]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/kvm_main.c
KVM: Tune hotplug/suspend IPIs
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 static cpumask_t cpus_hardware_enabled;
54
55 struct kvm_arch_ops *kvm_arch_ops;
56
57 static void hardware_disable(void *ignored);
58
59 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
60
61 static struct kvm_stats_debugfs_item {
62 const char *name;
63 int offset;
64 struct dentry *dentry;
65 } debugfs_entries[] = {
66 { "pf_fixed", STAT_OFFSET(pf_fixed) },
67 { "pf_guest", STAT_OFFSET(pf_guest) },
68 { "tlb_flush", STAT_OFFSET(tlb_flush) },
69 { "invlpg", STAT_OFFSET(invlpg) },
70 { "exits", STAT_OFFSET(exits) },
71 { "io_exits", STAT_OFFSET(io_exits) },
72 { "mmio_exits", STAT_OFFSET(mmio_exits) },
73 { "signal_exits", STAT_OFFSET(signal_exits) },
74 { "irq_window", STAT_OFFSET(irq_window_exits) },
75 { "halt_exits", STAT_OFFSET(halt_exits) },
76 { "request_irq", STAT_OFFSET(request_irq_exits) },
77 { "irq_exits", STAT_OFFSET(irq_exits) },
78 { "light_exits", STAT_OFFSET(light_exits) },
79 { "efer_reload", STAT_OFFSET(efer_reload) },
80 { NULL }
81 };
82
83 static struct dentry *debugfs_dir;
84
85 #define MAX_IO_MSRS 256
86
87 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
88 #define LMSW_GUEST_MASK 0x0eULL
89 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
90 #define CR8_RESEVED_BITS (~0x0fULL)
91 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
92
93 #ifdef CONFIG_X86_64
94 // LDT or TSS descriptor in the GDT. 16 bytes.
95 struct segment_descriptor_64 {
96 struct segment_descriptor s;
97 u32 base_higher;
98 u32 pad_zero;
99 };
100
101 #endif
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105
106 unsigned long segment_base(u16 selector)
107 {
108 struct descriptor_table gdt;
109 struct segment_descriptor *d;
110 unsigned long table_base;
111 typedef unsigned long ul;
112 unsigned long v;
113
114 if (selector == 0)
115 return 0;
116
117 asm ("sgdt %0" : "=m"(gdt));
118 table_base = gdt.base;
119
120 if (selector & 4) { /* from ldt */
121 u16 ldt_selector;
122
123 asm ("sldt %0" : "=g"(ldt_selector));
124 table_base = segment_base(ldt_selector);
125 }
126 d = (struct segment_descriptor *)(table_base + (selector & ~7));
127 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
128 #ifdef CONFIG_X86_64
129 if (d->system == 0
130 && (d->type == 2 || d->type == 9 || d->type == 11))
131 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
132 #endif
133 return v;
134 }
135 EXPORT_SYMBOL_GPL(segment_base);
136
137 static inline int valid_vcpu(int n)
138 {
139 return likely(n >= 0 && n < KVM_MAX_VCPUS);
140 }
141
142 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
143 void *dest)
144 {
145 unsigned char *host_buf = dest;
146 unsigned long req_size = size;
147
148 while (size) {
149 hpa_t paddr;
150 unsigned now;
151 unsigned offset;
152 hva_t guest_buf;
153
154 paddr = gva_to_hpa(vcpu, addr);
155
156 if (is_error_hpa(paddr))
157 break;
158
159 guest_buf = (hva_t)kmap_atomic(
160 pfn_to_page(paddr >> PAGE_SHIFT),
161 KM_USER0);
162 offset = addr & ~PAGE_MASK;
163 guest_buf |= offset;
164 now = min(size, PAGE_SIZE - offset);
165 memcpy(host_buf, (void*)guest_buf, now);
166 host_buf += now;
167 addr += now;
168 size -= now;
169 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
170 }
171 return req_size - size;
172 }
173 EXPORT_SYMBOL_GPL(kvm_read_guest);
174
175 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
176 void *data)
177 {
178 unsigned char *host_buf = data;
179 unsigned long req_size = size;
180
181 while (size) {
182 hpa_t paddr;
183 unsigned now;
184 unsigned offset;
185 hva_t guest_buf;
186 gfn_t gfn;
187
188 paddr = gva_to_hpa(vcpu, addr);
189
190 if (is_error_hpa(paddr))
191 break;
192
193 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
194 mark_page_dirty(vcpu->kvm, gfn);
195 guest_buf = (hva_t)kmap_atomic(
196 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
197 offset = addr & ~PAGE_MASK;
198 guest_buf |= offset;
199 now = min(size, PAGE_SIZE - offset);
200 memcpy((void*)guest_buf, host_buf, now);
201 host_buf += now;
202 addr += now;
203 size -= now;
204 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
205 }
206 return req_size - size;
207 }
208 EXPORT_SYMBOL_GPL(kvm_write_guest);
209
210 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
211 {
212 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
213 return;
214
215 vcpu->guest_fpu_loaded = 1;
216 fx_save(vcpu->host_fx_image);
217 fx_restore(vcpu->guest_fx_image);
218 }
219 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
220
221 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
222 {
223 if (!vcpu->guest_fpu_loaded)
224 return;
225
226 vcpu->guest_fpu_loaded = 0;
227 fx_save(vcpu->guest_fx_image);
228 fx_restore(vcpu->host_fx_image);
229 }
230 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
231
232 /*
233 * Switches to specified vcpu, until a matching vcpu_put()
234 */
235 static void vcpu_load(struct kvm_vcpu *vcpu)
236 {
237 mutex_lock(&vcpu->mutex);
238 kvm_arch_ops->vcpu_load(vcpu);
239 }
240
241 /*
242 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
243 * if the slot is not populated.
244 */
245 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
246 {
247 struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
248
249 mutex_lock(&vcpu->mutex);
250 if (!vcpu->vmcs) {
251 mutex_unlock(&vcpu->mutex);
252 return NULL;
253 }
254 kvm_arch_ops->vcpu_load(vcpu);
255 return vcpu;
256 }
257
258 static void vcpu_put(struct kvm_vcpu *vcpu)
259 {
260 kvm_arch_ops->vcpu_put(vcpu);
261 mutex_unlock(&vcpu->mutex);
262 }
263
264 static void ack_flush(void *_completed)
265 {
266 atomic_t *completed = _completed;
267
268 atomic_inc(completed);
269 }
270
271 void kvm_flush_remote_tlbs(struct kvm *kvm)
272 {
273 int i, cpu, needed;
274 cpumask_t cpus;
275 struct kvm_vcpu *vcpu;
276 atomic_t completed;
277
278 atomic_set(&completed, 0);
279 cpus_clear(cpus);
280 needed = 0;
281 for (i = 0; i < kvm->nvcpus; ++i) {
282 vcpu = &kvm->vcpus[i];
283 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
284 continue;
285 cpu = vcpu->cpu;
286 if (cpu != -1 && cpu != raw_smp_processor_id())
287 if (!cpu_isset(cpu, cpus)) {
288 cpu_set(cpu, cpus);
289 ++needed;
290 }
291 }
292
293 /*
294 * We really want smp_call_function_mask() here. But that's not
295 * available, so ipi all cpus in parallel and wait for them
296 * to complete.
297 */
298 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
299 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
300 while (atomic_read(&completed) != needed) {
301 cpu_relax();
302 barrier();
303 }
304 }
305
306 static struct kvm *kvm_create_vm(void)
307 {
308 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
309 int i;
310
311 if (!kvm)
312 return ERR_PTR(-ENOMEM);
313
314 kvm_io_bus_init(&kvm->pio_bus);
315 spin_lock_init(&kvm->lock);
316 INIT_LIST_HEAD(&kvm->active_mmu_pages);
317 spin_lock(&kvm_lock);
318 list_add(&kvm->vm_list, &vm_list);
319 spin_unlock(&kvm_lock);
320 kvm_io_bus_init(&kvm->mmio_bus);
321 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
322 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
323
324 mutex_init(&vcpu->mutex);
325 vcpu->cpu = -1;
326 vcpu->kvm = kvm;
327 vcpu->mmu.root_hpa = INVALID_PAGE;
328 }
329 return kvm;
330 }
331
332 static int kvm_dev_open(struct inode *inode, struct file *filp)
333 {
334 return 0;
335 }
336
337 /*
338 * Free any memory in @free but not in @dont.
339 */
340 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
341 struct kvm_memory_slot *dont)
342 {
343 int i;
344
345 if (!dont || free->phys_mem != dont->phys_mem)
346 if (free->phys_mem) {
347 for (i = 0; i < free->npages; ++i)
348 if (free->phys_mem[i])
349 __free_page(free->phys_mem[i]);
350 vfree(free->phys_mem);
351 }
352
353 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
354 vfree(free->dirty_bitmap);
355
356 free->phys_mem = NULL;
357 free->npages = 0;
358 free->dirty_bitmap = NULL;
359 }
360
361 static void kvm_free_physmem(struct kvm *kvm)
362 {
363 int i;
364
365 for (i = 0; i < kvm->nmemslots; ++i)
366 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
367 }
368
369 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
370 {
371 int i;
372
373 for (i = 0; i < 2; ++i)
374 if (vcpu->pio.guest_pages[i]) {
375 __free_page(vcpu->pio.guest_pages[i]);
376 vcpu->pio.guest_pages[i] = NULL;
377 }
378 }
379
380 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
381 {
382 if (!vcpu->vmcs)
383 return;
384
385 vcpu_load(vcpu);
386 kvm_mmu_unload(vcpu);
387 vcpu_put(vcpu);
388 }
389
390 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
391 {
392 if (!vcpu->vmcs)
393 return;
394
395 vcpu_load(vcpu);
396 kvm_mmu_destroy(vcpu);
397 vcpu_put(vcpu);
398 kvm_arch_ops->vcpu_free(vcpu);
399 free_page((unsigned long)vcpu->run);
400 vcpu->run = NULL;
401 free_page((unsigned long)vcpu->pio_data);
402 vcpu->pio_data = NULL;
403 free_pio_guest_pages(vcpu);
404 }
405
406 static void kvm_free_vcpus(struct kvm *kvm)
407 {
408 unsigned int i;
409
410 /*
411 * Unpin any mmu pages first.
412 */
413 for (i = 0; i < KVM_MAX_VCPUS; ++i)
414 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
415 for (i = 0; i < KVM_MAX_VCPUS; ++i)
416 kvm_free_vcpu(&kvm->vcpus[i]);
417 }
418
419 static int kvm_dev_release(struct inode *inode, struct file *filp)
420 {
421 return 0;
422 }
423
424 static void kvm_destroy_vm(struct kvm *kvm)
425 {
426 spin_lock(&kvm_lock);
427 list_del(&kvm->vm_list);
428 spin_unlock(&kvm_lock);
429 kvm_io_bus_destroy(&kvm->pio_bus);
430 kvm_io_bus_destroy(&kvm->mmio_bus);
431 kvm_free_vcpus(kvm);
432 kvm_free_physmem(kvm);
433 kfree(kvm);
434 }
435
436 static int kvm_vm_release(struct inode *inode, struct file *filp)
437 {
438 struct kvm *kvm = filp->private_data;
439
440 kvm_destroy_vm(kvm);
441 return 0;
442 }
443
444 static void inject_gp(struct kvm_vcpu *vcpu)
445 {
446 kvm_arch_ops->inject_gp(vcpu, 0);
447 }
448
449 /*
450 * Load the pae pdptrs. Return true is they are all valid.
451 */
452 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
453 {
454 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
455 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
456 int i;
457 u64 pdpte;
458 u64 *pdpt;
459 int ret;
460 struct page *page;
461
462 spin_lock(&vcpu->kvm->lock);
463 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
464 /* FIXME: !page - emulate? 0xff? */
465 pdpt = kmap_atomic(page, KM_USER0);
466
467 ret = 1;
468 for (i = 0; i < 4; ++i) {
469 pdpte = pdpt[offset + i];
470 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
471 ret = 0;
472 goto out;
473 }
474 }
475
476 for (i = 0; i < 4; ++i)
477 vcpu->pdptrs[i] = pdpt[offset + i];
478
479 out:
480 kunmap_atomic(pdpt, KM_USER0);
481 spin_unlock(&vcpu->kvm->lock);
482
483 return ret;
484 }
485
486 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
487 {
488 if (cr0 & CR0_RESEVED_BITS) {
489 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
490 cr0, vcpu->cr0);
491 inject_gp(vcpu);
492 return;
493 }
494
495 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
496 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
497 inject_gp(vcpu);
498 return;
499 }
500
501 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
502 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
503 "and a clear PE flag\n");
504 inject_gp(vcpu);
505 return;
506 }
507
508 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
509 #ifdef CONFIG_X86_64
510 if ((vcpu->shadow_efer & EFER_LME)) {
511 int cs_db, cs_l;
512
513 if (!is_pae(vcpu)) {
514 printk(KERN_DEBUG "set_cr0: #GP, start paging "
515 "in long mode while PAE is disabled\n");
516 inject_gp(vcpu);
517 return;
518 }
519 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
520 if (cs_l) {
521 printk(KERN_DEBUG "set_cr0: #GP, start paging "
522 "in long mode while CS.L == 1\n");
523 inject_gp(vcpu);
524 return;
525
526 }
527 } else
528 #endif
529 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
530 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
531 "reserved bits\n");
532 inject_gp(vcpu);
533 return;
534 }
535
536 }
537
538 kvm_arch_ops->set_cr0(vcpu, cr0);
539 vcpu->cr0 = cr0;
540
541 spin_lock(&vcpu->kvm->lock);
542 kvm_mmu_reset_context(vcpu);
543 spin_unlock(&vcpu->kvm->lock);
544 return;
545 }
546 EXPORT_SYMBOL_GPL(set_cr0);
547
548 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
549 {
550 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
551 }
552 EXPORT_SYMBOL_GPL(lmsw);
553
554 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
555 {
556 if (cr4 & CR4_RESEVED_BITS) {
557 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
558 inject_gp(vcpu);
559 return;
560 }
561
562 if (is_long_mode(vcpu)) {
563 if (!(cr4 & CR4_PAE_MASK)) {
564 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
565 "in long mode\n");
566 inject_gp(vcpu);
567 return;
568 }
569 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
570 && !load_pdptrs(vcpu, vcpu->cr3)) {
571 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
572 inject_gp(vcpu);
573 }
574
575 if (cr4 & CR4_VMXE_MASK) {
576 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
577 inject_gp(vcpu);
578 return;
579 }
580 kvm_arch_ops->set_cr4(vcpu, cr4);
581 spin_lock(&vcpu->kvm->lock);
582 kvm_mmu_reset_context(vcpu);
583 spin_unlock(&vcpu->kvm->lock);
584 }
585 EXPORT_SYMBOL_GPL(set_cr4);
586
587 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
588 {
589 if (is_long_mode(vcpu)) {
590 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
591 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
592 inject_gp(vcpu);
593 return;
594 }
595 } else {
596 if (cr3 & CR3_RESEVED_BITS) {
597 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
598 inject_gp(vcpu);
599 return;
600 }
601 if (is_paging(vcpu) && is_pae(vcpu) &&
602 !load_pdptrs(vcpu, cr3)) {
603 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
604 "reserved bits\n");
605 inject_gp(vcpu);
606 return;
607 }
608 }
609
610 vcpu->cr3 = cr3;
611 spin_lock(&vcpu->kvm->lock);
612 /*
613 * Does the new cr3 value map to physical memory? (Note, we
614 * catch an invalid cr3 even in real-mode, because it would
615 * cause trouble later on when we turn on paging anyway.)
616 *
617 * A real CPU would silently accept an invalid cr3 and would
618 * attempt to use it - with largely undefined (and often hard
619 * to debug) behavior on the guest side.
620 */
621 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
622 inject_gp(vcpu);
623 else
624 vcpu->mmu.new_cr3(vcpu);
625 spin_unlock(&vcpu->kvm->lock);
626 }
627 EXPORT_SYMBOL_GPL(set_cr3);
628
629 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
630 {
631 if ( cr8 & CR8_RESEVED_BITS) {
632 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
633 inject_gp(vcpu);
634 return;
635 }
636 vcpu->cr8 = cr8;
637 }
638 EXPORT_SYMBOL_GPL(set_cr8);
639
640 void fx_init(struct kvm_vcpu *vcpu)
641 {
642 struct __attribute__ ((__packed__)) fx_image_s {
643 u16 control; //fcw
644 u16 status; //fsw
645 u16 tag; // ftw
646 u16 opcode; //fop
647 u64 ip; // fpu ip
648 u64 operand;// fpu dp
649 u32 mxcsr;
650 u32 mxcsr_mask;
651
652 } *fx_image;
653
654 fx_save(vcpu->host_fx_image);
655 fpu_init();
656 fx_save(vcpu->guest_fx_image);
657 fx_restore(vcpu->host_fx_image);
658
659 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
660 fx_image->mxcsr = 0x1f80;
661 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
662 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
663 }
664 EXPORT_SYMBOL_GPL(fx_init);
665
666 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
667 {
668 spin_lock(&vcpu->kvm->lock);
669 kvm_mmu_slot_remove_write_access(vcpu, slot);
670 spin_unlock(&vcpu->kvm->lock);
671 }
672
673 /*
674 * Allocate some memory and give it an address in the guest physical address
675 * space.
676 *
677 * Discontiguous memory is allowed, mostly for framebuffers.
678 */
679 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
680 struct kvm_memory_region *mem)
681 {
682 int r;
683 gfn_t base_gfn;
684 unsigned long npages;
685 unsigned long i;
686 struct kvm_memory_slot *memslot;
687 struct kvm_memory_slot old, new;
688 int memory_config_version;
689
690 r = -EINVAL;
691 /* General sanity checks */
692 if (mem->memory_size & (PAGE_SIZE - 1))
693 goto out;
694 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
695 goto out;
696 if (mem->slot >= KVM_MEMORY_SLOTS)
697 goto out;
698 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
699 goto out;
700
701 memslot = &kvm->memslots[mem->slot];
702 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
703 npages = mem->memory_size >> PAGE_SHIFT;
704
705 if (!npages)
706 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
707
708 raced:
709 spin_lock(&kvm->lock);
710
711 memory_config_version = kvm->memory_config_version;
712 new = old = *memslot;
713
714 new.base_gfn = base_gfn;
715 new.npages = npages;
716 new.flags = mem->flags;
717
718 /* Disallow changing a memory slot's size. */
719 r = -EINVAL;
720 if (npages && old.npages && npages != old.npages)
721 goto out_unlock;
722
723 /* Check for overlaps */
724 r = -EEXIST;
725 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
726 struct kvm_memory_slot *s = &kvm->memslots[i];
727
728 if (s == memslot)
729 continue;
730 if (!((base_gfn + npages <= s->base_gfn) ||
731 (base_gfn >= s->base_gfn + s->npages)))
732 goto out_unlock;
733 }
734 /*
735 * Do memory allocations outside lock. memory_config_version will
736 * detect any races.
737 */
738 spin_unlock(&kvm->lock);
739
740 /* Deallocate if slot is being removed */
741 if (!npages)
742 new.phys_mem = NULL;
743
744 /* Free page dirty bitmap if unneeded */
745 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
746 new.dirty_bitmap = NULL;
747
748 r = -ENOMEM;
749
750 /* Allocate if a slot is being created */
751 if (npages && !new.phys_mem) {
752 new.phys_mem = vmalloc(npages * sizeof(struct page *));
753
754 if (!new.phys_mem)
755 goto out_free;
756
757 memset(new.phys_mem, 0, npages * sizeof(struct page *));
758 for (i = 0; i < npages; ++i) {
759 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
760 | __GFP_ZERO);
761 if (!new.phys_mem[i])
762 goto out_free;
763 set_page_private(new.phys_mem[i],0);
764 }
765 }
766
767 /* Allocate page dirty bitmap if needed */
768 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
769 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
770
771 new.dirty_bitmap = vmalloc(dirty_bytes);
772 if (!new.dirty_bitmap)
773 goto out_free;
774 memset(new.dirty_bitmap, 0, dirty_bytes);
775 }
776
777 spin_lock(&kvm->lock);
778
779 if (memory_config_version != kvm->memory_config_version) {
780 spin_unlock(&kvm->lock);
781 kvm_free_physmem_slot(&new, &old);
782 goto raced;
783 }
784
785 r = -EAGAIN;
786 if (kvm->busy)
787 goto out_unlock;
788
789 if (mem->slot >= kvm->nmemslots)
790 kvm->nmemslots = mem->slot + 1;
791
792 *memslot = new;
793 ++kvm->memory_config_version;
794
795 spin_unlock(&kvm->lock);
796
797 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
798 struct kvm_vcpu *vcpu;
799
800 vcpu = vcpu_load_slot(kvm, i);
801 if (!vcpu)
802 continue;
803 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
804 do_remove_write_access(vcpu, mem->slot);
805 kvm_mmu_reset_context(vcpu);
806 vcpu_put(vcpu);
807 }
808
809 kvm_free_physmem_slot(&old, &new);
810 return 0;
811
812 out_unlock:
813 spin_unlock(&kvm->lock);
814 out_free:
815 kvm_free_physmem_slot(&new, &old);
816 out:
817 return r;
818 }
819
820 /*
821 * Get (and clear) the dirty memory log for a memory slot.
822 */
823 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
824 struct kvm_dirty_log *log)
825 {
826 struct kvm_memory_slot *memslot;
827 int r, i;
828 int n;
829 int cleared;
830 unsigned long any = 0;
831
832 spin_lock(&kvm->lock);
833
834 /*
835 * Prevent changes to guest memory configuration even while the lock
836 * is not taken.
837 */
838 ++kvm->busy;
839 spin_unlock(&kvm->lock);
840 r = -EINVAL;
841 if (log->slot >= KVM_MEMORY_SLOTS)
842 goto out;
843
844 memslot = &kvm->memslots[log->slot];
845 r = -ENOENT;
846 if (!memslot->dirty_bitmap)
847 goto out;
848
849 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
850
851 for (i = 0; !any && i < n/sizeof(long); ++i)
852 any = memslot->dirty_bitmap[i];
853
854 r = -EFAULT;
855 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
856 goto out;
857
858 if (any) {
859 cleared = 0;
860 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
861 struct kvm_vcpu *vcpu;
862
863 vcpu = vcpu_load_slot(kvm, i);
864 if (!vcpu)
865 continue;
866 if (!cleared) {
867 do_remove_write_access(vcpu, log->slot);
868 memset(memslot->dirty_bitmap, 0, n);
869 cleared = 1;
870 }
871 kvm_arch_ops->tlb_flush(vcpu);
872 vcpu_put(vcpu);
873 }
874 }
875
876 r = 0;
877
878 out:
879 spin_lock(&kvm->lock);
880 --kvm->busy;
881 spin_unlock(&kvm->lock);
882 return r;
883 }
884
885 /*
886 * Set a new alias region. Aliases map a portion of physical memory into
887 * another portion. This is useful for memory windows, for example the PC
888 * VGA region.
889 */
890 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
891 struct kvm_memory_alias *alias)
892 {
893 int r, n;
894 struct kvm_mem_alias *p;
895
896 r = -EINVAL;
897 /* General sanity checks */
898 if (alias->memory_size & (PAGE_SIZE - 1))
899 goto out;
900 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
901 goto out;
902 if (alias->slot >= KVM_ALIAS_SLOTS)
903 goto out;
904 if (alias->guest_phys_addr + alias->memory_size
905 < alias->guest_phys_addr)
906 goto out;
907 if (alias->target_phys_addr + alias->memory_size
908 < alias->target_phys_addr)
909 goto out;
910
911 spin_lock(&kvm->lock);
912
913 p = &kvm->aliases[alias->slot];
914 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
915 p->npages = alias->memory_size >> PAGE_SHIFT;
916 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
917
918 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
919 if (kvm->aliases[n - 1].npages)
920 break;
921 kvm->naliases = n;
922
923 spin_unlock(&kvm->lock);
924
925 vcpu_load(&kvm->vcpus[0]);
926 spin_lock(&kvm->lock);
927 kvm_mmu_zap_all(&kvm->vcpus[0]);
928 spin_unlock(&kvm->lock);
929 vcpu_put(&kvm->vcpus[0]);
930
931 return 0;
932
933 out:
934 return r;
935 }
936
937 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
938 {
939 int i;
940 struct kvm_mem_alias *alias;
941
942 for (i = 0; i < kvm->naliases; ++i) {
943 alias = &kvm->aliases[i];
944 if (gfn >= alias->base_gfn
945 && gfn < alias->base_gfn + alias->npages)
946 return alias->target_gfn + gfn - alias->base_gfn;
947 }
948 return gfn;
949 }
950
951 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
952 {
953 int i;
954
955 for (i = 0; i < kvm->nmemslots; ++i) {
956 struct kvm_memory_slot *memslot = &kvm->memslots[i];
957
958 if (gfn >= memslot->base_gfn
959 && gfn < memslot->base_gfn + memslot->npages)
960 return memslot;
961 }
962 return NULL;
963 }
964
965 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
966 {
967 gfn = unalias_gfn(kvm, gfn);
968 return __gfn_to_memslot(kvm, gfn);
969 }
970
971 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
972 {
973 struct kvm_memory_slot *slot;
974
975 gfn = unalias_gfn(kvm, gfn);
976 slot = __gfn_to_memslot(kvm, gfn);
977 if (!slot)
978 return NULL;
979 return slot->phys_mem[gfn - slot->base_gfn];
980 }
981 EXPORT_SYMBOL_GPL(gfn_to_page);
982
983 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
984 {
985 int i;
986 struct kvm_memory_slot *memslot;
987 unsigned long rel_gfn;
988
989 for (i = 0; i < kvm->nmemslots; ++i) {
990 memslot = &kvm->memslots[i];
991
992 if (gfn >= memslot->base_gfn
993 && gfn < memslot->base_gfn + memslot->npages) {
994
995 if (!memslot->dirty_bitmap)
996 return;
997
998 rel_gfn = gfn - memslot->base_gfn;
999
1000 /* avoid RMW */
1001 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1002 set_bit(rel_gfn, memslot->dirty_bitmap);
1003 return;
1004 }
1005 }
1006 }
1007
1008 static int emulator_read_std(unsigned long addr,
1009 void *val,
1010 unsigned int bytes,
1011 struct x86_emulate_ctxt *ctxt)
1012 {
1013 struct kvm_vcpu *vcpu = ctxt->vcpu;
1014 void *data = val;
1015
1016 while (bytes) {
1017 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1018 unsigned offset = addr & (PAGE_SIZE-1);
1019 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1020 unsigned long pfn;
1021 struct page *page;
1022 void *page_virt;
1023
1024 if (gpa == UNMAPPED_GVA)
1025 return X86EMUL_PROPAGATE_FAULT;
1026 pfn = gpa >> PAGE_SHIFT;
1027 page = gfn_to_page(vcpu->kvm, pfn);
1028 if (!page)
1029 return X86EMUL_UNHANDLEABLE;
1030 page_virt = kmap_atomic(page, KM_USER0);
1031
1032 memcpy(data, page_virt + offset, tocopy);
1033
1034 kunmap_atomic(page_virt, KM_USER0);
1035
1036 bytes -= tocopy;
1037 data += tocopy;
1038 addr += tocopy;
1039 }
1040
1041 return X86EMUL_CONTINUE;
1042 }
1043
1044 static int emulator_write_std(unsigned long addr,
1045 const void *val,
1046 unsigned int bytes,
1047 struct x86_emulate_ctxt *ctxt)
1048 {
1049 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1050 addr, bytes);
1051 return X86EMUL_UNHANDLEABLE;
1052 }
1053
1054 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1055 gpa_t addr)
1056 {
1057 /*
1058 * Note that its important to have this wrapper function because
1059 * in the very near future we will be checking for MMIOs against
1060 * the LAPIC as well as the general MMIO bus
1061 */
1062 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1063 }
1064
1065 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1066 gpa_t addr)
1067 {
1068 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1069 }
1070
1071 static int emulator_read_emulated(unsigned long addr,
1072 void *val,
1073 unsigned int bytes,
1074 struct x86_emulate_ctxt *ctxt)
1075 {
1076 struct kvm_vcpu *vcpu = ctxt->vcpu;
1077 struct kvm_io_device *mmio_dev;
1078 gpa_t gpa;
1079
1080 if (vcpu->mmio_read_completed) {
1081 memcpy(val, vcpu->mmio_data, bytes);
1082 vcpu->mmio_read_completed = 0;
1083 return X86EMUL_CONTINUE;
1084 } else if (emulator_read_std(addr, val, bytes, ctxt)
1085 == X86EMUL_CONTINUE)
1086 return X86EMUL_CONTINUE;
1087
1088 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1089 if (gpa == UNMAPPED_GVA)
1090 return X86EMUL_PROPAGATE_FAULT;
1091
1092 /*
1093 * Is this MMIO handled locally?
1094 */
1095 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1096 if (mmio_dev) {
1097 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1098 return X86EMUL_CONTINUE;
1099 }
1100
1101 vcpu->mmio_needed = 1;
1102 vcpu->mmio_phys_addr = gpa;
1103 vcpu->mmio_size = bytes;
1104 vcpu->mmio_is_write = 0;
1105
1106 return X86EMUL_UNHANDLEABLE;
1107 }
1108
1109 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1110 const void *val, int bytes)
1111 {
1112 struct page *page;
1113 void *virt;
1114 unsigned offset = offset_in_page(gpa);
1115
1116 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1117 return 0;
1118 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1119 if (!page)
1120 return 0;
1121 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1122 virt = kmap_atomic(page, KM_USER0);
1123 if (memcmp(virt + offset_in_page(gpa), val, bytes)) {
1124 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1125 memcpy(virt + offset_in_page(gpa), val, bytes);
1126 }
1127 kunmap_atomic(virt, KM_USER0);
1128 return 1;
1129 }
1130
1131 static int emulator_write_emulated(unsigned long addr,
1132 const void *val,
1133 unsigned int bytes,
1134 struct x86_emulate_ctxt *ctxt)
1135 {
1136 struct kvm_vcpu *vcpu = ctxt->vcpu;
1137 struct kvm_io_device *mmio_dev;
1138 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1139
1140 if (gpa == UNMAPPED_GVA) {
1141 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1142 return X86EMUL_PROPAGATE_FAULT;
1143 }
1144
1145 if (emulator_write_phys(vcpu, gpa, val, bytes))
1146 return X86EMUL_CONTINUE;
1147
1148 /*
1149 * Is this MMIO handled locally?
1150 */
1151 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1152 if (mmio_dev) {
1153 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1154 return X86EMUL_CONTINUE;
1155 }
1156
1157 vcpu->mmio_needed = 1;
1158 vcpu->mmio_phys_addr = gpa;
1159 vcpu->mmio_size = bytes;
1160 vcpu->mmio_is_write = 1;
1161 memcpy(vcpu->mmio_data, val, bytes);
1162
1163 return X86EMUL_CONTINUE;
1164 }
1165
1166 static int emulator_cmpxchg_emulated(unsigned long addr,
1167 const void *old,
1168 const void *new,
1169 unsigned int bytes,
1170 struct x86_emulate_ctxt *ctxt)
1171 {
1172 static int reported;
1173
1174 if (!reported) {
1175 reported = 1;
1176 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1177 }
1178 return emulator_write_emulated(addr, new, bytes, ctxt);
1179 }
1180
1181 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1182 {
1183 return kvm_arch_ops->get_segment_base(vcpu, seg);
1184 }
1185
1186 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1187 {
1188 return X86EMUL_CONTINUE;
1189 }
1190
1191 int emulate_clts(struct kvm_vcpu *vcpu)
1192 {
1193 unsigned long cr0;
1194
1195 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1196 kvm_arch_ops->set_cr0(vcpu, cr0);
1197 return X86EMUL_CONTINUE;
1198 }
1199
1200 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1201 {
1202 struct kvm_vcpu *vcpu = ctxt->vcpu;
1203
1204 switch (dr) {
1205 case 0 ... 3:
1206 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1207 return X86EMUL_CONTINUE;
1208 default:
1209 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1210 __FUNCTION__, dr);
1211 return X86EMUL_UNHANDLEABLE;
1212 }
1213 }
1214
1215 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1216 {
1217 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1218 int exception;
1219
1220 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1221 if (exception) {
1222 /* FIXME: better handling */
1223 return X86EMUL_UNHANDLEABLE;
1224 }
1225 return X86EMUL_CONTINUE;
1226 }
1227
1228 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1229 {
1230 static int reported;
1231 u8 opcodes[4];
1232 unsigned long rip = ctxt->vcpu->rip;
1233 unsigned long rip_linear;
1234
1235 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1236
1237 if (reported)
1238 return;
1239
1240 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1241
1242 printk(KERN_ERR "emulation failed but !mmio_needed?"
1243 " rip %lx %02x %02x %02x %02x\n",
1244 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1245 reported = 1;
1246 }
1247
1248 struct x86_emulate_ops emulate_ops = {
1249 .read_std = emulator_read_std,
1250 .write_std = emulator_write_std,
1251 .read_emulated = emulator_read_emulated,
1252 .write_emulated = emulator_write_emulated,
1253 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1254 };
1255
1256 int emulate_instruction(struct kvm_vcpu *vcpu,
1257 struct kvm_run *run,
1258 unsigned long cr2,
1259 u16 error_code)
1260 {
1261 struct x86_emulate_ctxt emulate_ctxt;
1262 int r;
1263 int cs_db, cs_l;
1264
1265 vcpu->mmio_fault_cr2 = cr2;
1266 kvm_arch_ops->cache_regs(vcpu);
1267
1268 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1269
1270 emulate_ctxt.vcpu = vcpu;
1271 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1272 emulate_ctxt.cr2 = cr2;
1273 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1274 ? X86EMUL_MODE_REAL : cs_l
1275 ? X86EMUL_MODE_PROT64 : cs_db
1276 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1277
1278 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1279 emulate_ctxt.cs_base = 0;
1280 emulate_ctxt.ds_base = 0;
1281 emulate_ctxt.es_base = 0;
1282 emulate_ctxt.ss_base = 0;
1283 } else {
1284 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1285 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1286 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1287 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1288 }
1289
1290 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1291 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1292
1293 vcpu->mmio_is_write = 0;
1294 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1295
1296 if ((r || vcpu->mmio_is_write) && run) {
1297 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1298 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1299 run->mmio.len = vcpu->mmio_size;
1300 run->mmio.is_write = vcpu->mmio_is_write;
1301 }
1302
1303 if (r) {
1304 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1305 return EMULATE_DONE;
1306 if (!vcpu->mmio_needed) {
1307 report_emulation_failure(&emulate_ctxt);
1308 return EMULATE_FAIL;
1309 }
1310 return EMULATE_DO_MMIO;
1311 }
1312
1313 kvm_arch_ops->decache_regs(vcpu);
1314 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1315
1316 if (vcpu->mmio_is_write) {
1317 vcpu->mmio_needed = 0;
1318 return EMULATE_DO_MMIO;
1319 }
1320
1321 return EMULATE_DONE;
1322 }
1323 EXPORT_SYMBOL_GPL(emulate_instruction);
1324
1325 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1326 {
1327 if (vcpu->irq_summary)
1328 return 1;
1329
1330 vcpu->run->exit_reason = KVM_EXIT_HLT;
1331 ++vcpu->stat.halt_exits;
1332 return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1335
1336 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1337 {
1338 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1339
1340 kvm_arch_ops->cache_regs(vcpu);
1341 ret = -KVM_EINVAL;
1342 #ifdef CONFIG_X86_64
1343 if (is_long_mode(vcpu)) {
1344 nr = vcpu->regs[VCPU_REGS_RAX];
1345 a0 = vcpu->regs[VCPU_REGS_RDI];
1346 a1 = vcpu->regs[VCPU_REGS_RSI];
1347 a2 = vcpu->regs[VCPU_REGS_RDX];
1348 a3 = vcpu->regs[VCPU_REGS_RCX];
1349 a4 = vcpu->regs[VCPU_REGS_R8];
1350 a5 = vcpu->regs[VCPU_REGS_R9];
1351 } else
1352 #endif
1353 {
1354 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1355 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1356 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1357 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1358 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1359 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1360 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1361 }
1362 switch (nr) {
1363 default:
1364 run->hypercall.args[0] = a0;
1365 run->hypercall.args[1] = a1;
1366 run->hypercall.args[2] = a2;
1367 run->hypercall.args[3] = a3;
1368 run->hypercall.args[4] = a4;
1369 run->hypercall.args[5] = a5;
1370 run->hypercall.ret = ret;
1371 run->hypercall.longmode = is_long_mode(vcpu);
1372 kvm_arch_ops->decache_regs(vcpu);
1373 return 0;
1374 }
1375 vcpu->regs[VCPU_REGS_RAX] = ret;
1376 kvm_arch_ops->decache_regs(vcpu);
1377 return 1;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_hypercall);
1380
1381 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1382 {
1383 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1384 }
1385
1386 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1387 {
1388 struct descriptor_table dt = { limit, base };
1389
1390 kvm_arch_ops->set_gdt(vcpu, &dt);
1391 }
1392
1393 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1394 {
1395 struct descriptor_table dt = { limit, base };
1396
1397 kvm_arch_ops->set_idt(vcpu, &dt);
1398 }
1399
1400 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1401 unsigned long *rflags)
1402 {
1403 lmsw(vcpu, msw);
1404 *rflags = kvm_arch_ops->get_rflags(vcpu);
1405 }
1406
1407 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1408 {
1409 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1410 switch (cr) {
1411 case 0:
1412 return vcpu->cr0;
1413 case 2:
1414 return vcpu->cr2;
1415 case 3:
1416 return vcpu->cr3;
1417 case 4:
1418 return vcpu->cr4;
1419 default:
1420 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1421 return 0;
1422 }
1423 }
1424
1425 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1426 unsigned long *rflags)
1427 {
1428 switch (cr) {
1429 case 0:
1430 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1431 *rflags = kvm_arch_ops->get_rflags(vcpu);
1432 break;
1433 case 2:
1434 vcpu->cr2 = val;
1435 break;
1436 case 3:
1437 set_cr3(vcpu, val);
1438 break;
1439 case 4:
1440 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1441 break;
1442 default:
1443 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1444 }
1445 }
1446
1447 /*
1448 * Register the para guest with the host:
1449 */
1450 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1451 {
1452 struct kvm_vcpu_para_state *para_state;
1453 hpa_t para_state_hpa, hypercall_hpa;
1454 struct page *para_state_page;
1455 unsigned char *hypercall;
1456 gpa_t hypercall_gpa;
1457
1458 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1459 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1460
1461 /*
1462 * Needs to be page aligned:
1463 */
1464 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1465 goto err_gp;
1466
1467 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1468 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1469 if (is_error_hpa(para_state_hpa))
1470 goto err_gp;
1471
1472 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1473 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1474 para_state = kmap_atomic(para_state_page, KM_USER0);
1475
1476 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1477 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1478
1479 para_state->host_version = KVM_PARA_API_VERSION;
1480 /*
1481 * We cannot support guests that try to register themselves
1482 * with a newer API version than the host supports:
1483 */
1484 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1485 para_state->ret = -KVM_EINVAL;
1486 goto err_kunmap_skip;
1487 }
1488
1489 hypercall_gpa = para_state->hypercall_gpa;
1490 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1491 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1492 if (is_error_hpa(hypercall_hpa)) {
1493 para_state->ret = -KVM_EINVAL;
1494 goto err_kunmap_skip;
1495 }
1496
1497 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1498 vcpu->para_state_page = para_state_page;
1499 vcpu->para_state_gpa = para_state_gpa;
1500 vcpu->hypercall_gpa = hypercall_gpa;
1501
1502 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1503 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1504 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1505 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1506 kunmap_atomic(hypercall, KM_USER1);
1507
1508 para_state->ret = 0;
1509 err_kunmap_skip:
1510 kunmap_atomic(para_state, KM_USER0);
1511 return 0;
1512 err_gp:
1513 return 1;
1514 }
1515
1516 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1517 {
1518 u64 data;
1519
1520 switch (msr) {
1521 case 0xc0010010: /* SYSCFG */
1522 case 0xc0010015: /* HWCR */
1523 case MSR_IA32_PLATFORM_ID:
1524 case MSR_IA32_P5_MC_ADDR:
1525 case MSR_IA32_P5_MC_TYPE:
1526 case MSR_IA32_MC0_CTL:
1527 case MSR_IA32_MCG_STATUS:
1528 case MSR_IA32_MCG_CAP:
1529 case MSR_IA32_MC0_MISC:
1530 case MSR_IA32_MC0_MISC+4:
1531 case MSR_IA32_MC0_MISC+8:
1532 case MSR_IA32_MC0_MISC+12:
1533 case MSR_IA32_MC0_MISC+16:
1534 case MSR_IA32_UCODE_REV:
1535 case MSR_IA32_PERF_STATUS:
1536 case MSR_IA32_EBL_CR_POWERON:
1537 /* MTRR registers */
1538 case 0xfe:
1539 case 0x200 ... 0x2ff:
1540 data = 0;
1541 break;
1542 case 0xcd: /* fsb frequency */
1543 data = 3;
1544 break;
1545 case MSR_IA32_APICBASE:
1546 data = vcpu->apic_base;
1547 break;
1548 case MSR_IA32_MISC_ENABLE:
1549 data = vcpu->ia32_misc_enable_msr;
1550 break;
1551 #ifdef CONFIG_X86_64
1552 case MSR_EFER:
1553 data = vcpu->shadow_efer;
1554 break;
1555 #endif
1556 default:
1557 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1558 return 1;
1559 }
1560 *pdata = data;
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1564
1565 /*
1566 * Reads an msr value (of 'msr_index') into 'pdata'.
1567 * Returns 0 on success, non-0 otherwise.
1568 * Assumes vcpu_load() was already called.
1569 */
1570 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1571 {
1572 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1573 }
1574
1575 #ifdef CONFIG_X86_64
1576
1577 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1578 {
1579 if (efer & EFER_RESERVED_BITS) {
1580 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1581 efer);
1582 inject_gp(vcpu);
1583 return;
1584 }
1585
1586 if (is_paging(vcpu)
1587 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1588 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1589 inject_gp(vcpu);
1590 return;
1591 }
1592
1593 kvm_arch_ops->set_efer(vcpu, efer);
1594
1595 efer &= ~EFER_LMA;
1596 efer |= vcpu->shadow_efer & EFER_LMA;
1597
1598 vcpu->shadow_efer = efer;
1599 }
1600
1601 #endif
1602
1603 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1604 {
1605 switch (msr) {
1606 #ifdef CONFIG_X86_64
1607 case MSR_EFER:
1608 set_efer(vcpu, data);
1609 break;
1610 #endif
1611 case MSR_IA32_MC0_STATUS:
1612 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1613 __FUNCTION__, data);
1614 break;
1615 case MSR_IA32_MCG_STATUS:
1616 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1617 __FUNCTION__, data);
1618 break;
1619 case MSR_IA32_UCODE_REV:
1620 case MSR_IA32_UCODE_WRITE:
1621 case 0x200 ... 0x2ff: /* MTRRs */
1622 break;
1623 case MSR_IA32_APICBASE:
1624 vcpu->apic_base = data;
1625 break;
1626 case MSR_IA32_MISC_ENABLE:
1627 vcpu->ia32_misc_enable_msr = data;
1628 break;
1629 /*
1630 * This is the 'probe whether the host is KVM' logic:
1631 */
1632 case MSR_KVM_API_MAGIC:
1633 return vcpu_register_para(vcpu, data);
1634
1635 default:
1636 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1637 return 1;
1638 }
1639 return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1642
1643 /*
1644 * Writes msr value into into the appropriate "register".
1645 * Returns 0 on success, non-0 otherwise.
1646 * Assumes vcpu_load() was already called.
1647 */
1648 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1649 {
1650 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1651 }
1652
1653 void kvm_resched(struct kvm_vcpu *vcpu)
1654 {
1655 if (!need_resched())
1656 return;
1657 vcpu_put(vcpu);
1658 cond_resched();
1659 vcpu_load(vcpu);
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_resched);
1662
1663 void load_msrs(struct vmx_msr_entry *e, int n)
1664 {
1665 int i;
1666
1667 for (i = 0; i < n; ++i)
1668 wrmsrl(e[i].index, e[i].data);
1669 }
1670 EXPORT_SYMBOL_GPL(load_msrs);
1671
1672 void save_msrs(struct vmx_msr_entry *e, int n)
1673 {
1674 int i;
1675
1676 for (i = 0; i < n; ++i)
1677 rdmsrl(e[i].index, e[i].data);
1678 }
1679 EXPORT_SYMBOL_GPL(save_msrs);
1680
1681 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1682 {
1683 int i;
1684 u32 function;
1685 struct kvm_cpuid_entry *e, *best;
1686
1687 kvm_arch_ops->cache_regs(vcpu);
1688 function = vcpu->regs[VCPU_REGS_RAX];
1689 vcpu->regs[VCPU_REGS_RAX] = 0;
1690 vcpu->regs[VCPU_REGS_RBX] = 0;
1691 vcpu->regs[VCPU_REGS_RCX] = 0;
1692 vcpu->regs[VCPU_REGS_RDX] = 0;
1693 best = NULL;
1694 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1695 e = &vcpu->cpuid_entries[i];
1696 if (e->function == function) {
1697 best = e;
1698 break;
1699 }
1700 /*
1701 * Both basic or both extended?
1702 */
1703 if (((e->function ^ function) & 0x80000000) == 0)
1704 if (!best || e->function > best->function)
1705 best = e;
1706 }
1707 if (best) {
1708 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1709 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1710 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1711 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1712 }
1713 kvm_arch_ops->decache_regs(vcpu);
1714 kvm_arch_ops->skip_emulated_instruction(vcpu);
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1717
1718 static int pio_copy_data(struct kvm_vcpu *vcpu)
1719 {
1720 void *p = vcpu->pio_data;
1721 void *q;
1722 unsigned bytes;
1723 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1724
1725 kvm_arch_ops->vcpu_put(vcpu);
1726 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1727 PAGE_KERNEL);
1728 if (!q) {
1729 kvm_arch_ops->vcpu_load(vcpu);
1730 free_pio_guest_pages(vcpu);
1731 return -ENOMEM;
1732 }
1733 q += vcpu->pio.guest_page_offset;
1734 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1735 if (vcpu->pio.in)
1736 memcpy(q, p, bytes);
1737 else
1738 memcpy(p, q, bytes);
1739 q -= vcpu->pio.guest_page_offset;
1740 vunmap(q);
1741 kvm_arch_ops->vcpu_load(vcpu);
1742 free_pio_guest_pages(vcpu);
1743 return 0;
1744 }
1745
1746 static int complete_pio(struct kvm_vcpu *vcpu)
1747 {
1748 struct kvm_pio_request *io = &vcpu->pio;
1749 long delta;
1750 int r;
1751
1752 kvm_arch_ops->cache_regs(vcpu);
1753
1754 if (!io->string) {
1755 if (io->in)
1756 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1757 io->size);
1758 } else {
1759 if (io->in) {
1760 r = pio_copy_data(vcpu);
1761 if (r) {
1762 kvm_arch_ops->cache_regs(vcpu);
1763 return r;
1764 }
1765 }
1766
1767 delta = 1;
1768 if (io->rep) {
1769 delta *= io->cur_count;
1770 /*
1771 * The size of the register should really depend on
1772 * current address size.
1773 */
1774 vcpu->regs[VCPU_REGS_RCX] -= delta;
1775 }
1776 if (io->down)
1777 delta = -delta;
1778 delta *= io->size;
1779 if (io->in)
1780 vcpu->regs[VCPU_REGS_RDI] += delta;
1781 else
1782 vcpu->regs[VCPU_REGS_RSI] += delta;
1783 }
1784
1785 kvm_arch_ops->decache_regs(vcpu);
1786
1787 io->count -= io->cur_count;
1788 io->cur_count = 0;
1789
1790 if (!io->count)
1791 kvm_arch_ops->skip_emulated_instruction(vcpu);
1792 return 0;
1793 }
1794
1795 void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
1796 {
1797 /* TODO: String I/O for in kernel device */
1798
1799 if (vcpu->pio.in)
1800 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1801 vcpu->pio.size,
1802 vcpu->pio_data);
1803 else
1804 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1805 vcpu->pio.size,
1806 vcpu->pio_data);
1807 }
1808
1809 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1810 int size, unsigned long count, int string, int down,
1811 gva_t address, int rep, unsigned port)
1812 {
1813 unsigned now, in_page;
1814 int i;
1815 int nr_pages = 1;
1816 struct page *page;
1817 struct kvm_io_device *pio_dev;
1818
1819 vcpu->run->exit_reason = KVM_EXIT_IO;
1820 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1821 vcpu->run->io.size = size;
1822 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1823 vcpu->run->io.count = count;
1824 vcpu->run->io.port = port;
1825 vcpu->pio.count = count;
1826 vcpu->pio.cur_count = count;
1827 vcpu->pio.size = size;
1828 vcpu->pio.in = in;
1829 vcpu->pio.port = port;
1830 vcpu->pio.string = string;
1831 vcpu->pio.down = down;
1832 vcpu->pio.guest_page_offset = offset_in_page(address);
1833 vcpu->pio.rep = rep;
1834
1835 pio_dev = vcpu_find_pio_dev(vcpu, port);
1836 if (!string) {
1837 kvm_arch_ops->cache_regs(vcpu);
1838 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1839 kvm_arch_ops->decache_regs(vcpu);
1840 if (pio_dev) {
1841 kernel_pio(pio_dev, vcpu);
1842 complete_pio(vcpu);
1843 return 1;
1844 }
1845 return 0;
1846 }
1847 /* TODO: String I/O for in kernel device */
1848 if (pio_dev)
1849 printk(KERN_ERR "kvm_setup_pio: no string io support\n");
1850
1851 if (!count) {
1852 kvm_arch_ops->skip_emulated_instruction(vcpu);
1853 return 1;
1854 }
1855
1856 now = min(count, PAGE_SIZE / size);
1857
1858 if (!down)
1859 in_page = PAGE_SIZE - offset_in_page(address);
1860 else
1861 in_page = offset_in_page(address) + size;
1862 now = min(count, (unsigned long)in_page / size);
1863 if (!now) {
1864 /*
1865 * String I/O straddles page boundary. Pin two guest pages
1866 * so that we satisfy atomicity constraints. Do just one
1867 * transaction to avoid complexity.
1868 */
1869 nr_pages = 2;
1870 now = 1;
1871 }
1872 if (down) {
1873 /*
1874 * String I/O in reverse. Yuck. Kill the guest, fix later.
1875 */
1876 printk(KERN_ERR "kvm: guest string pio down\n");
1877 inject_gp(vcpu);
1878 return 1;
1879 }
1880 vcpu->run->io.count = now;
1881 vcpu->pio.cur_count = now;
1882
1883 for (i = 0; i < nr_pages; ++i) {
1884 spin_lock(&vcpu->kvm->lock);
1885 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1886 if (page)
1887 get_page(page);
1888 vcpu->pio.guest_pages[i] = page;
1889 spin_unlock(&vcpu->kvm->lock);
1890 if (!page) {
1891 inject_gp(vcpu);
1892 free_pio_guest_pages(vcpu);
1893 return 1;
1894 }
1895 }
1896
1897 if (!vcpu->pio.in)
1898 return pio_copy_data(vcpu);
1899 return 0;
1900 }
1901 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1902
1903 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1904 {
1905 int r;
1906 sigset_t sigsaved;
1907
1908 vcpu_load(vcpu);
1909
1910 if (vcpu->sigset_active)
1911 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1912
1913 /* re-sync apic's tpr */
1914 vcpu->cr8 = kvm_run->cr8;
1915
1916 if (vcpu->pio.cur_count) {
1917 r = complete_pio(vcpu);
1918 if (r)
1919 goto out;
1920 }
1921
1922 if (vcpu->mmio_needed) {
1923 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1924 vcpu->mmio_read_completed = 1;
1925 vcpu->mmio_needed = 0;
1926 r = emulate_instruction(vcpu, kvm_run,
1927 vcpu->mmio_fault_cr2, 0);
1928 if (r == EMULATE_DO_MMIO) {
1929 /*
1930 * Read-modify-write. Back to userspace.
1931 */
1932 kvm_run->exit_reason = KVM_EXIT_MMIO;
1933 r = 0;
1934 goto out;
1935 }
1936 }
1937
1938 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1939 kvm_arch_ops->cache_regs(vcpu);
1940 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1941 kvm_arch_ops->decache_regs(vcpu);
1942 }
1943
1944 r = kvm_arch_ops->run(vcpu, kvm_run);
1945
1946 out:
1947 if (vcpu->sigset_active)
1948 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1949
1950 vcpu_put(vcpu);
1951 return r;
1952 }
1953
1954 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1955 struct kvm_regs *regs)
1956 {
1957 vcpu_load(vcpu);
1958
1959 kvm_arch_ops->cache_regs(vcpu);
1960
1961 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1962 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1963 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1964 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1965 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1966 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1967 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1968 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1969 #ifdef CONFIG_X86_64
1970 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1971 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1972 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1973 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1974 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1975 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1976 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1977 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1978 #endif
1979
1980 regs->rip = vcpu->rip;
1981 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1982
1983 /*
1984 * Don't leak debug flags in case they were set for guest debugging
1985 */
1986 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1987 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1988
1989 vcpu_put(vcpu);
1990
1991 return 0;
1992 }
1993
1994 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1995 struct kvm_regs *regs)
1996 {
1997 vcpu_load(vcpu);
1998
1999 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2000 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2001 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2002 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2003 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2004 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2005 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2006 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2007 #ifdef CONFIG_X86_64
2008 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2009 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2010 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2011 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2012 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2013 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2014 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2015 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2016 #endif
2017
2018 vcpu->rip = regs->rip;
2019 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2020
2021 kvm_arch_ops->decache_regs(vcpu);
2022
2023 vcpu_put(vcpu);
2024
2025 return 0;
2026 }
2027
2028 static void get_segment(struct kvm_vcpu *vcpu,
2029 struct kvm_segment *var, int seg)
2030 {
2031 return kvm_arch_ops->get_segment(vcpu, var, seg);
2032 }
2033
2034 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2035 struct kvm_sregs *sregs)
2036 {
2037 struct descriptor_table dt;
2038
2039 vcpu_load(vcpu);
2040
2041 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2042 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2043 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2044 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2045 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2046 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2047
2048 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2049 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2050
2051 kvm_arch_ops->get_idt(vcpu, &dt);
2052 sregs->idt.limit = dt.limit;
2053 sregs->idt.base = dt.base;
2054 kvm_arch_ops->get_gdt(vcpu, &dt);
2055 sregs->gdt.limit = dt.limit;
2056 sregs->gdt.base = dt.base;
2057
2058 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2059 sregs->cr0 = vcpu->cr0;
2060 sregs->cr2 = vcpu->cr2;
2061 sregs->cr3 = vcpu->cr3;
2062 sregs->cr4 = vcpu->cr4;
2063 sregs->cr8 = vcpu->cr8;
2064 sregs->efer = vcpu->shadow_efer;
2065 sregs->apic_base = vcpu->apic_base;
2066
2067 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2068 sizeof sregs->interrupt_bitmap);
2069
2070 vcpu_put(vcpu);
2071
2072 return 0;
2073 }
2074
2075 static void set_segment(struct kvm_vcpu *vcpu,
2076 struct kvm_segment *var, int seg)
2077 {
2078 return kvm_arch_ops->set_segment(vcpu, var, seg);
2079 }
2080
2081 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2082 struct kvm_sregs *sregs)
2083 {
2084 int mmu_reset_needed = 0;
2085 int i;
2086 struct descriptor_table dt;
2087
2088 vcpu_load(vcpu);
2089
2090 dt.limit = sregs->idt.limit;
2091 dt.base = sregs->idt.base;
2092 kvm_arch_ops->set_idt(vcpu, &dt);
2093 dt.limit = sregs->gdt.limit;
2094 dt.base = sregs->gdt.base;
2095 kvm_arch_ops->set_gdt(vcpu, &dt);
2096
2097 vcpu->cr2 = sregs->cr2;
2098 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2099 vcpu->cr3 = sregs->cr3;
2100
2101 vcpu->cr8 = sregs->cr8;
2102
2103 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2104 #ifdef CONFIG_X86_64
2105 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2106 #endif
2107 vcpu->apic_base = sregs->apic_base;
2108
2109 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2110
2111 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2112 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2113
2114 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2115 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2116 if (!is_long_mode(vcpu) && is_pae(vcpu))
2117 load_pdptrs(vcpu, vcpu->cr3);
2118
2119 if (mmu_reset_needed)
2120 kvm_mmu_reset_context(vcpu);
2121
2122 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2123 sizeof vcpu->irq_pending);
2124 vcpu->irq_summary = 0;
2125 for (i = 0; i < NR_IRQ_WORDS; ++i)
2126 if (vcpu->irq_pending[i])
2127 __set_bit(i, &vcpu->irq_summary);
2128
2129 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2130 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2131 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2132 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2133 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2134 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2135
2136 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2137 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2138
2139 vcpu_put(vcpu);
2140
2141 return 0;
2142 }
2143
2144 /*
2145 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2146 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2147 *
2148 * This list is modified at module load time to reflect the
2149 * capabilities of the host cpu.
2150 */
2151 static u32 msrs_to_save[] = {
2152 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2153 MSR_K6_STAR,
2154 #ifdef CONFIG_X86_64
2155 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2156 #endif
2157 MSR_IA32_TIME_STAMP_COUNTER,
2158 };
2159
2160 static unsigned num_msrs_to_save;
2161
2162 static u32 emulated_msrs[] = {
2163 MSR_IA32_MISC_ENABLE,
2164 };
2165
2166 static __init void kvm_init_msr_list(void)
2167 {
2168 u32 dummy[2];
2169 unsigned i, j;
2170
2171 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2172 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2173 continue;
2174 if (j < i)
2175 msrs_to_save[j] = msrs_to_save[i];
2176 j++;
2177 }
2178 num_msrs_to_save = j;
2179 }
2180
2181 /*
2182 * Adapt set_msr() to msr_io()'s calling convention
2183 */
2184 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2185 {
2186 return set_msr(vcpu, index, *data);
2187 }
2188
2189 /*
2190 * Read or write a bunch of msrs. All parameters are kernel addresses.
2191 *
2192 * @return number of msrs set successfully.
2193 */
2194 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2195 struct kvm_msr_entry *entries,
2196 int (*do_msr)(struct kvm_vcpu *vcpu,
2197 unsigned index, u64 *data))
2198 {
2199 int i;
2200
2201 vcpu_load(vcpu);
2202
2203 for (i = 0; i < msrs->nmsrs; ++i)
2204 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2205 break;
2206
2207 vcpu_put(vcpu);
2208
2209 return i;
2210 }
2211
2212 /*
2213 * Read or write a bunch of msrs. Parameters are user addresses.
2214 *
2215 * @return number of msrs set successfully.
2216 */
2217 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2218 int (*do_msr)(struct kvm_vcpu *vcpu,
2219 unsigned index, u64 *data),
2220 int writeback)
2221 {
2222 struct kvm_msrs msrs;
2223 struct kvm_msr_entry *entries;
2224 int r, n;
2225 unsigned size;
2226
2227 r = -EFAULT;
2228 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2229 goto out;
2230
2231 r = -E2BIG;
2232 if (msrs.nmsrs >= MAX_IO_MSRS)
2233 goto out;
2234
2235 r = -ENOMEM;
2236 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2237 entries = vmalloc(size);
2238 if (!entries)
2239 goto out;
2240
2241 r = -EFAULT;
2242 if (copy_from_user(entries, user_msrs->entries, size))
2243 goto out_free;
2244
2245 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2246 if (r < 0)
2247 goto out_free;
2248
2249 r = -EFAULT;
2250 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2251 goto out_free;
2252
2253 r = n;
2254
2255 out_free:
2256 vfree(entries);
2257 out:
2258 return r;
2259 }
2260
2261 /*
2262 * Translate a guest virtual address to a guest physical address.
2263 */
2264 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2265 struct kvm_translation *tr)
2266 {
2267 unsigned long vaddr = tr->linear_address;
2268 gpa_t gpa;
2269
2270 vcpu_load(vcpu);
2271 spin_lock(&vcpu->kvm->lock);
2272 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2273 tr->physical_address = gpa;
2274 tr->valid = gpa != UNMAPPED_GVA;
2275 tr->writeable = 1;
2276 tr->usermode = 0;
2277 spin_unlock(&vcpu->kvm->lock);
2278 vcpu_put(vcpu);
2279
2280 return 0;
2281 }
2282
2283 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2284 struct kvm_interrupt *irq)
2285 {
2286 if (irq->irq < 0 || irq->irq >= 256)
2287 return -EINVAL;
2288 vcpu_load(vcpu);
2289
2290 set_bit(irq->irq, vcpu->irq_pending);
2291 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2292
2293 vcpu_put(vcpu);
2294
2295 return 0;
2296 }
2297
2298 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2299 struct kvm_debug_guest *dbg)
2300 {
2301 int r;
2302
2303 vcpu_load(vcpu);
2304
2305 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2306
2307 vcpu_put(vcpu);
2308
2309 return r;
2310 }
2311
2312 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2313 unsigned long address,
2314 int *type)
2315 {
2316 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2317 unsigned long pgoff;
2318 struct page *page;
2319
2320 *type = VM_FAULT_MINOR;
2321 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2322 if (pgoff == 0)
2323 page = virt_to_page(vcpu->run);
2324 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2325 page = virt_to_page(vcpu->pio_data);
2326 else
2327 return NOPAGE_SIGBUS;
2328 get_page(page);
2329 return page;
2330 }
2331
2332 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2333 .nopage = kvm_vcpu_nopage,
2334 };
2335
2336 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2337 {
2338 vma->vm_ops = &kvm_vcpu_vm_ops;
2339 return 0;
2340 }
2341
2342 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2343 {
2344 struct kvm_vcpu *vcpu = filp->private_data;
2345
2346 fput(vcpu->kvm->filp);
2347 return 0;
2348 }
2349
2350 static struct file_operations kvm_vcpu_fops = {
2351 .release = kvm_vcpu_release,
2352 .unlocked_ioctl = kvm_vcpu_ioctl,
2353 .compat_ioctl = kvm_vcpu_ioctl,
2354 .mmap = kvm_vcpu_mmap,
2355 };
2356
2357 /*
2358 * Allocates an inode for the vcpu.
2359 */
2360 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2361 {
2362 int fd, r;
2363 struct inode *inode;
2364 struct file *file;
2365
2366 r = anon_inode_getfd(&fd, &inode, &file,
2367 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2368 if (r)
2369 return r;
2370 atomic_inc(&vcpu->kvm->filp->f_count);
2371 return fd;
2372 }
2373
2374 /*
2375 * Creates some virtual cpus. Good luck creating more than one.
2376 */
2377 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2378 {
2379 int r;
2380 struct kvm_vcpu *vcpu;
2381 struct page *page;
2382
2383 r = -EINVAL;
2384 if (!valid_vcpu(n))
2385 goto out;
2386
2387 vcpu = &kvm->vcpus[n];
2388
2389 mutex_lock(&vcpu->mutex);
2390
2391 if (vcpu->vmcs) {
2392 mutex_unlock(&vcpu->mutex);
2393 return -EEXIST;
2394 }
2395
2396 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2397 r = -ENOMEM;
2398 if (!page)
2399 goto out_unlock;
2400 vcpu->run = page_address(page);
2401
2402 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2403 r = -ENOMEM;
2404 if (!page)
2405 goto out_free_run;
2406 vcpu->pio_data = page_address(page);
2407
2408 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2409 FX_IMAGE_ALIGN);
2410 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2411 vcpu->cr0 = 0x10;
2412
2413 r = kvm_arch_ops->vcpu_create(vcpu);
2414 if (r < 0)
2415 goto out_free_vcpus;
2416
2417 r = kvm_mmu_create(vcpu);
2418 if (r < 0)
2419 goto out_free_vcpus;
2420
2421 kvm_arch_ops->vcpu_load(vcpu);
2422 r = kvm_mmu_setup(vcpu);
2423 if (r >= 0)
2424 r = kvm_arch_ops->vcpu_setup(vcpu);
2425 vcpu_put(vcpu);
2426
2427 if (r < 0)
2428 goto out_free_vcpus;
2429
2430 r = create_vcpu_fd(vcpu);
2431 if (r < 0)
2432 goto out_free_vcpus;
2433
2434 spin_lock(&kvm_lock);
2435 if (n >= kvm->nvcpus)
2436 kvm->nvcpus = n + 1;
2437 spin_unlock(&kvm_lock);
2438
2439 return r;
2440
2441 out_free_vcpus:
2442 kvm_free_vcpu(vcpu);
2443 out_free_run:
2444 free_page((unsigned long)vcpu->run);
2445 vcpu->run = NULL;
2446 out_unlock:
2447 mutex_unlock(&vcpu->mutex);
2448 out:
2449 return r;
2450 }
2451
2452 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2453 {
2454 u64 efer;
2455 int i;
2456 struct kvm_cpuid_entry *e, *entry;
2457
2458 rdmsrl(MSR_EFER, efer);
2459 entry = NULL;
2460 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2461 e = &vcpu->cpuid_entries[i];
2462 if (e->function == 0x80000001) {
2463 entry = e;
2464 break;
2465 }
2466 }
2467 if (entry && (entry->edx & EFER_NX) && !(efer & EFER_NX)) {
2468 entry->edx &= ~(1 << 20);
2469 printk(KERN_INFO ": guest NX capability removed\n");
2470 }
2471 }
2472
2473 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2474 struct kvm_cpuid *cpuid,
2475 struct kvm_cpuid_entry __user *entries)
2476 {
2477 int r;
2478
2479 r = -E2BIG;
2480 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2481 goto out;
2482 r = -EFAULT;
2483 if (copy_from_user(&vcpu->cpuid_entries, entries,
2484 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2485 goto out;
2486 vcpu->cpuid_nent = cpuid->nent;
2487 cpuid_fix_nx_cap(vcpu);
2488 return 0;
2489
2490 out:
2491 return r;
2492 }
2493
2494 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2495 {
2496 if (sigset) {
2497 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2498 vcpu->sigset_active = 1;
2499 vcpu->sigset = *sigset;
2500 } else
2501 vcpu->sigset_active = 0;
2502 return 0;
2503 }
2504
2505 /*
2506 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2507 * we have asm/x86/processor.h
2508 */
2509 struct fxsave {
2510 u16 cwd;
2511 u16 swd;
2512 u16 twd;
2513 u16 fop;
2514 u64 rip;
2515 u64 rdp;
2516 u32 mxcsr;
2517 u32 mxcsr_mask;
2518 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2519 #ifdef CONFIG_X86_64
2520 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2521 #else
2522 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2523 #endif
2524 };
2525
2526 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2527 {
2528 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2529
2530 vcpu_load(vcpu);
2531
2532 memcpy(fpu->fpr, fxsave->st_space, 128);
2533 fpu->fcw = fxsave->cwd;
2534 fpu->fsw = fxsave->swd;
2535 fpu->ftwx = fxsave->twd;
2536 fpu->last_opcode = fxsave->fop;
2537 fpu->last_ip = fxsave->rip;
2538 fpu->last_dp = fxsave->rdp;
2539 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2540
2541 vcpu_put(vcpu);
2542
2543 return 0;
2544 }
2545
2546 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2547 {
2548 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2549
2550 vcpu_load(vcpu);
2551
2552 memcpy(fxsave->st_space, fpu->fpr, 128);
2553 fxsave->cwd = fpu->fcw;
2554 fxsave->swd = fpu->fsw;
2555 fxsave->twd = fpu->ftwx;
2556 fxsave->fop = fpu->last_opcode;
2557 fxsave->rip = fpu->last_ip;
2558 fxsave->rdp = fpu->last_dp;
2559 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2560
2561 vcpu_put(vcpu);
2562
2563 return 0;
2564 }
2565
2566 static long kvm_vcpu_ioctl(struct file *filp,
2567 unsigned int ioctl, unsigned long arg)
2568 {
2569 struct kvm_vcpu *vcpu = filp->private_data;
2570 void __user *argp = (void __user *)arg;
2571 int r = -EINVAL;
2572
2573 switch (ioctl) {
2574 case KVM_RUN:
2575 r = -EINVAL;
2576 if (arg)
2577 goto out;
2578 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2579 break;
2580 case KVM_GET_REGS: {
2581 struct kvm_regs kvm_regs;
2582
2583 memset(&kvm_regs, 0, sizeof kvm_regs);
2584 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2585 if (r)
2586 goto out;
2587 r = -EFAULT;
2588 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2589 goto out;
2590 r = 0;
2591 break;
2592 }
2593 case KVM_SET_REGS: {
2594 struct kvm_regs kvm_regs;
2595
2596 r = -EFAULT;
2597 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2598 goto out;
2599 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2600 if (r)
2601 goto out;
2602 r = 0;
2603 break;
2604 }
2605 case KVM_GET_SREGS: {
2606 struct kvm_sregs kvm_sregs;
2607
2608 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2609 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2610 if (r)
2611 goto out;
2612 r = -EFAULT;
2613 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2614 goto out;
2615 r = 0;
2616 break;
2617 }
2618 case KVM_SET_SREGS: {
2619 struct kvm_sregs kvm_sregs;
2620
2621 r = -EFAULT;
2622 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2623 goto out;
2624 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2625 if (r)
2626 goto out;
2627 r = 0;
2628 break;
2629 }
2630 case KVM_TRANSLATE: {
2631 struct kvm_translation tr;
2632
2633 r = -EFAULT;
2634 if (copy_from_user(&tr, argp, sizeof tr))
2635 goto out;
2636 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2637 if (r)
2638 goto out;
2639 r = -EFAULT;
2640 if (copy_to_user(argp, &tr, sizeof tr))
2641 goto out;
2642 r = 0;
2643 break;
2644 }
2645 case KVM_INTERRUPT: {
2646 struct kvm_interrupt irq;
2647
2648 r = -EFAULT;
2649 if (copy_from_user(&irq, argp, sizeof irq))
2650 goto out;
2651 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2652 if (r)
2653 goto out;
2654 r = 0;
2655 break;
2656 }
2657 case KVM_DEBUG_GUEST: {
2658 struct kvm_debug_guest dbg;
2659
2660 r = -EFAULT;
2661 if (copy_from_user(&dbg, argp, sizeof dbg))
2662 goto out;
2663 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2664 if (r)
2665 goto out;
2666 r = 0;
2667 break;
2668 }
2669 case KVM_GET_MSRS:
2670 r = msr_io(vcpu, argp, get_msr, 1);
2671 break;
2672 case KVM_SET_MSRS:
2673 r = msr_io(vcpu, argp, do_set_msr, 0);
2674 break;
2675 case KVM_SET_CPUID: {
2676 struct kvm_cpuid __user *cpuid_arg = argp;
2677 struct kvm_cpuid cpuid;
2678
2679 r = -EFAULT;
2680 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2681 goto out;
2682 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2683 if (r)
2684 goto out;
2685 break;
2686 }
2687 case KVM_SET_SIGNAL_MASK: {
2688 struct kvm_signal_mask __user *sigmask_arg = argp;
2689 struct kvm_signal_mask kvm_sigmask;
2690 sigset_t sigset, *p;
2691
2692 p = NULL;
2693 if (argp) {
2694 r = -EFAULT;
2695 if (copy_from_user(&kvm_sigmask, argp,
2696 sizeof kvm_sigmask))
2697 goto out;
2698 r = -EINVAL;
2699 if (kvm_sigmask.len != sizeof sigset)
2700 goto out;
2701 r = -EFAULT;
2702 if (copy_from_user(&sigset, sigmask_arg->sigset,
2703 sizeof sigset))
2704 goto out;
2705 p = &sigset;
2706 }
2707 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2708 break;
2709 }
2710 case KVM_GET_FPU: {
2711 struct kvm_fpu fpu;
2712
2713 memset(&fpu, 0, sizeof fpu);
2714 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2715 if (r)
2716 goto out;
2717 r = -EFAULT;
2718 if (copy_to_user(argp, &fpu, sizeof fpu))
2719 goto out;
2720 r = 0;
2721 break;
2722 }
2723 case KVM_SET_FPU: {
2724 struct kvm_fpu fpu;
2725
2726 r = -EFAULT;
2727 if (copy_from_user(&fpu, argp, sizeof fpu))
2728 goto out;
2729 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2730 if (r)
2731 goto out;
2732 r = 0;
2733 break;
2734 }
2735 default:
2736 ;
2737 }
2738 out:
2739 return r;
2740 }
2741
2742 static long kvm_vm_ioctl(struct file *filp,
2743 unsigned int ioctl, unsigned long arg)
2744 {
2745 struct kvm *kvm = filp->private_data;
2746 void __user *argp = (void __user *)arg;
2747 int r = -EINVAL;
2748
2749 switch (ioctl) {
2750 case KVM_CREATE_VCPU:
2751 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2752 if (r < 0)
2753 goto out;
2754 break;
2755 case KVM_SET_MEMORY_REGION: {
2756 struct kvm_memory_region kvm_mem;
2757
2758 r = -EFAULT;
2759 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2760 goto out;
2761 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2762 if (r)
2763 goto out;
2764 break;
2765 }
2766 case KVM_GET_DIRTY_LOG: {
2767 struct kvm_dirty_log log;
2768
2769 r = -EFAULT;
2770 if (copy_from_user(&log, argp, sizeof log))
2771 goto out;
2772 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2773 if (r)
2774 goto out;
2775 break;
2776 }
2777 case KVM_SET_MEMORY_ALIAS: {
2778 struct kvm_memory_alias alias;
2779
2780 r = -EFAULT;
2781 if (copy_from_user(&alias, argp, sizeof alias))
2782 goto out;
2783 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2784 if (r)
2785 goto out;
2786 break;
2787 }
2788 default:
2789 ;
2790 }
2791 out:
2792 return r;
2793 }
2794
2795 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2796 unsigned long address,
2797 int *type)
2798 {
2799 struct kvm *kvm = vma->vm_file->private_data;
2800 unsigned long pgoff;
2801 struct page *page;
2802
2803 *type = VM_FAULT_MINOR;
2804 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2805 page = gfn_to_page(kvm, pgoff);
2806 if (!page)
2807 return NOPAGE_SIGBUS;
2808 get_page(page);
2809 return page;
2810 }
2811
2812 static struct vm_operations_struct kvm_vm_vm_ops = {
2813 .nopage = kvm_vm_nopage,
2814 };
2815
2816 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2817 {
2818 vma->vm_ops = &kvm_vm_vm_ops;
2819 return 0;
2820 }
2821
2822 static struct file_operations kvm_vm_fops = {
2823 .release = kvm_vm_release,
2824 .unlocked_ioctl = kvm_vm_ioctl,
2825 .compat_ioctl = kvm_vm_ioctl,
2826 .mmap = kvm_vm_mmap,
2827 };
2828
2829 static int kvm_dev_ioctl_create_vm(void)
2830 {
2831 int fd, r;
2832 struct inode *inode;
2833 struct file *file;
2834 struct kvm *kvm;
2835
2836 kvm = kvm_create_vm();
2837 if (IS_ERR(kvm))
2838 return PTR_ERR(kvm);
2839 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2840 if (r) {
2841 kvm_destroy_vm(kvm);
2842 return r;
2843 }
2844
2845 kvm->filp = file;
2846
2847 return fd;
2848 }
2849
2850 static long kvm_dev_ioctl(struct file *filp,
2851 unsigned int ioctl, unsigned long arg)
2852 {
2853 void __user *argp = (void __user *)arg;
2854 long r = -EINVAL;
2855
2856 switch (ioctl) {
2857 case KVM_GET_API_VERSION:
2858 r = -EINVAL;
2859 if (arg)
2860 goto out;
2861 r = KVM_API_VERSION;
2862 break;
2863 case KVM_CREATE_VM:
2864 r = -EINVAL;
2865 if (arg)
2866 goto out;
2867 r = kvm_dev_ioctl_create_vm();
2868 break;
2869 case KVM_GET_MSR_INDEX_LIST: {
2870 struct kvm_msr_list __user *user_msr_list = argp;
2871 struct kvm_msr_list msr_list;
2872 unsigned n;
2873
2874 r = -EFAULT;
2875 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2876 goto out;
2877 n = msr_list.nmsrs;
2878 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2879 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2880 goto out;
2881 r = -E2BIG;
2882 if (n < num_msrs_to_save)
2883 goto out;
2884 r = -EFAULT;
2885 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2886 num_msrs_to_save * sizeof(u32)))
2887 goto out;
2888 if (copy_to_user(user_msr_list->indices
2889 + num_msrs_to_save * sizeof(u32),
2890 &emulated_msrs,
2891 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2892 goto out;
2893 r = 0;
2894 break;
2895 }
2896 case KVM_CHECK_EXTENSION:
2897 /*
2898 * No extensions defined at present.
2899 */
2900 r = 0;
2901 break;
2902 case KVM_GET_VCPU_MMAP_SIZE:
2903 r = -EINVAL;
2904 if (arg)
2905 goto out;
2906 r = 2 * PAGE_SIZE;
2907 break;
2908 default:
2909 ;
2910 }
2911 out:
2912 return r;
2913 }
2914
2915 static struct file_operations kvm_chardev_ops = {
2916 .open = kvm_dev_open,
2917 .release = kvm_dev_release,
2918 .unlocked_ioctl = kvm_dev_ioctl,
2919 .compat_ioctl = kvm_dev_ioctl,
2920 };
2921
2922 static struct miscdevice kvm_dev = {
2923 KVM_MINOR,
2924 "kvm",
2925 &kvm_chardev_ops,
2926 };
2927
2928 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2929 void *v)
2930 {
2931 if (val == SYS_RESTART) {
2932 /*
2933 * Some (well, at least mine) BIOSes hang on reboot if
2934 * in vmx root mode.
2935 */
2936 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2937 on_each_cpu(hardware_disable, NULL, 0, 1);
2938 }
2939 return NOTIFY_OK;
2940 }
2941
2942 static struct notifier_block kvm_reboot_notifier = {
2943 .notifier_call = kvm_reboot,
2944 .priority = 0,
2945 };
2946
2947 /*
2948 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2949 * cached on it.
2950 */
2951 static void decache_vcpus_on_cpu(int cpu)
2952 {
2953 struct kvm *vm;
2954 struct kvm_vcpu *vcpu;
2955 int i;
2956
2957 spin_lock(&kvm_lock);
2958 list_for_each_entry(vm, &vm_list, vm_list)
2959 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2960 vcpu = &vm->vcpus[i];
2961 /*
2962 * If the vcpu is locked, then it is running on some
2963 * other cpu and therefore it is not cached on the
2964 * cpu in question.
2965 *
2966 * If it's not locked, check the last cpu it executed
2967 * on.
2968 */
2969 if (mutex_trylock(&vcpu->mutex)) {
2970 if (vcpu->cpu == cpu) {
2971 kvm_arch_ops->vcpu_decache(vcpu);
2972 vcpu->cpu = -1;
2973 }
2974 mutex_unlock(&vcpu->mutex);
2975 }
2976 }
2977 spin_unlock(&kvm_lock);
2978 }
2979
2980 static void hardware_enable(void *junk)
2981 {
2982 int cpu = raw_smp_processor_id();
2983
2984 if (cpu_isset(cpu, cpus_hardware_enabled))
2985 return;
2986 cpu_set(cpu, cpus_hardware_enabled);
2987 kvm_arch_ops->hardware_enable(NULL);
2988 }
2989
2990 static void hardware_disable(void *junk)
2991 {
2992 int cpu = raw_smp_processor_id();
2993
2994 if (!cpu_isset(cpu, cpus_hardware_enabled))
2995 return;
2996 cpu_clear(cpu, cpus_hardware_enabled);
2997 decache_vcpus_on_cpu(cpu);
2998 kvm_arch_ops->hardware_disable(NULL);
2999 }
3000
3001 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3002 void *v)
3003 {
3004 int cpu = (long)v;
3005
3006 switch (val) {
3007 case CPU_DOWN_PREPARE:
3008 case CPU_DOWN_PREPARE_FROZEN:
3009 case CPU_UP_CANCELED:
3010 case CPU_UP_CANCELED_FROZEN:
3011 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3012 cpu);
3013 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3014 break;
3015 case CPU_ONLINE:
3016 case CPU_ONLINE_FROZEN:
3017 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3018 cpu);
3019 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3020 break;
3021 }
3022 return NOTIFY_OK;
3023 }
3024
3025 void kvm_io_bus_init(struct kvm_io_bus *bus)
3026 {
3027 memset(bus, 0, sizeof(*bus));
3028 }
3029
3030 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3031 {
3032 int i;
3033
3034 for (i = 0; i < bus->dev_count; i++) {
3035 struct kvm_io_device *pos = bus->devs[i];
3036
3037 kvm_iodevice_destructor(pos);
3038 }
3039 }
3040
3041 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3042 {
3043 int i;
3044
3045 for (i = 0; i < bus->dev_count; i++) {
3046 struct kvm_io_device *pos = bus->devs[i];
3047
3048 if (pos->in_range(pos, addr))
3049 return pos;
3050 }
3051
3052 return NULL;
3053 }
3054
3055 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3056 {
3057 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3058
3059 bus->devs[bus->dev_count++] = dev;
3060 }
3061
3062 static struct notifier_block kvm_cpu_notifier = {
3063 .notifier_call = kvm_cpu_hotplug,
3064 .priority = 20, /* must be > scheduler priority */
3065 };
3066
3067 static u64 stat_get(void *_offset)
3068 {
3069 unsigned offset = (long)_offset;
3070 u64 total = 0;
3071 struct kvm *kvm;
3072 struct kvm_vcpu *vcpu;
3073 int i;
3074
3075 spin_lock(&kvm_lock);
3076 list_for_each_entry(kvm, &vm_list, vm_list)
3077 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3078 vcpu = &kvm->vcpus[i];
3079 total += *(u32 *)((void *)vcpu + offset);
3080 }
3081 spin_unlock(&kvm_lock);
3082 return total;
3083 }
3084
3085 static void stat_set(void *offset, u64 val)
3086 {
3087 }
3088
3089 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3090
3091 static __init void kvm_init_debug(void)
3092 {
3093 struct kvm_stats_debugfs_item *p;
3094
3095 debugfs_dir = debugfs_create_dir("kvm", NULL);
3096 for (p = debugfs_entries; p->name; ++p)
3097 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3098 (void *)(long)p->offset,
3099 &stat_fops);
3100 }
3101
3102 static void kvm_exit_debug(void)
3103 {
3104 struct kvm_stats_debugfs_item *p;
3105
3106 for (p = debugfs_entries; p->name; ++p)
3107 debugfs_remove(p->dentry);
3108 debugfs_remove(debugfs_dir);
3109 }
3110
3111 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3112 {
3113 hardware_disable(NULL);
3114 return 0;
3115 }
3116
3117 static int kvm_resume(struct sys_device *dev)
3118 {
3119 hardware_enable(NULL);
3120 return 0;
3121 }
3122
3123 static struct sysdev_class kvm_sysdev_class = {
3124 set_kset_name("kvm"),
3125 .suspend = kvm_suspend,
3126 .resume = kvm_resume,
3127 };
3128
3129 static struct sys_device kvm_sysdev = {
3130 .id = 0,
3131 .cls = &kvm_sysdev_class,
3132 };
3133
3134 hpa_t bad_page_address;
3135
3136 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3137 {
3138 int r;
3139
3140 if (kvm_arch_ops) {
3141 printk(KERN_ERR "kvm: already loaded the other module\n");
3142 return -EEXIST;
3143 }
3144
3145 if (!ops->cpu_has_kvm_support()) {
3146 printk(KERN_ERR "kvm: no hardware support\n");
3147 return -EOPNOTSUPP;
3148 }
3149 if (ops->disabled_by_bios()) {
3150 printk(KERN_ERR "kvm: disabled by bios\n");
3151 return -EOPNOTSUPP;
3152 }
3153
3154 kvm_arch_ops = ops;
3155
3156 r = kvm_arch_ops->hardware_setup();
3157 if (r < 0)
3158 goto out;
3159
3160 on_each_cpu(hardware_enable, NULL, 0, 1);
3161 r = register_cpu_notifier(&kvm_cpu_notifier);
3162 if (r)
3163 goto out_free_1;
3164 register_reboot_notifier(&kvm_reboot_notifier);
3165
3166 r = sysdev_class_register(&kvm_sysdev_class);
3167 if (r)
3168 goto out_free_2;
3169
3170 r = sysdev_register(&kvm_sysdev);
3171 if (r)
3172 goto out_free_3;
3173
3174 kvm_chardev_ops.owner = module;
3175
3176 r = misc_register(&kvm_dev);
3177 if (r) {
3178 printk (KERN_ERR "kvm: misc device register failed\n");
3179 goto out_free;
3180 }
3181
3182 return r;
3183
3184 out_free:
3185 sysdev_unregister(&kvm_sysdev);
3186 out_free_3:
3187 sysdev_class_unregister(&kvm_sysdev_class);
3188 out_free_2:
3189 unregister_reboot_notifier(&kvm_reboot_notifier);
3190 unregister_cpu_notifier(&kvm_cpu_notifier);
3191 out_free_1:
3192 on_each_cpu(hardware_disable, NULL, 0, 1);
3193 kvm_arch_ops->hardware_unsetup();
3194 out:
3195 kvm_arch_ops = NULL;
3196 return r;
3197 }
3198
3199 void kvm_exit_arch(void)
3200 {
3201 misc_deregister(&kvm_dev);
3202 sysdev_unregister(&kvm_sysdev);
3203 sysdev_class_unregister(&kvm_sysdev_class);
3204 unregister_reboot_notifier(&kvm_reboot_notifier);
3205 unregister_cpu_notifier(&kvm_cpu_notifier);
3206 on_each_cpu(hardware_disable, NULL, 0, 1);
3207 kvm_arch_ops->hardware_unsetup();
3208 kvm_arch_ops = NULL;
3209 }
3210
3211 static __init int kvm_init(void)
3212 {
3213 static struct page *bad_page;
3214 int r;
3215
3216 r = kvm_mmu_module_init();
3217 if (r)
3218 goto out4;
3219
3220 kvm_init_debug();
3221
3222 kvm_init_msr_list();
3223
3224 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3225 r = -ENOMEM;
3226 goto out;
3227 }
3228
3229 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3230 memset(__va(bad_page_address), 0, PAGE_SIZE);
3231
3232 return 0;
3233
3234 out:
3235 kvm_exit_debug();
3236 kvm_mmu_module_exit();
3237 out4:
3238 return r;
3239 }
3240
3241 static __exit void kvm_exit(void)
3242 {
3243 kvm_exit_debug();
3244 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3245 kvm_mmu_module_exit();
3246 }
3247
3248 module_init(kvm_init)
3249 module_exit(kvm_exit)
3250
3251 EXPORT_SYMBOL_GPL(kvm_init_arch);
3252 EXPORT_SYMBOL_GPL(kvm_exit_arch);