]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/kvm/svm.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[mirror_ubuntu-jammy-kernel.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/highmem.h>
20 #include <asm/desc.h>
21
22 #include "kvm_svm.h"
23 #include "x86_emulate.h"
24
25 MODULE_AUTHOR("Qumranet");
26 MODULE_LICENSE("GPL");
27
28 #define IOPM_ALLOC_ORDER 2
29 #define MSRPM_ALLOC_ORDER 1
30
31 #define DB_VECTOR 1
32 #define UD_VECTOR 6
33 #define GP_VECTOR 13
34
35 #define DR7_GD_MASK (1 << 13)
36 #define DR6_BD_MASK (1 << 13)
37 #define CR4_DE_MASK (1UL << 3)
38
39 #define SEG_TYPE_LDT 2
40 #define SEG_TYPE_BUSY_TSS16 3
41
42 #define KVM_EFER_LMA (1 << 10)
43 #define KVM_EFER_LME (1 << 8)
44
45 unsigned long iopm_base;
46 unsigned long msrpm_base;
47
48 struct kvm_ldttss_desc {
49 u16 limit0;
50 u16 base0;
51 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
52 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
53 u32 base3;
54 u32 zero1;
55 } __attribute__((packed));
56
57 struct svm_cpu_data {
58 int cpu;
59
60 uint64_t asid_generation;
61 uint32_t max_asid;
62 uint32_t next_asid;
63 struct kvm_ldttss_desc *tss_desc;
64
65 struct page *save_area;
66 };
67
68 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
69
70 struct svm_init_data {
71 int cpu;
72 int r;
73 };
74
75 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
76
77 #define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges))
78 #define MSRS_RANGE_SIZE 2048
79 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
80
81 #define MAX_INST_SIZE 15
82
83 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
84 {
85 struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
86 u16 cs_attrib;
87
88 if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
89 return 2;
90
91 cs_attrib = sa->cs.attrib;
92
93 return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
94 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
95 }
96
97 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
98 {
99 int word_index = __ffs(vcpu->irq_summary);
100 int bit_index = __ffs(vcpu->irq_pending[word_index]);
101 int irq = word_index * BITS_PER_LONG + bit_index;
102
103 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
104 if (!vcpu->irq_pending[word_index])
105 clear_bit(word_index, &vcpu->irq_summary);
106 return irq;
107 }
108
109 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
110 {
111 set_bit(irq, vcpu->irq_pending);
112 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
113 }
114
115 static inline void clgi(void)
116 {
117 asm volatile (SVM_CLGI);
118 }
119
120 static inline void stgi(void)
121 {
122 asm volatile (SVM_STGI);
123 }
124
125 static inline void invlpga(unsigned long addr, u32 asid)
126 {
127 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
128 }
129
130 static inline unsigned long kvm_read_cr2(void)
131 {
132 unsigned long cr2;
133
134 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
135 return cr2;
136 }
137
138 static inline void kvm_write_cr2(unsigned long val)
139 {
140 asm volatile ("mov %0, %%cr2" :: "r" (val));
141 }
142
143 static inline unsigned long read_dr6(void)
144 {
145 unsigned long dr6;
146
147 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
148 return dr6;
149 }
150
151 static inline void write_dr6(unsigned long val)
152 {
153 asm volatile ("mov %0, %%dr6" :: "r" (val));
154 }
155
156 static inline unsigned long read_dr7(void)
157 {
158 unsigned long dr7;
159
160 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
161 return dr7;
162 }
163
164 static inline void write_dr7(unsigned long val)
165 {
166 asm volatile ("mov %0, %%dr7" :: "r" (val));
167 }
168
169 static inline void force_new_asid(struct kvm_vcpu *vcpu)
170 {
171 vcpu->svm->asid_generation--;
172 }
173
174 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
175 {
176 force_new_asid(vcpu);
177 }
178
179 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
180 {
181 if (!(efer & KVM_EFER_LMA))
182 efer &= ~KVM_EFER_LME;
183
184 vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
185 vcpu->shadow_efer = efer;
186 }
187
188 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
189 {
190 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
191 SVM_EVTINJ_VALID_ERR |
192 SVM_EVTINJ_TYPE_EXEPT |
193 GP_VECTOR;
194 vcpu->svm->vmcb->control.event_inj_err = error_code;
195 }
196
197 static void inject_ud(struct kvm_vcpu *vcpu)
198 {
199 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
200 SVM_EVTINJ_TYPE_EXEPT |
201 UD_VECTOR;
202 }
203
204 static void inject_db(struct kvm_vcpu *vcpu)
205 {
206 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207 SVM_EVTINJ_TYPE_EXEPT |
208 DB_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213 info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214 return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225 if (!vcpu->svm->next_rip) {
226 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
227 return;
228 }
229 if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
230 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
231 __FUNCTION__,
232 vcpu->svm->vmcb->save.rip,
233 vcpu->svm->next_rip);
234 }
235
236 vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
237 vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
238 }
239
240 static int has_svm(void)
241 {
242 uint32_t eax, ebx, ecx, edx;
243
244 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
245 printk(KERN_INFO "has_svm: not amd\n");
246 return 0;
247 }
248
249 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
250 if (eax < SVM_CPUID_FUNC) {
251 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
252 return 0;
253 }
254
255 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
256 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
257 printk(KERN_DEBUG "has_svm: svm not available\n");
258 return 0;
259 }
260 return 1;
261 }
262
263 static void svm_hardware_disable(void *garbage)
264 {
265 struct svm_cpu_data *svm_data
266 = per_cpu(svm_data, raw_smp_processor_id());
267
268 if (svm_data) {
269 uint64_t efer;
270
271 wrmsrl(MSR_VM_HSAVE_PA, 0);
272 rdmsrl(MSR_EFER, efer);
273 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
274 per_cpu(svm_data, raw_smp_processor_id()) = 0;
275 __free_page(svm_data->save_area);
276 kfree(svm_data);
277 }
278 }
279
280 static void svm_hardware_enable(void *garbage)
281 {
282
283 struct svm_cpu_data *svm_data;
284 uint64_t efer;
285 #ifdef CONFIG_X86_64
286 struct desc_ptr gdt_descr;
287 #else
288 struct Xgt_desc_struct gdt_descr;
289 #endif
290 struct desc_struct *gdt;
291 int me = raw_smp_processor_id();
292
293 if (!has_svm()) {
294 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
295 return;
296 }
297 svm_data = per_cpu(svm_data, me);
298
299 if (!svm_data) {
300 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
301 me);
302 return;
303 }
304
305 svm_data->asid_generation = 1;
306 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
307 svm_data->next_asid = svm_data->max_asid + 1;
308
309 asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
310 gdt = (struct desc_struct *)gdt_descr.address;
311 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
312
313 rdmsrl(MSR_EFER, efer);
314 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
315
316 wrmsrl(MSR_VM_HSAVE_PA,
317 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
318 }
319
320 static int svm_cpu_init(int cpu)
321 {
322 struct svm_cpu_data *svm_data;
323 int r;
324
325 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
326 if (!svm_data)
327 return -ENOMEM;
328 svm_data->cpu = cpu;
329 svm_data->save_area = alloc_page(GFP_KERNEL);
330 r = -ENOMEM;
331 if (!svm_data->save_area)
332 goto err_1;
333
334 per_cpu(svm_data, cpu) = svm_data;
335
336 return 0;
337
338 err_1:
339 kfree(svm_data);
340 return r;
341
342 }
343
344 static int set_msr_interception(u32 *msrpm, unsigned msr,
345 int read, int write)
346 {
347 int i;
348
349 for (i = 0; i < NUM_MSR_MAPS; i++) {
350 if (msr >= msrpm_ranges[i] &&
351 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
352 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
353 msrpm_ranges[i]) * 2;
354
355 u32 *base = msrpm + (msr_offset / 32);
356 u32 msr_shift = msr_offset % 32;
357 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
358 *base = (*base & ~(0x3 << msr_shift)) |
359 (mask << msr_shift);
360 return 1;
361 }
362 }
363 printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
364 return 0;
365 }
366
367 static __init int svm_hardware_setup(void)
368 {
369 int cpu;
370 struct page *iopm_pages;
371 struct page *msrpm_pages;
372 void *msrpm_va;
373 int r;
374
375 kvm_emulator_want_group7_invlpg();
376
377 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
378
379 if (!iopm_pages)
380 return -ENOMEM;
381 memset(page_address(iopm_pages), 0xff,
382 PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
383 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
384
385
386 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
387
388 r = -ENOMEM;
389 if (!msrpm_pages)
390 goto err_1;
391
392 msrpm_va = page_address(msrpm_pages);
393 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
394 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
395
396 #ifdef CONFIG_X86_64
397 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
398 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
399 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
400 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
401 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
402 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
403 #endif
404 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
405 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
406 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
407 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
408
409 for_each_online_cpu(cpu) {
410 r = svm_cpu_init(cpu);
411 if (r)
412 goto err_2;
413 }
414 return 0;
415
416 err_2:
417 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
418 msrpm_base = 0;
419 err_1:
420 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
421 iopm_base = 0;
422 return r;
423 }
424
425 static __exit void svm_hardware_unsetup(void)
426 {
427 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
428 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
429 iopm_base = msrpm_base = 0;
430 }
431
432 static void init_seg(struct vmcb_seg *seg)
433 {
434 seg->selector = 0;
435 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
436 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
437 seg->limit = 0xffff;
438 seg->base = 0;
439 }
440
441 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
442 {
443 seg->selector = 0;
444 seg->attrib = SVM_SELECTOR_P_MASK | type;
445 seg->limit = 0xffff;
446 seg->base = 0;
447 }
448
449 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
450 {
451 return 0;
452 }
453
454 static void init_vmcb(struct vmcb *vmcb)
455 {
456 struct vmcb_control_area *control = &vmcb->control;
457 struct vmcb_save_area *save = &vmcb->save;
458 u64 tsc;
459
460 control->intercept_cr_read = INTERCEPT_CR0_MASK |
461 INTERCEPT_CR3_MASK |
462 INTERCEPT_CR4_MASK;
463
464 control->intercept_cr_write = INTERCEPT_CR0_MASK |
465 INTERCEPT_CR3_MASK |
466 INTERCEPT_CR4_MASK;
467
468 control->intercept_dr_read = INTERCEPT_DR0_MASK |
469 INTERCEPT_DR1_MASK |
470 INTERCEPT_DR2_MASK |
471 INTERCEPT_DR3_MASK;
472
473 control->intercept_dr_write = INTERCEPT_DR0_MASK |
474 INTERCEPT_DR1_MASK |
475 INTERCEPT_DR2_MASK |
476 INTERCEPT_DR3_MASK |
477 INTERCEPT_DR5_MASK |
478 INTERCEPT_DR7_MASK;
479
480 control->intercept_exceptions = 1 << PF_VECTOR;
481
482
483 control->intercept = (1ULL << INTERCEPT_INTR) |
484 (1ULL << INTERCEPT_NMI) |
485 /*
486 * selective cr0 intercept bug?
487 * 0: 0f 22 d8 mov %eax,%cr3
488 * 3: 0f 20 c0 mov %cr0,%eax
489 * 6: 0d 00 00 00 80 or $0x80000000,%eax
490 * b: 0f 22 c0 mov %eax,%cr0
491 * set cr3 ->interception
492 * get cr0 ->interception
493 * set cr0 -> no interception
494 */
495 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
496 (1ULL << INTERCEPT_CPUID) |
497 (1ULL << INTERCEPT_HLT) |
498 (1ULL << INTERCEPT_INVLPG) |
499 (1ULL << INTERCEPT_INVLPGA) |
500 (1ULL << INTERCEPT_IOIO_PROT) |
501 (1ULL << INTERCEPT_MSR_PROT) |
502 (1ULL << INTERCEPT_TASK_SWITCH) |
503 (1ULL << INTERCEPT_VMRUN) |
504 (1ULL << INTERCEPT_VMMCALL) |
505 (1ULL << INTERCEPT_VMLOAD) |
506 (1ULL << INTERCEPT_VMSAVE) |
507 (1ULL << INTERCEPT_STGI) |
508 (1ULL << INTERCEPT_CLGI) |
509 (1ULL << INTERCEPT_SKINIT);
510
511 control->iopm_base_pa = iopm_base;
512 control->msrpm_base_pa = msrpm_base;
513 rdtscll(tsc);
514 control->tsc_offset = -tsc;
515 control->int_ctl = V_INTR_MASKING_MASK;
516
517 init_seg(&save->es);
518 init_seg(&save->ss);
519 init_seg(&save->ds);
520 init_seg(&save->fs);
521 init_seg(&save->gs);
522
523 save->cs.selector = 0xf000;
524 /* Executable/Readable Code Segment */
525 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
526 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
527 save->cs.limit = 0xffff;
528 save->cs.base = 0xffff0000;
529
530 save->gdtr.limit = 0xffff;
531 save->idtr.limit = 0xffff;
532
533 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
534 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
535
536 save->efer = MSR_EFER_SVME_MASK;
537
538 save->dr6 = 0xffff0ff0;
539 save->dr7 = 0x400;
540 save->rflags = 2;
541 save->rip = 0x0000fff0;
542
543 /*
544 * cr0 val on cpu init should be 0x60000010, we enable cpu
545 * cache by default. the orderly way is to enable cache in bios.
546 */
547 save->cr0 = 0x00000010 | CR0_PG_MASK;
548 save->cr4 = CR4_PAE_MASK;
549 /* rdx = ?? */
550 }
551
552 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
553 {
554 struct page *page;
555 int r;
556
557 r = -ENOMEM;
558 vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
559 if (!vcpu->svm)
560 goto out1;
561 page = alloc_page(GFP_KERNEL);
562 if (!page)
563 goto out2;
564
565 vcpu->svm->vmcb = page_address(page);
566 memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
567 vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
568 vcpu->svm->cr0 = 0x00000010;
569 vcpu->svm->asid_generation = 0;
570 memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
571 init_vmcb(vcpu->svm->vmcb);
572
573 fx_init(vcpu);
574
575 return 0;
576
577 out2:
578 kfree(vcpu->svm);
579 out1:
580 return r;
581 }
582
583 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
584 {
585 if (!vcpu->svm)
586 return;
587 if (vcpu->svm->vmcb)
588 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
589 kfree(vcpu->svm);
590 }
591
592 static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu)
593 {
594 get_cpu();
595 return vcpu;
596 }
597
598 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
599 {
600 put_cpu();
601 }
602
603 static void svm_cache_regs(struct kvm_vcpu *vcpu)
604 {
605 vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
606 vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
607 vcpu->rip = vcpu->svm->vmcb->save.rip;
608 }
609
610 static void svm_decache_regs(struct kvm_vcpu *vcpu)
611 {
612 vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
613 vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
614 vcpu->svm->vmcb->save.rip = vcpu->rip;
615 }
616
617 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
618 {
619 return vcpu->svm->vmcb->save.rflags;
620 }
621
622 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
623 {
624 vcpu->svm->vmcb->save.rflags = rflags;
625 }
626
627 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
628 {
629 struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
630
631 switch (seg) {
632 case VCPU_SREG_CS: return &save->cs;
633 case VCPU_SREG_DS: return &save->ds;
634 case VCPU_SREG_ES: return &save->es;
635 case VCPU_SREG_FS: return &save->fs;
636 case VCPU_SREG_GS: return &save->gs;
637 case VCPU_SREG_SS: return &save->ss;
638 case VCPU_SREG_TR: return &save->tr;
639 case VCPU_SREG_LDTR: return &save->ldtr;
640 }
641 BUG();
642 return 0;
643 }
644
645 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
646 {
647 struct vmcb_seg *s = svm_seg(vcpu, seg);
648
649 return s->base;
650 }
651
652 static void svm_get_segment(struct kvm_vcpu *vcpu,
653 struct kvm_segment *var, int seg)
654 {
655 struct vmcb_seg *s = svm_seg(vcpu, seg);
656
657 var->base = s->base;
658 var->limit = s->limit;
659 var->selector = s->selector;
660 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
661 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
662 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
663 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
664 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
665 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
666 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
667 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
668 var->unusable = !var->present;
669 }
670
671 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
672 {
673 struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
674
675 *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
676 *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
677 }
678
679 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
680 {
681 dt->limit = vcpu->svm->vmcb->save.ldtr.limit;
682 dt->base = vcpu->svm->vmcb->save.ldtr.base;
683 }
684
685 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
686 {
687 vcpu->svm->vmcb->save.ldtr.limit = dt->limit;
688 vcpu->svm->vmcb->save.ldtr.base = dt->base ;
689 }
690
691 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
692 {
693 dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
694 dt->base = vcpu->svm->vmcb->save.gdtr.base;
695 }
696
697 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
698 {
699 vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
700 vcpu->svm->vmcb->save.gdtr.base = dt->base ;
701 }
702
703 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
704 {
705 #ifdef CONFIG_X86_64
706 if (vcpu->shadow_efer & KVM_EFER_LME) {
707 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
708 vcpu->shadow_efer |= KVM_EFER_LMA;
709 vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
710 }
711
712 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
713 vcpu->shadow_efer &= ~KVM_EFER_LMA;
714 vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
715 }
716 }
717 #endif
718 vcpu->svm->cr0 = cr0;
719 vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK;
720 vcpu->cr0 = cr0;
721 }
722
723 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
724 {
725 vcpu->cr4 = cr4;
726 vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
727 }
728
729 static void svm_set_segment(struct kvm_vcpu *vcpu,
730 struct kvm_segment *var, int seg)
731 {
732 struct vmcb_seg *s = svm_seg(vcpu, seg);
733
734 s->base = var->base;
735 s->limit = var->limit;
736 s->selector = var->selector;
737 if (var->unusable)
738 s->attrib = 0;
739 else {
740 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
741 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
742 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
743 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
744 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
745 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
746 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
747 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
748 }
749 if (seg == VCPU_SREG_CS)
750 vcpu->svm->vmcb->save.cpl
751 = (vcpu->svm->vmcb->save.cs.attrib
752 >> SVM_SELECTOR_DPL_SHIFT) & 3;
753
754 }
755
756 /* FIXME:
757
758 vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
759 vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
760
761 */
762
763 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
764 {
765 return -EOPNOTSUPP;
766 }
767
768 static void load_host_msrs(struct kvm_vcpu *vcpu)
769 {
770 int i;
771
772 for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
773 wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
774 }
775
776 static void save_host_msrs(struct kvm_vcpu *vcpu)
777 {
778 int i;
779
780 for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
781 rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
782 }
783
784 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
785 {
786 if (svm_data->next_asid > svm_data->max_asid) {
787 ++svm_data->asid_generation;
788 svm_data->next_asid = 1;
789 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
790 }
791
792 vcpu->cpu = svm_data->cpu;
793 vcpu->svm->asid_generation = svm_data->asid_generation;
794 vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
795 }
796
797 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
798 {
799 invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
800 }
801
802 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
803 {
804 return vcpu->svm->db_regs[dr];
805 }
806
807 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
808 int *exception)
809 {
810 *exception = 0;
811
812 if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
813 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
814 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
815 *exception = DB_VECTOR;
816 return;
817 }
818
819 switch (dr) {
820 case 0 ... 3:
821 vcpu->svm->db_regs[dr] = value;
822 return;
823 case 4 ... 5:
824 if (vcpu->cr4 & CR4_DE_MASK) {
825 *exception = UD_VECTOR;
826 return;
827 }
828 case 7: {
829 if (value & ~((1ULL << 32) - 1)) {
830 *exception = GP_VECTOR;
831 return;
832 }
833 vcpu->svm->vmcb->save.dr7 = value;
834 return;
835 }
836 default:
837 printk(KERN_DEBUG "%s: unexpected dr %u\n",
838 __FUNCTION__, dr);
839 *exception = UD_VECTOR;
840 return;
841 }
842 }
843
844 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
845 {
846 u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
847 u64 fault_address;
848 u32 error_code;
849 enum emulation_result er;
850
851 if (is_external_interrupt(exit_int_info))
852 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
853
854 spin_lock(&vcpu->kvm->lock);
855
856 fault_address = vcpu->svm->vmcb->control.exit_info_2;
857 error_code = vcpu->svm->vmcb->control.exit_info_1;
858 if (!vcpu->mmu.page_fault(vcpu, fault_address, error_code)) {
859 spin_unlock(&vcpu->kvm->lock);
860 return 1;
861 }
862 er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
863 spin_unlock(&vcpu->kvm->lock);
864
865 switch (er) {
866 case EMULATE_DONE:
867 return 1;
868 case EMULATE_DO_MMIO:
869 ++kvm_stat.mmio_exits;
870 kvm_run->exit_reason = KVM_EXIT_MMIO;
871 return 0;
872 case EMULATE_FAIL:
873 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
874 break;
875 default:
876 BUG();
877 }
878
879 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
880 return 0;
881 }
882
883 static int io_get_override(struct kvm_vcpu *vcpu,
884 struct vmcb_seg **seg,
885 int *addr_override)
886 {
887 u8 inst[MAX_INST_SIZE];
888 unsigned ins_length;
889 gva_t rip;
890 int i;
891
892 rip = vcpu->svm->vmcb->save.rip;
893 ins_length = vcpu->svm->next_rip - rip;
894 rip += vcpu->svm->vmcb->save.cs.base;
895
896 if (ins_length > MAX_INST_SIZE)
897 printk(KERN_DEBUG
898 "%s: inst length err, cs base 0x%llx rip 0x%llx "
899 "next rip 0x%llx ins_length %u\n",
900 __FUNCTION__,
901 vcpu->svm->vmcb->save.cs.base,
902 vcpu->svm->vmcb->save.rip,
903 vcpu->svm->vmcb->control.exit_info_2,
904 ins_length);
905
906 if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
907 /* #PF */
908 return 0;
909
910 *addr_override = 0;
911 *seg = 0;
912 for (i = 0; i < ins_length; i++)
913 switch (inst[i]) {
914 case 0xf0:
915 case 0xf2:
916 case 0xf3:
917 case 0x66:
918 continue;
919 case 0x67:
920 *addr_override = 1;
921 continue;
922 case 0x2e:
923 *seg = &vcpu->svm->vmcb->save.cs;
924 continue;
925 case 0x36:
926 *seg = &vcpu->svm->vmcb->save.ss;
927 continue;
928 case 0x3e:
929 *seg = &vcpu->svm->vmcb->save.ds;
930 continue;
931 case 0x26:
932 *seg = &vcpu->svm->vmcb->save.es;
933 continue;
934 case 0x64:
935 *seg = &vcpu->svm->vmcb->save.fs;
936 continue;
937 case 0x65:
938 *seg = &vcpu->svm->vmcb->save.gs;
939 continue;
940 default:
941 return 1;
942 }
943 printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
944 return 0;
945 }
946
947 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
948 {
949 unsigned long addr_mask;
950 unsigned long *reg;
951 struct vmcb_seg *seg;
952 int addr_override;
953 struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
954 u16 cs_attrib = save_area->cs.attrib;
955 unsigned addr_size = get_addr_size(vcpu);
956
957 if (!io_get_override(vcpu, &seg, &addr_override))
958 return 0;
959
960 if (addr_override)
961 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
962
963 if (ins) {
964 reg = &vcpu->regs[VCPU_REGS_RDI];
965 seg = &vcpu->svm->vmcb->save.es;
966 } else {
967 reg = &vcpu->regs[VCPU_REGS_RSI];
968 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
969 }
970
971 addr_mask = ~0ULL >> (64 - (addr_size * 8));
972
973 if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
974 !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
975 *address = (*reg & addr_mask);
976 return addr_mask;
977 }
978
979 if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
980 svm_inject_gp(vcpu, 0);
981 return 0;
982 }
983
984 *address = (*reg & addr_mask) + seg->base;
985 return addr_mask;
986 }
987
988 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
989 {
990 u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
991 int _in = io_info & SVM_IOIO_TYPE_MASK;
992
993 ++kvm_stat.io_exits;
994
995 vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
996
997 kvm_run->exit_reason = KVM_EXIT_IO;
998 kvm_run->io.port = io_info >> 16;
999 kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1000 kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
1001 kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
1002 kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1003
1004 if (kvm_run->io.string) {
1005 unsigned addr_mask;
1006
1007 addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
1008 if (!addr_mask) {
1009 printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__);
1010 return 1;
1011 }
1012
1013 if (kvm_run->io.rep) {
1014 kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1015 kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
1016 & X86_EFLAGS_DF) != 0;
1017 }
1018 } else {
1019 kvm_run->io.value = vcpu->svm->vmcb->save.rax;
1020 }
1021 return 0;
1022 }
1023
1024
1025 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1026 {
1027 return 1;
1028 }
1029
1030 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1031 {
1032 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1033 skip_emulated_instruction(vcpu);
1034 if (vcpu->irq_summary && (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF))
1035 return 1;
1036
1037 kvm_run->exit_reason = KVM_EXIT_HLT;
1038 return 0;
1039 }
1040
1041 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1042 {
1043 inject_ud(vcpu);
1044 return 1;
1045 }
1046
1047 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1048 {
1049 printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1050 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1051 return 0;
1052 }
1053
1054 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1055 {
1056 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1057 kvm_run->exit_reason = KVM_EXIT_CPUID;
1058 return 0;
1059 }
1060
1061 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1062 {
1063 if (emulate_instruction(vcpu, 0, 0, 0) != EMULATE_DONE)
1064 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1065 return 1;
1066 }
1067
1068 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1069 {
1070 switch (ecx) {
1071 case MSR_IA32_TIME_STAMP_COUNTER: {
1072 u64 tsc;
1073
1074 rdtscll(tsc);
1075 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1076 break;
1077 }
1078 case MSR_K6_STAR:
1079 *data = vcpu->svm->vmcb->save.star;
1080 break;
1081 #ifdef CONFIG_X86_64
1082 case MSR_LSTAR:
1083 *data = vcpu->svm->vmcb->save.lstar;
1084 break;
1085 case MSR_CSTAR:
1086 *data = vcpu->svm->vmcb->save.cstar;
1087 break;
1088 case MSR_KERNEL_GS_BASE:
1089 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1090 break;
1091 case MSR_SYSCALL_MASK:
1092 *data = vcpu->svm->vmcb->save.sfmask;
1093 break;
1094 #endif
1095 case MSR_IA32_SYSENTER_CS:
1096 *data = vcpu->svm->vmcb->save.sysenter_cs;
1097 break;
1098 case MSR_IA32_SYSENTER_EIP:
1099 *data = vcpu->svm->vmcb->save.sysenter_eip;
1100 break;
1101 case MSR_IA32_SYSENTER_ESP:
1102 *data = vcpu->svm->vmcb->save.sysenter_esp;
1103 break;
1104 default:
1105 return kvm_get_msr_common(vcpu, ecx, data);
1106 }
1107 return 0;
1108 }
1109
1110 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1111 {
1112 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1113 u64 data;
1114
1115 if (svm_get_msr(vcpu, ecx, &data))
1116 svm_inject_gp(vcpu, 0);
1117 else {
1118 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1119 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1120 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1121 skip_emulated_instruction(vcpu);
1122 }
1123 return 1;
1124 }
1125
1126 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1127 {
1128 switch (ecx) {
1129 case MSR_IA32_TIME_STAMP_COUNTER: {
1130 u64 tsc;
1131
1132 rdtscll(tsc);
1133 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1134 break;
1135 }
1136 case MSR_K6_STAR:
1137 vcpu->svm->vmcb->save.star = data;
1138 break;
1139 #ifdef CONFIG_X86_64_
1140 case MSR_LSTAR:
1141 vcpu->svm->vmcb->save.lstar = data;
1142 break;
1143 case MSR_CSTAR:
1144 vcpu->svm->vmcb->save.cstar = data;
1145 break;
1146 case MSR_KERNEL_GS_BASE:
1147 vcpu->svm->vmcb->save.kernel_gs_base = data;
1148 break;
1149 case MSR_SYSCALL_MASK:
1150 vcpu->svm->vmcb->save.sfmask = data;
1151 break;
1152 #endif
1153 case MSR_IA32_SYSENTER_CS:
1154 vcpu->svm->vmcb->save.sysenter_cs = data;
1155 break;
1156 case MSR_IA32_SYSENTER_EIP:
1157 vcpu->svm->vmcb->save.sysenter_eip = data;
1158 break;
1159 case MSR_IA32_SYSENTER_ESP:
1160 vcpu->svm->vmcb->save.sysenter_esp = data;
1161 break;
1162 default:
1163 return kvm_set_msr_common(vcpu, ecx, data);
1164 }
1165 return 0;
1166 }
1167
1168 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1169 {
1170 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1171 u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1172 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1173 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1174 if (svm_set_msr(vcpu, ecx, data))
1175 svm_inject_gp(vcpu, 0);
1176 else
1177 skip_emulated_instruction(vcpu);
1178 return 1;
1179 }
1180
1181 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1182 {
1183 if (vcpu->svm->vmcb->control.exit_info_1)
1184 return wrmsr_interception(vcpu, kvm_run);
1185 else
1186 return rdmsr_interception(vcpu, kvm_run);
1187 }
1188
1189 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1190 struct kvm_run *kvm_run) = {
1191 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1192 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1193 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1194 /* for now: */
1195 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1196 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1197 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1198 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1199 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1200 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1201 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1202 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1203 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1204 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1205 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1206 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1207 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1208 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1209 [SVM_EXIT_INTR] = nop_on_interception,
1210 [SVM_EXIT_NMI] = nop_on_interception,
1211 [SVM_EXIT_SMI] = nop_on_interception,
1212 [SVM_EXIT_INIT] = nop_on_interception,
1213 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1214 [SVM_EXIT_CPUID] = cpuid_interception,
1215 [SVM_EXIT_HLT] = halt_interception,
1216 [SVM_EXIT_INVLPG] = emulate_on_interception,
1217 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1218 [SVM_EXIT_IOIO] = io_interception,
1219 [SVM_EXIT_MSR] = msr_interception,
1220 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1221 [SVM_EXIT_VMRUN] = invalid_op_interception,
1222 [SVM_EXIT_VMMCALL] = invalid_op_interception,
1223 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1224 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1225 [SVM_EXIT_STGI] = invalid_op_interception,
1226 [SVM_EXIT_CLGI] = invalid_op_interception,
1227 [SVM_EXIT_SKINIT] = invalid_op_interception,
1228 };
1229
1230
1231 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1232 {
1233 u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1234
1235 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1236
1237 if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1238 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1239 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1240 "exit_code 0x%x\n",
1241 __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1242 exit_code);
1243
1244 if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers)
1245 || svm_exit_handlers[exit_code] == 0) {
1246 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1247 printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
1248 __FUNCTION__,
1249 exit_code,
1250 vcpu->svm->vmcb->save.rip,
1251 vcpu->cr0,
1252 vcpu->svm->vmcb->save.rflags);
1253 return 0;
1254 }
1255
1256 return svm_exit_handlers[exit_code](vcpu, kvm_run);
1257 }
1258
1259 static void reload_tss(struct kvm_vcpu *vcpu)
1260 {
1261 int cpu = raw_smp_processor_id();
1262
1263 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1264 svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1265 load_TR_desc();
1266 }
1267
1268 static void pre_svm_run(struct kvm_vcpu *vcpu)
1269 {
1270 int cpu = raw_smp_processor_id();
1271
1272 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1273
1274 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1275 if (vcpu->cpu != cpu ||
1276 vcpu->svm->asid_generation != svm_data->asid_generation)
1277 new_asid(vcpu, svm_data);
1278 }
1279
1280
1281 static inline void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1282 {
1283 struct vmcb_control_area *control;
1284
1285 if (!vcpu->irq_summary)
1286 return;
1287
1288 control = &vcpu->svm->vmcb->control;
1289
1290 control->int_vector = pop_irq(vcpu);
1291 control->int_ctl &= ~V_INTR_PRIO_MASK;
1292 control->int_ctl |= V_IRQ_MASK |
1293 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1294 }
1295
1296 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1297 {
1298 struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1299
1300 if (control->int_ctl & V_IRQ_MASK) {
1301 control->int_ctl &= ~V_IRQ_MASK;
1302 push_irq(vcpu, control->int_vector);
1303 }
1304 }
1305
1306 static void save_db_regs(unsigned long *db_regs)
1307 {
1308 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1309 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1310 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1311 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1312 }
1313
1314 static void load_db_regs(unsigned long *db_regs)
1315 {
1316 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1317 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1318 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1319 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1320 }
1321
1322 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1323 {
1324 u16 fs_selector;
1325 u16 gs_selector;
1326 u16 ldt_selector;
1327
1328 again:
1329 kvm_try_inject_irq(vcpu);
1330
1331 clgi();
1332
1333 pre_svm_run(vcpu);
1334
1335 save_host_msrs(vcpu);
1336 fs_selector = read_fs();
1337 gs_selector = read_gs();
1338 ldt_selector = read_ldt();
1339 vcpu->svm->host_cr2 = kvm_read_cr2();
1340 vcpu->svm->host_dr6 = read_dr6();
1341 vcpu->svm->host_dr7 = read_dr7();
1342 vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1343
1344 if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1345 write_dr7(0);
1346 save_db_regs(vcpu->svm->host_db_regs);
1347 load_db_regs(vcpu->svm->db_regs);
1348 }
1349
1350 fx_save(vcpu->host_fx_image);
1351 fx_restore(vcpu->guest_fx_image);
1352
1353 asm volatile (
1354 #ifdef CONFIG_X86_64
1355 "push %%rbx; push %%rcx; push %%rdx;"
1356 "push %%rsi; push %%rdi; push %%rbp;"
1357 "push %%r8; push %%r9; push %%r10; push %%r11;"
1358 "push %%r12; push %%r13; push %%r14; push %%r15;"
1359 #else
1360 "push %%ebx; push %%ecx; push %%edx;"
1361 "push %%esi; push %%edi; push %%ebp;"
1362 #endif
1363
1364 #ifdef CONFIG_X86_64
1365 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1366 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1367 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1368 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1369 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1370 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1371 "mov %c[r8](%[vcpu]), %%r8 \n\t"
1372 "mov %c[r9](%[vcpu]), %%r9 \n\t"
1373 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1374 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1375 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1376 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1377 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1378 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1379 #else
1380 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1381 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1382 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1383 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1384 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1385 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1386 #endif
1387
1388 #ifdef CONFIG_X86_64
1389 /* Enter guest mode */
1390 "push %%rax \n\t"
1391 "mov %c[svm](%[vcpu]), %%rax \n\t"
1392 "mov %c[vmcb](%%rax), %%rax \n\t"
1393 SVM_VMLOAD "\n\t"
1394 SVM_VMRUN "\n\t"
1395 SVM_VMSAVE "\n\t"
1396 "pop %%rax \n\t"
1397 #else
1398 /* Enter guest mode */
1399 "push %%eax \n\t"
1400 "mov %c[svm](%[vcpu]), %%eax \n\t"
1401 "mov %c[vmcb](%%eax), %%eax \n\t"
1402 SVM_VMLOAD "\n\t"
1403 SVM_VMRUN "\n\t"
1404 SVM_VMSAVE "\n\t"
1405 "pop %%eax \n\t"
1406 #endif
1407
1408 /* Save guest registers, load host registers */
1409 #ifdef CONFIG_X86_64
1410 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1411 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1412 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1413 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1414 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1415 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1416 "mov %%r8, %c[r8](%[vcpu]) \n\t"
1417 "mov %%r9, %c[r9](%[vcpu]) \n\t"
1418 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1419 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1420 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1421 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1422 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1423 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1424
1425 "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1426 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1427 "pop %%rbp; pop %%rdi; pop %%rsi;"
1428 "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
1429 #else
1430 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1431 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1432 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1433 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1434 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1435 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1436
1437 "pop %%ebp; pop %%edi; pop %%esi;"
1438 "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
1439 #endif
1440 :
1441 : [vcpu]"a"(vcpu),
1442 [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1443 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1444 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1445 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1446 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1447 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1448 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1449 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1450 #ifdef CONFIG_X86_64
1451 ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1452 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1453 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1454 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1455 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1456 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1457 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1458 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1459 #endif
1460 : "cc", "memory" );
1461
1462 fx_save(vcpu->guest_fx_image);
1463 fx_restore(vcpu->host_fx_image);
1464
1465 if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1466 load_db_regs(vcpu->svm->host_db_regs);
1467
1468 vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1469
1470 write_dr6(vcpu->svm->host_dr6);
1471 write_dr7(vcpu->svm->host_dr7);
1472 kvm_write_cr2(vcpu->svm->host_cr2);
1473
1474 load_fs(fs_selector);
1475 load_gs(gs_selector);
1476 load_ldt(ldt_selector);
1477 load_host_msrs(vcpu);
1478
1479 reload_tss(vcpu);
1480
1481 stgi();
1482
1483 kvm_reput_irq(vcpu);
1484
1485 vcpu->svm->next_rip = 0;
1486
1487 if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1488 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1489 kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
1490 return 0;
1491 }
1492
1493 if (handle_exit(vcpu, kvm_run)) {
1494 if (signal_pending(current)) {
1495 ++kvm_stat.signal_exits;
1496 return -EINTR;
1497 }
1498 kvm_resched(vcpu);
1499 goto again;
1500 }
1501 return 0;
1502 }
1503
1504 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1505 {
1506 force_new_asid(vcpu);
1507 }
1508
1509 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1510 {
1511 vcpu->svm->vmcb->save.cr3 = root;
1512 force_new_asid(vcpu);
1513 }
1514
1515 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1516 unsigned long addr,
1517 uint32_t err_code)
1518 {
1519 uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1520
1521 ++kvm_stat.pf_guest;
1522
1523 if (is_page_fault(exit_int_info)) {
1524
1525 vcpu->svm->vmcb->control.event_inj_err = 0;
1526 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1527 SVM_EVTINJ_VALID_ERR |
1528 SVM_EVTINJ_TYPE_EXEPT |
1529 DF_VECTOR;
1530 return;
1531 }
1532 vcpu->cr2 = addr;
1533 vcpu->svm->vmcb->save.cr2 = addr;
1534 vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1535 SVM_EVTINJ_VALID_ERR |
1536 SVM_EVTINJ_TYPE_EXEPT |
1537 PF_VECTOR;
1538 vcpu->svm->vmcb->control.event_inj_err = err_code;
1539 }
1540
1541
1542 static int is_disabled(void)
1543 {
1544 return 0;
1545 }
1546
1547 static struct kvm_arch_ops svm_arch_ops = {
1548 .cpu_has_kvm_support = has_svm,
1549 .disabled_by_bios = is_disabled,
1550 .hardware_setup = svm_hardware_setup,
1551 .hardware_unsetup = svm_hardware_unsetup,
1552 .hardware_enable = svm_hardware_enable,
1553 .hardware_disable = svm_hardware_disable,
1554
1555 .vcpu_create = svm_create_vcpu,
1556 .vcpu_free = svm_free_vcpu,
1557
1558 .vcpu_load = svm_vcpu_load,
1559 .vcpu_put = svm_vcpu_put,
1560
1561 .set_guest_debug = svm_guest_debug,
1562 .get_msr = svm_get_msr,
1563 .set_msr = svm_set_msr,
1564 .get_segment_base = svm_get_segment_base,
1565 .get_segment = svm_get_segment,
1566 .set_segment = svm_set_segment,
1567 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1568 .set_cr0 = svm_set_cr0,
1569 .set_cr0_no_modeswitch = svm_set_cr0,
1570 .set_cr3 = svm_set_cr3,
1571 .set_cr4 = svm_set_cr4,
1572 .set_efer = svm_set_efer,
1573 .get_idt = svm_get_idt,
1574 .set_idt = svm_set_idt,
1575 .get_gdt = svm_get_gdt,
1576 .set_gdt = svm_set_gdt,
1577 .get_dr = svm_get_dr,
1578 .set_dr = svm_set_dr,
1579 .cache_regs = svm_cache_regs,
1580 .decache_regs = svm_decache_regs,
1581 .get_rflags = svm_get_rflags,
1582 .set_rflags = svm_set_rflags,
1583
1584 .invlpg = svm_invlpg,
1585 .tlb_flush = svm_flush_tlb,
1586 .inject_page_fault = svm_inject_page_fault,
1587
1588 .inject_gp = svm_inject_gp,
1589
1590 .run = svm_vcpu_run,
1591 .skip_emulated_instruction = skip_emulated_instruction,
1592 .vcpu_setup = svm_vcpu_setup,
1593 };
1594
1595 static int __init svm_init(void)
1596 {
1597 return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1598 }
1599
1600 static void __exit svm_exit(void)
1601 {
1602 kvm_exit_arch();
1603 }
1604
1605 module_init(svm_init)
1606 module_exit(svm_exit)