]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/mmu.c
[PATCH] KVM: MMU: If emulating an instruction fails, try unprotecting the page
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #define pgprintk(x...) do { printk(x); } while (0)
30 #define rmap_printk(x...) do { printk(x); } while (0)
31
32 #define ASSERT(x) \
33 if (!(x)) { \
34 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
35 __FILE__, __LINE__, #x); \
36 }
37
38 #define PT64_PT_BITS 9
39 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40 #define PT32_PT_BITS 10
41 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
42
43 #define PT_WRITABLE_SHIFT 1
44
45 #define PT_PRESENT_MASK (1ULL << 0)
46 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47 #define PT_USER_MASK (1ULL << 2)
48 #define PT_PWT_MASK (1ULL << 3)
49 #define PT_PCD_MASK (1ULL << 4)
50 #define PT_ACCESSED_MASK (1ULL << 5)
51 #define PT_DIRTY_MASK (1ULL << 6)
52 #define PT_PAGE_SIZE_MASK (1ULL << 7)
53 #define PT_PAT_MASK (1ULL << 7)
54 #define PT_GLOBAL_MASK (1ULL << 8)
55 #define PT64_NX_MASK (1ULL << 63)
56
57 #define PT_PAT_SHIFT 7
58 #define PT_DIR_PAT_SHIFT 12
59 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61 #define PT32_DIR_PSE36_SIZE 4
62 #define PT32_DIR_PSE36_SHIFT 13
63 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66 #define PT32_PTE_COPY_MASK \
67 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
68
69 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
70
71 #define PT_FIRST_AVAIL_BITS_SHIFT 9
72 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92 #define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104 #define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120 #define PFERR_PRESENT_MASK (1U << 0)
121 #define PFERR_WRITE_MASK (1U << 1)
122 #define PFERR_USER_MASK (1U << 2)
123
124 #define PT64_ROOT_LEVEL 4
125 #define PT32_ROOT_LEVEL 2
126 #define PT32E_ROOT_LEVEL 3
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 struct kvm_rmap_desc {
134 u64 *shadow_ptes[RMAP_EXT];
135 struct kvm_rmap_desc *more;
136 };
137
138 static int is_write_protection(struct kvm_vcpu *vcpu)
139 {
140 return vcpu->cr0 & CR0_WP_MASK;
141 }
142
143 static int is_cpuid_PSE36(void)
144 {
145 return 1;
146 }
147
148 static int is_present_pte(unsigned long pte)
149 {
150 return pte & PT_PRESENT_MASK;
151 }
152
153 static int is_writeble_pte(unsigned long pte)
154 {
155 return pte & PT_WRITABLE_MASK;
156 }
157
158 static int is_io_pte(unsigned long pte)
159 {
160 return pte & PT_SHADOW_IO_MARK;
161 }
162
163 static int is_rmap_pte(u64 pte)
164 {
165 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167 }
168
169 /*
170 * Reverse mapping data structures:
171 *
172 * If page->private bit zero is zero, then page->private points to the
173 * shadow page table entry that points to page_address(page).
174 *
175 * If page->private bit zero is one, (then page->private & ~1) points
176 * to a struct kvm_rmap_desc containing more mappings.
177 */
178 static void rmap_add(struct kvm *kvm, u64 *spte)
179 {
180 struct page *page;
181 struct kvm_rmap_desc *desc;
182 int i;
183
184 if (!is_rmap_pte(*spte))
185 return;
186 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187 if (!page->private) {
188 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189 page->private = (unsigned long)spte;
190 } else if (!(page->private & 1)) {
191 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193 if (!desc)
194 BUG(); /* FIXME: return error */
195 desc->shadow_ptes[0] = (u64 *)page->private;
196 desc->shadow_ptes[1] = spte;
197 page->private = (unsigned long)desc | 1;
198 } else {
199 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202 desc = desc->more;
203 if (desc->shadow_ptes[RMAP_EXT-1]) {
204 desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205 if (!desc->more)
206 BUG(); /* FIXME: return error */
207 desc = desc->more;
208 }
209 for (i = 0; desc->shadow_ptes[i]; ++i)
210 ;
211 desc->shadow_ptes[i] = spte;
212 }
213 }
214
215 static void rmap_desc_remove_entry(struct page *page,
216 struct kvm_rmap_desc *desc,
217 int i,
218 struct kvm_rmap_desc *prev_desc)
219 {
220 int j;
221
222 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223 ;
224 desc->shadow_ptes[i] = desc->shadow_ptes[j];
225 desc->shadow_ptes[j] = 0;
226 if (j != 0)
227 return;
228 if (!prev_desc && !desc->more)
229 page->private = (unsigned long)desc->shadow_ptes[0];
230 else
231 if (prev_desc)
232 prev_desc->more = desc->more;
233 else
234 page->private = (unsigned long)desc->more | 1;
235 kfree(desc);
236 }
237
238 static void rmap_remove(struct kvm *kvm, u64 *spte)
239 {
240 struct page *page;
241 struct kvm_rmap_desc *desc;
242 struct kvm_rmap_desc *prev_desc;
243 int i;
244
245 if (!is_rmap_pte(*spte))
246 return;
247 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248 if (!page->private) {
249 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250 BUG();
251 } else if (!(page->private & 1)) {
252 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
253 if ((u64 *)page->private != spte) {
254 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
255 spte, *spte);
256 BUG();
257 }
258 page->private = 0;
259 } else {
260 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
261 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262 prev_desc = NULL;
263 while (desc) {
264 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265 if (desc->shadow_ptes[i] == spte) {
266 rmap_desc_remove_entry(page, desc, i,
267 prev_desc);
268 return;
269 }
270 prev_desc = desc;
271 desc = desc->more;
272 }
273 BUG();
274 }
275 }
276
277 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
278 {
279 struct page *page;
280 struct kvm_memory_slot *slot;
281 struct kvm_rmap_desc *desc;
282 u64 *spte;
283
284 slot = gfn_to_memslot(kvm, gfn);
285 BUG_ON(!slot);
286 page = gfn_to_page(slot, gfn);
287
288 while (page->private) {
289 if (!(page->private & 1))
290 spte = (u64 *)page->private;
291 else {
292 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
293 spte = desc->shadow_ptes[0];
294 }
295 BUG_ON(!spte);
296 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
297 page_to_pfn(page) << PAGE_SHIFT);
298 BUG_ON(!(*spte & PT_PRESENT_MASK));
299 BUG_ON(!(*spte & PT_WRITABLE_MASK));
300 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
301 rmap_remove(kvm, spte);
302 *spte &= ~(u64)PT_WRITABLE_MASK;
303 }
304 }
305
306 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
307 {
308 struct kvm_mmu_page *page_head = page_header(page_hpa);
309
310 list_del(&page_head->link);
311 page_head->page_hpa = page_hpa;
312 list_add(&page_head->link, &vcpu->free_pages);
313 }
314
315 static int is_empty_shadow_page(hpa_t page_hpa)
316 {
317 u32 *pos;
318 u32 *end;
319 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
320 pos != end; pos++)
321 if (*pos != 0)
322 return 0;
323 return 1;
324 }
325
326 static unsigned kvm_page_table_hashfn(gfn_t gfn)
327 {
328 return gfn;
329 }
330
331 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
332 u64 *parent_pte)
333 {
334 struct kvm_mmu_page *page;
335
336 if (list_empty(&vcpu->free_pages))
337 return NULL;
338
339 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
340 list_del(&page->link);
341 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
342 ASSERT(is_empty_shadow_page(page->page_hpa));
343 page->slot_bitmap = 0;
344 page->global = 1;
345 page->multimapped = 0;
346 page->parent_pte = parent_pte;
347 return page;
348 }
349
350 static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
351 {
352 struct kvm_pte_chain *pte_chain;
353 struct hlist_node *node;
354 int i;
355
356 if (!parent_pte)
357 return;
358 if (!page->multimapped) {
359 u64 *old = page->parent_pte;
360
361 if (!old) {
362 page->parent_pte = parent_pte;
363 return;
364 }
365 page->multimapped = 1;
366 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
367 BUG_ON(!pte_chain);
368 INIT_HLIST_HEAD(&page->parent_ptes);
369 hlist_add_head(&pte_chain->link, &page->parent_ptes);
370 pte_chain->parent_ptes[0] = old;
371 }
372 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
373 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
374 continue;
375 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
376 if (!pte_chain->parent_ptes[i]) {
377 pte_chain->parent_ptes[i] = parent_pte;
378 return;
379 }
380 }
381 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
382 BUG_ON(!pte_chain);
383 hlist_add_head(&pte_chain->link, &page->parent_ptes);
384 pte_chain->parent_ptes[0] = parent_pte;
385 }
386
387 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
388 u64 *parent_pte)
389 {
390 struct kvm_pte_chain *pte_chain;
391 struct hlist_node *node;
392 int i;
393
394 if (!page->multimapped) {
395 BUG_ON(page->parent_pte != parent_pte);
396 page->parent_pte = NULL;
397 return;
398 }
399 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
400 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
401 if (!pte_chain->parent_ptes[i])
402 break;
403 if (pte_chain->parent_ptes[i] != parent_pte)
404 continue;
405 while (i + 1 < NR_PTE_CHAIN_ENTRIES) {
406 pte_chain->parent_ptes[i]
407 = pte_chain->parent_ptes[i + 1];
408 ++i;
409 }
410 pte_chain->parent_ptes[i] = NULL;
411 return;
412 }
413 BUG();
414 }
415
416 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
417 gfn_t gfn)
418 {
419 unsigned index;
420 struct hlist_head *bucket;
421 struct kvm_mmu_page *page;
422 struct hlist_node *node;
423
424 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
425 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
426 bucket = &vcpu->kvm->mmu_page_hash[index];
427 hlist_for_each_entry(page, node, bucket, hash_link)
428 if (page->gfn == gfn && !page->role.metaphysical) {
429 pgprintk("%s: found role %x\n",
430 __FUNCTION__, page->role.word);
431 return page;
432 }
433 return NULL;
434 }
435
436 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
437 gfn_t gfn,
438 gva_t gaddr,
439 unsigned level,
440 int metaphysical,
441 u64 *parent_pte)
442 {
443 union kvm_mmu_page_role role;
444 unsigned index;
445 unsigned quadrant;
446 struct hlist_head *bucket;
447 struct kvm_mmu_page *page;
448 struct hlist_node *node;
449
450 role.word = 0;
451 role.glevels = vcpu->mmu.root_level;
452 role.level = level;
453 role.metaphysical = metaphysical;
454 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
455 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
456 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
457 role.quadrant = quadrant;
458 }
459 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
460 gfn, role.word);
461 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
462 bucket = &vcpu->kvm->mmu_page_hash[index];
463 hlist_for_each_entry(page, node, bucket, hash_link)
464 if (page->gfn == gfn && page->role.word == role.word) {
465 mmu_page_add_parent_pte(page, parent_pte);
466 pgprintk("%s: found\n", __FUNCTION__);
467 return page;
468 }
469 page = kvm_mmu_alloc_page(vcpu, parent_pte);
470 if (!page)
471 return page;
472 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
473 page->gfn = gfn;
474 page->role = role;
475 hlist_add_head(&page->hash_link, bucket);
476 if (!metaphysical)
477 rmap_write_protect(vcpu->kvm, gfn);
478 return page;
479 }
480
481 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
482 struct kvm_mmu_page *page)
483 {
484 BUG();
485 }
486
487 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
488 struct kvm_mmu_page *page,
489 u64 *parent_pte)
490 {
491 mmu_page_remove_parent_pte(page, parent_pte);
492 if (page->role.level > PT_PAGE_TABLE_LEVEL)
493 kvm_mmu_page_unlink_children(vcpu, page);
494 hlist_del(&page->hash_link);
495 list_del(&page->link);
496 list_add(&page->link, &vcpu->free_pages);
497 }
498
499 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
500 struct kvm_mmu_page *page)
501 {
502 u64 *parent_pte;
503
504 while (page->multimapped || page->parent_pte) {
505 if (!page->multimapped)
506 parent_pte = page->parent_pte;
507 else {
508 struct kvm_pte_chain *chain;
509
510 chain = container_of(page->parent_ptes.first,
511 struct kvm_pte_chain, link);
512 parent_pte = chain->parent_ptes[0];
513 }
514 kvm_mmu_put_page(vcpu, page, parent_pte);
515 *parent_pte = 0;
516 }
517 }
518
519 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
520 {
521 unsigned index;
522 struct hlist_head *bucket;
523 struct kvm_mmu_page *page;
524 struct hlist_node *node, *n;
525 int r;
526
527 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
528 r = 0;
529 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
530 bucket = &vcpu->kvm->mmu_page_hash[index];
531 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
532 if (page->gfn == gfn && !page->role.metaphysical) {
533 kvm_mmu_zap_page(vcpu, page);
534 r = 1;
535 }
536 return r;
537 }
538
539 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
540 {
541 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
542 struct kvm_mmu_page *page_head = page_header(__pa(pte));
543
544 __set_bit(slot, &page_head->slot_bitmap);
545 }
546
547 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
548 {
549 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
550
551 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
552 }
553
554 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
555 {
556 struct kvm_memory_slot *slot;
557 struct page *page;
558
559 ASSERT((gpa & HPA_ERR_MASK) == 0);
560 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
561 if (!slot)
562 return gpa | HPA_ERR_MASK;
563 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
564 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
565 | (gpa & (PAGE_SIZE-1));
566 }
567
568 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
569 {
570 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
571
572 if (gpa == UNMAPPED_GVA)
573 return UNMAPPED_GVA;
574 return gpa_to_hpa(vcpu, gpa);
575 }
576
577
578 static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
579 int level)
580 {
581 u64 *pos;
582 u64 *end;
583
584 ASSERT(vcpu);
585 ASSERT(VALID_PAGE(page_hpa));
586 ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
587
588 for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
589 pos != end; pos++) {
590 u64 current_ent = *pos;
591
592 if (is_present_pte(current_ent)) {
593 if (level != 1)
594 release_pt_page_64(vcpu,
595 current_ent &
596 PT64_BASE_ADDR_MASK,
597 level - 1);
598 else
599 rmap_remove(vcpu->kvm, pos);
600 }
601 *pos = 0;
602 }
603 kvm_mmu_free_page(vcpu, page_hpa);
604 }
605
606 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
607 {
608 }
609
610 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
611 {
612 int level = PT32E_ROOT_LEVEL;
613 hpa_t table_addr = vcpu->mmu.root_hpa;
614
615 for (; ; level--) {
616 u32 index = PT64_INDEX(v, level);
617 u64 *table;
618 u64 pte;
619
620 ASSERT(VALID_PAGE(table_addr));
621 table = __va(table_addr);
622
623 if (level == 1) {
624 pte = table[index];
625 if (is_present_pte(pte) && is_writeble_pte(pte))
626 return 0;
627 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
628 page_header_update_slot(vcpu->kvm, table, v);
629 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
630 PT_USER_MASK;
631 rmap_add(vcpu->kvm, &table[index]);
632 return 0;
633 }
634
635 if (table[index] == 0) {
636 struct kvm_mmu_page *new_table;
637 gfn_t pseudo_gfn;
638
639 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
640 >> PAGE_SHIFT;
641 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
642 v, level - 1,
643 1, &table[index]);
644 if (!new_table) {
645 pgprintk("nonpaging_map: ENOMEM\n");
646 return -ENOMEM;
647 }
648
649 table[index] = new_table->page_hpa | PT_PRESENT_MASK
650 | PT_WRITABLE_MASK | PT_USER_MASK;
651 }
652 table_addr = table[index] & PT64_BASE_ADDR_MASK;
653 }
654 }
655
656 static void mmu_free_roots(struct kvm_vcpu *vcpu)
657 {
658 int i;
659
660 #ifdef CONFIG_X86_64
661 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
662 hpa_t root = vcpu->mmu.root_hpa;
663
664 ASSERT(VALID_PAGE(root));
665 vcpu->mmu.root_hpa = INVALID_PAGE;
666 return;
667 }
668 #endif
669 for (i = 0; i < 4; ++i) {
670 hpa_t root = vcpu->mmu.pae_root[i];
671
672 ASSERT(VALID_PAGE(root));
673 root &= PT64_BASE_ADDR_MASK;
674 vcpu->mmu.pae_root[i] = INVALID_PAGE;
675 }
676 vcpu->mmu.root_hpa = INVALID_PAGE;
677 }
678
679 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
680 {
681 int i;
682 gfn_t root_gfn;
683 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
684
685 #ifdef CONFIG_X86_64
686 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
687 hpa_t root = vcpu->mmu.root_hpa;
688
689 ASSERT(!VALID_PAGE(root));
690 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
691 PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
692 vcpu->mmu.root_hpa = root;
693 return;
694 }
695 #endif
696 for (i = 0; i < 4; ++i) {
697 hpa_t root = vcpu->mmu.pae_root[i];
698
699 ASSERT(!VALID_PAGE(root));
700 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
701 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
702 else if (vcpu->mmu.root_level == 0)
703 root_gfn = 0;
704 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
705 PT32_ROOT_LEVEL, !is_paging(vcpu),
706 NULL)->page_hpa;
707 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
708 }
709 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
710 }
711
712 static void nonpaging_flush(struct kvm_vcpu *vcpu)
713 {
714 hpa_t root = vcpu->mmu.root_hpa;
715
716 ++kvm_stat.tlb_flush;
717 pgprintk("nonpaging_flush\n");
718 mmu_free_roots(vcpu);
719 mmu_alloc_roots(vcpu);
720 kvm_arch_ops->set_cr3(vcpu, root);
721 kvm_arch_ops->tlb_flush(vcpu);
722 }
723
724 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
725 {
726 return vaddr;
727 }
728
729 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
730 u32 error_code)
731 {
732 int ret;
733 gpa_t addr = gva;
734
735 ASSERT(vcpu);
736 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
737
738 for (;;) {
739 hpa_t paddr;
740
741 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
742
743 if (is_error_hpa(paddr))
744 return 1;
745
746 ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
747 if (ret) {
748 nonpaging_flush(vcpu);
749 continue;
750 }
751 break;
752 }
753 return ret;
754 }
755
756 static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
757 {
758 }
759
760 static void nonpaging_free(struct kvm_vcpu *vcpu)
761 {
762 mmu_free_roots(vcpu);
763 }
764
765 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
766 {
767 struct kvm_mmu *context = &vcpu->mmu;
768
769 context->new_cr3 = nonpaging_new_cr3;
770 context->page_fault = nonpaging_page_fault;
771 context->inval_page = nonpaging_inval_page;
772 context->gva_to_gpa = nonpaging_gva_to_gpa;
773 context->free = nonpaging_free;
774 context->root_level = 0;
775 context->shadow_root_level = PT32E_ROOT_LEVEL;
776 mmu_alloc_roots(vcpu);
777 ASSERT(VALID_PAGE(context->root_hpa));
778 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
779 return 0;
780 }
781
782 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
783 {
784 ++kvm_stat.tlb_flush;
785 kvm_arch_ops->tlb_flush(vcpu);
786 }
787
788 static void paging_new_cr3(struct kvm_vcpu *vcpu)
789 {
790 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
791 mmu_free_roots(vcpu);
792 mmu_alloc_roots(vcpu);
793 kvm_mmu_flush_tlb(vcpu);
794 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
795 }
796
797 static void mark_pagetable_nonglobal(void *shadow_pte)
798 {
799 page_header(__pa(shadow_pte))->global = 0;
800 }
801
802 static inline void set_pte_common(struct kvm_vcpu *vcpu,
803 u64 *shadow_pte,
804 gpa_t gaddr,
805 int dirty,
806 u64 access_bits,
807 gfn_t gfn)
808 {
809 hpa_t paddr;
810
811 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
812 if (!dirty)
813 access_bits &= ~PT_WRITABLE_MASK;
814
815 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
816
817 *shadow_pte |= access_bits;
818
819 if (!(*shadow_pte & PT_GLOBAL_MASK))
820 mark_pagetable_nonglobal(shadow_pte);
821
822 if (is_error_hpa(paddr)) {
823 *shadow_pte |= gaddr;
824 *shadow_pte |= PT_SHADOW_IO_MARK;
825 *shadow_pte &= ~PT_PRESENT_MASK;
826 return;
827 }
828
829 *shadow_pte |= paddr;
830
831 if (access_bits & PT_WRITABLE_MASK) {
832 struct kvm_mmu_page *shadow;
833
834 shadow = kvm_mmu_lookup_page(vcpu, gfn);
835 if (shadow) {
836 pgprintk("%s: found shadow page for %lx, marking ro\n",
837 __FUNCTION__, gfn);
838 access_bits &= ~PT_WRITABLE_MASK;
839 *shadow_pte &= ~PT_WRITABLE_MASK;
840 }
841 }
842
843 if (access_bits & PT_WRITABLE_MASK)
844 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
845
846 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
847 rmap_add(vcpu->kvm, shadow_pte);
848 }
849
850 static void inject_page_fault(struct kvm_vcpu *vcpu,
851 u64 addr,
852 u32 err_code)
853 {
854 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
855 }
856
857 static inline int fix_read_pf(u64 *shadow_ent)
858 {
859 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
860 !(*shadow_ent & PT_USER_MASK)) {
861 /*
862 * If supervisor write protect is disabled, we shadow kernel
863 * pages as user pages so we can trap the write access.
864 */
865 *shadow_ent |= PT_USER_MASK;
866 *shadow_ent &= ~PT_WRITABLE_MASK;
867
868 return 1;
869
870 }
871 return 0;
872 }
873
874 static int may_access(u64 pte, int write, int user)
875 {
876
877 if (user && !(pte & PT_USER_MASK))
878 return 0;
879 if (write && !(pte & PT_WRITABLE_MASK))
880 return 0;
881 return 1;
882 }
883
884 /*
885 * Remove a shadow pte.
886 */
887 static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
888 {
889 hpa_t page_addr = vcpu->mmu.root_hpa;
890 int level = vcpu->mmu.shadow_root_level;
891
892 ++kvm_stat.invlpg;
893
894 for (; ; level--) {
895 u32 index = PT64_INDEX(addr, level);
896 u64 *table = __va(page_addr);
897
898 if (level == PT_PAGE_TABLE_LEVEL ) {
899 rmap_remove(vcpu->kvm, &table[index]);
900 table[index] = 0;
901 return;
902 }
903
904 if (!is_present_pte(table[index]))
905 return;
906
907 page_addr = table[index] & PT64_BASE_ADDR_MASK;
908
909 if (level == PT_DIRECTORY_LEVEL &&
910 (table[index] & PT_SHADOW_PS_MARK)) {
911 table[index] = 0;
912 release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
913
914 kvm_arch_ops->tlb_flush(vcpu);
915 return;
916 }
917 }
918 }
919
920 static void paging_free(struct kvm_vcpu *vcpu)
921 {
922 nonpaging_free(vcpu);
923 }
924
925 #define PTTYPE 64
926 #include "paging_tmpl.h"
927 #undef PTTYPE
928
929 #define PTTYPE 32
930 #include "paging_tmpl.h"
931 #undef PTTYPE
932
933 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
934 {
935 struct kvm_mmu *context = &vcpu->mmu;
936
937 ASSERT(is_pae(vcpu));
938 context->new_cr3 = paging_new_cr3;
939 context->page_fault = paging64_page_fault;
940 context->inval_page = paging_inval_page;
941 context->gva_to_gpa = paging64_gva_to_gpa;
942 context->free = paging_free;
943 context->root_level = level;
944 context->shadow_root_level = level;
945 mmu_alloc_roots(vcpu);
946 ASSERT(VALID_PAGE(context->root_hpa));
947 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
948 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
949 return 0;
950 }
951
952 static int paging64_init_context(struct kvm_vcpu *vcpu)
953 {
954 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
955 }
956
957 static int paging32_init_context(struct kvm_vcpu *vcpu)
958 {
959 struct kvm_mmu *context = &vcpu->mmu;
960
961 context->new_cr3 = paging_new_cr3;
962 context->page_fault = paging32_page_fault;
963 context->inval_page = paging_inval_page;
964 context->gva_to_gpa = paging32_gva_to_gpa;
965 context->free = paging_free;
966 context->root_level = PT32_ROOT_LEVEL;
967 context->shadow_root_level = PT32E_ROOT_LEVEL;
968 mmu_alloc_roots(vcpu);
969 ASSERT(VALID_PAGE(context->root_hpa));
970 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
971 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
972 return 0;
973 }
974
975 static int paging32E_init_context(struct kvm_vcpu *vcpu)
976 {
977 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
978 }
979
980 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
981 {
982 ASSERT(vcpu);
983 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
984
985 if (!is_paging(vcpu))
986 return nonpaging_init_context(vcpu);
987 else if (is_long_mode(vcpu))
988 return paging64_init_context(vcpu);
989 else if (is_pae(vcpu))
990 return paging32E_init_context(vcpu);
991 else
992 return paging32_init_context(vcpu);
993 }
994
995 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
996 {
997 ASSERT(vcpu);
998 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
999 vcpu->mmu.free(vcpu);
1000 vcpu->mmu.root_hpa = INVALID_PAGE;
1001 }
1002 }
1003
1004 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1005 {
1006 destroy_kvm_mmu(vcpu);
1007 return init_kvm_mmu(vcpu);
1008 }
1009
1010 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1011 {
1012 gfn_t gfn = gpa >> PAGE_SHIFT;
1013 struct kvm_mmu_page *page;
1014 struct kvm_mmu_page *child;
1015 struct hlist_node *node;
1016 struct hlist_head *bucket;
1017 unsigned index;
1018 u64 *spte;
1019 u64 pte;
1020 unsigned offset = offset_in_page(gpa);
1021 unsigned page_offset;
1022 int level;
1023
1024 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1025 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1026 bucket = &vcpu->kvm->mmu_page_hash[index];
1027 hlist_for_each_entry(page, node, bucket, hash_link) {
1028 if (page->gfn != gfn || page->role.metaphysical)
1029 continue;
1030 page_offset = offset;
1031 level = page->role.level;
1032 if (page->role.glevels == PT32_ROOT_LEVEL) {
1033 page_offset <<= 1; /* 32->64 */
1034 page_offset &= ~PAGE_MASK;
1035 }
1036 spte = __va(page->page_hpa);
1037 spte += page_offset / sizeof(*spte);
1038 pte = *spte;
1039 if (is_present_pte(pte)) {
1040 if (level == PT_PAGE_TABLE_LEVEL)
1041 rmap_remove(vcpu->kvm, spte);
1042 else {
1043 child = page_header(pte & PT64_BASE_ADDR_MASK);
1044 mmu_page_remove_parent_pte(child, spte);
1045 }
1046 }
1047 *spte = 0;
1048 }
1049 }
1050
1051 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1052 {
1053 }
1054
1055 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1056 {
1057 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1058
1059 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1060 }
1061
1062 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1063 {
1064 while (!list_empty(&vcpu->free_pages)) {
1065 struct kvm_mmu_page *page;
1066
1067 page = list_entry(vcpu->free_pages.next,
1068 struct kvm_mmu_page, link);
1069 list_del(&page->link);
1070 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1071 page->page_hpa = INVALID_PAGE;
1072 }
1073 free_page((unsigned long)vcpu->mmu.pae_root);
1074 }
1075
1076 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1077 {
1078 struct page *page;
1079 int i;
1080
1081 ASSERT(vcpu);
1082
1083 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1084 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1085
1086 INIT_LIST_HEAD(&page_header->link);
1087 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1088 goto error_1;
1089 page->private = (unsigned long)page_header;
1090 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1091 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1092 list_add(&page_header->link, &vcpu->free_pages);
1093 }
1094
1095 /*
1096 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1097 * Therefore we need to allocate shadow page tables in the first
1098 * 4GB of memory, which happens to fit the DMA32 zone.
1099 */
1100 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1101 if (!page)
1102 goto error_1;
1103 vcpu->mmu.pae_root = page_address(page);
1104 for (i = 0; i < 4; ++i)
1105 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1106
1107 return 0;
1108
1109 error_1:
1110 free_mmu_pages(vcpu);
1111 return -ENOMEM;
1112 }
1113
1114 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1115 {
1116 ASSERT(vcpu);
1117 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1118 ASSERT(list_empty(&vcpu->free_pages));
1119
1120 return alloc_mmu_pages(vcpu);
1121 }
1122
1123 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1124 {
1125 ASSERT(vcpu);
1126 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1127 ASSERT(!list_empty(&vcpu->free_pages));
1128
1129 return init_kvm_mmu(vcpu);
1130 }
1131
1132 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1133 {
1134 ASSERT(vcpu);
1135
1136 destroy_kvm_mmu(vcpu);
1137 free_mmu_pages(vcpu);
1138 }
1139
1140 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1141 {
1142 struct kvm_mmu_page *page;
1143
1144 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1145 int i;
1146 u64 *pt;
1147
1148 if (!test_bit(slot, &page->slot_bitmap))
1149 continue;
1150
1151 pt = __va(page->page_hpa);
1152 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1153 /* avoid RMW */
1154 if (pt[i] & PT_WRITABLE_MASK) {
1155 rmap_remove(kvm, &pt[i]);
1156 pt[i] &= ~PT_WRITABLE_MASK;
1157 }
1158 }
1159 }