]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/mmu.c
KVM: MMU: Store shadow page tables as kernel virtual addresses, not physical
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #ifndef MMU_DEBUG
56 #define ASSERT(x) do { } while (0)
57 #else
58 #define ASSERT(x) \
59 if (!(x)) { \
60 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
61 __FILE__, __LINE__, #x); \
62 }
63 #endif
64
65 #define PT64_PT_BITS 9
66 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67 #define PT32_PT_BITS 10
68 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
69
70 #define PT_WRITABLE_SHIFT 1
71
72 #define PT_PRESENT_MASK (1ULL << 0)
73 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74 #define PT_USER_MASK (1ULL << 2)
75 #define PT_PWT_MASK (1ULL << 3)
76 #define PT_PCD_MASK (1ULL << 4)
77 #define PT_ACCESSED_MASK (1ULL << 5)
78 #define PT_DIRTY_MASK (1ULL << 6)
79 #define PT_PAGE_SIZE_MASK (1ULL << 7)
80 #define PT_PAT_MASK (1ULL << 7)
81 #define PT_GLOBAL_MASK (1ULL << 8)
82 #define PT64_NX_MASK (1ULL << 63)
83
84 #define PT_PAT_SHIFT 7
85 #define PT_DIR_PAT_SHIFT 12
86 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
87
88 #define PT32_DIR_PSE36_SIZE 4
89 #define PT32_DIR_PSE36_SHIFT 13
90 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
91
92
93 #define PT32_PTE_COPY_MASK \
94 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
95
96 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
97
98 #define PT_FIRST_AVAIL_BITS_SHIFT 9
99 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
103
104 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
106
107 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
109
110 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
111
112 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
113
114 #define PT64_LEVEL_BITS 9
115
116 #define PT64_LEVEL_SHIFT(level) \
117 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
118
119 #define PT64_LEVEL_MASK(level) \
120 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
121
122 #define PT64_INDEX(address, level)\
123 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
124
125
126 #define PT32_LEVEL_BITS 10
127
128 #define PT32_LEVEL_SHIFT(level) \
129 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
130
131 #define PT32_LEVEL_MASK(level) \
132 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
133
134 #define PT32_INDEX(address, level)\
135 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136
137
138 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
139 #define PT64_DIR_BASE_ADDR_MASK \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
141
142 #define PT32_BASE_ADDR_MASK PAGE_MASK
143 #define PT32_DIR_BASE_ADDR_MASK \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
145
146
147 #define PFERR_PRESENT_MASK (1U << 0)
148 #define PFERR_WRITE_MASK (1U << 1)
149 #define PFERR_USER_MASK (1U << 2)
150 #define PFERR_FETCH_MASK (1U << 4)
151
152 #define PT64_ROOT_LEVEL 4
153 #define PT32_ROOT_LEVEL 2
154 #define PT32E_ROOT_LEVEL 3
155
156 #define PT_DIRECTORY_LEVEL 2
157 #define PT_PAGE_TABLE_LEVEL 1
158
159 #define RMAP_EXT 4
160
161 struct kvm_rmap_desc {
162 u64 *shadow_ptes[RMAP_EXT];
163 struct kvm_rmap_desc *more;
164 };
165
166 static struct kmem_cache *pte_chain_cache;
167 static struct kmem_cache *rmap_desc_cache;
168
169 static int is_write_protection(struct kvm_vcpu *vcpu)
170 {
171 return vcpu->cr0 & CR0_WP_MASK;
172 }
173
174 static int is_cpuid_PSE36(void)
175 {
176 return 1;
177 }
178
179 static int is_nx(struct kvm_vcpu *vcpu)
180 {
181 return vcpu->shadow_efer & EFER_NX;
182 }
183
184 static int is_present_pte(unsigned long pte)
185 {
186 return pte & PT_PRESENT_MASK;
187 }
188
189 static int is_writeble_pte(unsigned long pte)
190 {
191 return pte & PT_WRITABLE_MASK;
192 }
193
194 static int is_io_pte(unsigned long pte)
195 {
196 return pte & PT_SHADOW_IO_MARK;
197 }
198
199 static int is_rmap_pte(u64 pte)
200 {
201 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
202 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
203 }
204
205 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
206 struct kmem_cache *base_cache, int min,
207 gfp_t gfp_flags)
208 {
209 void *obj;
210
211 if (cache->nobjs >= min)
212 return 0;
213 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
214 obj = kmem_cache_zalloc(base_cache, gfp_flags);
215 if (!obj)
216 return -ENOMEM;
217 cache->objects[cache->nobjs++] = obj;
218 }
219 return 0;
220 }
221
222 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
223 {
224 while (mc->nobjs)
225 kfree(mc->objects[--mc->nobjs]);
226 }
227
228 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
229 {
230 int r;
231
232 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
233 pte_chain_cache, 4, gfp_flags);
234 if (r)
235 goto out;
236 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
237 rmap_desc_cache, 1, gfp_flags);
238 out:
239 return r;
240 }
241
242 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
243 {
244 int r;
245
246 r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
247 if (r < 0) {
248 spin_unlock(&vcpu->kvm->lock);
249 kvm_arch_ops->vcpu_put(vcpu);
250 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
251 kvm_arch_ops->vcpu_load(vcpu);
252 spin_lock(&vcpu->kvm->lock);
253 }
254 return r;
255 }
256
257 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
258 {
259 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
260 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
261 }
262
263 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
264 size_t size)
265 {
266 void *p;
267
268 BUG_ON(!mc->nobjs);
269 p = mc->objects[--mc->nobjs];
270 memset(p, 0, size);
271 return p;
272 }
273
274 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
275 {
276 if (mc->nobjs < KVM_NR_MEM_OBJS)
277 mc->objects[mc->nobjs++] = obj;
278 else
279 kfree(obj);
280 }
281
282 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
283 {
284 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
285 sizeof(struct kvm_pte_chain));
286 }
287
288 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
289 struct kvm_pte_chain *pc)
290 {
291 mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
292 }
293
294 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
295 {
296 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
297 sizeof(struct kvm_rmap_desc));
298 }
299
300 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
301 struct kvm_rmap_desc *rd)
302 {
303 mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
304 }
305
306 /*
307 * Reverse mapping data structures:
308 *
309 * If page->private bit zero is zero, then page->private points to the
310 * shadow page table entry that points to page_address(page).
311 *
312 * If page->private bit zero is one, (then page->private & ~1) points
313 * to a struct kvm_rmap_desc containing more mappings.
314 */
315 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
316 {
317 struct page *page;
318 struct kvm_rmap_desc *desc;
319 int i;
320
321 if (!is_rmap_pte(*spte))
322 return;
323 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
324 if (!page_private(page)) {
325 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
326 set_page_private(page,(unsigned long)spte);
327 } else if (!(page_private(page) & 1)) {
328 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
329 desc = mmu_alloc_rmap_desc(vcpu);
330 desc->shadow_ptes[0] = (u64 *)page_private(page);
331 desc->shadow_ptes[1] = spte;
332 set_page_private(page,(unsigned long)desc | 1);
333 } else {
334 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
335 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
336 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
337 desc = desc->more;
338 if (desc->shadow_ptes[RMAP_EXT-1]) {
339 desc->more = mmu_alloc_rmap_desc(vcpu);
340 desc = desc->more;
341 }
342 for (i = 0; desc->shadow_ptes[i]; ++i)
343 ;
344 desc->shadow_ptes[i] = spte;
345 }
346 }
347
348 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
349 struct page *page,
350 struct kvm_rmap_desc *desc,
351 int i,
352 struct kvm_rmap_desc *prev_desc)
353 {
354 int j;
355
356 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
357 ;
358 desc->shadow_ptes[i] = desc->shadow_ptes[j];
359 desc->shadow_ptes[j] = NULL;
360 if (j != 0)
361 return;
362 if (!prev_desc && !desc->more)
363 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
364 else
365 if (prev_desc)
366 prev_desc->more = desc->more;
367 else
368 set_page_private(page,(unsigned long)desc->more | 1);
369 mmu_free_rmap_desc(vcpu, desc);
370 }
371
372 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
373 {
374 struct page *page;
375 struct kvm_rmap_desc *desc;
376 struct kvm_rmap_desc *prev_desc;
377 int i;
378
379 if (!is_rmap_pte(*spte))
380 return;
381 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
382 if (!page_private(page)) {
383 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
384 BUG();
385 } else if (!(page_private(page) & 1)) {
386 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
387 if ((u64 *)page_private(page) != spte) {
388 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
389 spte, *spte);
390 BUG();
391 }
392 set_page_private(page,0);
393 } else {
394 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
395 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
396 prev_desc = NULL;
397 while (desc) {
398 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
399 if (desc->shadow_ptes[i] == spte) {
400 rmap_desc_remove_entry(vcpu, page,
401 desc, i,
402 prev_desc);
403 return;
404 }
405 prev_desc = desc;
406 desc = desc->more;
407 }
408 BUG();
409 }
410 }
411
412 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
413 {
414 struct kvm *kvm = vcpu->kvm;
415 struct page *page;
416 struct kvm_rmap_desc *desc;
417 u64 *spte;
418
419 page = gfn_to_page(kvm, gfn);
420 BUG_ON(!page);
421
422 while (page_private(page)) {
423 if (!(page_private(page) & 1))
424 spte = (u64 *)page_private(page);
425 else {
426 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
427 spte = desc->shadow_ptes[0];
428 }
429 BUG_ON(!spte);
430 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
431 != page_to_pfn(page));
432 BUG_ON(!(*spte & PT_PRESENT_MASK));
433 BUG_ON(!(*spte & PT_WRITABLE_MASK));
434 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
435 rmap_remove(vcpu, spte);
436 kvm_arch_ops->tlb_flush(vcpu);
437 *spte &= ~(u64)PT_WRITABLE_MASK;
438 }
439 }
440
441 #ifdef MMU_DEBUG
442 static int is_empty_shadow_page(u64 *spt)
443 {
444 u64 *pos;
445 u64 *end;
446
447 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
448 if (*pos != 0) {
449 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
450 pos, *pos);
451 return 0;
452 }
453 return 1;
454 }
455 #endif
456
457 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
458 struct kvm_mmu_page *page_head)
459 {
460 ASSERT(is_empty_shadow_page(page_head->spt));
461 list_move(&page_head->link, &vcpu->free_pages);
462 ++vcpu->kvm->n_free_mmu_pages;
463 }
464
465 static unsigned kvm_page_table_hashfn(gfn_t gfn)
466 {
467 return gfn;
468 }
469
470 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
471 u64 *parent_pte)
472 {
473 struct kvm_mmu_page *page;
474
475 if (list_empty(&vcpu->free_pages))
476 return NULL;
477
478 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
479 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
480 ASSERT(is_empty_shadow_page(page->spt));
481 page->slot_bitmap = 0;
482 page->multimapped = 0;
483 page->parent_pte = parent_pte;
484 --vcpu->kvm->n_free_mmu_pages;
485 return page;
486 }
487
488 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
489 struct kvm_mmu_page *page, u64 *parent_pte)
490 {
491 struct kvm_pte_chain *pte_chain;
492 struct hlist_node *node;
493 int i;
494
495 if (!parent_pte)
496 return;
497 if (!page->multimapped) {
498 u64 *old = page->parent_pte;
499
500 if (!old) {
501 page->parent_pte = parent_pte;
502 return;
503 }
504 page->multimapped = 1;
505 pte_chain = mmu_alloc_pte_chain(vcpu);
506 INIT_HLIST_HEAD(&page->parent_ptes);
507 hlist_add_head(&pte_chain->link, &page->parent_ptes);
508 pte_chain->parent_ptes[0] = old;
509 }
510 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
511 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
512 continue;
513 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
514 if (!pte_chain->parent_ptes[i]) {
515 pte_chain->parent_ptes[i] = parent_pte;
516 return;
517 }
518 }
519 pte_chain = mmu_alloc_pte_chain(vcpu);
520 BUG_ON(!pte_chain);
521 hlist_add_head(&pte_chain->link, &page->parent_ptes);
522 pte_chain->parent_ptes[0] = parent_pte;
523 }
524
525 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
526 struct kvm_mmu_page *page,
527 u64 *parent_pte)
528 {
529 struct kvm_pte_chain *pte_chain;
530 struct hlist_node *node;
531 int i;
532
533 if (!page->multimapped) {
534 BUG_ON(page->parent_pte != parent_pte);
535 page->parent_pte = NULL;
536 return;
537 }
538 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
539 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
540 if (!pte_chain->parent_ptes[i])
541 break;
542 if (pte_chain->parent_ptes[i] != parent_pte)
543 continue;
544 while (i + 1 < NR_PTE_CHAIN_ENTRIES
545 && pte_chain->parent_ptes[i + 1]) {
546 pte_chain->parent_ptes[i]
547 = pte_chain->parent_ptes[i + 1];
548 ++i;
549 }
550 pte_chain->parent_ptes[i] = NULL;
551 if (i == 0) {
552 hlist_del(&pte_chain->link);
553 mmu_free_pte_chain(vcpu, pte_chain);
554 if (hlist_empty(&page->parent_ptes)) {
555 page->multimapped = 0;
556 page->parent_pte = NULL;
557 }
558 }
559 return;
560 }
561 BUG();
562 }
563
564 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
565 gfn_t gfn)
566 {
567 unsigned index;
568 struct hlist_head *bucket;
569 struct kvm_mmu_page *page;
570 struct hlist_node *node;
571
572 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
573 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
574 bucket = &vcpu->kvm->mmu_page_hash[index];
575 hlist_for_each_entry(page, node, bucket, hash_link)
576 if (page->gfn == gfn && !page->role.metaphysical) {
577 pgprintk("%s: found role %x\n",
578 __FUNCTION__, page->role.word);
579 return page;
580 }
581 return NULL;
582 }
583
584 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
585 gfn_t gfn,
586 gva_t gaddr,
587 unsigned level,
588 int metaphysical,
589 unsigned hugepage_access,
590 u64 *parent_pte)
591 {
592 union kvm_mmu_page_role role;
593 unsigned index;
594 unsigned quadrant;
595 struct hlist_head *bucket;
596 struct kvm_mmu_page *page;
597 struct hlist_node *node;
598
599 role.word = 0;
600 role.glevels = vcpu->mmu.root_level;
601 role.level = level;
602 role.metaphysical = metaphysical;
603 role.hugepage_access = hugepage_access;
604 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
605 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
606 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
607 role.quadrant = quadrant;
608 }
609 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
610 gfn, role.word);
611 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
612 bucket = &vcpu->kvm->mmu_page_hash[index];
613 hlist_for_each_entry(page, node, bucket, hash_link)
614 if (page->gfn == gfn && page->role.word == role.word) {
615 mmu_page_add_parent_pte(vcpu, page, parent_pte);
616 pgprintk("%s: found\n", __FUNCTION__);
617 return page;
618 }
619 page = kvm_mmu_alloc_page(vcpu, parent_pte);
620 if (!page)
621 return page;
622 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
623 page->gfn = gfn;
624 page->role = role;
625 hlist_add_head(&page->hash_link, bucket);
626 if (!metaphysical)
627 rmap_write_protect(vcpu, gfn);
628 return page;
629 }
630
631 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
632 struct kvm_mmu_page *page)
633 {
634 unsigned i;
635 u64 *pt;
636 u64 ent;
637
638 pt = page->spt;
639
640 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
641 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
642 if (pt[i] & PT_PRESENT_MASK)
643 rmap_remove(vcpu, &pt[i]);
644 pt[i] = 0;
645 }
646 kvm_arch_ops->tlb_flush(vcpu);
647 return;
648 }
649
650 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
651 ent = pt[i];
652
653 pt[i] = 0;
654 if (!(ent & PT_PRESENT_MASK))
655 continue;
656 ent &= PT64_BASE_ADDR_MASK;
657 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
658 }
659 }
660
661 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
662 struct kvm_mmu_page *page,
663 u64 *parent_pte)
664 {
665 mmu_page_remove_parent_pte(vcpu, page, parent_pte);
666 }
667
668 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
669 struct kvm_mmu_page *page)
670 {
671 u64 *parent_pte;
672
673 while (page->multimapped || page->parent_pte) {
674 if (!page->multimapped)
675 parent_pte = page->parent_pte;
676 else {
677 struct kvm_pte_chain *chain;
678
679 chain = container_of(page->parent_ptes.first,
680 struct kvm_pte_chain, link);
681 parent_pte = chain->parent_ptes[0];
682 }
683 BUG_ON(!parent_pte);
684 kvm_mmu_put_page(vcpu, page, parent_pte);
685 *parent_pte = 0;
686 }
687 kvm_mmu_page_unlink_children(vcpu, page);
688 if (!page->root_count) {
689 hlist_del(&page->hash_link);
690 kvm_mmu_free_page(vcpu, page);
691 } else
692 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
693 }
694
695 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
696 {
697 unsigned index;
698 struct hlist_head *bucket;
699 struct kvm_mmu_page *page;
700 struct hlist_node *node, *n;
701 int r;
702
703 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
704 r = 0;
705 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
706 bucket = &vcpu->kvm->mmu_page_hash[index];
707 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
708 if (page->gfn == gfn && !page->role.metaphysical) {
709 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
710 page->role.word);
711 kvm_mmu_zap_page(vcpu, page);
712 r = 1;
713 }
714 return r;
715 }
716
717 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
718 {
719 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
720 struct kvm_mmu_page *page_head = page_header(__pa(pte));
721
722 __set_bit(slot, &page_head->slot_bitmap);
723 }
724
725 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
726 {
727 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
728
729 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
730 }
731
732 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
733 {
734 struct page *page;
735
736 ASSERT((gpa & HPA_ERR_MASK) == 0);
737 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
738 if (!page)
739 return gpa | HPA_ERR_MASK;
740 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
741 | (gpa & (PAGE_SIZE-1));
742 }
743
744 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
745 {
746 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
747
748 if (gpa == UNMAPPED_GVA)
749 return UNMAPPED_GVA;
750 return gpa_to_hpa(vcpu, gpa);
751 }
752
753 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
754 {
755 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
756
757 if (gpa == UNMAPPED_GVA)
758 return NULL;
759 return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
760 }
761
762 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
763 {
764 }
765
766 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
767 {
768 int level = PT32E_ROOT_LEVEL;
769 hpa_t table_addr = vcpu->mmu.root_hpa;
770
771 for (; ; level--) {
772 u32 index = PT64_INDEX(v, level);
773 u64 *table;
774 u64 pte;
775
776 ASSERT(VALID_PAGE(table_addr));
777 table = __va(table_addr);
778
779 if (level == 1) {
780 pte = table[index];
781 if (is_present_pte(pte) && is_writeble_pte(pte))
782 return 0;
783 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
784 page_header_update_slot(vcpu->kvm, table, v);
785 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
786 PT_USER_MASK;
787 rmap_add(vcpu, &table[index]);
788 return 0;
789 }
790
791 if (table[index] == 0) {
792 struct kvm_mmu_page *new_table;
793 gfn_t pseudo_gfn;
794
795 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
796 >> PAGE_SHIFT;
797 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
798 v, level - 1,
799 1, 0, &table[index]);
800 if (!new_table) {
801 pgprintk("nonpaging_map: ENOMEM\n");
802 return -ENOMEM;
803 }
804
805 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
806 | PT_WRITABLE_MASK | PT_USER_MASK;
807 }
808 table_addr = table[index] & PT64_BASE_ADDR_MASK;
809 }
810 }
811
812 static void mmu_free_roots(struct kvm_vcpu *vcpu)
813 {
814 int i;
815 struct kvm_mmu_page *page;
816
817 #ifdef CONFIG_X86_64
818 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
819 hpa_t root = vcpu->mmu.root_hpa;
820
821 ASSERT(VALID_PAGE(root));
822 page = page_header(root);
823 --page->root_count;
824 vcpu->mmu.root_hpa = INVALID_PAGE;
825 return;
826 }
827 #endif
828 for (i = 0; i < 4; ++i) {
829 hpa_t root = vcpu->mmu.pae_root[i];
830
831 if (root) {
832 ASSERT(VALID_PAGE(root));
833 root &= PT64_BASE_ADDR_MASK;
834 page = page_header(root);
835 --page->root_count;
836 }
837 vcpu->mmu.pae_root[i] = INVALID_PAGE;
838 }
839 vcpu->mmu.root_hpa = INVALID_PAGE;
840 }
841
842 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
843 {
844 int i;
845 gfn_t root_gfn;
846 struct kvm_mmu_page *page;
847
848 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
849
850 #ifdef CONFIG_X86_64
851 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
852 hpa_t root = vcpu->mmu.root_hpa;
853
854 ASSERT(!VALID_PAGE(root));
855 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
856 PT64_ROOT_LEVEL, 0, 0, NULL);
857 root = __pa(page->spt);
858 ++page->root_count;
859 vcpu->mmu.root_hpa = root;
860 return;
861 }
862 #endif
863 for (i = 0; i < 4; ++i) {
864 hpa_t root = vcpu->mmu.pae_root[i];
865
866 ASSERT(!VALID_PAGE(root));
867 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
868 if (!is_present_pte(vcpu->pdptrs[i])) {
869 vcpu->mmu.pae_root[i] = 0;
870 continue;
871 }
872 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
873 } else if (vcpu->mmu.root_level == 0)
874 root_gfn = 0;
875 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
876 PT32_ROOT_LEVEL, !is_paging(vcpu),
877 0, NULL);
878 root = __pa(page->spt);
879 ++page->root_count;
880 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
881 }
882 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
883 }
884
885 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
886 {
887 return vaddr;
888 }
889
890 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
891 u32 error_code)
892 {
893 gpa_t addr = gva;
894 hpa_t paddr;
895 int r;
896
897 r = mmu_topup_memory_caches(vcpu);
898 if (r)
899 return r;
900
901 ASSERT(vcpu);
902 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
903
904
905 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
906
907 if (is_error_hpa(paddr))
908 return 1;
909
910 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
911 }
912
913 static void nonpaging_free(struct kvm_vcpu *vcpu)
914 {
915 mmu_free_roots(vcpu);
916 }
917
918 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
919 {
920 struct kvm_mmu *context = &vcpu->mmu;
921
922 context->new_cr3 = nonpaging_new_cr3;
923 context->page_fault = nonpaging_page_fault;
924 context->gva_to_gpa = nonpaging_gva_to_gpa;
925 context->free = nonpaging_free;
926 context->root_level = 0;
927 context->shadow_root_level = PT32E_ROOT_LEVEL;
928 mmu_alloc_roots(vcpu);
929 ASSERT(VALID_PAGE(context->root_hpa));
930 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
931 return 0;
932 }
933
934 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
935 {
936 ++vcpu->stat.tlb_flush;
937 kvm_arch_ops->tlb_flush(vcpu);
938 }
939
940 static void paging_new_cr3(struct kvm_vcpu *vcpu)
941 {
942 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
943 mmu_free_roots(vcpu);
944 if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
945 kvm_mmu_free_some_pages(vcpu);
946 mmu_alloc_roots(vcpu);
947 kvm_mmu_flush_tlb(vcpu);
948 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
949 }
950
951 static inline void set_pte_common(struct kvm_vcpu *vcpu,
952 u64 *shadow_pte,
953 gpa_t gaddr,
954 int dirty,
955 u64 access_bits,
956 gfn_t gfn)
957 {
958 hpa_t paddr;
959
960 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
961 if (!dirty)
962 access_bits &= ~PT_WRITABLE_MASK;
963
964 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
965
966 *shadow_pte |= access_bits;
967
968 if (is_error_hpa(paddr)) {
969 *shadow_pte |= gaddr;
970 *shadow_pte |= PT_SHADOW_IO_MARK;
971 *shadow_pte &= ~PT_PRESENT_MASK;
972 return;
973 }
974
975 *shadow_pte |= paddr;
976
977 if (access_bits & PT_WRITABLE_MASK) {
978 struct kvm_mmu_page *shadow;
979
980 shadow = kvm_mmu_lookup_page(vcpu, gfn);
981 if (shadow) {
982 pgprintk("%s: found shadow page for %lx, marking ro\n",
983 __FUNCTION__, gfn);
984 access_bits &= ~PT_WRITABLE_MASK;
985 if (is_writeble_pte(*shadow_pte)) {
986 *shadow_pte &= ~PT_WRITABLE_MASK;
987 kvm_arch_ops->tlb_flush(vcpu);
988 }
989 }
990 }
991
992 if (access_bits & PT_WRITABLE_MASK)
993 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
994
995 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
996 rmap_add(vcpu, shadow_pte);
997 }
998
999 static void inject_page_fault(struct kvm_vcpu *vcpu,
1000 u64 addr,
1001 u32 err_code)
1002 {
1003 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
1004 }
1005
1006 static inline int fix_read_pf(u64 *shadow_ent)
1007 {
1008 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
1009 !(*shadow_ent & PT_USER_MASK)) {
1010 /*
1011 * If supervisor write protect is disabled, we shadow kernel
1012 * pages as user pages so we can trap the write access.
1013 */
1014 *shadow_ent |= PT_USER_MASK;
1015 *shadow_ent &= ~PT_WRITABLE_MASK;
1016
1017 return 1;
1018
1019 }
1020 return 0;
1021 }
1022
1023 static void paging_free(struct kvm_vcpu *vcpu)
1024 {
1025 nonpaging_free(vcpu);
1026 }
1027
1028 #define PTTYPE 64
1029 #include "paging_tmpl.h"
1030 #undef PTTYPE
1031
1032 #define PTTYPE 32
1033 #include "paging_tmpl.h"
1034 #undef PTTYPE
1035
1036 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1037 {
1038 struct kvm_mmu *context = &vcpu->mmu;
1039
1040 ASSERT(is_pae(vcpu));
1041 context->new_cr3 = paging_new_cr3;
1042 context->page_fault = paging64_page_fault;
1043 context->gva_to_gpa = paging64_gva_to_gpa;
1044 context->free = paging_free;
1045 context->root_level = level;
1046 context->shadow_root_level = level;
1047 mmu_alloc_roots(vcpu);
1048 ASSERT(VALID_PAGE(context->root_hpa));
1049 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1050 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1051 return 0;
1052 }
1053
1054 static int paging64_init_context(struct kvm_vcpu *vcpu)
1055 {
1056 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1057 }
1058
1059 static int paging32_init_context(struct kvm_vcpu *vcpu)
1060 {
1061 struct kvm_mmu *context = &vcpu->mmu;
1062
1063 context->new_cr3 = paging_new_cr3;
1064 context->page_fault = paging32_page_fault;
1065 context->gva_to_gpa = paging32_gva_to_gpa;
1066 context->free = paging_free;
1067 context->root_level = PT32_ROOT_LEVEL;
1068 context->shadow_root_level = PT32E_ROOT_LEVEL;
1069 mmu_alloc_roots(vcpu);
1070 ASSERT(VALID_PAGE(context->root_hpa));
1071 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1072 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1073 return 0;
1074 }
1075
1076 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1077 {
1078 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1079 }
1080
1081 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1082 {
1083 ASSERT(vcpu);
1084 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1085
1086 if (!is_paging(vcpu))
1087 return nonpaging_init_context(vcpu);
1088 else if (is_long_mode(vcpu))
1089 return paging64_init_context(vcpu);
1090 else if (is_pae(vcpu))
1091 return paging32E_init_context(vcpu);
1092 else
1093 return paging32_init_context(vcpu);
1094 }
1095
1096 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1097 {
1098 ASSERT(vcpu);
1099 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1100 vcpu->mmu.free(vcpu);
1101 vcpu->mmu.root_hpa = INVALID_PAGE;
1102 }
1103 }
1104
1105 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1106 {
1107 int r;
1108
1109 destroy_kvm_mmu(vcpu);
1110 r = init_kvm_mmu(vcpu);
1111 if (r < 0)
1112 goto out;
1113 r = mmu_topup_memory_caches(vcpu);
1114 out:
1115 return r;
1116 }
1117
1118 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1119 struct kvm_mmu_page *page,
1120 u64 *spte)
1121 {
1122 u64 pte;
1123 struct kvm_mmu_page *child;
1124
1125 pte = *spte;
1126 if (is_present_pte(pte)) {
1127 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1128 rmap_remove(vcpu, spte);
1129 else {
1130 child = page_header(pte & PT64_BASE_ADDR_MASK);
1131 mmu_page_remove_parent_pte(vcpu, child, spte);
1132 }
1133 }
1134 *spte = 0;
1135 }
1136
1137 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1138 struct kvm_mmu_page *page,
1139 u64 *spte,
1140 const void *new, int bytes)
1141 {
1142 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1143 return;
1144
1145 if (page->role.glevels == PT32_ROOT_LEVEL)
1146 paging32_update_pte(vcpu, page, spte, new, bytes);
1147 else
1148 paging64_update_pte(vcpu, page, spte, new, bytes);
1149 }
1150
1151 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1152 const u8 *old, const u8 *new, int bytes)
1153 {
1154 gfn_t gfn = gpa >> PAGE_SHIFT;
1155 struct kvm_mmu_page *page;
1156 struct hlist_node *node, *n;
1157 struct hlist_head *bucket;
1158 unsigned index;
1159 u64 *spte;
1160 unsigned offset = offset_in_page(gpa);
1161 unsigned pte_size;
1162 unsigned page_offset;
1163 unsigned misaligned;
1164 unsigned quadrant;
1165 int level;
1166 int flooded = 0;
1167 int npte;
1168
1169 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1170 if (gfn == vcpu->last_pt_write_gfn) {
1171 ++vcpu->last_pt_write_count;
1172 if (vcpu->last_pt_write_count >= 3)
1173 flooded = 1;
1174 } else {
1175 vcpu->last_pt_write_gfn = gfn;
1176 vcpu->last_pt_write_count = 1;
1177 }
1178 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1179 bucket = &vcpu->kvm->mmu_page_hash[index];
1180 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1181 if (page->gfn != gfn || page->role.metaphysical)
1182 continue;
1183 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1184 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1185 misaligned |= bytes < 4;
1186 if (misaligned || flooded) {
1187 /*
1188 * Misaligned accesses are too much trouble to fix
1189 * up; also, they usually indicate a page is not used
1190 * as a page table.
1191 *
1192 * If we're seeing too many writes to a page,
1193 * it may no longer be a page table, or we may be
1194 * forking, in which case it is better to unmap the
1195 * page.
1196 */
1197 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1198 gpa, bytes, page->role.word);
1199 kvm_mmu_zap_page(vcpu, page);
1200 continue;
1201 }
1202 page_offset = offset;
1203 level = page->role.level;
1204 npte = 1;
1205 if (page->role.glevels == PT32_ROOT_LEVEL) {
1206 page_offset <<= 1; /* 32->64 */
1207 /*
1208 * A 32-bit pde maps 4MB while the shadow pdes map
1209 * only 2MB. So we need to double the offset again
1210 * and zap two pdes instead of one.
1211 */
1212 if (level == PT32_ROOT_LEVEL) {
1213 page_offset &= ~7; /* kill rounding error */
1214 page_offset <<= 1;
1215 npte = 2;
1216 }
1217 quadrant = page_offset >> PAGE_SHIFT;
1218 page_offset &= ~PAGE_MASK;
1219 if (quadrant != page->role.quadrant)
1220 continue;
1221 }
1222 spte = &page->spt[page_offset / sizeof(*spte)];
1223 while (npte--) {
1224 mmu_pte_write_zap_pte(vcpu, page, spte);
1225 mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1226 ++spte;
1227 }
1228 }
1229 }
1230
1231 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1232 {
1233 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1234
1235 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1236 }
1237
1238 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1239 {
1240 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1241 struct kvm_mmu_page *page;
1242
1243 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1244 struct kvm_mmu_page, link);
1245 kvm_mmu_zap_page(vcpu, page);
1246 }
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1249
1250 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1251 {
1252 struct kvm_mmu_page *page;
1253
1254 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1255 page = container_of(vcpu->kvm->active_mmu_pages.next,
1256 struct kvm_mmu_page, link);
1257 kvm_mmu_zap_page(vcpu, page);
1258 }
1259 while (!list_empty(&vcpu->free_pages)) {
1260 page = list_entry(vcpu->free_pages.next,
1261 struct kvm_mmu_page, link);
1262 list_del(&page->link);
1263 free_page((unsigned long)page->spt);
1264 page->spt = NULL;
1265 }
1266 free_page((unsigned long)vcpu->mmu.pae_root);
1267 }
1268
1269 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1270 {
1271 struct page *page;
1272 int i;
1273
1274 ASSERT(vcpu);
1275
1276 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1277 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1278
1279 INIT_LIST_HEAD(&page_header->link);
1280 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1281 goto error_1;
1282 set_page_private(page, (unsigned long)page_header);
1283 page_header->spt = page_address(page);
1284 memset(page_header->spt, 0, PAGE_SIZE);
1285 list_add(&page_header->link, &vcpu->free_pages);
1286 ++vcpu->kvm->n_free_mmu_pages;
1287 }
1288
1289 /*
1290 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1291 * Therefore we need to allocate shadow page tables in the first
1292 * 4GB of memory, which happens to fit the DMA32 zone.
1293 */
1294 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1295 if (!page)
1296 goto error_1;
1297 vcpu->mmu.pae_root = page_address(page);
1298 for (i = 0; i < 4; ++i)
1299 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1300
1301 return 0;
1302
1303 error_1:
1304 free_mmu_pages(vcpu);
1305 return -ENOMEM;
1306 }
1307
1308 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1309 {
1310 ASSERT(vcpu);
1311 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1312 ASSERT(list_empty(&vcpu->free_pages));
1313
1314 return alloc_mmu_pages(vcpu);
1315 }
1316
1317 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1318 {
1319 ASSERT(vcpu);
1320 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1321 ASSERT(!list_empty(&vcpu->free_pages));
1322
1323 return init_kvm_mmu(vcpu);
1324 }
1325
1326 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1327 {
1328 ASSERT(vcpu);
1329
1330 destroy_kvm_mmu(vcpu);
1331 free_mmu_pages(vcpu);
1332 mmu_free_memory_caches(vcpu);
1333 }
1334
1335 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1336 {
1337 struct kvm *kvm = vcpu->kvm;
1338 struct kvm_mmu_page *page;
1339
1340 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1341 int i;
1342 u64 *pt;
1343
1344 if (!test_bit(slot, &page->slot_bitmap))
1345 continue;
1346
1347 pt = page->spt;
1348 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1349 /* avoid RMW */
1350 if (pt[i] & PT_WRITABLE_MASK) {
1351 rmap_remove(vcpu, &pt[i]);
1352 pt[i] &= ~PT_WRITABLE_MASK;
1353 }
1354 }
1355 }
1356
1357 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1358 {
1359 destroy_kvm_mmu(vcpu);
1360
1361 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1362 struct kvm_mmu_page *page;
1363
1364 page = container_of(vcpu->kvm->active_mmu_pages.next,
1365 struct kvm_mmu_page, link);
1366 kvm_mmu_zap_page(vcpu, page);
1367 }
1368
1369 mmu_free_memory_caches(vcpu);
1370 kvm_arch_ops->tlb_flush(vcpu);
1371 init_kvm_mmu(vcpu);
1372 }
1373
1374 void kvm_mmu_module_exit(void)
1375 {
1376 if (pte_chain_cache)
1377 kmem_cache_destroy(pte_chain_cache);
1378 if (rmap_desc_cache)
1379 kmem_cache_destroy(rmap_desc_cache);
1380 }
1381
1382 int kvm_mmu_module_init(void)
1383 {
1384 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1385 sizeof(struct kvm_pte_chain),
1386 0, 0, NULL, NULL);
1387 if (!pte_chain_cache)
1388 goto nomem;
1389 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1390 sizeof(struct kvm_rmap_desc),
1391 0, 0, NULL, NULL);
1392 if (!rmap_desc_cache)
1393 goto nomem;
1394
1395 return 0;
1396
1397 nomem:
1398 kvm_mmu_module_exit();
1399 return -ENOMEM;
1400 }
1401
1402 #ifdef AUDIT
1403
1404 static const char *audit_msg;
1405
1406 static gva_t canonicalize(gva_t gva)
1407 {
1408 #ifdef CONFIG_X86_64
1409 gva = (long long)(gva << 16) >> 16;
1410 #endif
1411 return gva;
1412 }
1413
1414 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1415 gva_t va, int level)
1416 {
1417 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1418 int i;
1419 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1420
1421 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1422 u64 ent = pt[i];
1423
1424 if (!(ent & PT_PRESENT_MASK))
1425 continue;
1426
1427 va = canonicalize(va);
1428 if (level > 1)
1429 audit_mappings_page(vcpu, ent, va, level - 1);
1430 else {
1431 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1432 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1433
1434 if ((ent & PT_PRESENT_MASK)
1435 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1436 printk(KERN_ERR "audit error: (%s) levels %d"
1437 " gva %lx gpa %llx hpa %llx ent %llx\n",
1438 audit_msg, vcpu->mmu.root_level,
1439 va, gpa, hpa, ent);
1440 }
1441 }
1442 }
1443
1444 static void audit_mappings(struct kvm_vcpu *vcpu)
1445 {
1446 unsigned i;
1447
1448 if (vcpu->mmu.root_level == 4)
1449 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1450 else
1451 for (i = 0; i < 4; ++i)
1452 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1453 audit_mappings_page(vcpu,
1454 vcpu->mmu.pae_root[i],
1455 i << 30,
1456 2);
1457 }
1458
1459 static int count_rmaps(struct kvm_vcpu *vcpu)
1460 {
1461 int nmaps = 0;
1462 int i, j, k;
1463
1464 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1465 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1466 struct kvm_rmap_desc *d;
1467
1468 for (j = 0; j < m->npages; ++j) {
1469 struct page *page = m->phys_mem[j];
1470
1471 if (!page->private)
1472 continue;
1473 if (!(page->private & 1)) {
1474 ++nmaps;
1475 continue;
1476 }
1477 d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1478 while (d) {
1479 for (k = 0; k < RMAP_EXT; ++k)
1480 if (d->shadow_ptes[k])
1481 ++nmaps;
1482 else
1483 break;
1484 d = d->more;
1485 }
1486 }
1487 }
1488 return nmaps;
1489 }
1490
1491 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1492 {
1493 int nmaps = 0;
1494 struct kvm_mmu_page *page;
1495 int i;
1496
1497 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1498 u64 *pt = page->spt;
1499
1500 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1501 continue;
1502
1503 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1504 u64 ent = pt[i];
1505
1506 if (!(ent & PT_PRESENT_MASK))
1507 continue;
1508 if (!(ent & PT_WRITABLE_MASK))
1509 continue;
1510 ++nmaps;
1511 }
1512 }
1513 return nmaps;
1514 }
1515
1516 static void audit_rmap(struct kvm_vcpu *vcpu)
1517 {
1518 int n_rmap = count_rmaps(vcpu);
1519 int n_actual = count_writable_mappings(vcpu);
1520
1521 if (n_rmap != n_actual)
1522 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1523 __FUNCTION__, audit_msg, n_rmap, n_actual);
1524 }
1525
1526 static void audit_write_protection(struct kvm_vcpu *vcpu)
1527 {
1528 struct kvm_mmu_page *page;
1529
1530 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1531 hfn_t hfn;
1532 struct page *pg;
1533
1534 if (page->role.metaphysical)
1535 continue;
1536
1537 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1538 >> PAGE_SHIFT;
1539 pg = pfn_to_page(hfn);
1540 if (pg->private)
1541 printk(KERN_ERR "%s: (%s) shadow page has writable"
1542 " mappings: gfn %lx role %x\n",
1543 __FUNCTION__, audit_msg, page->gfn,
1544 page->role.word);
1545 }
1546 }
1547
1548 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1549 {
1550 int olddbg = dbg;
1551
1552 dbg = 0;
1553 audit_msg = msg;
1554 audit_rmap(vcpu);
1555 audit_write_protection(vcpu);
1556 audit_mappings(vcpu);
1557 dbg = olddbg;
1558 }
1559
1560 #endif