]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/kvm/svm.c
[PATCH] KVM: AMD SVM: Save and restore the floating point unit state
[mirror_ubuntu-jammy-kernel.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/highmem.h>
20 #include <asm/desc.h>
21
22 #include "kvm_svm.h"
23 #include "x86_emulate.h"
24
25 MODULE_AUTHOR("Qumranet");
26 MODULE_LICENSE("GPL");
27
28 #define IOPM_ALLOC_ORDER 2
29 #define MSRPM_ALLOC_ORDER 1
30
31 #define DB_VECTOR 1
32 #define UD_VECTOR 6
33 #define GP_VECTOR 13
34
35 #define DR7_GD_MASK (1 << 13)
36 #define DR6_BD_MASK (1 << 13)
37 #define CR4_DE_MASK (1UL << 3)
38
39 #define SEG_TYPE_LDT 2
40 #define SEG_TYPE_BUSY_TSS16 3
41
42 #define KVM_EFER_LMA (1 << 10)
43 #define KVM_EFER_LME (1 << 8)
44
45 unsigned long iopm_base;
46 unsigned long msrpm_base;
47
48 struct kvm_ldttss_desc {
49 u16 limit0;
50 u16 base0;
51 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
52 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
53 u32 base3;
54 u32 zero1;
55 } __attribute__((packed));
56
57 struct svm_cpu_data {
58 int cpu;
59
60 uint64_t asid_generation;
61 uint32_t max_asid;
62 uint32_t next_asid;
63 struct kvm_ldttss_desc *tss_desc;
64
65 struct page *save_area;
66 };
67
68 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
69
70 struct svm_init_data {
71 int cpu;
72 int r;
73 };
74
75 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
76
77 #define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges))
78 #define MSRS_RANGE_SIZE 2048
79 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
80
81 #define MAX_INST_SIZE 15
82
83 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
84 {
85 struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
86 u16 cs_attrib;
87
88 if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
89 return 2;
90
91 cs_attrib = sa->cs.attrib;
92
93 return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
94 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
95 }
96
97 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
98 {
99 int word_index = __ffs(vcpu->irq_summary);
100 int bit_index = __ffs(vcpu->irq_pending[word_index]);
101 int irq = word_index * BITS_PER_LONG + bit_index;
102
103 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
104 if (!vcpu->irq_pending[word_index])
105 clear_bit(word_index, &vcpu->irq_summary);
106 return irq;
107 }
108
109 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
110 {
111 set_bit(irq, vcpu->irq_pending);
112 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
113 }
114
115 static inline void clgi(void)
116 {
117 asm volatile (SVM_CLGI);
118 }
119
120 static inline void stgi(void)
121 {
122 asm volatile (SVM_STGI);
123 }
124
125 static inline void invlpga(unsigned long addr, u32 asid)
126 {
127 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
128 }
129
130 static inline unsigned long kvm_read_cr2(void)
131 {
132 unsigned long cr2;
133
134 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
135 return cr2;
136 }
137
138 static inline void kvm_write_cr2(unsigned long val)
139 {
140 asm volatile ("mov %0, %%cr2" :: "r" (val));
141 }
142
143 static inline unsigned long read_dr6(void)
144 {
145 unsigned long dr6;
146
147 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
148 return dr6;
149 }
150
151 static inline void write_dr6(unsigned long val)
152 {
153 asm volatile ("mov %0, %%dr6" :: "r" (val));
154 }
155
156 static inline unsigned long read_dr7(void)
157 {
158 unsigned long dr7;
159
160 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
161 return dr7;
162 }
163
164 static inline void write_dr7(unsigned long val)
165 {
166 asm volatile ("mov %0, %%dr7" :: "r" (val));
167 }
168
169 static inline int svm_is_long_mode(struct kvm_vcpu *vcpu)
170 {
171 return vcpu->svm->vmcb->save.efer & KVM_EFER_LMA;
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176 vcpu->svm->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181 force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186 if (!(efer & KVM_EFER_LMA))
187 efer &= ~KVM_EFER_LME;
188
189 vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190 vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
196 SVM_EVTINJ_VALID_ERR |
197 SVM_EVTINJ_TYPE_EXEPT |
198 GP_VECTOR;
199 vcpu->svm->vmcb->control.event_inj_err = error_code;
200 }
201
202 static void inject_ud(struct kvm_vcpu *vcpu)
203 {
204 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
205 SVM_EVTINJ_TYPE_EXEPT |
206 UD_VECTOR;
207 }
208
209 static void inject_db(struct kvm_vcpu *vcpu)
210 {
211 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
212 SVM_EVTINJ_TYPE_EXEPT |
213 DB_VECTOR;
214 }
215
216 static int is_page_fault(uint32_t info)
217 {
218 info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
219 return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
220 }
221
222 static int is_external_interrupt(u32 info)
223 {
224 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
225 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
226 }
227
228 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
229 {
230 if (!vcpu->svm->next_rip) {
231 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
232 return;
233 }
234 if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
235 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
236 __FUNCTION__,
237 vcpu->svm->vmcb->save.rip,
238 vcpu->svm->next_rip);
239 }
240
241 vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
242 vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
243 }
244
245 static int has_svm(void)
246 {
247 uint32_t eax, ebx, ecx, edx;
248
249 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD) {
250 printk(KERN_INFO "has_svm: not amd\n");
251 return 0;
252 }
253
254 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
255 if (eax < SVM_CPUID_FUNC) {
256 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
257 return 0;
258 }
259
260 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
261 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
262 printk(KERN_DEBUG "has_svm: svm not available\n");
263 return 0;
264 }
265 return 1;
266 }
267
268 static void svm_hardware_disable(void *garbage)
269 {
270 struct svm_cpu_data *svm_data
271 = per_cpu(svm_data, raw_smp_processor_id());
272
273 if (svm_data) {
274 uint64_t efer;
275
276 wrmsrl(MSR_VM_HSAVE_PA, 0);
277 rdmsrl(MSR_EFER, efer);
278 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
279 per_cpu(svm_data, raw_smp_processor_id()) = 0;
280 __free_page(svm_data->save_area);
281 kfree(svm_data);
282 }
283 }
284
285 static void svm_hardware_enable(void *garbage)
286 {
287
288 struct svm_cpu_data *svm_data;
289 uint64_t efer;
290 #ifdef CONFIG_X86_64
291 struct desc_ptr gdt_descr;
292 #else
293 struct Xgt_desc_struct gdt_descr;
294 #endif
295 struct desc_struct *gdt;
296 int me = raw_smp_processor_id();
297
298 if (!has_svm()) {
299 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
300 return;
301 }
302 svm_data = per_cpu(svm_data, me);
303
304 if (!svm_data) {
305 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
306 me);
307 return;
308 }
309
310 svm_data->asid_generation = 1;
311 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
312 svm_data->next_asid = svm_data->max_asid + 1;
313
314 asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315 gdt = (struct desc_struct *)gdt_descr.address;
316 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318 rdmsrl(MSR_EFER, efer);
319 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321 wrmsrl(MSR_VM_HSAVE_PA,
322 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327 struct svm_cpu_data *svm_data;
328 int r;
329
330 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331 if (!svm_data)
332 return -ENOMEM;
333 svm_data->cpu = cpu;
334 svm_data->save_area = alloc_page(GFP_KERNEL);
335 r = -ENOMEM;
336 if (!svm_data->save_area)
337 goto err_1;
338
339 per_cpu(svm_data, cpu) = svm_data;
340
341 return 0;
342
343 err_1:
344 kfree(svm_data);
345 return r;
346
347 }
348
349 static int set_msr_interception(u32 *msrpm, unsigned msr,
350 int read, int write)
351 {
352 int i;
353
354 for (i = 0; i < NUM_MSR_MAPS; i++) {
355 if (msr >= msrpm_ranges[i] &&
356 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358 msrpm_ranges[i]) * 2;
359
360 u32 *base = msrpm + (msr_offset / 32);
361 u32 msr_shift = msr_offset % 32;
362 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363 *base = (*base & ~(0x3 << msr_shift)) |
364 (mask << msr_shift);
365 return 1;
366 }
367 }
368 printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
369 return 0;
370 }
371
372 static __init int svm_hardware_setup(void)
373 {
374 int cpu;
375 struct page *iopm_pages;
376 struct page *msrpm_pages;
377 void *msrpm_va;
378 int r;
379
380 kvm_emulator_want_group7_invlpg();
381
382 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
383
384 if (!iopm_pages)
385 return -ENOMEM;
386 memset(page_address(iopm_pages), 0xff,
387 PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
388 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
389
390
391 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
392
393 r = -ENOMEM;
394 if (!msrpm_pages)
395 goto err_1;
396
397 msrpm_va = page_address(msrpm_pages);
398 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
399 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
400
401 #ifdef CONFIG_X86_64
402 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
403 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
404 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
405 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
406 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
407 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
408 #endif
409 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
410 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
411 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
412 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
413
414 for_each_online_cpu(cpu) {
415 r = svm_cpu_init(cpu);
416 if (r)
417 goto err_2;
418 }
419 return 0;
420
421 err_2:
422 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
423 msrpm_base = 0;
424 err_1:
425 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
426 iopm_base = 0;
427 return r;
428 }
429
430 static __exit void svm_hardware_unsetup(void)
431 {
432 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
433 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
434 iopm_base = msrpm_base = 0;
435 }
436
437 static void init_seg(struct vmcb_seg *seg)
438 {
439 seg->selector = 0;
440 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
441 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
442 seg->limit = 0xffff;
443 seg->base = 0;
444 }
445
446 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
447 {
448 seg->selector = 0;
449 seg->attrib = SVM_SELECTOR_P_MASK | type;
450 seg->limit = 0xffff;
451 seg->base = 0;
452 }
453
454 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
455 {
456 return 0;
457 }
458
459 static void init_vmcb(struct vmcb *vmcb)
460 {
461 struct vmcb_control_area *control = &vmcb->control;
462 struct vmcb_save_area *save = &vmcb->save;
463 u64 tsc;
464
465 control->intercept_cr_read = INTERCEPT_CR0_MASK |
466 INTERCEPT_CR3_MASK |
467 INTERCEPT_CR4_MASK;
468
469 control->intercept_cr_write = INTERCEPT_CR0_MASK |
470 INTERCEPT_CR3_MASK |
471 INTERCEPT_CR4_MASK;
472
473 control->intercept_dr_read = INTERCEPT_DR0_MASK |
474 INTERCEPT_DR1_MASK |
475 INTERCEPT_DR2_MASK |
476 INTERCEPT_DR3_MASK;
477
478 control->intercept_dr_write = INTERCEPT_DR0_MASK |
479 INTERCEPT_DR1_MASK |
480 INTERCEPT_DR2_MASK |
481 INTERCEPT_DR3_MASK |
482 INTERCEPT_DR5_MASK |
483 INTERCEPT_DR7_MASK;
484
485 control->intercept_exceptions = 1 << PF_VECTOR;
486
487
488 control->intercept = (1ULL << INTERCEPT_INTR) |
489 (1ULL << INTERCEPT_NMI) |
490 /*
491 * selective cr0 intercept bug?
492 * 0: 0f 22 d8 mov %eax,%cr3
493 * 3: 0f 20 c0 mov %cr0,%eax
494 * 6: 0d 00 00 00 80 or $0x80000000,%eax
495 * b: 0f 22 c0 mov %eax,%cr0
496 * set cr3 ->interception
497 * get cr0 ->interception
498 * set cr0 -> no interception
499 */
500 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
501 (1ULL << INTERCEPT_CPUID) |
502 (1ULL << INTERCEPT_HLT) |
503 (1ULL << INTERCEPT_INVLPG) |
504 (1ULL << INTERCEPT_INVLPGA) |
505 (1ULL << INTERCEPT_IOIO_PROT) |
506 (1ULL << INTERCEPT_MSR_PROT) |
507 (1ULL << INTERCEPT_TASK_SWITCH) |
508 (1ULL << INTERCEPT_VMRUN) |
509 (1ULL << INTERCEPT_VMMCALL) |
510 (1ULL << INTERCEPT_VMLOAD) |
511 (1ULL << INTERCEPT_VMSAVE) |
512 (1ULL << INTERCEPT_STGI) |
513 (1ULL << INTERCEPT_CLGI) |
514 (1ULL << INTERCEPT_SKINIT);
515
516 control->iopm_base_pa = iopm_base;
517 control->msrpm_base_pa = msrpm_base;
518 rdtscll(tsc);
519 control->tsc_offset = -tsc;
520 control->int_ctl = V_INTR_MASKING_MASK;
521
522 init_seg(&save->es);
523 init_seg(&save->ss);
524 init_seg(&save->ds);
525 init_seg(&save->fs);
526 init_seg(&save->gs);
527
528 save->cs.selector = 0xf000;
529 /* Executable/Readable Code Segment */
530 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
531 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
532 save->cs.limit = 0xffff;
533 save->cs.base = 0xffff0000;
534
535 save->gdtr.limit = 0xffff;
536 save->idtr.limit = 0xffff;
537
538 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
539 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
540
541 save->efer = MSR_EFER_SVME_MASK;
542
543 save->dr6 = 0xffff0ff0;
544 save->dr7 = 0x400;
545 save->rflags = 2;
546 save->rip = 0x0000fff0;
547
548 /*
549 * cr0 val on cpu init should be 0x60000010, we enable cpu
550 * cache by default. the orderly way is to enable cache in bios.
551 */
552 save->cr0 = 0x00000010 | CR0_PG_MASK;
553 save->cr4 = CR4_PAE_MASK;
554 /* rdx = ?? */
555 }
556
557 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
558 {
559 struct page *page;
560 int r;
561
562 r = -ENOMEM;
563 vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
564 if (!vcpu->svm)
565 goto out1;
566 page = alloc_page(GFP_KERNEL);
567 if (!page)
568 goto out2;
569
570 vcpu->svm->vmcb = page_address(page);
571 memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
572 vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
573 vcpu->svm->cr0 = 0x00000010;
574 vcpu->svm->asid_generation = 0;
575 memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
576 init_vmcb(vcpu->svm->vmcb);
577
578 fx_init(vcpu);
579
580 return 0;
581
582 out2:
583 kfree(vcpu->svm);
584 out1:
585 return r;
586 }
587
588 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
589 {
590 if (!vcpu->svm)
591 return;
592 if (vcpu->svm->vmcb)
593 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
594 kfree(vcpu->svm);
595 }
596
597 static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu)
598 {
599 get_cpu();
600 return vcpu;
601 }
602
603 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
604 {
605 put_cpu();
606 }
607
608 static void svm_cache_regs(struct kvm_vcpu *vcpu)
609 {
610 vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
611 vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
612 vcpu->rip = vcpu->svm->vmcb->save.rip;
613 }
614
615 static void svm_decache_regs(struct kvm_vcpu *vcpu)
616 {
617 vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
618 vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
619 vcpu->svm->vmcb->save.rip = vcpu->rip;
620 }
621
622 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
623 {
624 return vcpu->svm->vmcb->save.rflags;
625 }
626
627 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
628 {
629 vcpu->svm->vmcb->save.rflags = rflags;
630 }
631
632 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
633 {
634 struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
635
636 switch (seg) {
637 case VCPU_SREG_CS: return &save->cs;
638 case VCPU_SREG_DS: return &save->ds;
639 case VCPU_SREG_ES: return &save->es;
640 case VCPU_SREG_FS: return &save->fs;
641 case VCPU_SREG_GS: return &save->gs;
642 case VCPU_SREG_SS: return &save->ss;
643 case VCPU_SREG_TR: return &save->tr;
644 case VCPU_SREG_LDTR: return &save->ldtr;
645 }
646 BUG();
647 return 0;
648 }
649
650 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
651 {
652 struct vmcb_seg *s = svm_seg(vcpu, seg);
653
654 return s->base;
655 }
656
657 static void svm_get_segment(struct kvm_vcpu *vcpu,
658 struct kvm_segment *var, int seg)
659 {
660 struct vmcb_seg *s = svm_seg(vcpu, seg);
661
662 var->base = s->base;
663 var->limit = s->limit;
664 var->selector = s->selector;
665 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
666 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
667 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
668 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
669 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
670 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
671 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
672 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
673 var->unusable = !var->present;
674 }
675
676 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
677 {
678 struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
679
680 *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
681 *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
682 }
683
684 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
685 {
686 dt->limit = vcpu->svm->vmcb->save.ldtr.limit;
687 dt->base = vcpu->svm->vmcb->save.ldtr.base;
688 }
689
690 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
691 {
692 vcpu->svm->vmcb->save.ldtr.limit = dt->limit;
693 vcpu->svm->vmcb->save.ldtr.base = dt->base ;
694 }
695
696 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
697 {
698 dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
699 dt->base = vcpu->svm->vmcb->save.gdtr.base;
700 }
701
702 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
703 {
704 vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
705 vcpu->svm->vmcb->save.gdtr.base = dt->base ;
706 }
707
708 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
709 {
710 #ifdef CONFIG_X86_64
711 if (vcpu->shadow_efer & KVM_EFER_LME) {
712 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
713 vcpu->shadow_efer |= KVM_EFER_LMA;
714 vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
715 }
716
717 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
718 vcpu->shadow_efer &= ~KVM_EFER_LMA;
719 vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
720 }
721 }
722 #endif
723 vcpu->svm->cr0 = cr0;
724 vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK;
725 vcpu->cr0 = cr0;
726 }
727
728 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
729 {
730 vcpu->cr4 = cr4;
731 vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
732 }
733
734 static void svm_set_segment(struct kvm_vcpu *vcpu,
735 struct kvm_segment *var, int seg)
736 {
737 struct vmcb_seg *s = svm_seg(vcpu, seg);
738
739 s->base = var->base;
740 s->limit = var->limit;
741 s->selector = var->selector;
742 if (var->unusable)
743 s->attrib = 0;
744 else {
745 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
746 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
747 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
748 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
749 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
750 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
751 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
752 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
753 }
754 if (seg == VCPU_SREG_CS)
755 vcpu->svm->vmcb->save.cpl
756 = (vcpu->svm->vmcb->save.cs.attrib
757 >> SVM_SELECTOR_DPL_SHIFT) & 3;
758
759 }
760
761 /* FIXME:
762
763 vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
764 vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
765
766 */
767
768 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
769 {
770 return -EOPNOTSUPP;
771 }
772
773 static void load_host_msrs(struct kvm_vcpu *vcpu)
774 {
775 int i;
776
777 for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
778 wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
779 }
780
781 static void save_host_msrs(struct kvm_vcpu *vcpu)
782 {
783 int i;
784
785 for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
786 rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
787 }
788
789 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
790 {
791 if (svm_data->next_asid > svm_data->max_asid) {
792 ++svm_data->asid_generation;
793 svm_data->next_asid = 1;
794 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
795 }
796
797 vcpu->cpu = svm_data->cpu;
798 vcpu->svm->asid_generation = svm_data->asid_generation;
799 vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
800 }
801
802 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
803 {
804 invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
805 }
806
807 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
808 {
809 return vcpu->svm->db_regs[dr];
810 }
811
812 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
813 int *exception)
814 {
815 *exception = 0;
816
817 if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
818 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
819 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
820 *exception = DB_VECTOR;
821 return;
822 }
823
824 switch (dr) {
825 case 0 ... 3:
826 vcpu->svm->db_regs[dr] = value;
827 return;
828 case 4 ... 5:
829 if (vcpu->cr4 & CR4_DE_MASK) {
830 *exception = UD_VECTOR;
831 return;
832 }
833 case 7: {
834 if (value & ~((1ULL << 32) - 1)) {
835 *exception = GP_VECTOR;
836 return;
837 }
838 vcpu->svm->vmcb->save.dr7 = value;
839 return;
840 }
841 default:
842 printk(KERN_DEBUG "%s: unexpected dr %u\n",
843 __FUNCTION__, dr);
844 *exception = UD_VECTOR;
845 return;
846 }
847 }
848
849 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
850 {
851 u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
852 u64 fault_address;
853 u32 error_code;
854 enum emulation_result er;
855
856 if (is_external_interrupt(exit_int_info))
857 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
858
859 spin_lock(&vcpu->kvm->lock);
860
861 fault_address = vcpu->svm->vmcb->control.exit_info_2;
862 error_code = vcpu->svm->vmcb->control.exit_info_1;
863 if (!vcpu->mmu.page_fault(vcpu, fault_address, error_code)) {
864 spin_unlock(&vcpu->kvm->lock);
865 return 1;
866 }
867 er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
868 spin_unlock(&vcpu->kvm->lock);
869
870 switch (er) {
871 case EMULATE_DONE:
872 return 1;
873 case EMULATE_DO_MMIO:
874 ++kvm_stat.mmio_exits;
875 kvm_run->exit_reason = KVM_EXIT_MMIO;
876 return 0;
877 case EMULATE_FAIL:
878 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
879 break;
880 default:
881 BUG();
882 }
883
884 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
885 return 0;
886 }
887
888 static int io_get_override(struct kvm_vcpu *vcpu,
889 struct vmcb_seg **seg,
890 int *addr_override)
891 {
892 u8 inst[MAX_INST_SIZE];
893 unsigned ins_length;
894 gva_t rip;
895 int i;
896
897 rip = vcpu->svm->vmcb->save.rip;
898 ins_length = vcpu->svm->next_rip - rip;
899 rip += vcpu->svm->vmcb->save.cs.base;
900
901 if (ins_length > MAX_INST_SIZE)
902 printk(KERN_DEBUG
903 "%s: inst length err, cs base 0x%llx rip 0x%llx "
904 "next rip 0x%llx ins_length %u\n",
905 __FUNCTION__,
906 vcpu->svm->vmcb->save.cs.base,
907 vcpu->svm->vmcb->save.rip,
908 vcpu->svm->vmcb->control.exit_info_2,
909 ins_length);
910
911 if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
912 /* #PF */
913 return 0;
914
915 *addr_override = 0;
916 *seg = 0;
917 for (i = 0; i < ins_length; i++)
918 switch (inst[i]) {
919 case 0xf0:
920 case 0xf2:
921 case 0xf3:
922 case 0x66:
923 continue;
924 case 0x67:
925 *addr_override = 1;
926 continue;
927 case 0x2e:
928 *seg = &vcpu->svm->vmcb->save.cs;
929 continue;
930 case 0x36:
931 *seg = &vcpu->svm->vmcb->save.ss;
932 continue;
933 case 0x3e:
934 *seg = &vcpu->svm->vmcb->save.ds;
935 continue;
936 case 0x26:
937 *seg = &vcpu->svm->vmcb->save.es;
938 continue;
939 case 0x64:
940 *seg = &vcpu->svm->vmcb->save.fs;
941 continue;
942 case 0x65:
943 *seg = &vcpu->svm->vmcb->save.gs;
944 continue;
945 default:
946 return 1;
947 }
948 printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
949 return 0;
950 }
951
952 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
953 {
954 unsigned long addr_mask;
955 unsigned long *reg;
956 struct vmcb_seg *seg;
957 int addr_override;
958 struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
959 u16 cs_attrib = save_area->cs.attrib;
960 unsigned addr_size = get_addr_size(vcpu);
961
962 if (!io_get_override(vcpu, &seg, &addr_override))
963 return 0;
964
965 if (addr_override)
966 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
967
968 if (ins) {
969 reg = &vcpu->regs[VCPU_REGS_RDI];
970 seg = &vcpu->svm->vmcb->save.es;
971 } else {
972 reg = &vcpu->regs[VCPU_REGS_RSI];
973 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
974 }
975
976 addr_mask = ~0ULL >> (64 - (addr_size * 8));
977
978 if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
979 !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
980 *address = (*reg & addr_mask);
981 return addr_mask;
982 }
983
984 if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
985 svm_inject_gp(vcpu, 0);
986 return 0;
987 }
988
989 *address = (*reg & addr_mask) + seg->base;
990 return addr_mask;
991 }
992
993 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
994 {
995 u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
996 int _in = io_info & SVM_IOIO_TYPE_MASK;
997
998 ++kvm_stat.io_exits;
999
1000 vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1001
1002 kvm_run->exit_reason = KVM_EXIT_IO;
1003 kvm_run->io.port = io_info >> 16;
1004 kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1005 kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
1006 kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
1007 kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1008
1009 if (kvm_run->io.string) {
1010 unsigned addr_mask;
1011
1012 addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
1013 if (!addr_mask) {
1014 printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__);
1015 return 1;
1016 }
1017
1018 if (kvm_run->io.rep) {
1019 kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1020 kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
1021 & X86_EFLAGS_DF) != 0;
1022 }
1023 } else {
1024 kvm_run->io.value = vcpu->svm->vmcb->save.rax;
1025 }
1026 return 0;
1027 }
1028
1029
1030 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1031 {
1032 return 1;
1033 }
1034
1035 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1036 {
1037 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1038 skip_emulated_instruction(vcpu);
1039 if (vcpu->irq_summary && (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF))
1040 return 1;
1041
1042 kvm_run->exit_reason = KVM_EXIT_HLT;
1043 return 0;
1044 }
1045
1046 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1047 {
1048 inject_ud(vcpu);
1049 return 1;
1050 }
1051
1052 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1053 {
1054 printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1055 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1056 return 0;
1057 }
1058
1059 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1060 {
1061 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1062 kvm_run->exit_reason = KVM_EXIT_CPUID;
1063 return 0;
1064 }
1065
1066 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1067 {
1068 if (emulate_instruction(vcpu, 0, 0, 0) != EMULATE_DONE)
1069 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1070 return 1;
1071 }
1072
1073 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1074 {
1075 switch (ecx) {
1076 case MSR_IA32_MC0_CTL:
1077 case MSR_IA32_MCG_STATUS:
1078 case MSR_IA32_MCG_CAP:
1079 case MSR_IA32_MC0_MISC:
1080 case MSR_IA32_MC0_MISC+4:
1081 case MSR_IA32_MC0_MISC+8:
1082 case MSR_IA32_MC0_MISC+12:
1083 case MSR_IA32_MC0_MISC+16:
1084 case MSR_IA32_UCODE_REV:
1085 /* MTRR registers */
1086 case 0xfe:
1087 case 0x200 ... 0x2ff:
1088 *data = 0;
1089 break;
1090 case MSR_IA32_TIME_STAMP_COUNTER: {
1091 u64 tsc;
1092
1093 rdtscll(tsc);
1094 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1095 break;
1096 }
1097 case MSR_EFER:
1098 *data = vcpu->shadow_efer;
1099 break;
1100 case MSR_IA32_APICBASE:
1101 *data = vcpu->apic_base;
1102 break;
1103 case MSR_K6_STAR:
1104 *data = vcpu->svm->vmcb->save.star;
1105 break;
1106 #ifdef CONFIG_X86_64
1107 case MSR_LSTAR:
1108 *data = vcpu->svm->vmcb->save.lstar;
1109 break;
1110 case MSR_CSTAR:
1111 *data = vcpu->svm->vmcb->save.cstar;
1112 break;
1113 case MSR_KERNEL_GS_BASE:
1114 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1115 break;
1116 case MSR_SYSCALL_MASK:
1117 *data = vcpu->svm->vmcb->save.sfmask;
1118 break;
1119 #endif
1120 case MSR_IA32_SYSENTER_CS:
1121 *data = vcpu->svm->vmcb->save.sysenter_cs;
1122 break;
1123 case MSR_IA32_SYSENTER_EIP:
1124 *data = vcpu->svm->vmcb->save.sysenter_eip;
1125 break;
1126 case MSR_IA32_SYSENTER_ESP:
1127 *data = vcpu->svm->vmcb->save.sysenter_esp;
1128 break;
1129 default:
1130 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", ecx);
1131 return 1;
1132 }
1133 return 0;
1134 }
1135
1136 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1137 {
1138 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1139 u64 data;
1140
1141 if (svm_get_msr(vcpu, ecx, &data))
1142 svm_inject_gp(vcpu, 0);
1143 else {
1144 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1145 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1146 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1147 skip_emulated_instruction(vcpu);
1148 }
1149 return 1;
1150 }
1151
1152 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1153 {
1154 switch (ecx) {
1155 #ifdef CONFIG_X86_64
1156 case MSR_EFER:
1157 set_efer(vcpu, data);
1158 break;
1159 #endif
1160 case MSR_IA32_MC0_STATUS:
1161 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
1162 , __FUNCTION__, data);
1163 break;
1164 case MSR_IA32_TIME_STAMP_COUNTER: {
1165 u64 tsc;
1166
1167 rdtscll(tsc);
1168 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1169 break;
1170 }
1171 case MSR_IA32_UCODE_REV:
1172 case MSR_IA32_UCODE_WRITE:
1173 case 0x200 ... 0x2ff: /* MTRRs */
1174 break;
1175 case MSR_IA32_APICBASE:
1176 vcpu->apic_base = data;
1177 break;
1178 case MSR_K6_STAR:
1179 vcpu->svm->vmcb->save.star = data;
1180 break;
1181 #ifdef CONFIG_X86_64_
1182 case MSR_LSTAR:
1183 vcpu->svm->vmcb->save.lstar = data;
1184 break;
1185 case MSR_CSTAR:
1186 vcpu->svm->vmcb->save.cstar = data;
1187 break;
1188 case MSR_KERNEL_GS_BASE:
1189 vcpu->svm->vmcb->save.kernel_gs_base = data;
1190 break;
1191 case MSR_SYSCALL_MASK:
1192 vcpu->svm->vmcb->save.sfmask = data;
1193 break;
1194 #endif
1195 case MSR_IA32_SYSENTER_CS:
1196 vcpu->svm->vmcb->save.sysenter_cs = data;
1197 break;
1198 case MSR_IA32_SYSENTER_EIP:
1199 vcpu->svm->vmcb->save.sysenter_eip = data;
1200 break;
1201 case MSR_IA32_SYSENTER_ESP:
1202 vcpu->svm->vmcb->save.sysenter_esp = data;
1203 break;
1204 default:
1205 printk(KERN_ERR "kvm: unhandled wrmsr: %x\n", ecx);
1206 return 1;
1207 }
1208 return 0;
1209 }
1210
1211 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1212 {
1213 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1214 u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1215 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1216 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1217 if (svm_set_msr(vcpu, ecx, data))
1218 svm_inject_gp(vcpu, 0);
1219 else
1220 skip_emulated_instruction(vcpu);
1221 return 1;
1222 }
1223
1224 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1225 {
1226 if (vcpu->svm->vmcb->control.exit_info_1)
1227 return wrmsr_interception(vcpu, kvm_run);
1228 else
1229 return rdmsr_interception(vcpu, kvm_run);
1230 }
1231
1232 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1233 struct kvm_run *kvm_run) = {
1234 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1235 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1236 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1237 /* for now: */
1238 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1239 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1240 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1241 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1242 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1243 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1244 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1245 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1246 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1247 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1248 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1249 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1250 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1251 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1252 [SVM_EXIT_INTR] = nop_on_interception,
1253 [SVM_EXIT_NMI] = nop_on_interception,
1254 [SVM_EXIT_SMI] = nop_on_interception,
1255 [SVM_EXIT_INIT] = nop_on_interception,
1256 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1257 [SVM_EXIT_CPUID] = cpuid_interception,
1258 [SVM_EXIT_HLT] = halt_interception,
1259 [SVM_EXIT_INVLPG] = emulate_on_interception,
1260 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1261 [SVM_EXIT_IOIO] = io_interception,
1262 [SVM_EXIT_MSR] = msr_interception,
1263 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1264 [SVM_EXIT_VMRUN] = invalid_op_interception,
1265 [SVM_EXIT_VMMCALL] = invalid_op_interception,
1266 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1267 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1268 [SVM_EXIT_STGI] = invalid_op_interception,
1269 [SVM_EXIT_CLGI] = invalid_op_interception,
1270 [SVM_EXIT_SKINIT] = invalid_op_interception,
1271 };
1272
1273
1274 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1275 {
1276 u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1277
1278 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1279
1280 if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1281 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1282 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1283 "exit_code 0x%x\n",
1284 __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1285 exit_code);
1286
1287 if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers)
1288 || svm_exit_handlers[exit_code] == 0) {
1289 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1290 printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
1291 __FUNCTION__,
1292 exit_code,
1293 vcpu->svm->vmcb->save.rip,
1294 vcpu->cr0,
1295 vcpu->svm->vmcb->save.rflags);
1296 return 0;
1297 }
1298
1299 return svm_exit_handlers[exit_code](vcpu, kvm_run);
1300 }
1301
1302 static void reload_tss(struct kvm_vcpu *vcpu)
1303 {
1304 int cpu = raw_smp_processor_id();
1305
1306 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1307 svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1308 load_TR_desc();
1309 }
1310
1311 static void pre_svm_run(struct kvm_vcpu *vcpu)
1312 {
1313 int cpu = raw_smp_processor_id();
1314
1315 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1316
1317 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1318 if (vcpu->cpu != cpu ||
1319 vcpu->svm->asid_generation != svm_data->asid_generation)
1320 new_asid(vcpu, svm_data);
1321 }
1322
1323
1324 static inline void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1325 {
1326 struct vmcb_control_area *control;
1327
1328 if (!vcpu->irq_summary)
1329 return;
1330
1331 control = &vcpu->svm->vmcb->control;
1332
1333 control->int_vector = pop_irq(vcpu);
1334 control->int_ctl &= ~V_INTR_PRIO_MASK;
1335 control->int_ctl |= V_IRQ_MASK |
1336 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1337 }
1338
1339 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1340 {
1341 struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1342
1343 if (control->int_ctl & V_IRQ_MASK) {
1344 control->int_ctl &= ~V_IRQ_MASK;
1345 push_irq(vcpu, control->int_vector);
1346 }
1347 }
1348
1349 static void save_db_regs(unsigned long *db_regs)
1350 {
1351 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1352 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1353 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1354 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1355 }
1356
1357 static void load_db_regs(unsigned long *db_regs)
1358 {
1359 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1360 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1361 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1362 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1363 }
1364
1365 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1366 {
1367 u16 fs_selector;
1368 u16 gs_selector;
1369 u16 ldt_selector;
1370
1371 again:
1372 kvm_try_inject_irq(vcpu);
1373
1374 clgi();
1375
1376 pre_svm_run(vcpu);
1377
1378 save_host_msrs(vcpu);
1379 fs_selector = read_fs();
1380 gs_selector = read_gs();
1381 ldt_selector = read_ldt();
1382 vcpu->svm->host_cr2 = kvm_read_cr2();
1383 vcpu->svm->host_dr6 = read_dr6();
1384 vcpu->svm->host_dr7 = read_dr7();
1385 vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1386
1387 if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1388 write_dr7(0);
1389 save_db_regs(vcpu->svm->host_db_regs);
1390 load_db_regs(vcpu->svm->db_regs);
1391 }
1392
1393 fx_save(vcpu->host_fx_image);
1394 fx_restore(vcpu->guest_fx_image);
1395
1396 asm volatile (
1397 #ifdef CONFIG_X86_64
1398 "push %%rbx; push %%rcx; push %%rdx;"
1399 "push %%rsi; push %%rdi; push %%rbp;"
1400 "push %%r8; push %%r9; push %%r10; push %%r11;"
1401 "push %%r12; push %%r13; push %%r14; push %%r15;"
1402 #else
1403 "push %%ebx; push %%ecx; push %%edx;"
1404 "push %%esi; push %%edi; push %%ebp;"
1405 #endif
1406
1407 #ifdef CONFIG_X86_64
1408 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1409 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1410 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1411 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1412 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1413 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1414 "mov %c[r8](%[vcpu]), %%r8 \n\t"
1415 "mov %c[r9](%[vcpu]), %%r9 \n\t"
1416 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1417 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1418 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1419 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1420 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1421 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1422 #else
1423 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1424 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1425 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1426 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1427 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1428 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1429 #endif
1430
1431 #ifdef CONFIG_X86_64
1432 /* Enter guest mode */
1433 "push %%rax \n\t"
1434 "mov %c[svm](%[vcpu]), %%rax \n\t"
1435 "mov %c[vmcb](%%rax), %%rax \n\t"
1436 SVM_VMLOAD "\n\t"
1437 SVM_VMRUN "\n\t"
1438 SVM_VMSAVE "\n\t"
1439 "pop %%rax \n\t"
1440 #else
1441 /* Enter guest mode */
1442 "push %%eax \n\t"
1443 "mov %c[svm](%[vcpu]), %%eax \n\t"
1444 "mov %c[vmcb](%%eax), %%eax \n\t"
1445 SVM_VMLOAD "\n\t"
1446 SVM_VMRUN "\n\t"
1447 SVM_VMSAVE "\n\t"
1448 "pop %%eax \n\t"
1449 #endif
1450
1451 /* Save guest registers, load host registers */
1452 #ifdef CONFIG_X86_64
1453 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1454 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1455 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1456 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1457 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1458 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1459 "mov %%r8, %c[r8](%[vcpu]) \n\t"
1460 "mov %%r9, %c[r9](%[vcpu]) \n\t"
1461 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1462 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1463 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1464 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1465 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1466 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1467
1468 "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1469 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1470 "pop %%rbp; pop %%rdi; pop %%rsi;"
1471 "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
1472 #else
1473 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1474 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1475 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1476 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1477 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1478 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1479
1480 "pop %%ebp; pop %%edi; pop %%esi;"
1481 "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
1482 #endif
1483 :
1484 : [vcpu]"a"(vcpu),
1485 [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1486 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1487 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1488 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1489 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1490 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1491 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1492 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1493 #ifdef CONFIG_X86_64
1494 ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1495 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1496 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1497 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1498 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1499 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1500 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1501 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1502 #endif
1503 : "cc", "memory" );
1504
1505 fx_save(vcpu->guest_fx_image);
1506 fx_restore(vcpu->host_fx_image);
1507
1508 if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1509 load_db_regs(vcpu->svm->host_db_regs);
1510
1511 vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1512
1513 write_dr6(vcpu->svm->host_dr6);
1514 write_dr7(vcpu->svm->host_dr7);
1515 kvm_write_cr2(vcpu->svm->host_cr2);
1516
1517 load_fs(fs_selector);
1518 load_gs(gs_selector);
1519 load_ldt(ldt_selector);
1520 load_host_msrs(vcpu);
1521
1522 reload_tss(vcpu);
1523
1524 stgi();
1525
1526 kvm_reput_irq(vcpu);
1527
1528 vcpu->svm->next_rip = 0;
1529
1530 if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1531 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1532 kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
1533 return 0;
1534 }
1535
1536 if (handle_exit(vcpu, kvm_run)) {
1537 if (signal_pending(current)) {
1538 ++kvm_stat.signal_exits;
1539 return -EINTR;
1540 }
1541 kvm_resched(vcpu);
1542 goto again;
1543 }
1544 return 0;
1545 }
1546
1547 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1548 {
1549 force_new_asid(vcpu);
1550 }
1551
1552 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1553 {
1554 vcpu->svm->vmcb->save.cr3 = root;
1555 force_new_asid(vcpu);
1556 }
1557
1558 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1559 unsigned long addr,
1560 uint32_t err_code)
1561 {
1562 uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1563
1564 ++kvm_stat.pf_guest;
1565
1566 if (is_page_fault(exit_int_info)) {
1567
1568 vcpu->svm->vmcb->control.event_inj_err = 0;
1569 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1570 SVM_EVTINJ_VALID_ERR |
1571 SVM_EVTINJ_TYPE_EXEPT |
1572 DF_VECTOR;
1573 return;
1574 }
1575 vcpu->cr2 = addr;
1576 vcpu->svm->vmcb->save.cr2 = addr;
1577 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1578 SVM_EVTINJ_VALID_ERR |
1579 SVM_EVTINJ_TYPE_EXEPT |
1580 PF_VECTOR;
1581 vcpu->svm->vmcb->control.event_inj_err = err_code;
1582 }
1583
1584
1585 static int is_disabled(void)
1586 {
1587 return 0;
1588 }
1589
1590 static struct kvm_arch_ops svm_arch_ops = {
1591 .cpu_has_kvm_support = has_svm,
1592 .disabled_by_bios = is_disabled,
1593 .hardware_setup = svm_hardware_setup,
1594 .hardware_unsetup = svm_hardware_unsetup,
1595 .hardware_enable = svm_hardware_enable,
1596 .hardware_disable = svm_hardware_disable,
1597
1598 .vcpu_create = svm_create_vcpu,
1599 .vcpu_free = svm_free_vcpu,
1600
1601 .vcpu_load = svm_vcpu_load,
1602 .vcpu_put = svm_vcpu_put,
1603
1604 .set_guest_debug = svm_guest_debug,
1605 .get_msr = svm_get_msr,
1606 .set_msr = svm_set_msr,
1607 .get_segment_base = svm_get_segment_base,
1608 .get_segment = svm_get_segment,
1609 .set_segment = svm_set_segment,
1610 .is_long_mode = svm_is_long_mode,
1611 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1612 .set_cr0 = svm_set_cr0,
1613 .set_cr0_no_modeswitch = svm_set_cr0,
1614 .set_cr3 = svm_set_cr3,
1615 .set_cr4 = svm_set_cr4,
1616 .set_efer = svm_set_efer,
1617 .get_idt = svm_get_idt,
1618 .set_idt = svm_set_idt,
1619 .get_gdt = svm_get_gdt,
1620 .set_gdt = svm_set_gdt,
1621 .get_dr = svm_get_dr,
1622 .set_dr = svm_set_dr,
1623 .cache_regs = svm_cache_regs,
1624 .decache_regs = svm_decache_regs,
1625 .get_rflags = svm_get_rflags,
1626 .set_rflags = svm_set_rflags,
1627
1628 .invlpg = svm_invlpg,
1629 .tlb_flush = svm_flush_tlb,
1630 .inject_page_fault = svm_inject_page_fault,
1631
1632 .inject_gp = svm_inject_gp,
1633
1634 .run = svm_vcpu_run,
1635 .skip_emulated_instruction = skip_emulated_instruction,
1636 .vcpu_setup = svm_vcpu_setup,
1637 };
1638
1639 static int __init svm_init(void)
1640 {
1641 return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1642 }
1643
1644 static void __exit svm_exit(void)
1645 {
1646 kvm_exit_arch();
1647 }
1648
1649 module_init(svm_init)
1650 module_exit(svm_exit)