]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/kvm/svm.c
KVM: Emulate hlt in the kernel
[mirror_ubuntu-zesty-kernel.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
54 {
55 return container_of(vcpu, struct vcpu_svm, vcpu);
56 }
57
58 unsigned long iopm_base;
59 unsigned long msrpm_base;
60
61 struct kvm_ldttss_desc {
62 u16 limit0;
63 u16 base0;
64 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
65 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
66 u32 base3;
67 u32 zero1;
68 } __attribute__((packed));
69
70 struct svm_cpu_data {
71 int cpu;
72
73 u64 asid_generation;
74 u32 max_asid;
75 u32 next_asid;
76 struct kvm_ldttss_desc *tss_desc;
77
78 struct page *save_area;
79 };
80
81 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
82 static uint32_t svm_features;
83
84 struct svm_init_data {
85 int cpu;
86 int r;
87 };
88
89 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
90
91 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
92 #define MSRS_RANGE_SIZE 2048
93 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
94
95 #define MAX_INST_SIZE 15
96
97 static inline u32 svm_has(u32 feat)
98 {
99 return svm_features & feat;
100 }
101
102 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
103 {
104 int word_index = __ffs(vcpu->irq_summary);
105 int bit_index = __ffs(vcpu->irq_pending[word_index]);
106 int irq = word_index * BITS_PER_LONG + bit_index;
107
108 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
109 if (!vcpu->irq_pending[word_index])
110 clear_bit(word_index, &vcpu->irq_summary);
111 return irq;
112 }
113
114 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
115 {
116 set_bit(irq, vcpu->irq_pending);
117 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
118 }
119
120 static inline void clgi(void)
121 {
122 asm volatile (SVM_CLGI);
123 }
124
125 static inline void stgi(void)
126 {
127 asm volatile (SVM_STGI);
128 }
129
130 static inline void invlpga(unsigned long addr, u32 asid)
131 {
132 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
133 }
134
135 static inline unsigned long kvm_read_cr2(void)
136 {
137 unsigned long cr2;
138
139 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
140 return cr2;
141 }
142
143 static inline void kvm_write_cr2(unsigned long val)
144 {
145 asm volatile ("mov %0, %%cr2" :: "r" (val));
146 }
147
148 static inline unsigned long read_dr6(void)
149 {
150 unsigned long dr6;
151
152 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
153 return dr6;
154 }
155
156 static inline void write_dr6(unsigned long val)
157 {
158 asm volatile ("mov %0, %%dr6" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr7(void)
162 {
163 unsigned long dr7;
164
165 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
166 return dr7;
167 }
168
169 static inline void write_dr7(unsigned long val)
170 {
171 asm volatile ("mov %0, %%dr7" :: "r" (val));
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176 to_svm(vcpu)->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181 force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186 if (!(efer & KVM_EFER_LMA))
187 efer &= ~KVM_EFER_LME;
188
189 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190 vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195 struct vcpu_svm *svm = to_svm(vcpu);
196
197 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
198 SVM_EVTINJ_VALID_ERR |
199 SVM_EVTINJ_TYPE_EXEPT |
200 GP_VECTOR;
201 svm->vmcb->control.event_inj_err = error_code;
202 }
203
204 static void inject_ud(struct kvm_vcpu *vcpu)
205 {
206 to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207 SVM_EVTINJ_TYPE_EXEPT |
208 UD_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213 info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214 return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225 struct vcpu_svm *svm = to_svm(vcpu);
226
227 if (!svm->next_rip) {
228 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229 return;
230 }
231 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
232 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233 __FUNCTION__,
234 svm->vmcb->save.rip,
235 svm->next_rip);
236 }
237
238 vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241 vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246 uint32_t eax, ebx, ecx, edx;
247
248 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249 printk(KERN_INFO "has_svm: not amd\n");
250 return 0;
251 }
252
253 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254 if (eax < SVM_CPUID_FUNC) {
255 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256 return 0;
257 }
258
259 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261 printk(KERN_DEBUG "has_svm: svm not available\n");
262 return 0;
263 }
264 return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269 struct svm_cpu_data *svm_data
270 = per_cpu(svm_data, raw_smp_processor_id());
271
272 if (svm_data) {
273 uint64_t efer;
274
275 wrmsrl(MSR_VM_HSAVE_PA, 0);
276 rdmsrl(MSR_EFER, efer);
277 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279 __free_page(svm_data->save_area);
280 kfree(svm_data);
281 }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287 struct svm_cpu_data *svm_data;
288 uint64_t efer;
289 #ifdef CONFIG_X86_64
290 struct desc_ptr gdt_descr;
291 #else
292 struct Xgt_desc_struct gdt_descr;
293 #endif
294 struct desc_struct *gdt;
295 int me = raw_smp_processor_id();
296
297 if (!has_svm()) {
298 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299 return;
300 }
301 svm_data = per_cpu(svm_data, me);
302
303 if (!svm_data) {
304 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305 me);
306 return;
307 }
308
309 svm_data->asid_generation = 1;
310 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311 svm_data->next_asid = svm_data->max_asid + 1;
312 svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314 asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315 gdt = (struct desc_struct *)gdt_descr.address;
316 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318 rdmsrl(MSR_EFER, efer);
319 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321 wrmsrl(MSR_VM_HSAVE_PA,
322 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327 struct svm_cpu_data *svm_data;
328 int r;
329
330 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331 if (!svm_data)
332 return -ENOMEM;
333 svm_data->cpu = cpu;
334 svm_data->save_area = alloc_page(GFP_KERNEL);
335 r = -ENOMEM;
336 if (!svm_data->save_area)
337 goto err_1;
338
339 per_cpu(svm_data, cpu) = svm_data;
340
341 return 0;
342
343 err_1:
344 kfree(svm_data);
345 return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350 int read, int write)
351 {
352 int i;
353
354 for (i = 0; i < NUM_MSR_MAPS; i++) {
355 if (msr >= msrpm_ranges[i] &&
356 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358 msrpm_ranges[i]) * 2;
359
360 u32 *base = msrpm + (msr_offset / 32);
361 u32 msr_shift = msr_offset % 32;
362 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363 *base = (*base & ~(0x3 << msr_shift)) |
364 (mask << msr_shift);
365 return;
366 }
367 }
368 BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373 int cpu;
374 struct page *iopm_pages;
375 struct page *msrpm_pages;
376 void *iopm_va, *msrpm_va;
377 int r;
378
379 kvm_emulator_want_group7_invlpg();
380
381 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
382
383 if (!iopm_pages)
384 return -ENOMEM;
385
386 iopm_va = page_address(iopm_pages);
387 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
388 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
389 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
390
391
392 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
393
394 r = -ENOMEM;
395 if (!msrpm_pages)
396 goto err_1;
397
398 msrpm_va = page_address(msrpm_pages);
399 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
400 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
401
402 #ifdef CONFIG_X86_64
403 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
404 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
405 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
406 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
407 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
408 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
409 #endif
410 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
411 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
412 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
413 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
414
415 for_each_online_cpu(cpu) {
416 r = svm_cpu_init(cpu);
417 if (r)
418 goto err_2;
419 }
420 return 0;
421
422 err_2:
423 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
424 msrpm_base = 0;
425 err_1:
426 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
427 iopm_base = 0;
428 return r;
429 }
430
431 static __exit void svm_hardware_unsetup(void)
432 {
433 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
434 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
435 iopm_base = msrpm_base = 0;
436 }
437
438 static void init_seg(struct vmcb_seg *seg)
439 {
440 seg->selector = 0;
441 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
442 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
443 seg->limit = 0xffff;
444 seg->base = 0;
445 }
446
447 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
448 {
449 seg->selector = 0;
450 seg->attrib = SVM_SELECTOR_P_MASK | type;
451 seg->limit = 0xffff;
452 seg->base = 0;
453 }
454
455 static void init_vmcb(struct vmcb *vmcb)
456 {
457 struct vmcb_control_area *control = &vmcb->control;
458 struct vmcb_save_area *save = &vmcb->save;
459
460 control->intercept_cr_read = INTERCEPT_CR0_MASK |
461 INTERCEPT_CR3_MASK |
462 INTERCEPT_CR4_MASK;
463
464 control->intercept_cr_write = INTERCEPT_CR0_MASK |
465 INTERCEPT_CR3_MASK |
466 INTERCEPT_CR4_MASK;
467
468 control->intercept_dr_read = INTERCEPT_DR0_MASK |
469 INTERCEPT_DR1_MASK |
470 INTERCEPT_DR2_MASK |
471 INTERCEPT_DR3_MASK;
472
473 control->intercept_dr_write = INTERCEPT_DR0_MASK |
474 INTERCEPT_DR1_MASK |
475 INTERCEPT_DR2_MASK |
476 INTERCEPT_DR3_MASK |
477 INTERCEPT_DR5_MASK |
478 INTERCEPT_DR7_MASK;
479
480 control->intercept_exceptions = 1 << PF_VECTOR;
481
482
483 control->intercept = (1ULL << INTERCEPT_INTR) |
484 (1ULL << INTERCEPT_NMI) |
485 (1ULL << INTERCEPT_SMI) |
486 /*
487 * selective cr0 intercept bug?
488 * 0: 0f 22 d8 mov %eax,%cr3
489 * 3: 0f 20 c0 mov %cr0,%eax
490 * 6: 0d 00 00 00 80 or $0x80000000,%eax
491 * b: 0f 22 c0 mov %eax,%cr0
492 * set cr3 ->interception
493 * get cr0 ->interception
494 * set cr0 -> no interception
495 */
496 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
497 (1ULL << INTERCEPT_CPUID) |
498 (1ULL << INTERCEPT_HLT) |
499 (1ULL << INTERCEPT_INVLPGA) |
500 (1ULL << INTERCEPT_IOIO_PROT) |
501 (1ULL << INTERCEPT_MSR_PROT) |
502 (1ULL << INTERCEPT_TASK_SWITCH) |
503 (1ULL << INTERCEPT_SHUTDOWN) |
504 (1ULL << INTERCEPT_VMRUN) |
505 (1ULL << INTERCEPT_VMMCALL) |
506 (1ULL << INTERCEPT_VMLOAD) |
507 (1ULL << INTERCEPT_VMSAVE) |
508 (1ULL << INTERCEPT_STGI) |
509 (1ULL << INTERCEPT_CLGI) |
510 (1ULL << INTERCEPT_SKINIT) |
511 (1ULL << INTERCEPT_MONITOR) |
512 (1ULL << INTERCEPT_MWAIT);
513
514 control->iopm_base_pa = iopm_base;
515 control->msrpm_base_pa = msrpm_base;
516 control->tsc_offset = 0;
517 control->int_ctl = V_INTR_MASKING_MASK;
518
519 init_seg(&save->es);
520 init_seg(&save->ss);
521 init_seg(&save->ds);
522 init_seg(&save->fs);
523 init_seg(&save->gs);
524
525 save->cs.selector = 0xf000;
526 /* Executable/Readable Code Segment */
527 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
528 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
529 save->cs.limit = 0xffff;
530 /*
531 * cs.base should really be 0xffff0000, but vmx can't handle that, so
532 * be consistent with it.
533 *
534 * Replace when we have real mode working for vmx.
535 */
536 save->cs.base = 0xf0000;
537
538 save->gdtr.limit = 0xffff;
539 save->idtr.limit = 0xffff;
540
541 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
542 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
543
544 save->efer = MSR_EFER_SVME_MASK;
545
546 save->dr6 = 0xffff0ff0;
547 save->dr7 = 0x400;
548 save->rflags = 2;
549 save->rip = 0x0000fff0;
550
551 /*
552 * cr0 val on cpu init should be 0x60000010, we enable cpu
553 * cache by default. the orderly way is to enable cache in bios.
554 */
555 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
556 save->cr4 = X86_CR4_PAE;
557 /* rdx = ?? */
558 }
559
560 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
561 {
562 struct vcpu_svm *svm;
563 struct page *page;
564 int err;
565
566 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
567 if (!svm) {
568 err = -ENOMEM;
569 goto out;
570 }
571
572 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
573 if (err)
574 goto free_svm;
575
576 if (irqchip_in_kernel(kvm)) {
577 err = kvm_create_lapic(&svm->vcpu);
578 if (err < 0)
579 goto free_svm;
580 }
581
582 page = alloc_page(GFP_KERNEL);
583 if (!page) {
584 err = -ENOMEM;
585 goto uninit;
586 }
587
588 svm->vmcb = page_address(page);
589 clear_page(svm->vmcb);
590 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
591 svm->asid_generation = 0;
592 memset(svm->db_regs, 0, sizeof(svm->db_regs));
593 init_vmcb(svm->vmcb);
594
595 fx_init(&svm->vcpu);
596 svm->vcpu.fpu_active = 1;
597 svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
598 if (svm->vcpu.vcpu_id == 0)
599 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
600
601 return &svm->vcpu;
602
603 uninit:
604 kvm_vcpu_uninit(&svm->vcpu);
605 free_svm:
606 kmem_cache_free(kvm_vcpu_cache, svm);
607 out:
608 return ERR_PTR(err);
609 }
610
611 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
616 kvm_vcpu_uninit(vcpu);
617 kmem_cache_free(kvm_vcpu_cache, svm);
618 }
619
620 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
621 {
622 struct vcpu_svm *svm = to_svm(vcpu);
623 int i;
624
625 if (unlikely(cpu != vcpu->cpu)) {
626 u64 tsc_this, delta;
627
628 /*
629 * Make sure that the guest sees a monotonically
630 * increasing TSC.
631 */
632 rdtscll(tsc_this);
633 delta = vcpu->host_tsc - tsc_this;
634 svm->vmcb->control.tsc_offset += delta;
635 vcpu->cpu = cpu;
636 }
637
638 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
639 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
640 }
641
642 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
643 {
644 struct vcpu_svm *svm = to_svm(vcpu);
645 int i;
646
647 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
648 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
649
650 rdtscll(vcpu->host_tsc);
651 }
652
653 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
654 {
655 }
656
657 static void svm_cache_regs(struct kvm_vcpu *vcpu)
658 {
659 struct vcpu_svm *svm = to_svm(vcpu);
660
661 vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
662 vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
663 vcpu->rip = svm->vmcb->save.rip;
664 }
665
666 static void svm_decache_regs(struct kvm_vcpu *vcpu)
667 {
668 struct vcpu_svm *svm = to_svm(vcpu);
669 svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
670 svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
671 svm->vmcb->save.rip = vcpu->rip;
672 }
673
674 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
675 {
676 return to_svm(vcpu)->vmcb->save.rflags;
677 }
678
679 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
680 {
681 to_svm(vcpu)->vmcb->save.rflags = rflags;
682 }
683
684 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
685 {
686 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
687
688 switch (seg) {
689 case VCPU_SREG_CS: return &save->cs;
690 case VCPU_SREG_DS: return &save->ds;
691 case VCPU_SREG_ES: return &save->es;
692 case VCPU_SREG_FS: return &save->fs;
693 case VCPU_SREG_GS: return &save->gs;
694 case VCPU_SREG_SS: return &save->ss;
695 case VCPU_SREG_TR: return &save->tr;
696 case VCPU_SREG_LDTR: return &save->ldtr;
697 }
698 BUG();
699 return NULL;
700 }
701
702 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
703 {
704 struct vmcb_seg *s = svm_seg(vcpu, seg);
705
706 return s->base;
707 }
708
709 static void svm_get_segment(struct kvm_vcpu *vcpu,
710 struct kvm_segment *var, int seg)
711 {
712 struct vmcb_seg *s = svm_seg(vcpu, seg);
713
714 var->base = s->base;
715 var->limit = s->limit;
716 var->selector = s->selector;
717 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
718 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
719 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
720 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
721 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
722 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
723 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
724 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
725 var->unusable = !var->present;
726 }
727
728 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
729 {
730 struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
731
732 *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
733 *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
734 }
735
736 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
737 {
738 struct vcpu_svm *svm = to_svm(vcpu);
739
740 dt->limit = svm->vmcb->save.idtr.limit;
741 dt->base = svm->vmcb->save.idtr.base;
742 }
743
744 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
745 {
746 struct vcpu_svm *svm = to_svm(vcpu);
747
748 svm->vmcb->save.idtr.limit = dt->limit;
749 svm->vmcb->save.idtr.base = dt->base ;
750 }
751
752 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
753 {
754 struct vcpu_svm *svm = to_svm(vcpu);
755
756 dt->limit = svm->vmcb->save.gdtr.limit;
757 dt->base = svm->vmcb->save.gdtr.base;
758 }
759
760 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
761 {
762 struct vcpu_svm *svm = to_svm(vcpu);
763
764 svm->vmcb->save.gdtr.limit = dt->limit;
765 svm->vmcb->save.gdtr.base = dt->base ;
766 }
767
768 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
769 {
770 }
771
772 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
773 {
774 struct vcpu_svm *svm = to_svm(vcpu);
775
776 #ifdef CONFIG_X86_64
777 if (vcpu->shadow_efer & KVM_EFER_LME) {
778 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
779 vcpu->shadow_efer |= KVM_EFER_LMA;
780 svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
781 }
782
783 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
784 vcpu->shadow_efer &= ~KVM_EFER_LMA;
785 svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
786 }
787 }
788 #endif
789 if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
790 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
791 vcpu->fpu_active = 1;
792 }
793
794 vcpu->cr0 = cr0;
795 cr0 |= X86_CR0_PG | X86_CR0_WP;
796 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
797 svm->vmcb->save.cr0 = cr0;
798 }
799
800 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
801 {
802 vcpu->cr4 = cr4;
803 to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
804 }
805
806 static void svm_set_segment(struct kvm_vcpu *vcpu,
807 struct kvm_segment *var, int seg)
808 {
809 struct vcpu_svm *svm = to_svm(vcpu);
810 struct vmcb_seg *s = svm_seg(vcpu, seg);
811
812 s->base = var->base;
813 s->limit = var->limit;
814 s->selector = var->selector;
815 if (var->unusable)
816 s->attrib = 0;
817 else {
818 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
819 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
820 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
821 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
822 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
823 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
824 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
825 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
826 }
827 if (seg == VCPU_SREG_CS)
828 svm->vmcb->save.cpl
829 = (svm->vmcb->save.cs.attrib
830 >> SVM_SELECTOR_DPL_SHIFT) & 3;
831
832 }
833
834 /* FIXME:
835
836 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
837 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
838
839 */
840
841 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
842 {
843 return -EOPNOTSUPP;
844 }
845
846 static void load_host_msrs(struct kvm_vcpu *vcpu)
847 {
848 #ifdef CONFIG_X86_64
849 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
850 #endif
851 }
852
853 static void save_host_msrs(struct kvm_vcpu *vcpu)
854 {
855 #ifdef CONFIG_X86_64
856 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
857 #endif
858 }
859
860 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
861 {
862 if (svm_data->next_asid > svm_data->max_asid) {
863 ++svm_data->asid_generation;
864 svm_data->next_asid = 1;
865 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
866 }
867
868 svm->vcpu.cpu = svm_data->cpu;
869 svm->asid_generation = svm_data->asid_generation;
870 svm->vmcb->control.asid = svm_data->next_asid++;
871 }
872
873 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
874 {
875 invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
876 }
877
878 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
879 {
880 return to_svm(vcpu)->db_regs[dr];
881 }
882
883 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
884 int *exception)
885 {
886 struct vcpu_svm *svm = to_svm(vcpu);
887
888 *exception = 0;
889
890 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
891 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
892 svm->vmcb->save.dr6 |= DR6_BD_MASK;
893 *exception = DB_VECTOR;
894 return;
895 }
896
897 switch (dr) {
898 case 0 ... 3:
899 svm->db_regs[dr] = value;
900 return;
901 case 4 ... 5:
902 if (vcpu->cr4 & X86_CR4_DE) {
903 *exception = UD_VECTOR;
904 return;
905 }
906 case 7: {
907 if (value & ~((1ULL << 32) - 1)) {
908 *exception = GP_VECTOR;
909 return;
910 }
911 svm->vmcb->save.dr7 = value;
912 return;
913 }
914 default:
915 printk(KERN_DEBUG "%s: unexpected dr %u\n",
916 __FUNCTION__, dr);
917 *exception = UD_VECTOR;
918 return;
919 }
920 }
921
922 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
923 {
924 u32 exit_int_info = svm->vmcb->control.exit_int_info;
925 struct kvm *kvm = svm->vcpu.kvm;
926 u64 fault_address;
927 u32 error_code;
928 enum emulation_result er;
929 int r;
930
931 if (!irqchip_in_kernel(kvm) &&
932 is_external_interrupt(exit_int_info))
933 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
934
935 mutex_lock(&kvm->lock);
936
937 fault_address = svm->vmcb->control.exit_info_2;
938 error_code = svm->vmcb->control.exit_info_1;
939 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
940 if (r < 0) {
941 mutex_unlock(&kvm->lock);
942 return r;
943 }
944 if (!r) {
945 mutex_unlock(&kvm->lock);
946 return 1;
947 }
948 er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
949 error_code);
950 mutex_unlock(&kvm->lock);
951
952 switch (er) {
953 case EMULATE_DONE:
954 return 1;
955 case EMULATE_DO_MMIO:
956 ++svm->vcpu.stat.mmio_exits;
957 return 0;
958 case EMULATE_FAIL:
959 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
960 break;
961 default:
962 BUG();
963 }
964
965 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
966 return 0;
967 }
968
969 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
970 {
971 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
972 if (!(svm->vcpu.cr0 & X86_CR0_TS))
973 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
974 svm->vcpu.fpu_active = 1;
975
976 return 1;
977 }
978
979 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
980 {
981 /*
982 * VMCB is undefined after a SHUTDOWN intercept
983 * so reinitialize it.
984 */
985 clear_page(svm->vmcb);
986 init_vmcb(svm->vmcb);
987
988 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
989 return 0;
990 }
991
992 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
993 {
994 u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
995 int size, down, in, string, rep;
996 unsigned port;
997
998 ++svm->vcpu.stat.io_exits;
999
1000 svm->next_rip = svm->vmcb->control.exit_info_2;
1001
1002 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1003
1004 if (string) {
1005 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1006 return 0;
1007 return 1;
1008 }
1009
1010 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1011 port = io_info >> 16;
1012 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1013 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1014 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1015
1016 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1017 }
1018
1019 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1020 {
1021 return 1;
1022 }
1023
1024 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1025 {
1026 svm->next_rip = svm->vmcb->save.rip + 1;
1027 skip_emulated_instruction(&svm->vcpu);
1028 return kvm_emulate_halt(&svm->vcpu);
1029 }
1030
1031 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1032 {
1033 svm->next_rip = svm->vmcb->save.rip + 3;
1034 skip_emulated_instruction(&svm->vcpu);
1035 return kvm_hypercall(&svm->vcpu, kvm_run);
1036 }
1037
1038 static int invalid_op_interception(struct vcpu_svm *svm,
1039 struct kvm_run *kvm_run)
1040 {
1041 inject_ud(&svm->vcpu);
1042 return 1;
1043 }
1044
1045 static int task_switch_interception(struct vcpu_svm *svm,
1046 struct kvm_run *kvm_run)
1047 {
1048 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1049 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1050 return 0;
1051 }
1052
1053 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1054 {
1055 svm->next_rip = svm->vmcb->save.rip + 2;
1056 kvm_emulate_cpuid(&svm->vcpu);
1057 return 1;
1058 }
1059
1060 static int emulate_on_interception(struct vcpu_svm *svm,
1061 struct kvm_run *kvm_run)
1062 {
1063 if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1064 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1065 return 1;
1066 }
1067
1068 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1069 {
1070 struct vcpu_svm *svm = to_svm(vcpu);
1071
1072 switch (ecx) {
1073 case MSR_IA32_TIME_STAMP_COUNTER: {
1074 u64 tsc;
1075
1076 rdtscll(tsc);
1077 *data = svm->vmcb->control.tsc_offset + tsc;
1078 break;
1079 }
1080 case MSR_K6_STAR:
1081 *data = svm->vmcb->save.star;
1082 break;
1083 #ifdef CONFIG_X86_64
1084 case MSR_LSTAR:
1085 *data = svm->vmcb->save.lstar;
1086 break;
1087 case MSR_CSTAR:
1088 *data = svm->vmcb->save.cstar;
1089 break;
1090 case MSR_KERNEL_GS_BASE:
1091 *data = svm->vmcb->save.kernel_gs_base;
1092 break;
1093 case MSR_SYSCALL_MASK:
1094 *data = svm->vmcb->save.sfmask;
1095 break;
1096 #endif
1097 case MSR_IA32_SYSENTER_CS:
1098 *data = svm->vmcb->save.sysenter_cs;
1099 break;
1100 case MSR_IA32_SYSENTER_EIP:
1101 *data = svm->vmcb->save.sysenter_eip;
1102 break;
1103 case MSR_IA32_SYSENTER_ESP:
1104 *data = svm->vmcb->save.sysenter_esp;
1105 break;
1106 default:
1107 return kvm_get_msr_common(vcpu, ecx, data);
1108 }
1109 return 0;
1110 }
1111
1112 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1113 {
1114 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1115 u64 data;
1116
1117 if (svm_get_msr(&svm->vcpu, ecx, &data))
1118 svm_inject_gp(&svm->vcpu, 0);
1119 else {
1120 svm->vmcb->save.rax = data & 0xffffffff;
1121 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1122 svm->next_rip = svm->vmcb->save.rip + 2;
1123 skip_emulated_instruction(&svm->vcpu);
1124 }
1125 return 1;
1126 }
1127
1128 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1129 {
1130 struct vcpu_svm *svm = to_svm(vcpu);
1131
1132 switch (ecx) {
1133 case MSR_IA32_TIME_STAMP_COUNTER: {
1134 u64 tsc;
1135
1136 rdtscll(tsc);
1137 svm->vmcb->control.tsc_offset = data - tsc;
1138 break;
1139 }
1140 case MSR_K6_STAR:
1141 svm->vmcb->save.star = data;
1142 break;
1143 #ifdef CONFIG_X86_64
1144 case MSR_LSTAR:
1145 svm->vmcb->save.lstar = data;
1146 break;
1147 case MSR_CSTAR:
1148 svm->vmcb->save.cstar = data;
1149 break;
1150 case MSR_KERNEL_GS_BASE:
1151 svm->vmcb->save.kernel_gs_base = data;
1152 break;
1153 case MSR_SYSCALL_MASK:
1154 svm->vmcb->save.sfmask = data;
1155 break;
1156 #endif
1157 case MSR_IA32_SYSENTER_CS:
1158 svm->vmcb->save.sysenter_cs = data;
1159 break;
1160 case MSR_IA32_SYSENTER_EIP:
1161 svm->vmcb->save.sysenter_eip = data;
1162 break;
1163 case MSR_IA32_SYSENTER_ESP:
1164 svm->vmcb->save.sysenter_esp = data;
1165 break;
1166 default:
1167 return kvm_set_msr_common(vcpu, ecx, data);
1168 }
1169 return 0;
1170 }
1171
1172 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1173 {
1174 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1175 u64 data = (svm->vmcb->save.rax & -1u)
1176 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1177 svm->next_rip = svm->vmcb->save.rip + 2;
1178 if (svm_set_msr(&svm->vcpu, ecx, data))
1179 svm_inject_gp(&svm->vcpu, 0);
1180 else
1181 skip_emulated_instruction(&svm->vcpu);
1182 return 1;
1183 }
1184
1185 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1186 {
1187 if (svm->vmcb->control.exit_info_1)
1188 return wrmsr_interception(svm, kvm_run);
1189 else
1190 return rdmsr_interception(svm, kvm_run);
1191 }
1192
1193 static int interrupt_window_interception(struct vcpu_svm *svm,
1194 struct kvm_run *kvm_run)
1195 {
1196 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1197 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1198 /*
1199 * If the user space waits to inject interrupts, exit as soon as
1200 * possible
1201 */
1202 if (kvm_run->request_interrupt_window &&
1203 !svm->vcpu.irq_summary) {
1204 ++svm->vcpu.stat.irq_window_exits;
1205 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1213 struct kvm_run *kvm_run) = {
1214 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1215 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1216 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1217 /* for now: */
1218 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1219 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1220 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1221 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1222 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1223 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1224 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1225 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1226 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1227 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1228 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1229 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1230 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1231 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1232 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1233 [SVM_EXIT_INTR] = nop_on_interception,
1234 [SVM_EXIT_NMI] = nop_on_interception,
1235 [SVM_EXIT_SMI] = nop_on_interception,
1236 [SVM_EXIT_INIT] = nop_on_interception,
1237 [SVM_EXIT_VINTR] = interrupt_window_interception,
1238 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1239 [SVM_EXIT_CPUID] = cpuid_interception,
1240 [SVM_EXIT_HLT] = halt_interception,
1241 [SVM_EXIT_INVLPG] = emulate_on_interception,
1242 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1243 [SVM_EXIT_IOIO] = io_interception,
1244 [SVM_EXIT_MSR] = msr_interception,
1245 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1246 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1247 [SVM_EXIT_VMRUN] = invalid_op_interception,
1248 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1249 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1250 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1251 [SVM_EXIT_STGI] = invalid_op_interception,
1252 [SVM_EXIT_CLGI] = invalid_op_interception,
1253 [SVM_EXIT_SKINIT] = invalid_op_interception,
1254 [SVM_EXIT_MONITOR] = invalid_op_interception,
1255 [SVM_EXIT_MWAIT] = invalid_op_interception,
1256 };
1257
1258
1259 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1260 {
1261 u32 exit_code = svm->vmcb->control.exit_code;
1262
1263 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1264 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1265 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1266 "exit_code 0x%x\n",
1267 __FUNCTION__, svm->vmcb->control.exit_int_info,
1268 exit_code);
1269
1270 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1271 || svm_exit_handlers[exit_code] == 0) {
1272 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1273 kvm_run->hw.hardware_exit_reason = exit_code;
1274 return 0;
1275 }
1276
1277 return svm_exit_handlers[exit_code](svm, kvm_run);
1278 }
1279
1280 static void reload_tss(struct kvm_vcpu *vcpu)
1281 {
1282 int cpu = raw_smp_processor_id();
1283
1284 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1285 svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1286 load_TR_desc();
1287 }
1288
1289 static void pre_svm_run(struct vcpu_svm *svm)
1290 {
1291 int cpu = raw_smp_processor_id();
1292
1293 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1294
1295 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1296 if (svm->vcpu.cpu != cpu ||
1297 svm->asid_generation != svm_data->asid_generation)
1298 new_asid(svm, svm_data);
1299 }
1300
1301
1302 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1303 {
1304 struct vmcb_control_area *control;
1305
1306 control = &svm->vmcb->control;
1307 control->int_vector = irq;
1308 control->int_ctl &= ~V_INTR_PRIO_MASK;
1309 control->int_ctl |= V_IRQ_MASK |
1310 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1311 }
1312
1313 static void svm_intr_assist(struct vcpu_svm *svm)
1314 {
1315 struct vmcb *vmcb = svm->vmcb;
1316 int intr_vector = -1;
1317
1318 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1319 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1320 intr_vector = vmcb->control.exit_int_info &
1321 SVM_EVTINJ_VEC_MASK;
1322 vmcb->control.exit_int_info = 0;
1323 svm_inject_irq(svm, intr_vector);
1324 return;
1325 }
1326
1327 if (vmcb->control.int_ctl & V_IRQ_MASK)
1328 return;
1329
1330 if (!kvm_cpu_has_interrupt(&svm->vcpu))
1331 return;
1332
1333 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1334 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1335 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1336 /* unable to deliver irq, set pending irq */
1337 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1338 svm_inject_irq(svm, 0x0);
1339 return;
1340 }
1341 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1342 intr_vector = kvm_cpu_get_interrupt(&svm->vcpu);
1343 svm_inject_irq(svm, intr_vector);
1344 }
1345
1346 static void kvm_reput_irq(struct vcpu_svm *svm)
1347 {
1348 struct vmcb_control_area *control = &svm->vmcb->control;
1349
1350 if ((control->int_ctl & V_IRQ_MASK)
1351 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1352 control->int_ctl &= ~V_IRQ_MASK;
1353 push_irq(&svm->vcpu, control->int_vector);
1354 }
1355
1356 svm->vcpu.interrupt_window_open =
1357 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1358 }
1359
1360 static void svm_do_inject_vector(struct vcpu_svm *svm)
1361 {
1362 struct kvm_vcpu *vcpu = &svm->vcpu;
1363 int word_index = __ffs(vcpu->irq_summary);
1364 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1365 int irq = word_index * BITS_PER_LONG + bit_index;
1366
1367 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1368 if (!vcpu->irq_pending[word_index])
1369 clear_bit(word_index, &vcpu->irq_summary);
1370 svm_inject_irq(svm, irq);
1371 }
1372
1373 static void do_interrupt_requests(struct vcpu_svm *svm,
1374 struct kvm_run *kvm_run)
1375 {
1376 struct vmcb_control_area *control = &svm->vmcb->control;
1377
1378 svm->vcpu.interrupt_window_open =
1379 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1380 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1381
1382 if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1383 /*
1384 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1385 */
1386 svm_do_inject_vector(svm);
1387
1388 /*
1389 * Interrupts blocked. Wait for unblock.
1390 */
1391 if (!svm->vcpu.interrupt_window_open &&
1392 (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1393 control->intercept |= 1ULL << INTERCEPT_VINTR;
1394 } else
1395 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1396 }
1397
1398 static void post_kvm_run_save(struct vcpu_svm *svm,
1399 struct kvm_run *kvm_run)
1400 {
1401 if (irqchip_in_kernel(svm->vcpu.kvm))
1402 kvm_run->ready_for_interrupt_injection = 1;
1403 else
1404 kvm_run->ready_for_interrupt_injection =
1405 (svm->vcpu.interrupt_window_open &&
1406 svm->vcpu.irq_summary == 0);
1407 kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1408 kvm_run->cr8 = get_cr8(&svm->vcpu);
1409 kvm_run->apic_base = kvm_get_apic_base(&svm->vcpu);
1410 }
1411
1412 /*
1413 * Check if userspace requested an interrupt window, and that the
1414 * interrupt window is open.
1415 *
1416 * No need to exit to userspace if we already have an interrupt queued.
1417 */
1418 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1419 struct kvm_run *kvm_run)
1420 {
1421 return (!svm->vcpu.irq_summary &&
1422 kvm_run->request_interrupt_window &&
1423 svm->vcpu.interrupt_window_open &&
1424 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1425 }
1426
1427 static void save_db_regs(unsigned long *db_regs)
1428 {
1429 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1430 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1431 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1432 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1433 }
1434
1435 static void load_db_regs(unsigned long *db_regs)
1436 {
1437 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1438 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1439 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1440 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1441 }
1442
1443 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1444 {
1445 force_new_asid(vcpu);
1446 }
1447
1448 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1449 {
1450 struct vcpu_svm *svm = to_svm(vcpu);
1451 u16 fs_selector;
1452 u16 gs_selector;
1453 u16 ldt_selector;
1454 int r;
1455
1456 again:
1457 r = kvm_mmu_reload(vcpu);
1458 if (unlikely(r))
1459 return r;
1460
1461 clgi();
1462
1463 if (signal_pending(current)) {
1464 stgi();
1465 ++vcpu->stat.signal_exits;
1466 post_kvm_run_save(svm, kvm_run);
1467 kvm_run->exit_reason = KVM_EXIT_INTR;
1468 return -EINTR;
1469 }
1470
1471 if (irqchip_in_kernel(vcpu->kvm))
1472 svm_intr_assist(svm);
1473 else if (!vcpu->mmio_read_completed)
1474 do_interrupt_requests(svm, kvm_run);
1475
1476 vcpu->guest_mode = 1;
1477 if (vcpu->requests)
1478 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1479 svm_flush_tlb(vcpu);
1480
1481 pre_svm_run(svm);
1482
1483 save_host_msrs(vcpu);
1484 fs_selector = read_fs();
1485 gs_selector = read_gs();
1486 ldt_selector = read_ldt();
1487 svm->host_cr2 = kvm_read_cr2();
1488 svm->host_dr6 = read_dr6();
1489 svm->host_dr7 = read_dr7();
1490 svm->vmcb->save.cr2 = vcpu->cr2;
1491
1492 if (svm->vmcb->save.dr7 & 0xff) {
1493 write_dr7(0);
1494 save_db_regs(svm->host_db_regs);
1495 load_db_regs(svm->db_regs);
1496 }
1497
1498 if (vcpu->fpu_active) {
1499 fx_save(&vcpu->host_fx_image);
1500 fx_restore(&vcpu->guest_fx_image);
1501 }
1502
1503 asm volatile (
1504 #ifdef CONFIG_X86_64
1505 "push %%rbx; push %%rcx; push %%rdx;"
1506 "push %%rsi; push %%rdi; push %%rbp;"
1507 "push %%r8; push %%r9; push %%r10; push %%r11;"
1508 "push %%r12; push %%r13; push %%r14; push %%r15;"
1509 #else
1510 "push %%ebx; push %%ecx; push %%edx;"
1511 "push %%esi; push %%edi; push %%ebp;"
1512 #endif
1513
1514 #ifdef CONFIG_X86_64
1515 "mov %c[rbx](%[svm]), %%rbx \n\t"
1516 "mov %c[rcx](%[svm]), %%rcx \n\t"
1517 "mov %c[rdx](%[svm]), %%rdx \n\t"
1518 "mov %c[rsi](%[svm]), %%rsi \n\t"
1519 "mov %c[rdi](%[svm]), %%rdi \n\t"
1520 "mov %c[rbp](%[svm]), %%rbp \n\t"
1521 "mov %c[r8](%[svm]), %%r8 \n\t"
1522 "mov %c[r9](%[svm]), %%r9 \n\t"
1523 "mov %c[r10](%[svm]), %%r10 \n\t"
1524 "mov %c[r11](%[svm]), %%r11 \n\t"
1525 "mov %c[r12](%[svm]), %%r12 \n\t"
1526 "mov %c[r13](%[svm]), %%r13 \n\t"
1527 "mov %c[r14](%[svm]), %%r14 \n\t"
1528 "mov %c[r15](%[svm]), %%r15 \n\t"
1529 #else
1530 "mov %c[rbx](%[svm]), %%ebx \n\t"
1531 "mov %c[rcx](%[svm]), %%ecx \n\t"
1532 "mov %c[rdx](%[svm]), %%edx \n\t"
1533 "mov %c[rsi](%[svm]), %%esi \n\t"
1534 "mov %c[rdi](%[svm]), %%edi \n\t"
1535 "mov %c[rbp](%[svm]), %%ebp \n\t"
1536 #endif
1537
1538 #ifdef CONFIG_X86_64
1539 /* Enter guest mode */
1540 "push %%rax \n\t"
1541 "mov %c[vmcb](%[svm]), %%rax \n\t"
1542 SVM_VMLOAD "\n\t"
1543 SVM_VMRUN "\n\t"
1544 SVM_VMSAVE "\n\t"
1545 "pop %%rax \n\t"
1546 #else
1547 /* Enter guest mode */
1548 "push %%eax \n\t"
1549 "mov %c[vmcb](%[svm]), %%eax \n\t"
1550 SVM_VMLOAD "\n\t"
1551 SVM_VMRUN "\n\t"
1552 SVM_VMSAVE "\n\t"
1553 "pop %%eax \n\t"
1554 #endif
1555
1556 /* Save guest registers, load host registers */
1557 #ifdef CONFIG_X86_64
1558 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1559 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1560 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1561 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1562 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1563 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1564 "mov %%r8, %c[r8](%[svm]) \n\t"
1565 "mov %%r9, %c[r9](%[svm]) \n\t"
1566 "mov %%r10, %c[r10](%[svm]) \n\t"
1567 "mov %%r11, %c[r11](%[svm]) \n\t"
1568 "mov %%r12, %c[r12](%[svm]) \n\t"
1569 "mov %%r13, %c[r13](%[svm]) \n\t"
1570 "mov %%r14, %c[r14](%[svm]) \n\t"
1571 "mov %%r15, %c[r15](%[svm]) \n\t"
1572
1573 "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1574 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1575 "pop %%rbp; pop %%rdi; pop %%rsi;"
1576 "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
1577 #else
1578 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1579 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1580 "mov %%edx, %c[rdx](%[svm]) \n\t"
1581 "mov %%esi, %c[rsi](%[svm]) \n\t"
1582 "mov %%edi, %c[rdi](%[svm]) \n\t"
1583 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1584
1585 "pop %%ebp; pop %%edi; pop %%esi;"
1586 "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
1587 #endif
1588 :
1589 : [svm]"a"(svm),
1590 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1591 [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1592 [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1593 [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1594 [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1595 [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1596 [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1597 #ifdef CONFIG_X86_64
1598 ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1599 [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1600 [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1601 [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1602 [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1603 [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1604 [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1605 [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1606 #endif
1607 : "cc", "memory" );
1608
1609 vcpu->guest_mode = 0;
1610
1611 if (vcpu->fpu_active) {
1612 fx_save(&vcpu->guest_fx_image);
1613 fx_restore(&vcpu->host_fx_image);
1614 }
1615
1616 if ((svm->vmcb->save.dr7 & 0xff))
1617 load_db_regs(svm->host_db_regs);
1618
1619 vcpu->cr2 = svm->vmcb->save.cr2;
1620
1621 write_dr6(svm->host_dr6);
1622 write_dr7(svm->host_dr7);
1623 kvm_write_cr2(svm->host_cr2);
1624
1625 load_fs(fs_selector);
1626 load_gs(gs_selector);
1627 load_ldt(ldt_selector);
1628 load_host_msrs(vcpu);
1629
1630 reload_tss(vcpu);
1631
1632 /*
1633 * Profile KVM exit RIPs:
1634 */
1635 if (unlikely(prof_on == KVM_PROFILING))
1636 profile_hit(KVM_PROFILING,
1637 (void *)(unsigned long)svm->vmcb->save.rip);
1638
1639 stgi();
1640
1641 kvm_reput_irq(svm);
1642
1643 svm->next_rip = 0;
1644
1645 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1646 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1647 kvm_run->fail_entry.hardware_entry_failure_reason
1648 = svm->vmcb->control.exit_code;
1649 post_kvm_run_save(svm, kvm_run);
1650 return 0;
1651 }
1652
1653 r = handle_exit(svm, kvm_run);
1654 if (r > 0) {
1655 if (dm_request_for_irq_injection(svm, kvm_run)) {
1656 ++vcpu->stat.request_irq_exits;
1657 post_kvm_run_save(svm, kvm_run);
1658 kvm_run->exit_reason = KVM_EXIT_INTR;
1659 return -EINTR;
1660 }
1661 kvm_resched(vcpu);
1662 goto again;
1663 }
1664 post_kvm_run_save(svm, kvm_run);
1665 return r;
1666 }
1667
1668 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1669 {
1670 struct vcpu_svm *svm = to_svm(vcpu);
1671
1672 svm->vmcb->save.cr3 = root;
1673 force_new_asid(vcpu);
1674
1675 if (vcpu->fpu_active) {
1676 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1677 svm->vmcb->save.cr0 |= X86_CR0_TS;
1678 vcpu->fpu_active = 0;
1679 }
1680 }
1681
1682 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1683 unsigned long addr,
1684 uint32_t err_code)
1685 {
1686 struct vcpu_svm *svm = to_svm(vcpu);
1687 uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1688
1689 ++vcpu->stat.pf_guest;
1690
1691 if (is_page_fault(exit_int_info)) {
1692
1693 svm->vmcb->control.event_inj_err = 0;
1694 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1695 SVM_EVTINJ_VALID_ERR |
1696 SVM_EVTINJ_TYPE_EXEPT |
1697 DF_VECTOR;
1698 return;
1699 }
1700 vcpu->cr2 = addr;
1701 svm->vmcb->save.cr2 = addr;
1702 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1703 SVM_EVTINJ_VALID_ERR |
1704 SVM_EVTINJ_TYPE_EXEPT |
1705 PF_VECTOR;
1706 svm->vmcb->control.event_inj_err = err_code;
1707 }
1708
1709
1710 static int is_disabled(void)
1711 {
1712 u64 vm_cr;
1713
1714 rdmsrl(MSR_VM_CR, vm_cr);
1715 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 static void
1722 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1723 {
1724 /*
1725 * Patch in the VMMCALL instruction:
1726 */
1727 hypercall[0] = 0x0f;
1728 hypercall[1] = 0x01;
1729 hypercall[2] = 0xd9;
1730 hypercall[3] = 0xc3;
1731 }
1732
1733 static void svm_check_processor_compat(void *rtn)
1734 {
1735 *(int *)rtn = 0;
1736 }
1737
1738 static struct kvm_arch_ops svm_arch_ops = {
1739 .cpu_has_kvm_support = has_svm,
1740 .disabled_by_bios = is_disabled,
1741 .hardware_setup = svm_hardware_setup,
1742 .hardware_unsetup = svm_hardware_unsetup,
1743 .check_processor_compatibility = svm_check_processor_compat,
1744 .hardware_enable = svm_hardware_enable,
1745 .hardware_disable = svm_hardware_disable,
1746
1747 .vcpu_create = svm_create_vcpu,
1748 .vcpu_free = svm_free_vcpu,
1749
1750 .vcpu_load = svm_vcpu_load,
1751 .vcpu_put = svm_vcpu_put,
1752 .vcpu_decache = svm_vcpu_decache,
1753
1754 .set_guest_debug = svm_guest_debug,
1755 .get_msr = svm_get_msr,
1756 .set_msr = svm_set_msr,
1757 .get_segment_base = svm_get_segment_base,
1758 .get_segment = svm_get_segment,
1759 .set_segment = svm_set_segment,
1760 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1761 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1762 .set_cr0 = svm_set_cr0,
1763 .set_cr3 = svm_set_cr3,
1764 .set_cr4 = svm_set_cr4,
1765 .set_efer = svm_set_efer,
1766 .get_idt = svm_get_idt,
1767 .set_idt = svm_set_idt,
1768 .get_gdt = svm_get_gdt,
1769 .set_gdt = svm_set_gdt,
1770 .get_dr = svm_get_dr,
1771 .set_dr = svm_set_dr,
1772 .cache_regs = svm_cache_regs,
1773 .decache_regs = svm_decache_regs,
1774 .get_rflags = svm_get_rflags,
1775 .set_rflags = svm_set_rflags,
1776
1777 .invlpg = svm_invlpg,
1778 .tlb_flush = svm_flush_tlb,
1779 .inject_page_fault = svm_inject_page_fault,
1780
1781 .inject_gp = svm_inject_gp,
1782
1783 .run = svm_vcpu_run,
1784 .skip_emulated_instruction = skip_emulated_instruction,
1785 .patch_hypercall = svm_patch_hypercall,
1786 };
1787
1788 static int __init svm_init(void)
1789 {
1790 return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm),
1791 THIS_MODULE);
1792 }
1793
1794 static void __exit svm_exit(void)
1795 {
1796 kvm_exit_arch();
1797 }
1798
1799 module_init(svm_init)
1800 module_exit(svm_exit)