307 u64 pdpte;
308 u64 *pdpt;
309 struct kvm_memory_slot *memslot;
310
311 spin_lock(&vcpu->kvm->lock);
312 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
313 /* FIXME: !memslot - emulate? 0xff? */
314 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
315
316 for (i = 0; i < 4; ++i) {
317 pdpte = pdpt[offset + i];
318 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
319 break;
320 }
321
322 kunmap_atomic(pdpt, KM_USER0);
323 spin_unlock(&vcpu->kvm->lock);
324
325 return i != 4;
326 }
327
328 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
329 {
330 if (cr0 & CR0_RESEVED_BITS) {
331 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
332 cr0, vcpu->cr0);
333 inject_gp(vcpu);
334 return;
335 }
336
337 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
338 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
339 inject_gp(vcpu);
340 return;
341 }
342
343 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
344 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
345 "and a clear PE flag\n");
346 inject_gp(vcpu);
347 return;
348 }
349
350 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
351 #ifdef CONFIG_X86_64
352 if ((vcpu->shadow_efer & EFER_LME)) {
353 int cs_db, cs_l;
354
355 if (!is_pae(vcpu)) {
356 printk(KERN_DEBUG "set_cr0: #GP, start paging "
357 "in long mode while PAE is disabled\n");
358 inject_gp(vcpu);
359 return;
360 }
361 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
362 if (cs_l) {
363 printk(KERN_DEBUG "set_cr0: #GP, start paging "
364 "in long mode while CS.L == 1\n");
365 inject_gp(vcpu);
366 return;
367
368 }
369 } else
370 #endif
371 if (is_pae(vcpu) &&
372 pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
373 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
374 "reserved bits\n");
375 inject_gp(vcpu);
376 return;
377 }
378
379 }
380
381 kvm_arch_ops->set_cr0(vcpu, cr0);
382 vcpu->cr0 = cr0;
383
384 spin_lock(&vcpu->kvm->lock);
385 kvm_mmu_reset_context(vcpu);
386 spin_unlock(&vcpu->kvm->lock);
387 return;
388 }
389 EXPORT_SYMBOL_GPL(set_cr0);
390
391 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
392 {
393 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
394 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
395 }
396 EXPORT_SYMBOL_GPL(lmsw);
397
398 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
399 {
400 if (cr4 & CR4_RESEVED_BITS) {
401 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
402 inject_gp(vcpu);
403 return;
404 }
405
406 if (is_long_mode(vcpu)) {
407 if (!(cr4 & CR4_PAE_MASK)) {
408 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
409 "in long mode\n");
410 inject_gp(vcpu);
411 return;
412 }
413 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
414 && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
415 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
416 inject_gp(vcpu);
417 }
418
419 if (cr4 & CR4_VMXE_MASK) {
420 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
421 inject_gp(vcpu);
422 return;
423 }
424 kvm_arch_ops->set_cr4(vcpu, cr4);
425 spin_lock(&vcpu->kvm->lock);
426 kvm_mmu_reset_context(vcpu);
427 spin_unlock(&vcpu->kvm->lock);
428 }
429 EXPORT_SYMBOL_GPL(set_cr4);
430
431 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
432 {
433 if (is_long_mode(vcpu)) {
434 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
435 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
436 inject_gp(vcpu);
437 return;
438 }
439 } else {
440 if (cr3 & CR3_RESEVED_BITS) {
441 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
442 inject_gp(vcpu);
443 return;
444 }
445 if (is_paging(vcpu) && is_pae(vcpu) &&
446 pdptrs_have_reserved_bits_set(vcpu, cr3)) {
447 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
448 "reserved bits\n");
449 inject_gp(vcpu);
450 return;
451 }
452 }
453
454 vcpu->cr3 = cr3;
455 spin_lock(&vcpu->kvm->lock);
456 vcpu->mmu.new_cr3(vcpu);
457 spin_unlock(&vcpu->kvm->lock);
458 }
459 EXPORT_SYMBOL_GPL(set_cr3);
460
461 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
462 {
463 if ( cr8 & CR8_RESEVED_BITS) {
464 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
465 inject_gp(vcpu);
466 return;
467 }
468 vcpu->cr8 = cr8;
469 }
470 EXPORT_SYMBOL_GPL(set_cr8);
471
472 void fx_init(struct kvm_vcpu *vcpu)
473 {
474 struct __attribute__ ((__packed__)) fx_image_s {
475 u16 control; //fcw
476 u16 status; //fsw
477 u16 tag; // ftw
478 u16 opcode; //fop
479 u64 ip; // fpu ip
480 u64 operand;// fpu dp
481 u32 mxcsr;
482 u32 mxcsr_mask;
483
484 } *fx_image;
485
486 fx_save(vcpu->host_fx_image);
487 fpu_init();
488 fx_save(vcpu->guest_fx_image);
489 fx_restore(vcpu->host_fx_image);
490
491 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
492 fx_image->mxcsr = 0x1f80;
493 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
494 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
495 }
496 EXPORT_SYMBOL_GPL(fx_init);
497
498 /*
499 * Creates some virtual cpus. Good luck creating more than one.
500 */
501 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
502 {
503 int r;
504 struct kvm_vcpu *vcpu;
505
506 r = -EINVAL;
507 if (!valid_vcpu(n))
508 goto out;
509
510 vcpu = &kvm->vcpus[n];
511
512 mutex_lock(&vcpu->mutex);
513
514 if (vcpu->vmcs) {
515 mutex_unlock(&vcpu->mutex);
516 return -EEXIST;
517 }
518
519 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
520 FX_IMAGE_ALIGN);
521 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
522
523 vcpu->cpu = -1; /* First load will set up TR */
524 vcpu->kvm = kvm;
525 r = kvm_arch_ops->vcpu_create(vcpu);
526 if (r < 0)
527 goto out_free_vcpus;
528
529 r = kvm_mmu_create(vcpu);
530 if (r < 0)
531 goto out_free_vcpus;
532
533 kvm_arch_ops->vcpu_load(vcpu);
534 r = kvm_mmu_setup(vcpu);
535 if (r >= 0)
536 r = kvm_arch_ops->vcpu_setup(vcpu);
537 vcpu_put(vcpu);
538
539 if (r < 0)
540 goto out_free_vcpus;
541
542 return 0;
543
544 out_free_vcpus:
545 kvm_free_vcpu(vcpu);
546 mutex_unlock(&vcpu->mutex);
547 out:
548 return r;
549 }
550
551 /*
552 * Allocate some memory and give it an address in the guest physical address
553 * space.
554 *
555 * Discontiguous memory is allowed, mostly for framebuffers.
556 */
557 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
558 struct kvm_memory_region *mem)
559 {
560 int r;
561 gfn_t base_gfn;
562 unsigned long npages;
563 unsigned long i;
564 struct kvm_memory_slot *memslot;
565 struct kvm_memory_slot old, new;
566 int memory_config_version;
567
568 r = -EINVAL;
569 /* General sanity checks */
570 if (mem->memory_size & (PAGE_SIZE - 1))
571 goto out;
572 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
573 goto out;
574 if (mem->slot >= KVM_MEMORY_SLOTS)
575 goto out;
576 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
577 goto out;
578
579 memslot = &kvm->memslots[mem->slot];
580 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
581 npages = mem->memory_size >> PAGE_SHIFT;
582
583 if (!npages)
584 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
585
586 raced:
587 spin_lock(&kvm->lock);
588
589 memory_config_version = kvm->memory_config_version;
590 new = old = *memslot;
591
592 new.base_gfn = base_gfn;
593 new.npages = npages;
594 new.flags = mem->flags;
595
596 /* Disallow changing a memory slot's size. */
597 r = -EINVAL;
598 if (npages && old.npages && npages != old.npages)
599 goto out_unlock;
600
601 /* Check for overlaps */
602 r = -EEXIST;
603 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
604 struct kvm_memory_slot *s = &kvm->memslots[i];
605
606 if (s == memslot)
607 continue;
608 if (!((base_gfn + npages <= s->base_gfn) ||
609 (base_gfn >= s->base_gfn + s->npages)))
610 goto out_unlock;
611 }
612 /*
613 * Do memory allocations outside lock. memory_config_version will
614 * detect any races.
615 */
616 spin_unlock(&kvm->lock);
617
618 /* Deallocate if slot is being removed */
619 if (!npages)
620 new.phys_mem = 0;
621
622 /* Free page dirty bitmap if unneeded */
623 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
624 new.dirty_bitmap = 0;
625
626 r = -ENOMEM;
627
628 /* Allocate if a slot is being created */
629 if (npages && !new.phys_mem) {
630 new.phys_mem = vmalloc(npages * sizeof(struct page *));
631
632 if (!new.phys_mem)
633 goto out_free;
634
635 memset(new.phys_mem, 0, npages * sizeof(struct page *));
636 for (i = 0; i < npages; ++i) {
637 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
638 | __GFP_ZERO);
639 if (!new.phys_mem[i])
640 goto out_free;
641 }
642 }
643
644 /* Allocate page dirty bitmap if needed */
645 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
646 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
647
648 new.dirty_bitmap = vmalloc(dirty_bytes);
649 if (!new.dirty_bitmap)
650 goto out_free;
651 memset(new.dirty_bitmap, 0, dirty_bytes);
652 }
653
654 spin_lock(&kvm->lock);
655
656 if (memory_config_version != kvm->memory_config_version) {
657 spin_unlock(&kvm->lock);
658 kvm_free_physmem_slot(&new, &old);
659 goto raced;
660 }
661
662 r = -EAGAIN;
663 if (kvm->busy)
664 goto out_unlock;
665
666 if (mem->slot >= kvm->nmemslots)
667 kvm->nmemslots = mem->slot + 1;
668
669 *memslot = new;
670 ++kvm->memory_config_version;
671
672 spin_unlock(&kvm->lock);
673
674 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
675 struct kvm_vcpu *vcpu;
676
677 vcpu = vcpu_load(kvm, i);
678 if (!vcpu)
679 continue;
680 kvm_mmu_reset_context(vcpu);
681 vcpu_put(vcpu);
682 }
683
684 kvm_free_physmem_slot(&old, &new);
685 return 0;
686
687 out_unlock:
688 spin_unlock(&kvm->lock);
689 out_free:
690 kvm_free_physmem_slot(&new, &old);
691 out:
692 return r;
693 }
694
695 /*
696 * Get (and clear) the dirty memory log for a memory slot.
697 */
698 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
699 struct kvm_dirty_log *log)
700 {
701 struct kvm_memory_slot *memslot;
702 int r, i;
703 int n;
704 unsigned long any = 0;
705
706 spin_lock(&kvm->lock);
707
708 /*
709 * Prevent changes to guest memory configuration even while the lock
710 * is not taken.
711 */
712 ++kvm->busy;
713 spin_unlock(&kvm->lock);
714 r = -EINVAL;
715 if (log->slot >= KVM_MEMORY_SLOTS)
716 goto out;
717
718 memslot = &kvm->memslots[log->slot];
719 r = -ENOENT;
720 if (!memslot->dirty_bitmap)
721 goto out;
722
723 n = ALIGN(memslot->npages, 8) / 8;
724
725 for (i = 0; !any && i < n; ++i)
726 any = memslot->dirty_bitmap[i];
727
728 r = -EFAULT;
729 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
730 goto out;
731
732
733 if (any) {
734 spin_lock(&kvm->lock);
735 kvm_mmu_slot_remove_write_access(kvm, log->slot);
736 spin_unlock(&kvm->lock);
737 memset(memslot->dirty_bitmap, 0, n);
738 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
739 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
740
741 if (!vcpu)
742 continue;
743 kvm_arch_ops->tlb_flush(vcpu);
744 vcpu_put(vcpu);
745 }
746 }
747
748 r = 0;
749
750 out:
751 spin_lock(&kvm->lock);
752 --kvm->busy;
753 spin_unlock(&kvm->lock);
754 return r;
755 }
756
757 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
758 {
759 int i;
760
761 for (i = 0; i < kvm->nmemslots; ++i) {
762 struct kvm_memory_slot *memslot = &kvm->memslots[i];
763
764 if (gfn >= memslot->base_gfn
765 && gfn < memslot->base_gfn + memslot->npages)
766 return memslot;
767 }
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(gfn_to_memslot);
771
772 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
773 {
774 int i;
775 struct kvm_memory_slot *memslot = 0;
776 unsigned long rel_gfn;
777
778 for (i = 0; i < kvm->nmemslots; ++i) {
779 memslot = &kvm->memslots[i];
780
781 if (gfn >= memslot->base_gfn
782 && gfn < memslot->base_gfn + memslot->npages) {
783
784 if (!memslot || !memslot->dirty_bitmap)
785 return;
786
787 rel_gfn = gfn - memslot->base_gfn;
788
789 /* avoid RMW */
790 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
791 set_bit(rel_gfn, memslot->dirty_bitmap);
792 return;
793 }
794 }
795 }
796
797 static int emulator_read_std(unsigned long addr,
798 unsigned long *val,
799 unsigned int bytes,
800 struct x86_emulate_ctxt *ctxt)
801 {
802 struct kvm_vcpu *vcpu = ctxt->vcpu;
803 void *data = val;
804
805 while (bytes) {
806 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
807 unsigned offset = addr & (PAGE_SIZE-1);
808 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
809 unsigned long pfn;
810 struct kvm_memory_slot *memslot;
811 void *page;
812
813 if (gpa == UNMAPPED_GVA)
814 return X86EMUL_PROPAGATE_FAULT;
815 pfn = gpa >> PAGE_SHIFT;
816 memslot = gfn_to_memslot(vcpu->kvm, pfn);
817 if (!memslot)
818 return X86EMUL_UNHANDLEABLE;
819 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
820
821 memcpy(data, page + offset, tocopy);
822
823 kunmap_atomic(page, KM_USER0);
824
825 bytes -= tocopy;
826 data += tocopy;
827 addr += tocopy;
828 }
829
830 return X86EMUL_CONTINUE;
831 }
832
833 static int emulator_write_std(unsigned long addr,
834 unsigned long val,
835 unsigned int bytes,
836 struct x86_emulate_ctxt *ctxt)
837 {
838 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
839 addr, bytes);
840 return X86EMUL_UNHANDLEABLE;
841 }
842
843 static int emulator_read_emulated(unsigned long addr,
844 unsigned long *val,
845 unsigned int bytes,
846 struct x86_emulate_ctxt *ctxt)
847 {
848 struct kvm_vcpu *vcpu = ctxt->vcpu;
849
850 if (vcpu->mmio_read_completed) {
851 memcpy(val, vcpu->mmio_data, bytes);
852 vcpu->mmio_read_completed = 0;
853 return X86EMUL_CONTINUE;
854 } else if (emulator_read_std(addr, val, bytes, ctxt)
855 == X86EMUL_CONTINUE)
856 return X86EMUL_CONTINUE;
857 else {
858 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
859 if (gpa == UNMAPPED_GVA)
860 return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
861 vcpu->mmio_needed = 1;
862 vcpu->mmio_phys_addr = gpa;
863 vcpu->mmio_size = bytes;
864 vcpu->mmio_is_write = 0;
865
866 return X86EMUL_UNHANDLEABLE;
867 }
868 }
869
870 static int emulator_write_emulated(unsigned long addr,
871 unsigned long val,
872 unsigned int bytes,
873 struct x86_emulate_ctxt *ctxt)
874 {
875 struct kvm_vcpu *vcpu = ctxt->vcpu;
876 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
877
878 if (gpa == UNMAPPED_GVA)
879 return X86EMUL_PROPAGATE_FAULT;
880
881 vcpu->mmio_needed = 1;
882 vcpu->mmio_phys_addr = gpa;
883 vcpu->mmio_size = bytes;
884 vcpu->mmio_is_write = 1;
885 memcpy(vcpu->mmio_data, &val, bytes);
886
887 return X86EMUL_CONTINUE;
888 }
889
890 static int emulator_cmpxchg_emulated(unsigned long addr,
891 unsigned long old,
892 unsigned long new,
893 unsigned int bytes,
894 struct x86_emulate_ctxt *ctxt)
895 {
896 static int reported;
897
898 if (!reported) {
899 reported = 1;
900 printk(KERN_WARNING "kvm: emulating exchange as write\n");
901 }
902 return emulator_write_emulated(addr, new, bytes, ctxt);
903 }
904
905 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
906 {
907 return kvm_arch_ops->get_segment_base(vcpu, seg);
908 }
909
910 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
911 {
912 spin_lock(&vcpu->kvm->lock);
913 vcpu->mmu.inval_page(vcpu, address);
914 spin_unlock(&vcpu->kvm->lock);
915 kvm_arch_ops->invlpg(vcpu, address);
916 return X86EMUL_CONTINUE;
917 }
918
919 int emulate_clts(struct kvm_vcpu *vcpu)
920 {
921 unsigned long cr0;
922
923 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
924 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
925 kvm_arch_ops->set_cr0(vcpu, cr0);
926 return X86EMUL_CONTINUE;
927 }
928
929 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
930 {
931 struct kvm_vcpu *vcpu = ctxt->vcpu;
932
933 switch (dr) {
934 case 0 ... 3:
935 *dest = kvm_arch_ops->get_dr(vcpu, dr);
936 return X86EMUL_CONTINUE;
937 default:
938 printk(KERN_DEBUG "%s: unexpected dr %u\n",
939 __FUNCTION__, dr);
940 return X86EMUL_UNHANDLEABLE;
941 }
942 }
943
944 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
945 {
946 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
947 int exception;
948
949 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
950 if (exception) {
951 /* FIXME: better handling */
952 return X86EMUL_UNHANDLEABLE;
953 }
954 return X86EMUL_CONTINUE;
955 }
956
957 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
958 {
959 static int reported;
960 u8 opcodes[4];
961 unsigned long rip = ctxt->vcpu->rip;
962 unsigned long rip_linear;
963
964 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
965
966 if (reported)
967 return;
968
969 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
970
971 printk(KERN_ERR "emulation failed but !mmio_needed?"
972 " rip %lx %02x %02x %02x %02x\n",
973 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
974 reported = 1;
975 }
976
977 struct x86_emulate_ops emulate_ops = {
978 .read_std = emulator_read_std,
979 .write_std = emulator_write_std,
980 .read_emulated = emulator_read_emulated,
981 .write_emulated = emulator_write_emulated,
982 .cmpxchg_emulated = emulator_cmpxchg_emulated,
983 };
984
985 int emulate_instruction(struct kvm_vcpu *vcpu,
986 struct kvm_run *run,
987 unsigned long cr2,
988 u16 error_code)
989 {
990 struct x86_emulate_ctxt emulate_ctxt;
991 int r;
992 int cs_db, cs_l;
993
994 kvm_arch_ops->cache_regs(vcpu);
995
996 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
997
998 emulate_ctxt.vcpu = vcpu;
999 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1000 emulate_ctxt.cr2 = cr2;
1001 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1002 ? X86EMUL_MODE_REAL : cs_l
1003 ? X86EMUL_MODE_PROT64 : cs_db
1004 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1005
1006 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1007 emulate_ctxt.cs_base = 0;
1008 emulate_ctxt.ds_base = 0;
1009 emulate_ctxt.es_base = 0;
1010 emulate_ctxt.ss_base = 0;
1011 } else {
1012 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1013 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1014 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1015 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1016 }
1017
1018 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1019 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1020
1021 vcpu->mmio_is_write = 0;
1022 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1023
1024 if ((r || vcpu->mmio_is_write) && run) {
1025 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1026 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1027 run->mmio.len = vcpu->mmio_size;
1028 run->mmio.is_write = vcpu->mmio_is_write;
1029 }
1030
1031 if (r) {
1032 if (!vcpu->mmio_needed) {
1033 report_emulation_failure(&emulate_ctxt);
1034 return EMULATE_FAIL;
1035 }
1036 return EMULATE_DO_MMIO;
1037 }
1038
1039 kvm_arch_ops->decache_regs(vcpu);
1040 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1041
1042 if (vcpu->mmio_is_write)
1043 return EMULATE_DO_MMIO;
1044
1045 return EMULATE_DONE;
1046 }
1047 EXPORT_SYMBOL_GPL(emulate_instruction);
1048
1049 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1050 {
1051 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1052 }
1053
1054 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1055 {
1056 struct descriptor_table dt = { limit, base };
1057
1058 kvm_arch_ops->set_gdt(vcpu, &dt);
1059 }
1060
1061 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1062 {
1063 struct descriptor_table dt = { limit, base };
1064
1065 kvm_arch_ops->set_idt(vcpu, &dt);
1066 }
1067
1068 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1069 unsigned long *rflags)
1070 {
1071 lmsw(vcpu, msw);
1072 *rflags = kvm_arch_ops->get_rflags(vcpu);
1073 }
1074
1075 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1076 {
1077 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1078 switch (cr) {
1079 case 0:
1080 return vcpu->cr0;
1081 case 2:
1082 return vcpu->cr2;
1083 case 3:
1084 return vcpu->cr3;
1085 case 4:
1086 return vcpu->cr4;
1087 default:
1088 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1089 return 0;
1090 }
1091 }
1092
1093 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1094 unsigned long *rflags)
1095 {
1096 switch (cr) {
1097 case 0:
1098 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1099 *rflags = kvm_arch_ops->get_rflags(vcpu);
1100 break;
1101 case 2:
1102 vcpu->cr2 = val;
1103 break;
1104 case 3:
1105 set_cr3(vcpu, val);
1106 break;
1107 case 4:
1108 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1109 break;
1110 default:
1111 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1112 }
1113 }
1114
1115 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1116 {
1117 u64 data;
1118
1119 switch (msr) {
1120 case 0xc0010010: /* SYSCFG */
1121 case 0xc0010015: /* HWCR */
1122 case MSR_IA32_PLATFORM_ID:
1123 case MSR_IA32_P5_MC_ADDR:
1124 case MSR_IA32_P5_MC_TYPE:
1125 case MSR_IA32_MC0_CTL:
1126 case MSR_IA32_MCG_STATUS:
1127 case MSR_IA32_MCG_CAP:
1128 case MSR_IA32_MC0_MISC:
1129 case MSR_IA32_MC0_MISC+4:
1130 case MSR_IA32_MC0_MISC+8:
1131 case MSR_IA32_MC0_MISC+12:
1132 case MSR_IA32_MC0_MISC+16:
1133 case MSR_IA32_UCODE_REV:
1134 case MSR_IA32_PERF_STATUS:
1135 /* MTRR registers */
1136 case 0xfe:
1137 case 0x200 ... 0x2ff:
1138 data = 0;
1139 break;
1140 case 0xcd: /* fsb frequency */
1141 data = 3;
1142 break;
1143 case MSR_IA32_APICBASE:
1144 data = vcpu->apic_base;
1145 break;
1146 #ifdef CONFIG_X86_64
1147 case MSR_EFER:
1148 data = vcpu->shadow_efer;
1149 break;
1150 #endif
1151 default:
1152 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1153 return 1;
1154 }
1155 *pdata = data;
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1159
1160 /*
1161 * Reads an msr value (of 'msr_index') into 'pdata'.
1162 * Returns 0 on success, non-0 otherwise.
1163 * Assumes vcpu_load() was already called.
1164 */
1165 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1166 {
1167 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1168 }
1169
1170 #ifdef CONFIG_X86_64
1171
1172 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1173 {
1174 if (efer & EFER_RESERVED_BITS) {
1175 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1176 efer);
1177 inject_gp(vcpu);
1178 return;
1179 }
1180
1181 if (is_paging(vcpu)
1182 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1183 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1184 inject_gp(vcpu);
1185 return;
1186 }
1187
1188 kvm_arch_ops->set_efer(vcpu, efer);
1189
1190 efer &= ~EFER_LMA;
1191 efer |= vcpu->shadow_efer & EFER_LMA;
1192
1193 vcpu->shadow_efer = efer;
1194 }
1195
1196 #endif
1197
1198 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1199 {
1200 switch (msr) {
1201 #ifdef CONFIG_X86_64
1202 case MSR_EFER:
1203 set_efer(vcpu, data);
1204 break;
1205 #endif
1206 case MSR_IA32_MC0_STATUS:
1207 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1208 __FUNCTION__, data);
1209 break;
1210 case MSR_IA32_UCODE_REV:
1211 case MSR_IA32_UCODE_WRITE:
1212 case 0x200 ... 0x2ff: /* MTRRs */
1213 break;
1214 case MSR_IA32_APICBASE:
1215 vcpu->apic_base = data;
1216 break;
1217 default:
1218 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1219 return 1;
1220 }
1221 return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1224
1225 /*
1226 * Writes msr value into into the appropriate "register".
1227 * Returns 0 on success, non-0 otherwise.
1228 * Assumes vcpu_load() was already called.
1229 */
1230 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1231 {
1232 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1233 }
1234
1235 void kvm_resched(struct kvm_vcpu *vcpu)
1236 {
1237 vcpu_put(vcpu);
1238 cond_resched();
1239 /* Cannot fail - no vcpu unplug yet. */
1240 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_resched);
1243
1244 void load_msrs(struct vmx_msr_entry *e, int n)
1245 {
1246 int i;
1247
1248 for (i = 0; i < n; ++i)
1249 wrmsrl(e[i].index, e[i].data);
1250 }
1251 EXPORT_SYMBOL_GPL(load_msrs);
1252
1253 void save_msrs(struct vmx_msr_entry *e, int n)
1254 {
1255 int i;
1256
1257 for (i = 0; i < n; ++i)
1258 rdmsrl(e[i].index, e[i].data);
1259 }
1260 EXPORT_SYMBOL_GPL(save_msrs);
1261
1262 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1263 {
1264 struct kvm_vcpu *vcpu;
1265 int r;
1266
1267 if (!valid_vcpu(kvm_run->vcpu))
1268 return -EINVAL;
1269
1270 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1271 if (!vcpu)
1272 return -ENOENT;
1273
1274 if (kvm_run->emulated) {
1275 kvm_arch_ops->skip_emulated_instruction(vcpu);
1276 kvm_run->emulated = 0;
1277 }
1278
1279 if (kvm_run->mmio_completed) {
1280 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1281 vcpu->mmio_read_completed = 1;
1282 }
1283
1284 vcpu->mmio_needed = 0;
1285
1286 r = kvm_arch_ops->run(vcpu, kvm_run);
1287
1288 vcpu_put(vcpu);
1289 return r;
1290 }
1291
1292 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1293 {
1294 struct kvm_vcpu *vcpu;
1295
1296 if (!valid_vcpu(regs->vcpu))
1297 return -EINVAL;
1298
1299 vcpu = vcpu_load(kvm, regs->vcpu);
1300 if (!vcpu)
1301 return -ENOENT;
1302
1303 kvm_arch_ops->cache_regs(vcpu);
1304
1305 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1306 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1307 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1308 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1309 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1310 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1311 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1312 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1313 #ifdef CONFIG_X86_64
1314 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1315 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1316 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1317 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1318 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1319 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1320 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1321 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1322 #endif
1323
1324 regs->rip = vcpu->rip;
1325 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1326
1327 /*
1328 * Don't leak debug flags in case they were set for guest debugging
1329 */
1330 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1331 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1332
1333 vcpu_put(vcpu);
1334
1335 return 0;
1336 }
1337
1338 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1339 {
1340 struct kvm_vcpu *vcpu;
1341
1342 if (!valid_vcpu(regs->vcpu))
1343 return -EINVAL;
1344
1345 vcpu = vcpu_load(kvm, regs->vcpu);
1346 if (!vcpu)
1347 return -ENOENT;
1348
1349 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1350 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1351 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1352 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1353 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1354 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1355 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1356 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1357 #ifdef CONFIG_X86_64
1358 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1359 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1360 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1361 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1362 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1363 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1364 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1365 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1366 #endif
1367
1368 vcpu->rip = regs->rip;
1369 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1370
1371 kvm_arch_ops->decache_regs(vcpu);
1372
1373 vcpu_put(vcpu);
1374
1375 return 0;
1376 }
1377
1378 static void get_segment(struct kvm_vcpu *vcpu,
1379 struct kvm_segment *var, int seg)
1380 {
1381 return kvm_arch_ops->get_segment(vcpu, var, seg);
1382 }
1383
1384 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1385 {
1386 struct kvm_vcpu *vcpu;
1387 struct descriptor_table dt;
1388
1389 if (!valid_vcpu(sregs->vcpu))
1390 return -EINVAL;
1391 vcpu = vcpu_load(kvm, sregs->vcpu);
1392 if (!vcpu)
1393 return -ENOENT;
1394
1395 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1396 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1397 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1398 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1399 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1400 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1401
1402 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1403 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1404
1405 kvm_arch_ops->get_idt(vcpu, &dt);
1406 sregs->idt.limit = dt.limit;
1407 sregs->idt.base = dt.base;
1408 kvm_arch_ops->get_gdt(vcpu, &dt);
1409 sregs->gdt.limit = dt.limit;
1410 sregs->gdt.base = dt.base;
1411
1412 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1413 sregs->cr0 = vcpu->cr0;
1414 sregs->cr2 = vcpu->cr2;
1415 sregs->cr3 = vcpu->cr3;
1416 sregs->cr4 = vcpu->cr4;
1417 sregs->cr8 = vcpu->cr8;
1418 sregs->efer = vcpu->shadow_efer;
1419 sregs->apic_base = vcpu->apic_base;
1420
1421 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1422 sizeof sregs->interrupt_bitmap);
1423
1424 vcpu_put(vcpu);
1425
1426 return 0;
1427 }
1428
1429 static void set_segment(struct kvm_vcpu *vcpu,
1430 struct kvm_segment *var, int seg)
1431 {
1432 return kvm_arch_ops->set_segment(vcpu, var, seg);
1433 }
1434
1435 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1436 {
1437 struct kvm_vcpu *vcpu;
1438 int mmu_reset_needed = 0;
1439 int i;
1440 struct descriptor_table dt;
1441
1442 if (!valid_vcpu(sregs->vcpu))
1443 return -EINVAL;
1444 vcpu = vcpu_load(kvm, sregs->vcpu);
1445 if (!vcpu)
1446 return -ENOENT;
1447
1448 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1449 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1450 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1451 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1452 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1453 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1454
1455 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1456 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1457
1458 dt.limit = sregs->idt.limit;
1459 dt.base = sregs->idt.base;
1460 kvm_arch_ops->set_idt(vcpu, &dt);
1461 dt.limit = sregs->gdt.limit;
1462 dt.base = sregs->gdt.base;
1463 kvm_arch_ops->set_gdt(vcpu, &dt);
1464
1465 vcpu->cr2 = sregs->cr2;
1466 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1467 vcpu->cr3 = sregs->cr3;
1468
1469 vcpu->cr8 = sregs->cr8;
1470
1471 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1472 #ifdef CONFIG_X86_64
1473 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1474 #endif
1475 vcpu->apic_base = sregs->apic_base;
1476
1477 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1478
1479 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1480 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1481
1482 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1483 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1484
1485 if (mmu_reset_needed)
1486 kvm_mmu_reset_context(vcpu);
1487
1488 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1489 sizeof vcpu->irq_pending);
1490 vcpu->irq_summary = 0;
1491 for (i = 0; i < NR_IRQ_WORDS; ++i)
1492 if (vcpu->irq_pending[i])
1493 __set_bit(i, &vcpu->irq_summary);
1494
1495 vcpu_put(vcpu);
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1502 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1503 *
1504 * This list is modified at module load time to reflect the
1505 * capabilities of the host cpu.
1506 */
1507 static u32 msrs_to_save[] = {
1508 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1509 MSR_K6_STAR,
1510 #ifdef CONFIG_X86_64
1511 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1512 #endif
1513 MSR_IA32_TIME_STAMP_COUNTER,
1514 };
1515
1516 static unsigned num_msrs_to_save;
1517
1518 static __init void kvm_init_msr_list(void)
1519 {
1520 u32 dummy[2];
1521 unsigned i, j;
1522
1523 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1524 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1525 continue;
1526 if (j < i)
1527 msrs_to_save[j] = msrs_to_save[i];
1528 j++;
1529 }
1530 num_msrs_to_save = j;
1531 }
1532
1533 /*
1534 * Adapt set_msr() to msr_io()'s calling convention
1535 */
1536 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1537 {
1538 return set_msr(vcpu, index, *data);
1539 }
1540
1541 /*
1542 * Read or write a bunch of msrs. All parameters are kernel addresses.
1543 *
1544 * @return number of msrs set successfully.
1545 */
1546 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1547 struct kvm_msr_entry *entries,
1548 int (*do_msr)(struct kvm_vcpu *vcpu,
1549 unsigned index, u64 *data))
1550 {
1551 struct kvm_vcpu *vcpu;
1552 int i;
1553
1554 if (!valid_vcpu(msrs->vcpu))
1555 return -EINVAL;
1556
1557 vcpu = vcpu_load(kvm, msrs->vcpu);
1558 if (!vcpu)
1559 return -ENOENT;
1560
1561 for (i = 0; i < msrs->nmsrs; ++i)
1562 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1563 break;
1564
1565 vcpu_put(vcpu);
1566
1567 return i;
1568 }
1569
1570 /*
1571 * Read or write a bunch of msrs. Parameters are user addresses.
1572 *
1573 * @return number of msrs set successfully.
1574 */
1575 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1576 int (*do_msr)(struct kvm_vcpu *vcpu,
1577 unsigned index, u64 *data),
1578 int writeback)
1579 {
1580 struct kvm_msrs msrs;
1581 struct kvm_msr_entry *entries;
1582 int r, n;
1583 unsigned size;
1584
1585 r = -EFAULT;
1586 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1587 goto out;
1588
1589 r = -E2BIG;
1590 if (msrs.nmsrs >= MAX_IO_MSRS)
1591 goto out;
1592
1593 r = -ENOMEM;
1594 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1595 entries = vmalloc(size);
1596 if (!entries)
1597 goto out;
1598
1599 r = -EFAULT;
1600 if (copy_from_user(entries, user_msrs->entries, size))
1601 goto out_free;
1602
1603 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1604 if (r < 0)
1605 goto out_free;
1606
1607 r = -EFAULT;
1608 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1609 goto out_free;
1610
1611 r = n;
1612
1613 out_free:
1614 vfree(entries);
1615 out:
1616 return r;
1617 }
1618
1619 /*
1620 * Translate a guest virtual address to a guest physical address.
1621 */
1622 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1623 {
1624 unsigned long vaddr = tr->linear_address;
1625 struct kvm_vcpu *vcpu;
1626 gpa_t gpa;
1627
1628 vcpu = vcpu_load(kvm, tr->vcpu);
1629 if (!vcpu)
1630 return -ENOENT;
1631 spin_lock(&kvm->lock);
1632 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1633 tr->physical_address = gpa;
1634 tr->valid = gpa != UNMAPPED_GVA;
1635 tr->writeable = 1;
1636 tr->usermode = 0;
1637 spin_unlock(&kvm->lock);
1638 vcpu_put(vcpu);
1639
1640 return 0;
1641 }
1642
1643 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1644 {
1645 struct kvm_vcpu *vcpu;
1646
1647 if (!valid_vcpu(irq->vcpu))
1648 return -EINVAL;
1649 if (irq->irq < 0 || irq->irq >= 256)
1650 return -EINVAL;
1651 vcpu = vcpu_load(kvm, irq->vcpu);
1652 if (!vcpu)
1653 return -ENOENT;
1654
1655 set_bit(irq->irq, vcpu->irq_pending);
1656 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1657
1658 vcpu_put(vcpu);
1659
1660 return 0;
1661 }
1662
1663 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1664 struct kvm_debug_guest *dbg)
1665 {
1666 struct kvm_vcpu *vcpu;
1667 int r;
1668
1669 if (!valid_vcpu(dbg->vcpu))
1670 return -EINVAL;
1671 vcpu = vcpu_load(kvm, dbg->vcpu);
1672 if (!vcpu)
1673 return -ENOENT;
1674
1675 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1676
1677 vcpu_put(vcpu);
1678
1679 return r;
1680 }
1681
1682 static long kvm_dev_ioctl(struct file *filp,
1683 unsigned int ioctl, unsigned long arg)
1684 {
1685 struct kvm *kvm = filp->private_data;
1686 int r = -EINVAL;
1687
1688 switch (ioctl) {
1689 case KVM_GET_API_VERSION:
1690 r = KVM_API_VERSION;
1691 break;
1692 case KVM_CREATE_VCPU: {
1693 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1694 if (r)
1695 goto out;
1696 break;
1697 }
1698 case KVM_RUN: {
1699 struct kvm_run kvm_run;
1700
1701 r = -EFAULT;
1702 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1703 goto out;
1704 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1705 if (r < 0 && r != -EINTR)
1706 goto out;
1707 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1708 r = -EFAULT;
1709 goto out;
1710 }
1711 break;
1712 }
1713 case KVM_GET_REGS: {
1714 struct kvm_regs kvm_regs;
1715
1716 r = -EFAULT;
1717 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1718 goto out;
1719 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1720 if (r)
1721 goto out;
1722 r = -EFAULT;
1723 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1724 goto out;
1725 r = 0;
1726 break;
1727 }
1728 case KVM_SET_REGS: {
1729 struct kvm_regs kvm_regs;
1730
1731 r = -EFAULT;
1732 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1733 goto out;
1734 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1735 if (r)
1736 goto out;
1737 r = 0;
1738 break;
1739 }
1740 case KVM_GET_SREGS: {
1741 struct kvm_sregs kvm_sregs;
1742
1743 r = -EFAULT;
1744 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1745 goto out;
1746 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1747 if (r)
1748 goto out;
1749 r = -EFAULT;
1750 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1751 goto out;
1752 r = 0;
1753 break;
1754 }
1755 case KVM_SET_SREGS: {
1756 struct kvm_sregs kvm_sregs;
1757
1758 r = -EFAULT;
1759 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1760 goto out;
1761 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1762 if (r)
1763 goto out;
1764 r = 0;
1765 break;
1766 }
1767 case KVM_TRANSLATE: {
1768 struct kvm_translation tr;
1769
1770 r = -EFAULT;
1771 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1772 goto out;
1773 r = kvm_dev_ioctl_translate(kvm, &tr);
1774 if (r)
1775 goto out;
1776 r = -EFAULT;
1777 if (copy_to_user((void *)arg, &tr, sizeof tr))
1778 goto out;
1779 r = 0;
1780 break;
1781 }
1782 case KVM_INTERRUPT: {
1783 struct kvm_interrupt irq;
1784
1785 r = -EFAULT;
1786 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1787 goto out;
1788 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1789 if (r)
1790 goto out;
1791 r = 0;
1792 break;
1793 }
1794 case KVM_DEBUG_GUEST: {
1795 struct kvm_debug_guest dbg;
1796
1797 r = -EFAULT;
1798 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1799 goto out;
1800 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1801 if (r)
1802 goto out;
1803 r = 0;
1804 break;
1805 }
1806 case KVM_SET_MEMORY_REGION: {
1807 struct kvm_memory_region kvm_mem;
1808
1809 r = -EFAULT;
1810 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1811 goto out;
1812 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1813 if (r)
1814 goto out;
1815 break;
1816 }
1817 case KVM_GET_DIRTY_LOG: {
1818 struct kvm_dirty_log log;
1819
1820 r = -EFAULT;
1821 if (copy_from_user(&log, (void *)arg, sizeof log))
1822 goto out;
1823 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1824 if (r)
1825 goto out;
1826 break;
1827 }
1828 case KVM_GET_MSRS:
1829 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1830 break;
1831 case KVM_SET_MSRS:
1832 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1833 break;
1834 case KVM_GET_MSR_INDEX_LIST: {
1835 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1836 struct kvm_msr_list msr_list;
1837 unsigned n;
1838
1839 r = -EFAULT;
1840 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1841 goto out;
1842 n = msr_list.nmsrs;
1843 msr_list.nmsrs = num_msrs_to_save;
1844 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1845 goto out;
1846 r = -E2BIG;
1847 if (n < num_msrs_to_save)
1848 goto out;
1849 r = -EFAULT;
1850 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1851 num_msrs_to_save * sizeof(u32)))
1852 goto out;
1853 r = 0;
1854 }
1855 default:
1856 ;
1857 }
1858 out:
1859 return r;
1860 }
1861
1862 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1863 unsigned long address,
1864 int *type)
1865 {
1866 struct kvm *kvm = vma->vm_file->private_data;
1867 unsigned long pgoff;
1868 struct kvm_memory_slot *slot;
1869 struct page *page;
1870
1871 *type = VM_FAULT_MINOR;
1872 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1873 slot = gfn_to_memslot(kvm, pgoff);
1874 if (!slot)
1875 return NOPAGE_SIGBUS;
1876 page = gfn_to_page(slot, pgoff);
1877 if (!page)
1878 return NOPAGE_SIGBUS;
1879 get_page(page);
1880 return page;
1881 }
1882
1883 static struct vm_operations_struct kvm_dev_vm_ops = {
1884 .nopage = kvm_dev_nopage,
1885 };
1886
1887 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1888 {
1889 vma->vm_ops = &kvm_dev_vm_ops;
1890 return 0;
1891 }
1892
1893 static struct file_operations kvm_chardev_ops = {
1894 .open = kvm_dev_open,
1895 .release = kvm_dev_release,
1896 .unlocked_ioctl = kvm_dev_ioctl,
1897 .compat_ioctl = kvm_dev_ioctl,
1898 .mmap = kvm_dev_mmap,
1899 };
1900
1901 static struct miscdevice kvm_dev = {
1902 MISC_DYNAMIC_MINOR,
1903 "kvm",
1904 &kvm_chardev_ops,
1905 };
1906
1907 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1908 void *v)
1909 {
1910 if (val == SYS_RESTART) {
1911 /*
1912 * Some (well, at least mine) BIOSes hang on reboot if
1913 * in vmx root mode.
1914 */
1915 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1916 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1917 }
1918 return NOTIFY_OK;
1919 }
1920
1921 static struct notifier_block kvm_reboot_notifier = {
1922 .notifier_call = kvm_reboot,
1923 .priority = 0,
1924 };
1925
1926 static __init void kvm_init_debug(void)
1927 {
1928 struct kvm_stats_debugfs_item *p;
1929
1930 debugfs_dir = debugfs_create_dir("kvm", 0);
1931 for (p = debugfs_entries; p->name; ++p)
1932 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1933 p->data);
1934 }
1935
1936 static void kvm_exit_debug(void)
1937 {
1938 struct kvm_stats_debugfs_item *p;
1939
1940 for (p = debugfs_entries; p->name; ++p)
1941 debugfs_remove(p->dentry);
1942 debugfs_remove(debugfs_dir);
1943 }
1944
1945 hpa_t bad_page_address;
1946
1947 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1948 {
1949 int r;
1950
1951 if (kvm_arch_ops) {
1952 printk(KERN_ERR "kvm: already loaded the other module\n");
1953 return -EEXIST;
1954 }
1955
1956 if (!ops->cpu_has_kvm_support()) {
1957 printk(KERN_ERR "kvm: no hardware support\n");
1958 return -EOPNOTSUPP;
1959 }
1960 if (ops->disabled_by_bios()) {
1961 printk(KERN_ERR "kvm: disabled by bios\n");
1962 return -EOPNOTSUPP;
1963 }
1964
1965 kvm_arch_ops = ops;
1966
1967 r = kvm_arch_ops->hardware_setup();
1968 if (r < 0)
1969 return r;
1970
1971 on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1972 register_reboot_notifier(&kvm_reboot_notifier);
1973
1974 kvm_chardev_ops.owner = module;
1975
1976 r = misc_register(&kvm_dev);
1977 if (r) {
1978 printk (KERN_ERR "kvm: misc device register failed\n");
1979 goto out_free;
1980 }
1981
1982 return r;
1983
1984 out_free:
1985 unregister_reboot_notifier(&kvm_reboot_notifier);
1986 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1987 kvm_arch_ops->hardware_unsetup();
1988 return r;
1989 }
1990
1991 void kvm_exit_arch(void)
1992 {
1993 misc_deregister(&kvm_dev);
1994
1995 unregister_reboot_notifier(&kvm_reboot_notifier);
1996 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1997 kvm_arch_ops->hardware_unsetup();
1998 kvm_arch_ops = NULL;
1999 }
2000
2001 static __init int kvm_init(void)
2002 {
2003 static struct page *bad_page;
2004 int r = 0;
2005
2006 kvm_init_debug();
2007
2008 kvm_init_msr_list();
2009
2010 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2011 r = -ENOMEM;
2012 goto out;
2013 }
2014
2015 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2016 memset(__va(bad_page_address), 0, PAGE_SIZE);
2017
2018 return r;
2019
2020 out:
2021 kvm_exit_debug();
2022 return r;
2023 }
2024
2025 static __exit void kvm_exit(void)
2026 {
2027 kvm_exit_debug();
2028 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2029 }
2030
2031 module_init(kvm_init)
2032 module_exit(kvm_exit)
2033
2034 EXPORT_SYMBOL_GPL(kvm_init_arch);
2035 EXPORT_SYMBOL_GPL(kvm_exit_arch);