]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/vmx.c
KVM: Cleanup string I/O instruction emulation
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "vmx.h"
21 #include "segment_descriptor.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/profile.h>
28 #include <linux/sched.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 struct vmcs {
37 u32 revision_id;
38 u32 abort;
39 char data[0];
40 };
41
42 struct vcpu_vmx {
43 struct kvm_vcpu vcpu;
44 int launched;
45 struct kvm_msr_entry *guest_msrs;
46 struct kvm_msr_entry *host_msrs;
47 int nmsrs;
48 int save_nmsrs;
49 int msr_offset_efer;
50 #ifdef CONFIG_X86_64
51 int msr_offset_kernel_gs_base;
52 #endif
53 struct vmcs *vmcs;
54 struct {
55 int loaded;
56 u16 fs_sel, gs_sel, ldt_sel;
57 int fs_gs_ldt_reload_needed;
58 }host_state;
59
60 };
61
62 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
63 {
64 return container_of(vcpu, struct vcpu_vmx, vcpu);
65 }
66
67 static int init_rmode_tss(struct kvm *kvm);
68
69 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
70 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
71
72 static struct page *vmx_io_bitmap_a;
73 static struct page *vmx_io_bitmap_b;
74
75 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
76
77 static struct vmcs_config {
78 int size;
79 int order;
80 u32 revision_id;
81 u32 pin_based_exec_ctrl;
82 u32 cpu_based_exec_ctrl;
83 u32 vmexit_ctrl;
84 u32 vmentry_ctrl;
85 } vmcs_config;
86
87 #define VMX_SEGMENT_FIELD(seg) \
88 [VCPU_SREG_##seg] = { \
89 .selector = GUEST_##seg##_SELECTOR, \
90 .base = GUEST_##seg##_BASE, \
91 .limit = GUEST_##seg##_LIMIT, \
92 .ar_bytes = GUEST_##seg##_AR_BYTES, \
93 }
94
95 static struct kvm_vmx_segment_field {
96 unsigned selector;
97 unsigned base;
98 unsigned limit;
99 unsigned ar_bytes;
100 } kvm_vmx_segment_fields[] = {
101 VMX_SEGMENT_FIELD(CS),
102 VMX_SEGMENT_FIELD(DS),
103 VMX_SEGMENT_FIELD(ES),
104 VMX_SEGMENT_FIELD(FS),
105 VMX_SEGMENT_FIELD(GS),
106 VMX_SEGMENT_FIELD(SS),
107 VMX_SEGMENT_FIELD(TR),
108 VMX_SEGMENT_FIELD(LDTR),
109 };
110
111 /*
112 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
113 * away by decrementing the array size.
114 */
115 static const u32 vmx_msr_index[] = {
116 #ifdef CONFIG_X86_64
117 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
118 #endif
119 MSR_EFER, MSR_K6_STAR,
120 };
121 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
122
123 static void load_msrs(struct kvm_msr_entry *e, int n)
124 {
125 int i;
126
127 for (i = 0; i < n; ++i)
128 wrmsrl(e[i].index, e[i].data);
129 }
130
131 static void save_msrs(struct kvm_msr_entry *e, int n)
132 {
133 int i;
134
135 for (i = 0; i < n; ++i)
136 rdmsrl(e[i].index, e[i].data);
137 }
138
139 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
140 {
141 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
142 }
143
144 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
145 {
146 int efer_offset = vmx->msr_offset_efer;
147 return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
148 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
149 }
150
151 static inline int is_page_fault(u32 intr_info)
152 {
153 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
154 INTR_INFO_VALID_MASK)) ==
155 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
156 }
157
158 static inline int is_no_device(u32 intr_info)
159 {
160 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
161 INTR_INFO_VALID_MASK)) ==
162 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
163 }
164
165 static inline int is_external_interrupt(u32 intr_info)
166 {
167 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
168 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
169 }
170
171 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
172 {
173 int i;
174
175 for (i = 0; i < vmx->nmsrs; ++i)
176 if (vmx->guest_msrs[i].index == msr)
177 return i;
178 return -1;
179 }
180
181 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
182 {
183 int i;
184
185 i = __find_msr_index(vmx, msr);
186 if (i >= 0)
187 return &vmx->guest_msrs[i];
188 return NULL;
189 }
190
191 static void vmcs_clear(struct vmcs *vmcs)
192 {
193 u64 phys_addr = __pa(vmcs);
194 u8 error;
195
196 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
197 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
198 : "cc", "memory");
199 if (error)
200 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
201 vmcs, phys_addr);
202 }
203
204 static void __vcpu_clear(void *arg)
205 {
206 struct vcpu_vmx *vmx = arg;
207 int cpu = raw_smp_processor_id();
208
209 if (vmx->vcpu.cpu == cpu)
210 vmcs_clear(vmx->vmcs);
211 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
212 per_cpu(current_vmcs, cpu) = NULL;
213 rdtscll(vmx->vcpu.host_tsc);
214 }
215
216 static void vcpu_clear(struct vcpu_vmx *vmx)
217 {
218 if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
219 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
220 vmx, 0, 1);
221 else
222 __vcpu_clear(vmx);
223 vmx->launched = 0;
224 }
225
226 static unsigned long vmcs_readl(unsigned long field)
227 {
228 unsigned long value;
229
230 asm volatile (ASM_VMX_VMREAD_RDX_RAX
231 : "=a"(value) : "d"(field) : "cc");
232 return value;
233 }
234
235 static u16 vmcs_read16(unsigned long field)
236 {
237 return vmcs_readl(field);
238 }
239
240 static u32 vmcs_read32(unsigned long field)
241 {
242 return vmcs_readl(field);
243 }
244
245 static u64 vmcs_read64(unsigned long field)
246 {
247 #ifdef CONFIG_X86_64
248 return vmcs_readl(field);
249 #else
250 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
251 #endif
252 }
253
254 static noinline void vmwrite_error(unsigned long field, unsigned long value)
255 {
256 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
257 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
258 dump_stack();
259 }
260
261 static void vmcs_writel(unsigned long field, unsigned long value)
262 {
263 u8 error;
264
265 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
266 : "=q"(error) : "a"(value), "d"(field) : "cc" );
267 if (unlikely(error))
268 vmwrite_error(field, value);
269 }
270
271 static void vmcs_write16(unsigned long field, u16 value)
272 {
273 vmcs_writel(field, value);
274 }
275
276 static void vmcs_write32(unsigned long field, u32 value)
277 {
278 vmcs_writel(field, value);
279 }
280
281 static void vmcs_write64(unsigned long field, u64 value)
282 {
283 #ifdef CONFIG_X86_64
284 vmcs_writel(field, value);
285 #else
286 vmcs_writel(field, value);
287 asm volatile ("");
288 vmcs_writel(field+1, value >> 32);
289 #endif
290 }
291
292 static void vmcs_clear_bits(unsigned long field, u32 mask)
293 {
294 vmcs_writel(field, vmcs_readl(field) & ~mask);
295 }
296
297 static void vmcs_set_bits(unsigned long field, u32 mask)
298 {
299 vmcs_writel(field, vmcs_readl(field) | mask);
300 }
301
302 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
303 {
304 u32 eb;
305
306 eb = 1u << PF_VECTOR;
307 if (!vcpu->fpu_active)
308 eb |= 1u << NM_VECTOR;
309 if (vcpu->guest_debug.enabled)
310 eb |= 1u << 1;
311 if (vcpu->rmode.active)
312 eb = ~0;
313 vmcs_write32(EXCEPTION_BITMAP, eb);
314 }
315
316 static void reload_tss(void)
317 {
318 #ifndef CONFIG_X86_64
319
320 /*
321 * VT restores TR but not its size. Useless.
322 */
323 struct descriptor_table gdt;
324 struct segment_descriptor *descs;
325
326 get_gdt(&gdt);
327 descs = (void *)gdt.base;
328 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
329 load_TR_desc();
330 #endif
331 }
332
333 static void load_transition_efer(struct vcpu_vmx *vmx)
334 {
335 u64 trans_efer;
336 int efer_offset = vmx->msr_offset_efer;
337
338 trans_efer = vmx->host_msrs[efer_offset].data;
339 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
340 trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
341 wrmsrl(MSR_EFER, trans_efer);
342 vmx->vcpu.stat.efer_reload++;
343 }
344
345 static void vmx_save_host_state(struct vcpu_vmx *vmx)
346 {
347 if (vmx->host_state.loaded)
348 return;
349
350 vmx->host_state.loaded = 1;
351 /*
352 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
353 * allow segment selectors with cpl > 0 or ti == 1.
354 */
355 vmx->host_state.ldt_sel = read_ldt();
356 vmx->host_state.fs_gs_ldt_reload_needed = vmx->host_state.ldt_sel;
357 vmx->host_state.fs_sel = read_fs();
358 if (!(vmx->host_state.fs_sel & 7))
359 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
360 else {
361 vmcs_write16(HOST_FS_SELECTOR, 0);
362 vmx->host_state.fs_gs_ldt_reload_needed = 1;
363 }
364 vmx->host_state.gs_sel = read_gs();
365 if (!(vmx->host_state.gs_sel & 7))
366 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
367 else {
368 vmcs_write16(HOST_GS_SELECTOR, 0);
369 vmx->host_state.fs_gs_ldt_reload_needed = 1;
370 }
371
372 #ifdef CONFIG_X86_64
373 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
374 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
375 #else
376 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
377 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
378 #endif
379
380 #ifdef CONFIG_X86_64
381 if (is_long_mode(&vmx->vcpu)) {
382 save_msrs(vmx->host_msrs +
383 vmx->msr_offset_kernel_gs_base, 1);
384 }
385 #endif
386 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
387 if (msr_efer_need_save_restore(vmx))
388 load_transition_efer(vmx);
389 }
390
391 static void vmx_load_host_state(struct vcpu_vmx *vmx)
392 {
393 unsigned long flags;
394
395 if (!vmx->host_state.loaded)
396 return;
397
398 vmx->host_state.loaded = 0;
399 if (vmx->host_state.fs_gs_ldt_reload_needed) {
400 load_ldt(vmx->host_state.ldt_sel);
401 load_fs(vmx->host_state.fs_sel);
402 /*
403 * If we have to reload gs, we must take care to
404 * preserve our gs base.
405 */
406 local_irq_save(flags);
407 load_gs(vmx->host_state.gs_sel);
408 #ifdef CONFIG_X86_64
409 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
410 #endif
411 local_irq_restore(flags);
412
413 reload_tss();
414 }
415 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
416 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
417 if (msr_efer_need_save_restore(vmx))
418 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
419 }
420
421 /*
422 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
423 * vcpu mutex is already taken.
424 */
425 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
426 {
427 struct vcpu_vmx *vmx = to_vmx(vcpu);
428 u64 phys_addr = __pa(vmx->vmcs);
429 u64 tsc_this, delta;
430
431 if (vcpu->cpu != cpu)
432 vcpu_clear(vmx);
433
434 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
435 u8 error;
436
437 per_cpu(current_vmcs, cpu) = vmx->vmcs;
438 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
439 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
440 : "cc");
441 if (error)
442 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
443 vmx->vmcs, phys_addr);
444 }
445
446 if (vcpu->cpu != cpu) {
447 struct descriptor_table dt;
448 unsigned long sysenter_esp;
449
450 vcpu->cpu = cpu;
451 /*
452 * Linux uses per-cpu TSS and GDT, so set these when switching
453 * processors.
454 */
455 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
456 get_gdt(&dt);
457 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
458
459 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
460 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
461
462 /*
463 * Make sure the time stamp counter is monotonous.
464 */
465 rdtscll(tsc_this);
466 delta = vcpu->host_tsc - tsc_this;
467 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
468 }
469 }
470
471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
472 {
473 vmx_load_host_state(to_vmx(vcpu));
474 kvm_put_guest_fpu(vcpu);
475 }
476
477 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
478 {
479 if (vcpu->fpu_active)
480 return;
481 vcpu->fpu_active = 1;
482 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
483 if (vcpu->cr0 & X86_CR0_TS)
484 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
485 update_exception_bitmap(vcpu);
486 }
487
488 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
489 {
490 if (!vcpu->fpu_active)
491 return;
492 vcpu->fpu_active = 0;
493 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
494 update_exception_bitmap(vcpu);
495 }
496
497 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
498 {
499 vcpu_clear(to_vmx(vcpu));
500 }
501
502 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
503 {
504 return vmcs_readl(GUEST_RFLAGS);
505 }
506
507 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
508 {
509 vmcs_writel(GUEST_RFLAGS, rflags);
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514 unsigned long rip;
515 u32 interruptibility;
516
517 rip = vmcs_readl(GUEST_RIP);
518 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
519 vmcs_writel(GUEST_RIP, rip);
520
521 /*
522 * We emulated an instruction, so temporary interrupt blocking
523 * should be removed, if set.
524 */
525 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
526 if (interruptibility & 3)
527 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
528 interruptibility & ~3);
529 vcpu->interrupt_window_open = 1;
530 }
531
532 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
533 {
534 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
535 vmcs_readl(GUEST_RIP));
536 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
537 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
538 GP_VECTOR |
539 INTR_TYPE_EXCEPTION |
540 INTR_INFO_DELIEVER_CODE_MASK |
541 INTR_INFO_VALID_MASK);
542 }
543
544 /*
545 * Swap MSR entry in host/guest MSR entry array.
546 */
547 #ifdef CONFIG_X86_64
548 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
549 {
550 struct kvm_msr_entry tmp;
551
552 tmp = vmx->guest_msrs[to];
553 vmx->guest_msrs[to] = vmx->guest_msrs[from];
554 vmx->guest_msrs[from] = tmp;
555 tmp = vmx->host_msrs[to];
556 vmx->host_msrs[to] = vmx->host_msrs[from];
557 vmx->host_msrs[from] = tmp;
558 }
559 #endif
560
561 /*
562 * Set up the vmcs to automatically save and restore system
563 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
564 * mode, as fiddling with msrs is very expensive.
565 */
566 static void setup_msrs(struct vcpu_vmx *vmx)
567 {
568 int save_nmsrs;
569
570 save_nmsrs = 0;
571 #ifdef CONFIG_X86_64
572 if (is_long_mode(&vmx->vcpu)) {
573 int index;
574
575 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
576 if (index >= 0)
577 move_msr_up(vmx, index, save_nmsrs++);
578 index = __find_msr_index(vmx, MSR_LSTAR);
579 if (index >= 0)
580 move_msr_up(vmx, index, save_nmsrs++);
581 index = __find_msr_index(vmx, MSR_CSTAR);
582 if (index >= 0)
583 move_msr_up(vmx, index, save_nmsrs++);
584 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
585 if (index >= 0)
586 move_msr_up(vmx, index, save_nmsrs++);
587 /*
588 * MSR_K6_STAR is only needed on long mode guests, and only
589 * if efer.sce is enabled.
590 */
591 index = __find_msr_index(vmx, MSR_K6_STAR);
592 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
593 move_msr_up(vmx, index, save_nmsrs++);
594 }
595 #endif
596 vmx->save_nmsrs = save_nmsrs;
597
598 #ifdef CONFIG_X86_64
599 vmx->msr_offset_kernel_gs_base =
600 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
601 #endif
602 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
603 }
604
605 /*
606 * reads and returns guest's timestamp counter "register"
607 * guest_tsc = host_tsc + tsc_offset -- 21.3
608 */
609 static u64 guest_read_tsc(void)
610 {
611 u64 host_tsc, tsc_offset;
612
613 rdtscll(host_tsc);
614 tsc_offset = vmcs_read64(TSC_OFFSET);
615 return host_tsc + tsc_offset;
616 }
617
618 /*
619 * writes 'guest_tsc' into guest's timestamp counter "register"
620 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
621 */
622 static void guest_write_tsc(u64 guest_tsc)
623 {
624 u64 host_tsc;
625
626 rdtscll(host_tsc);
627 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
628 }
629
630 /*
631 * Reads an msr value (of 'msr_index') into 'pdata'.
632 * Returns 0 on success, non-0 otherwise.
633 * Assumes vcpu_load() was already called.
634 */
635 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
636 {
637 u64 data;
638 struct kvm_msr_entry *msr;
639
640 if (!pdata) {
641 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
642 return -EINVAL;
643 }
644
645 switch (msr_index) {
646 #ifdef CONFIG_X86_64
647 case MSR_FS_BASE:
648 data = vmcs_readl(GUEST_FS_BASE);
649 break;
650 case MSR_GS_BASE:
651 data = vmcs_readl(GUEST_GS_BASE);
652 break;
653 case MSR_EFER:
654 return kvm_get_msr_common(vcpu, msr_index, pdata);
655 #endif
656 case MSR_IA32_TIME_STAMP_COUNTER:
657 data = guest_read_tsc();
658 break;
659 case MSR_IA32_SYSENTER_CS:
660 data = vmcs_read32(GUEST_SYSENTER_CS);
661 break;
662 case MSR_IA32_SYSENTER_EIP:
663 data = vmcs_readl(GUEST_SYSENTER_EIP);
664 break;
665 case MSR_IA32_SYSENTER_ESP:
666 data = vmcs_readl(GUEST_SYSENTER_ESP);
667 break;
668 default:
669 msr = find_msr_entry(to_vmx(vcpu), msr_index);
670 if (msr) {
671 data = msr->data;
672 break;
673 }
674 return kvm_get_msr_common(vcpu, msr_index, pdata);
675 }
676
677 *pdata = data;
678 return 0;
679 }
680
681 /*
682 * Writes msr value into into the appropriate "register".
683 * Returns 0 on success, non-0 otherwise.
684 * Assumes vcpu_load() was already called.
685 */
686 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
687 {
688 struct vcpu_vmx *vmx = to_vmx(vcpu);
689 struct kvm_msr_entry *msr;
690 int ret = 0;
691
692 switch (msr_index) {
693 #ifdef CONFIG_X86_64
694 case MSR_EFER:
695 ret = kvm_set_msr_common(vcpu, msr_index, data);
696 if (vmx->host_state.loaded)
697 load_transition_efer(vmx);
698 break;
699 case MSR_FS_BASE:
700 vmcs_writel(GUEST_FS_BASE, data);
701 break;
702 case MSR_GS_BASE:
703 vmcs_writel(GUEST_GS_BASE, data);
704 break;
705 #endif
706 case MSR_IA32_SYSENTER_CS:
707 vmcs_write32(GUEST_SYSENTER_CS, data);
708 break;
709 case MSR_IA32_SYSENTER_EIP:
710 vmcs_writel(GUEST_SYSENTER_EIP, data);
711 break;
712 case MSR_IA32_SYSENTER_ESP:
713 vmcs_writel(GUEST_SYSENTER_ESP, data);
714 break;
715 case MSR_IA32_TIME_STAMP_COUNTER:
716 guest_write_tsc(data);
717 break;
718 default:
719 msr = find_msr_entry(vmx, msr_index);
720 if (msr) {
721 msr->data = data;
722 if (vmx->host_state.loaded)
723 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
724 break;
725 }
726 ret = kvm_set_msr_common(vcpu, msr_index, data);
727 }
728
729 return ret;
730 }
731
732 /*
733 * Sync the rsp and rip registers into the vcpu structure. This allows
734 * registers to be accessed by indexing vcpu->regs.
735 */
736 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
737 {
738 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
739 vcpu->rip = vmcs_readl(GUEST_RIP);
740 }
741
742 /*
743 * Syncs rsp and rip back into the vmcs. Should be called after possible
744 * modification.
745 */
746 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
747 {
748 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
749 vmcs_writel(GUEST_RIP, vcpu->rip);
750 }
751
752 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
753 {
754 unsigned long dr7 = 0x400;
755 int old_singlestep;
756
757 old_singlestep = vcpu->guest_debug.singlestep;
758
759 vcpu->guest_debug.enabled = dbg->enabled;
760 if (vcpu->guest_debug.enabled) {
761 int i;
762
763 dr7 |= 0x200; /* exact */
764 for (i = 0; i < 4; ++i) {
765 if (!dbg->breakpoints[i].enabled)
766 continue;
767 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
768 dr7 |= 2 << (i*2); /* global enable */
769 dr7 |= 0 << (i*4+16); /* execution breakpoint */
770 }
771
772 vcpu->guest_debug.singlestep = dbg->singlestep;
773 } else
774 vcpu->guest_debug.singlestep = 0;
775
776 if (old_singlestep && !vcpu->guest_debug.singlestep) {
777 unsigned long flags;
778
779 flags = vmcs_readl(GUEST_RFLAGS);
780 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
781 vmcs_writel(GUEST_RFLAGS, flags);
782 }
783
784 update_exception_bitmap(vcpu);
785 vmcs_writel(GUEST_DR7, dr7);
786
787 return 0;
788 }
789
790 static __init int cpu_has_kvm_support(void)
791 {
792 unsigned long ecx = cpuid_ecx(1);
793 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
794 }
795
796 static __init int vmx_disabled_by_bios(void)
797 {
798 u64 msr;
799
800 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
801 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
802 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
803 == MSR_IA32_FEATURE_CONTROL_LOCKED;
804 /* locked but not enabled */
805 }
806
807 static void hardware_enable(void *garbage)
808 {
809 int cpu = raw_smp_processor_id();
810 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
811 u64 old;
812
813 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
814 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
815 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
816 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
817 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
818 /* enable and lock */
819 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
820 MSR_IA32_FEATURE_CONTROL_LOCKED |
821 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
822 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
823 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
824 : "memory", "cc");
825 }
826
827 static void hardware_disable(void *garbage)
828 {
829 asm volatile (ASM_VMX_VMXOFF : : : "cc");
830 }
831
832 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
833 u32 msr, u32* result)
834 {
835 u32 vmx_msr_low, vmx_msr_high;
836 u32 ctl = ctl_min | ctl_opt;
837
838 rdmsr(msr, vmx_msr_low, vmx_msr_high);
839
840 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
841 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
842
843 /* Ensure minimum (required) set of control bits are supported. */
844 if (ctl_min & ~ctl)
845 return -EIO;
846
847 *result = ctl;
848 return 0;
849 }
850
851 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
852 {
853 u32 vmx_msr_low, vmx_msr_high;
854 u32 min, opt;
855 u32 _pin_based_exec_control = 0;
856 u32 _cpu_based_exec_control = 0;
857 u32 _vmexit_control = 0;
858 u32 _vmentry_control = 0;
859
860 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
861 opt = 0;
862 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
863 &_pin_based_exec_control) < 0)
864 return -EIO;
865
866 min = CPU_BASED_HLT_EXITING |
867 #ifdef CONFIG_X86_64
868 CPU_BASED_CR8_LOAD_EXITING |
869 CPU_BASED_CR8_STORE_EXITING |
870 #endif
871 CPU_BASED_USE_IO_BITMAPS |
872 CPU_BASED_MOV_DR_EXITING |
873 CPU_BASED_USE_TSC_OFFSETING;
874 opt = 0;
875 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
876 &_cpu_based_exec_control) < 0)
877 return -EIO;
878
879 min = 0;
880 #ifdef CONFIG_X86_64
881 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
882 #endif
883 opt = 0;
884 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
885 &_vmexit_control) < 0)
886 return -EIO;
887
888 min = opt = 0;
889 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
890 &_vmentry_control) < 0)
891 return -EIO;
892
893 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
894
895 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
896 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
897 return -EIO;
898
899 #ifdef CONFIG_X86_64
900 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
901 if (vmx_msr_high & (1u<<16))
902 return -EIO;
903 #endif
904
905 /* Require Write-Back (WB) memory type for VMCS accesses. */
906 if (((vmx_msr_high >> 18) & 15) != 6)
907 return -EIO;
908
909 vmcs_conf->size = vmx_msr_high & 0x1fff;
910 vmcs_conf->order = get_order(vmcs_config.size);
911 vmcs_conf->revision_id = vmx_msr_low;
912
913 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
914 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
915 vmcs_conf->vmexit_ctrl = _vmexit_control;
916 vmcs_conf->vmentry_ctrl = _vmentry_control;
917
918 return 0;
919 }
920
921 static struct vmcs *alloc_vmcs_cpu(int cpu)
922 {
923 int node = cpu_to_node(cpu);
924 struct page *pages;
925 struct vmcs *vmcs;
926
927 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
928 if (!pages)
929 return NULL;
930 vmcs = page_address(pages);
931 memset(vmcs, 0, vmcs_config.size);
932 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
933 return vmcs;
934 }
935
936 static struct vmcs *alloc_vmcs(void)
937 {
938 return alloc_vmcs_cpu(raw_smp_processor_id());
939 }
940
941 static void free_vmcs(struct vmcs *vmcs)
942 {
943 free_pages((unsigned long)vmcs, vmcs_config.order);
944 }
945
946 static void free_kvm_area(void)
947 {
948 int cpu;
949
950 for_each_online_cpu(cpu)
951 free_vmcs(per_cpu(vmxarea, cpu));
952 }
953
954 static __init int alloc_kvm_area(void)
955 {
956 int cpu;
957
958 for_each_online_cpu(cpu) {
959 struct vmcs *vmcs;
960
961 vmcs = alloc_vmcs_cpu(cpu);
962 if (!vmcs) {
963 free_kvm_area();
964 return -ENOMEM;
965 }
966
967 per_cpu(vmxarea, cpu) = vmcs;
968 }
969 return 0;
970 }
971
972 static __init int hardware_setup(void)
973 {
974 if (setup_vmcs_config(&vmcs_config) < 0)
975 return -EIO;
976 return alloc_kvm_area();
977 }
978
979 static __exit void hardware_unsetup(void)
980 {
981 free_kvm_area();
982 }
983
984 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
985 {
986 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
987
988 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
989 vmcs_write16(sf->selector, save->selector);
990 vmcs_writel(sf->base, save->base);
991 vmcs_write32(sf->limit, save->limit);
992 vmcs_write32(sf->ar_bytes, save->ar);
993 } else {
994 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
995 << AR_DPL_SHIFT;
996 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
997 }
998 }
999
1000 static void enter_pmode(struct kvm_vcpu *vcpu)
1001 {
1002 unsigned long flags;
1003
1004 vcpu->rmode.active = 0;
1005
1006 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1007 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1008 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1009
1010 flags = vmcs_readl(GUEST_RFLAGS);
1011 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1012 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1013 vmcs_writel(GUEST_RFLAGS, flags);
1014
1015 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1016 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1017
1018 update_exception_bitmap(vcpu);
1019
1020 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1021 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1022 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1023 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1024
1025 vmcs_write16(GUEST_SS_SELECTOR, 0);
1026 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1027
1028 vmcs_write16(GUEST_CS_SELECTOR,
1029 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1030 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1031 }
1032
1033 static int rmode_tss_base(struct kvm* kvm)
1034 {
1035 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1036 return base_gfn << PAGE_SHIFT;
1037 }
1038
1039 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1040 {
1041 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1042
1043 save->selector = vmcs_read16(sf->selector);
1044 save->base = vmcs_readl(sf->base);
1045 save->limit = vmcs_read32(sf->limit);
1046 save->ar = vmcs_read32(sf->ar_bytes);
1047 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1048 vmcs_write32(sf->limit, 0xffff);
1049 vmcs_write32(sf->ar_bytes, 0xf3);
1050 }
1051
1052 static void enter_rmode(struct kvm_vcpu *vcpu)
1053 {
1054 unsigned long flags;
1055
1056 vcpu->rmode.active = 1;
1057
1058 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1059 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1060
1061 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1062 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1063
1064 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1065 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1066
1067 flags = vmcs_readl(GUEST_RFLAGS);
1068 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1069
1070 flags |= IOPL_MASK | X86_EFLAGS_VM;
1071
1072 vmcs_writel(GUEST_RFLAGS, flags);
1073 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1074 update_exception_bitmap(vcpu);
1075
1076 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1077 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1078 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1079
1080 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1081 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1082 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1083 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1084 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1085
1086 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1087 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1088 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1089 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1090
1091 init_rmode_tss(vcpu->kvm);
1092 }
1093
1094 #ifdef CONFIG_X86_64
1095
1096 static void enter_lmode(struct kvm_vcpu *vcpu)
1097 {
1098 u32 guest_tr_ar;
1099
1100 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1101 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1102 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1103 __FUNCTION__);
1104 vmcs_write32(GUEST_TR_AR_BYTES,
1105 (guest_tr_ar & ~AR_TYPE_MASK)
1106 | AR_TYPE_BUSY_64_TSS);
1107 }
1108
1109 vcpu->shadow_efer |= EFER_LMA;
1110
1111 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1112 vmcs_write32(VM_ENTRY_CONTROLS,
1113 vmcs_read32(VM_ENTRY_CONTROLS)
1114 | VM_ENTRY_IA32E_MODE);
1115 }
1116
1117 static void exit_lmode(struct kvm_vcpu *vcpu)
1118 {
1119 vcpu->shadow_efer &= ~EFER_LMA;
1120
1121 vmcs_write32(VM_ENTRY_CONTROLS,
1122 vmcs_read32(VM_ENTRY_CONTROLS)
1123 & ~VM_ENTRY_IA32E_MODE);
1124 }
1125
1126 #endif
1127
1128 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1129 {
1130 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1131 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1132 }
1133
1134 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1135 {
1136 vmx_fpu_deactivate(vcpu);
1137
1138 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1139 enter_pmode(vcpu);
1140
1141 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1142 enter_rmode(vcpu);
1143
1144 #ifdef CONFIG_X86_64
1145 if (vcpu->shadow_efer & EFER_LME) {
1146 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1147 enter_lmode(vcpu);
1148 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1149 exit_lmode(vcpu);
1150 }
1151 #endif
1152
1153 vmcs_writel(CR0_READ_SHADOW, cr0);
1154 vmcs_writel(GUEST_CR0,
1155 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1156 vcpu->cr0 = cr0;
1157
1158 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1159 vmx_fpu_activate(vcpu);
1160 }
1161
1162 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1163 {
1164 vmcs_writel(GUEST_CR3, cr3);
1165 if (vcpu->cr0 & X86_CR0_PE)
1166 vmx_fpu_deactivate(vcpu);
1167 }
1168
1169 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1170 {
1171 vmcs_writel(CR4_READ_SHADOW, cr4);
1172 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1173 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1174 vcpu->cr4 = cr4;
1175 }
1176
1177 #ifdef CONFIG_X86_64
1178
1179 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1180 {
1181 struct vcpu_vmx *vmx = to_vmx(vcpu);
1182 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1183
1184 vcpu->shadow_efer = efer;
1185 if (efer & EFER_LMA) {
1186 vmcs_write32(VM_ENTRY_CONTROLS,
1187 vmcs_read32(VM_ENTRY_CONTROLS) |
1188 VM_ENTRY_IA32E_MODE);
1189 msr->data = efer;
1190
1191 } else {
1192 vmcs_write32(VM_ENTRY_CONTROLS,
1193 vmcs_read32(VM_ENTRY_CONTROLS) &
1194 ~VM_ENTRY_IA32E_MODE);
1195
1196 msr->data = efer & ~EFER_LME;
1197 }
1198 setup_msrs(vmx);
1199 }
1200
1201 #endif
1202
1203 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1204 {
1205 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1206
1207 return vmcs_readl(sf->base);
1208 }
1209
1210 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1211 struct kvm_segment *var, int seg)
1212 {
1213 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1214 u32 ar;
1215
1216 var->base = vmcs_readl(sf->base);
1217 var->limit = vmcs_read32(sf->limit);
1218 var->selector = vmcs_read16(sf->selector);
1219 ar = vmcs_read32(sf->ar_bytes);
1220 if (ar & AR_UNUSABLE_MASK)
1221 ar = 0;
1222 var->type = ar & 15;
1223 var->s = (ar >> 4) & 1;
1224 var->dpl = (ar >> 5) & 3;
1225 var->present = (ar >> 7) & 1;
1226 var->avl = (ar >> 12) & 1;
1227 var->l = (ar >> 13) & 1;
1228 var->db = (ar >> 14) & 1;
1229 var->g = (ar >> 15) & 1;
1230 var->unusable = (ar >> 16) & 1;
1231 }
1232
1233 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1234 {
1235 u32 ar;
1236
1237 if (var->unusable)
1238 ar = 1 << 16;
1239 else {
1240 ar = var->type & 15;
1241 ar |= (var->s & 1) << 4;
1242 ar |= (var->dpl & 3) << 5;
1243 ar |= (var->present & 1) << 7;
1244 ar |= (var->avl & 1) << 12;
1245 ar |= (var->l & 1) << 13;
1246 ar |= (var->db & 1) << 14;
1247 ar |= (var->g & 1) << 15;
1248 }
1249 if (ar == 0) /* a 0 value means unusable */
1250 ar = AR_UNUSABLE_MASK;
1251
1252 return ar;
1253 }
1254
1255 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1256 struct kvm_segment *var, int seg)
1257 {
1258 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1259 u32 ar;
1260
1261 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1262 vcpu->rmode.tr.selector = var->selector;
1263 vcpu->rmode.tr.base = var->base;
1264 vcpu->rmode.tr.limit = var->limit;
1265 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1266 return;
1267 }
1268 vmcs_writel(sf->base, var->base);
1269 vmcs_write32(sf->limit, var->limit);
1270 vmcs_write16(sf->selector, var->selector);
1271 if (vcpu->rmode.active && var->s) {
1272 /*
1273 * Hack real-mode segments into vm86 compatibility.
1274 */
1275 if (var->base == 0xffff0000 && var->selector == 0xf000)
1276 vmcs_writel(sf->base, 0xf0000);
1277 ar = 0xf3;
1278 } else
1279 ar = vmx_segment_access_rights(var);
1280 vmcs_write32(sf->ar_bytes, ar);
1281 }
1282
1283 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1284 {
1285 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1286
1287 *db = (ar >> 14) & 1;
1288 *l = (ar >> 13) & 1;
1289 }
1290
1291 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1292 {
1293 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1294 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1295 }
1296
1297 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1298 {
1299 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1300 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1301 }
1302
1303 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1304 {
1305 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1306 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1307 }
1308
1309 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1310 {
1311 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1312 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1313 }
1314
1315 static int init_rmode_tss(struct kvm* kvm)
1316 {
1317 struct page *p1, *p2, *p3;
1318 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1319 char *page;
1320
1321 p1 = gfn_to_page(kvm, fn++);
1322 p2 = gfn_to_page(kvm, fn++);
1323 p3 = gfn_to_page(kvm, fn);
1324
1325 if (!p1 || !p2 || !p3) {
1326 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1327 return 0;
1328 }
1329
1330 page = kmap_atomic(p1, KM_USER0);
1331 clear_page(page);
1332 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1333 kunmap_atomic(page, KM_USER0);
1334
1335 page = kmap_atomic(p2, KM_USER0);
1336 clear_page(page);
1337 kunmap_atomic(page, KM_USER0);
1338
1339 page = kmap_atomic(p3, KM_USER0);
1340 clear_page(page);
1341 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1342 kunmap_atomic(page, KM_USER0);
1343
1344 return 1;
1345 }
1346
1347 static void seg_setup(int seg)
1348 {
1349 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1350
1351 vmcs_write16(sf->selector, 0);
1352 vmcs_writel(sf->base, 0);
1353 vmcs_write32(sf->limit, 0xffff);
1354 vmcs_write32(sf->ar_bytes, 0x93);
1355 }
1356
1357 /*
1358 * Sets up the vmcs for emulated real mode.
1359 */
1360 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1361 {
1362 u32 host_sysenter_cs;
1363 u32 junk;
1364 unsigned long a;
1365 struct descriptor_table dt;
1366 int i;
1367 int ret = 0;
1368 unsigned long kvm_vmx_return;
1369
1370 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1371 ret = -ENOMEM;
1372 goto out;
1373 }
1374
1375 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1376 vmx->vcpu.cr8 = 0;
1377 vmx->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1378 if (vmx->vcpu.vcpu_id == 0)
1379 vmx->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
1380
1381 fx_init(&vmx->vcpu);
1382
1383 /*
1384 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1385 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1386 */
1387 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1388 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1389 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1390 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1391
1392 seg_setup(VCPU_SREG_DS);
1393 seg_setup(VCPU_SREG_ES);
1394 seg_setup(VCPU_SREG_FS);
1395 seg_setup(VCPU_SREG_GS);
1396 seg_setup(VCPU_SREG_SS);
1397
1398 vmcs_write16(GUEST_TR_SELECTOR, 0);
1399 vmcs_writel(GUEST_TR_BASE, 0);
1400 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1401 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1402
1403 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1404 vmcs_writel(GUEST_LDTR_BASE, 0);
1405 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1406 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1407
1408 vmcs_write32(GUEST_SYSENTER_CS, 0);
1409 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1410 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1411
1412 vmcs_writel(GUEST_RFLAGS, 0x02);
1413 vmcs_writel(GUEST_RIP, 0xfff0);
1414 vmcs_writel(GUEST_RSP, 0);
1415
1416 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1417 vmcs_writel(GUEST_DR7, 0x400);
1418
1419 vmcs_writel(GUEST_GDTR_BASE, 0);
1420 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1421
1422 vmcs_writel(GUEST_IDTR_BASE, 0);
1423 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1424
1425 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1426 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1427 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1428
1429 /* I/O */
1430 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1431 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1432
1433 guest_write_tsc(0);
1434
1435 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1436
1437 /* Special registers */
1438 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1439
1440 /* Control */
1441 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1442 vmcs_config.pin_based_exec_ctrl);
1443 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1444 vmcs_config.cpu_based_exec_ctrl);
1445
1446 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1447 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1448 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1449
1450 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1451 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1452 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1453
1454 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1455 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1456 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1457 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1458 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1459 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1460 #ifdef CONFIG_X86_64
1461 rdmsrl(MSR_FS_BASE, a);
1462 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1463 rdmsrl(MSR_GS_BASE, a);
1464 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1465 #else
1466 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1467 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1468 #endif
1469
1470 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1471
1472 get_idt(&dt);
1473 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1474
1475 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1476 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1477 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1478 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1479 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1480
1481 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1482 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1483 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1484 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1485 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1486 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1487
1488 for (i = 0; i < NR_VMX_MSR; ++i) {
1489 u32 index = vmx_msr_index[i];
1490 u32 data_low, data_high;
1491 u64 data;
1492 int j = vmx->nmsrs;
1493
1494 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1495 continue;
1496 if (wrmsr_safe(index, data_low, data_high) < 0)
1497 continue;
1498 data = data_low | ((u64)data_high << 32);
1499 vmx->host_msrs[j].index = index;
1500 vmx->host_msrs[j].reserved = 0;
1501 vmx->host_msrs[j].data = data;
1502 vmx->guest_msrs[j] = vmx->host_msrs[j];
1503 ++vmx->nmsrs;
1504 }
1505
1506 setup_msrs(vmx);
1507
1508 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1509
1510 /* 22.2.1, 20.8.1 */
1511 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1512
1513 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1514
1515 #ifdef CONFIG_X86_64
1516 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1517 vmcs_writel(TPR_THRESHOLD, 0);
1518 #endif
1519
1520 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1521 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1522
1523 vmx->vcpu.cr0 = 0x60000010;
1524 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1525 vmx_set_cr4(&vmx->vcpu, 0);
1526 #ifdef CONFIG_X86_64
1527 vmx_set_efer(&vmx->vcpu, 0);
1528 #endif
1529 vmx_fpu_activate(&vmx->vcpu);
1530 update_exception_bitmap(&vmx->vcpu);
1531
1532 return 0;
1533
1534 out:
1535 return ret;
1536 }
1537
1538 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1539 {
1540 u16 ent[2];
1541 u16 cs;
1542 u16 ip;
1543 unsigned long flags;
1544 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1545 u16 sp = vmcs_readl(GUEST_RSP);
1546 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1547
1548 if (sp > ss_limit || sp < 6 ) {
1549 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1550 __FUNCTION__,
1551 vmcs_readl(GUEST_RSP),
1552 vmcs_readl(GUEST_SS_BASE),
1553 vmcs_read32(GUEST_SS_LIMIT));
1554 return;
1555 }
1556
1557 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1558 X86EMUL_CONTINUE) {
1559 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1560 return;
1561 }
1562
1563 flags = vmcs_readl(GUEST_RFLAGS);
1564 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1565 ip = vmcs_readl(GUEST_RIP);
1566
1567
1568 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1569 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1570 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1571 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1572 return;
1573 }
1574
1575 vmcs_writel(GUEST_RFLAGS, flags &
1576 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1577 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1578 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1579 vmcs_writel(GUEST_RIP, ent[0]);
1580 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1581 }
1582
1583 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1584 {
1585 int word_index = __ffs(vcpu->irq_summary);
1586 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1587 int irq = word_index * BITS_PER_LONG + bit_index;
1588
1589 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1590 if (!vcpu->irq_pending[word_index])
1591 clear_bit(word_index, &vcpu->irq_summary);
1592
1593 if (vcpu->rmode.active) {
1594 inject_rmode_irq(vcpu, irq);
1595 return;
1596 }
1597 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1598 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1599 }
1600
1601
1602 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1603 struct kvm_run *kvm_run)
1604 {
1605 u32 cpu_based_vm_exec_control;
1606
1607 vcpu->interrupt_window_open =
1608 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1609 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1610
1611 if (vcpu->interrupt_window_open &&
1612 vcpu->irq_summary &&
1613 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1614 /*
1615 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1616 */
1617 kvm_do_inject_irq(vcpu);
1618
1619 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1620 if (!vcpu->interrupt_window_open &&
1621 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1622 /*
1623 * Interrupts blocked. Wait for unblock.
1624 */
1625 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1626 else
1627 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1628 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1629 }
1630
1631 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1632 {
1633 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1634
1635 set_debugreg(dbg->bp[0], 0);
1636 set_debugreg(dbg->bp[1], 1);
1637 set_debugreg(dbg->bp[2], 2);
1638 set_debugreg(dbg->bp[3], 3);
1639
1640 if (dbg->singlestep) {
1641 unsigned long flags;
1642
1643 flags = vmcs_readl(GUEST_RFLAGS);
1644 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1645 vmcs_writel(GUEST_RFLAGS, flags);
1646 }
1647 }
1648
1649 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1650 int vec, u32 err_code)
1651 {
1652 if (!vcpu->rmode.active)
1653 return 0;
1654
1655 /*
1656 * Instruction with address size override prefix opcode 0x67
1657 * Cause the #SS fault with 0 error code in VM86 mode.
1658 */
1659 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1660 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1661 return 1;
1662 return 0;
1663 }
1664
1665 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1666 {
1667 u32 intr_info, error_code;
1668 unsigned long cr2, rip;
1669 u32 vect_info;
1670 enum emulation_result er;
1671 int r;
1672
1673 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1674 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1675
1676 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1677 !is_page_fault(intr_info)) {
1678 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1679 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1680 }
1681
1682 if (is_external_interrupt(vect_info)) {
1683 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1684 set_bit(irq, vcpu->irq_pending);
1685 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1686 }
1687
1688 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1689 asm ("int $2");
1690 return 1;
1691 }
1692
1693 if (is_no_device(intr_info)) {
1694 vmx_fpu_activate(vcpu);
1695 return 1;
1696 }
1697
1698 error_code = 0;
1699 rip = vmcs_readl(GUEST_RIP);
1700 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1701 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1702 if (is_page_fault(intr_info)) {
1703 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1704
1705 mutex_lock(&vcpu->kvm->lock);
1706 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1707 if (r < 0) {
1708 mutex_unlock(&vcpu->kvm->lock);
1709 return r;
1710 }
1711 if (!r) {
1712 mutex_unlock(&vcpu->kvm->lock);
1713 return 1;
1714 }
1715
1716 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1717 mutex_unlock(&vcpu->kvm->lock);
1718
1719 switch (er) {
1720 case EMULATE_DONE:
1721 return 1;
1722 case EMULATE_DO_MMIO:
1723 ++vcpu->stat.mmio_exits;
1724 return 0;
1725 case EMULATE_FAIL:
1726 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1727 break;
1728 default:
1729 BUG();
1730 }
1731 }
1732
1733 if (vcpu->rmode.active &&
1734 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1735 error_code)) {
1736 if (vcpu->halt_request) {
1737 vcpu->halt_request = 0;
1738 return kvm_emulate_halt(vcpu);
1739 }
1740 return 1;
1741 }
1742
1743 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1744 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1745 return 0;
1746 }
1747 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1748 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1749 kvm_run->ex.error_code = error_code;
1750 return 0;
1751 }
1752
1753 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1754 struct kvm_run *kvm_run)
1755 {
1756 ++vcpu->stat.irq_exits;
1757 return 1;
1758 }
1759
1760 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1761 {
1762 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1763 return 0;
1764 }
1765
1766 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1767 {
1768 u64 exit_qualification;
1769 int size, down, in, string, rep;
1770 unsigned port;
1771
1772 ++vcpu->stat.io_exits;
1773 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1774 string = (exit_qualification & 16) != 0;
1775
1776 if (string) {
1777 if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1778 return 0;
1779 return 1;
1780 }
1781
1782 size = (exit_qualification & 7) + 1;
1783 in = (exit_qualification & 8) != 0;
1784 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1785 rep = (exit_qualification & 32) != 0;
1786 port = exit_qualification >> 16;
1787
1788 return kvm_setup_pio(vcpu, kvm_run, in, size, 1, 0, down,
1789 0, rep, port);
1790 }
1791
1792 static void
1793 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1794 {
1795 /*
1796 * Patch in the VMCALL instruction:
1797 */
1798 hypercall[0] = 0x0f;
1799 hypercall[1] = 0x01;
1800 hypercall[2] = 0xc1;
1801 hypercall[3] = 0xc3;
1802 }
1803
1804 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1805 {
1806 u64 exit_qualification;
1807 int cr;
1808 int reg;
1809
1810 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1811 cr = exit_qualification & 15;
1812 reg = (exit_qualification >> 8) & 15;
1813 switch ((exit_qualification >> 4) & 3) {
1814 case 0: /* mov to cr */
1815 switch (cr) {
1816 case 0:
1817 vcpu_load_rsp_rip(vcpu);
1818 set_cr0(vcpu, vcpu->regs[reg]);
1819 skip_emulated_instruction(vcpu);
1820 return 1;
1821 case 3:
1822 vcpu_load_rsp_rip(vcpu);
1823 set_cr3(vcpu, vcpu->regs[reg]);
1824 skip_emulated_instruction(vcpu);
1825 return 1;
1826 case 4:
1827 vcpu_load_rsp_rip(vcpu);
1828 set_cr4(vcpu, vcpu->regs[reg]);
1829 skip_emulated_instruction(vcpu);
1830 return 1;
1831 case 8:
1832 vcpu_load_rsp_rip(vcpu);
1833 set_cr8(vcpu, vcpu->regs[reg]);
1834 skip_emulated_instruction(vcpu);
1835 return 1;
1836 };
1837 break;
1838 case 2: /* clts */
1839 vcpu_load_rsp_rip(vcpu);
1840 vmx_fpu_deactivate(vcpu);
1841 vcpu->cr0 &= ~X86_CR0_TS;
1842 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1843 vmx_fpu_activate(vcpu);
1844 skip_emulated_instruction(vcpu);
1845 return 1;
1846 case 1: /*mov from cr*/
1847 switch (cr) {
1848 case 3:
1849 vcpu_load_rsp_rip(vcpu);
1850 vcpu->regs[reg] = vcpu->cr3;
1851 vcpu_put_rsp_rip(vcpu);
1852 skip_emulated_instruction(vcpu);
1853 return 1;
1854 case 8:
1855 vcpu_load_rsp_rip(vcpu);
1856 vcpu->regs[reg] = vcpu->cr8;
1857 vcpu_put_rsp_rip(vcpu);
1858 skip_emulated_instruction(vcpu);
1859 return 1;
1860 }
1861 break;
1862 case 3: /* lmsw */
1863 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1864
1865 skip_emulated_instruction(vcpu);
1866 return 1;
1867 default:
1868 break;
1869 }
1870 kvm_run->exit_reason = 0;
1871 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1872 (int)(exit_qualification >> 4) & 3, cr);
1873 return 0;
1874 }
1875
1876 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1877 {
1878 u64 exit_qualification;
1879 unsigned long val;
1880 int dr, reg;
1881
1882 /*
1883 * FIXME: this code assumes the host is debugging the guest.
1884 * need to deal with guest debugging itself too.
1885 */
1886 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1887 dr = exit_qualification & 7;
1888 reg = (exit_qualification >> 8) & 15;
1889 vcpu_load_rsp_rip(vcpu);
1890 if (exit_qualification & 16) {
1891 /* mov from dr */
1892 switch (dr) {
1893 case 6:
1894 val = 0xffff0ff0;
1895 break;
1896 case 7:
1897 val = 0x400;
1898 break;
1899 default:
1900 val = 0;
1901 }
1902 vcpu->regs[reg] = val;
1903 } else {
1904 /* mov to dr */
1905 }
1906 vcpu_put_rsp_rip(vcpu);
1907 skip_emulated_instruction(vcpu);
1908 return 1;
1909 }
1910
1911 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1912 {
1913 kvm_emulate_cpuid(vcpu);
1914 return 1;
1915 }
1916
1917 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1918 {
1919 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1920 u64 data;
1921
1922 if (vmx_get_msr(vcpu, ecx, &data)) {
1923 vmx_inject_gp(vcpu, 0);
1924 return 1;
1925 }
1926
1927 /* FIXME: handling of bits 32:63 of rax, rdx */
1928 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1929 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1930 skip_emulated_instruction(vcpu);
1931 return 1;
1932 }
1933
1934 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1935 {
1936 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1937 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1938 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1939
1940 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1941 vmx_inject_gp(vcpu, 0);
1942 return 1;
1943 }
1944
1945 skip_emulated_instruction(vcpu);
1946 return 1;
1947 }
1948
1949 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1950 struct kvm_run *kvm_run)
1951 {
1952 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1953 kvm_run->cr8 = vcpu->cr8;
1954 kvm_run->apic_base = vcpu->apic_base;
1955 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1956 vcpu->irq_summary == 0);
1957 }
1958
1959 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1960 struct kvm_run *kvm_run)
1961 {
1962 /*
1963 * If the user space waits to inject interrupts, exit as soon as
1964 * possible
1965 */
1966 if (kvm_run->request_interrupt_window &&
1967 !vcpu->irq_summary) {
1968 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1969 ++vcpu->stat.irq_window_exits;
1970 return 0;
1971 }
1972 return 1;
1973 }
1974
1975 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1976 {
1977 skip_emulated_instruction(vcpu);
1978 return kvm_emulate_halt(vcpu);
1979 }
1980
1981 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1982 {
1983 skip_emulated_instruction(vcpu);
1984 return kvm_hypercall(vcpu, kvm_run);
1985 }
1986
1987 /*
1988 * The exit handlers return 1 if the exit was handled fully and guest execution
1989 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1990 * to be done to userspace and return 0.
1991 */
1992 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1993 struct kvm_run *kvm_run) = {
1994 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1995 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1996 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1997 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1998 [EXIT_REASON_CR_ACCESS] = handle_cr,
1999 [EXIT_REASON_DR_ACCESS] = handle_dr,
2000 [EXIT_REASON_CPUID] = handle_cpuid,
2001 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2002 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2003 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2004 [EXIT_REASON_HLT] = handle_halt,
2005 [EXIT_REASON_VMCALL] = handle_vmcall,
2006 };
2007
2008 static const int kvm_vmx_max_exit_handlers =
2009 ARRAY_SIZE(kvm_vmx_exit_handlers);
2010
2011 /*
2012 * The guest has exited. See if we can fix it or if we need userspace
2013 * assistance.
2014 */
2015 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2016 {
2017 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2018 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2019
2020 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2021 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2022 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2023 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2024 if (exit_reason < kvm_vmx_max_exit_handlers
2025 && kvm_vmx_exit_handlers[exit_reason])
2026 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2027 else {
2028 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2029 kvm_run->hw.hardware_exit_reason = exit_reason;
2030 }
2031 return 0;
2032 }
2033
2034 /*
2035 * Check if userspace requested an interrupt window, and that the
2036 * interrupt window is open.
2037 *
2038 * No need to exit to userspace if we already have an interrupt queued.
2039 */
2040 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2041 struct kvm_run *kvm_run)
2042 {
2043 return (!vcpu->irq_summary &&
2044 kvm_run->request_interrupt_window &&
2045 vcpu->interrupt_window_open &&
2046 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2047 }
2048
2049 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2050 {
2051 }
2052
2053 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2054 {
2055 struct vcpu_vmx *vmx = to_vmx(vcpu);
2056 u8 fail;
2057 int r;
2058
2059 preempted:
2060 if (vcpu->guest_debug.enabled)
2061 kvm_guest_debug_pre(vcpu);
2062
2063 again:
2064 r = kvm_mmu_reload(vcpu);
2065 if (unlikely(r))
2066 goto out;
2067
2068 preempt_disable();
2069
2070 if (!vcpu->mmio_read_completed)
2071 do_interrupt_requests(vcpu, kvm_run);
2072
2073 vmx_save_host_state(vmx);
2074 kvm_load_guest_fpu(vcpu);
2075
2076 /*
2077 * Loading guest fpu may have cleared host cr0.ts
2078 */
2079 vmcs_writel(HOST_CR0, read_cr0());
2080
2081 local_irq_disable();
2082
2083 vcpu->guest_mode = 1;
2084 if (vcpu->requests)
2085 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2086 vmx_flush_tlb(vcpu);
2087
2088 asm (
2089 /* Store host registers */
2090 #ifdef CONFIG_X86_64
2091 "push %%rax; push %%rbx; push %%rdx;"
2092 "push %%rsi; push %%rdi; push %%rbp;"
2093 "push %%r8; push %%r9; push %%r10; push %%r11;"
2094 "push %%r12; push %%r13; push %%r14; push %%r15;"
2095 "push %%rcx \n\t"
2096 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2097 #else
2098 "pusha; push %%ecx \n\t"
2099 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2100 #endif
2101 /* Check if vmlaunch of vmresume is needed */
2102 "cmp $0, %1 \n\t"
2103 /* Load guest registers. Don't clobber flags. */
2104 #ifdef CONFIG_X86_64
2105 "mov %c[cr2](%3), %%rax \n\t"
2106 "mov %%rax, %%cr2 \n\t"
2107 "mov %c[rax](%3), %%rax \n\t"
2108 "mov %c[rbx](%3), %%rbx \n\t"
2109 "mov %c[rdx](%3), %%rdx \n\t"
2110 "mov %c[rsi](%3), %%rsi \n\t"
2111 "mov %c[rdi](%3), %%rdi \n\t"
2112 "mov %c[rbp](%3), %%rbp \n\t"
2113 "mov %c[r8](%3), %%r8 \n\t"
2114 "mov %c[r9](%3), %%r9 \n\t"
2115 "mov %c[r10](%3), %%r10 \n\t"
2116 "mov %c[r11](%3), %%r11 \n\t"
2117 "mov %c[r12](%3), %%r12 \n\t"
2118 "mov %c[r13](%3), %%r13 \n\t"
2119 "mov %c[r14](%3), %%r14 \n\t"
2120 "mov %c[r15](%3), %%r15 \n\t"
2121 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2122 #else
2123 "mov %c[cr2](%3), %%eax \n\t"
2124 "mov %%eax, %%cr2 \n\t"
2125 "mov %c[rax](%3), %%eax \n\t"
2126 "mov %c[rbx](%3), %%ebx \n\t"
2127 "mov %c[rdx](%3), %%edx \n\t"
2128 "mov %c[rsi](%3), %%esi \n\t"
2129 "mov %c[rdi](%3), %%edi \n\t"
2130 "mov %c[rbp](%3), %%ebp \n\t"
2131 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2132 #endif
2133 /* Enter guest mode */
2134 "jne .Llaunched \n\t"
2135 ASM_VMX_VMLAUNCH "\n\t"
2136 "jmp .Lkvm_vmx_return \n\t"
2137 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2138 ".Lkvm_vmx_return: "
2139 /* Save guest registers, load host registers, keep flags */
2140 #ifdef CONFIG_X86_64
2141 "xchg %3, (%%rsp) \n\t"
2142 "mov %%rax, %c[rax](%3) \n\t"
2143 "mov %%rbx, %c[rbx](%3) \n\t"
2144 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2145 "mov %%rdx, %c[rdx](%3) \n\t"
2146 "mov %%rsi, %c[rsi](%3) \n\t"
2147 "mov %%rdi, %c[rdi](%3) \n\t"
2148 "mov %%rbp, %c[rbp](%3) \n\t"
2149 "mov %%r8, %c[r8](%3) \n\t"
2150 "mov %%r9, %c[r9](%3) \n\t"
2151 "mov %%r10, %c[r10](%3) \n\t"
2152 "mov %%r11, %c[r11](%3) \n\t"
2153 "mov %%r12, %c[r12](%3) \n\t"
2154 "mov %%r13, %c[r13](%3) \n\t"
2155 "mov %%r14, %c[r14](%3) \n\t"
2156 "mov %%r15, %c[r15](%3) \n\t"
2157 "mov %%cr2, %%rax \n\t"
2158 "mov %%rax, %c[cr2](%3) \n\t"
2159 "mov (%%rsp), %3 \n\t"
2160
2161 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2162 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2163 "pop %%rbp; pop %%rdi; pop %%rsi;"
2164 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2165 #else
2166 "xchg %3, (%%esp) \n\t"
2167 "mov %%eax, %c[rax](%3) \n\t"
2168 "mov %%ebx, %c[rbx](%3) \n\t"
2169 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2170 "mov %%edx, %c[rdx](%3) \n\t"
2171 "mov %%esi, %c[rsi](%3) \n\t"
2172 "mov %%edi, %c[rdi](%3) \n\t"
2173 "mov %%ebp, %c[rbp](%3) \n\t"
2174 "mov %%cr2, %%eax \n\t"
2175 "mov %%eax, %c[cr2](%3) \n\t"
2176 "mov (%%esp), %3 \n\t"
2177
2178 "pop %%ecx; popa \n\t"
2179 #endif
2180 "setbe %0 \n\t"
2181 : "=q" (fail)
2182 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2183 "c"(vcpu),
2184 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2185 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2186 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2187 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2188 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2189 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2190 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2191 #ifdef CONFIG_X86_64
2192 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2193 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2194 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2195 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2196 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2197 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2198 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2199 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2200 #endif
2201 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2202 : "cc", "memory" );
2203
2204 vcpu->guest_mode = 0;
2205 local_irq_enable();
2206
2207 ++vcpu->stat.exits;
2208
2209 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2210
2211 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2212 vmx->launched = 1;
2213
2214 preempt_enable();
2215
2216 if (unlikely(fail)) {
2217 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2218 kvm_run->fail_entry.hardware_entry_failure_reason
2219 = vmcs_read32(VM_INSTRUCTION_ERROR);
2220 r = 0;
2221 goto out;
2222 }
2223 /*
2224 * Profile KVM exit RIPs:
2225 */
2226 if (unlikely(prof_on == KVM_PROFILING))
2227 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2228
2229 r = kvm_handle_exit(kvm_run, vcpu);
2230 if (r > 0) {
2231 /* Give scheduler a change to reschedule. */
2232 if (signal_pending(current)) {
2233 r = -EINTR;
2234 kvm_run->exit_reason = KVM_EXIT_INTR;
2235 ++vcpu->stat.signal_exits;
2236 goto out;
2237 }
2238
2239 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2240 r = -EINTR;
2241 kvm_run->exit_reason = KVM_EXIT_INTR;
2242 ++vcpu->stat.request_irq_exits;
2243 goto out;
2244 }
2245 if (!need_resched()) {
2246 ++vcpu->stat.light_exits;
2247 goto again;
2248 }
2249 }
2250
2251 out:
2252 if (r > 0) {
2253 kvm_resched(vcpu);
2254 goto preempted;
2255 }
2256
2257 post_kvm_run_save(vcpu, kvm_run);
2258 return r;
2259 }
2260
2261 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2262 unsigned long addr,
2263 u32 err_code)
2264 {
2265 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2266
2267 ++vcpu->stat.pf_guest;
2268
2269 if (is_page_fault(vect_info)) {
2270 printk(KERN_DEBUG "inject_page_fault: "
2271 "double fault 0x%lx @ 0x%lx\n",
2272 addr, vmcs_readl(GUEST_RIP));
2273 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2274 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2275 DF_VECTOR |
2276 INTR_TYPE_EXCEPTION |
2277 INTR_INFO_DELIEVER_CODE_MASK |
2278 INTR_INFO_VALID_MASK);
2279 return;
2280 }
2281 vcpu->cr2 = addr;
2282 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2283 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2284 PF_VECTOR |
2285 INTR_TYPE_EXCEPTION |
2286 INTR_INFO_DELIEVER_CODE_MASK |
2287 INTR_INFO_VALID_MASK);
2288
2289 }
2290
2291 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2292 {
2293 struct vcpu_vmx *vmx = to_vmx(vcpu);
2294
2295 if (vmx->vmcs) {
2296 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2297 free_vmcs(vmx->vmcs);
2298 vmx->vmcs = NULL;
2299 }
2300 }
2301
2302 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2303 {
2304 struct vcpu_vmx *vmx = to_vmx(vcpu);
2305
2306 vmx_free_vmcs(vcpu);
2307 kfree(vmx->host_msrs);
2308 kfree(vmx->guest_msrs);
2309 kvm_vcpu_uninit(vcpu);
2310 kmem_cache_free(kvm_vcpu_cache, vmx);
2311 }
2312
2313 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2314 {
2315 int err;
2316 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2317 int cpu;
2318
2319 if (!vmx)
2320 return ERR_PTR(-ENOMEM);
2321
2322 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2323 if (err)
2324 goto free_vcpu;
2325
2326 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2327 if (!vmx->guest_msrs) {
2328 err = -ENOMEM;
2329 goto uninit_vcpu;
2330 }
2331
2332 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2333 if (!vmx->host_msrs)
2334 goto free_guest_msrs;
2335
2336 vmx->vmcs = alloc_vmcs();
2337 if (!vmx->vmcs)
2338 goto free_msrs;
2339
2340 vmcs_clear(vmx->vmcs);
2341
2342 cpu = get_cpu();
2343 vmx_vcpu_load(&vmx->vcpu, cpu);
2344 err = vmx_vcpu_setup(vmx);
2345 vmx_vcpu_put(&vmx->vcpu);
2346 put_cpu();
2347 if (err)
2348 goto free_vmcs;
2349
2350 return &vmx->vcpu;
2351
2352 free_vmcs:
2353 free_vmcs(vmx->vmcs);
2354 free_msrs:
2355 kfree(vmx->host_msrs);
2356 free_guest_msrs:
2357 kfree(vmx->guest_msrs);
2358 uninit_vcpu:
2359 kvm_vcpu_uninit(&vmx->vcpu);
2360 free_vcpu:
2361 kmem_cache_free(kvm_vcpu_cache, vmx);
2362 return ERR_PTR(err);
2363 }
2364
2365 static void __init vmx_check_processor_compat(void *rtn)
2366 {
2367 struct vmcs_config vmcs_conf;
2368
2369 *(int *)rtn = 0;
2370 if (setup_vmcs_config(&vmcs_conf) < 0)
2371 *(int *)rtn = -EIO;
2372 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2373 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2374 smp_processor_id());
2375 *(int *)rtn = -EIO;
2376 }
2377 }
2378
2379 static struct kvm_arch_ops vmx_arch_ops = {
2380 .cpu_has_kvm_support = cpu_has_kvm_support,
2381 .disabled_by_bios = vmx_disabled_by_bios,
2382 .hardware_setup = hardware_setup,
2383 .hardware_unsetup = hardware_unsetup,
2384 .check_processor_compatibility = vmx_check_processor_compat,
2385 .hardware_enable = hardware_enable,
2386 .hardware_disable = hardware_disable,
2387
2388 .vcpu_create = vmx_create_vcpu,
2389 .vcpu_free = vmx_free_vcpu,
2390
2391 .vcpu_load = vmx_vcpu_load,
2392 .vcpu_put = vmx_vcpu_put,
2393 .vcpu_decache = vmx_vcpu_decache,
2394
2395 .set_guest_debug = set_guest_debug,
2396 .get_msr = vmx_get_msr,
2397 .set_msr = vmx_set_msr,
2398 .get_segment_base = vmx_get_segment_base,
2399 .get_segment = vmx_get_segment,
2400 .set_segment = vmx_set_segment,
2401 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2402 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2403 .set_cr0 = vmx_set_cr0,
2404 .set_cr3 = vmx_set_cr3,
2405 .set_cr4 = vmx_set_cr4,
2406 #ifdef CONFIG_X86_64
2407 .set_efer = vmx_set_efer,
2408 #endif
2409 .get_idt = vmx_get_idt,
2410 .set_idt = vmx_set_idt,
2411 .get_gdt = vmx_get_gdt,
2412 .set_gdt = vmx_set_gdt,
2413 .cache_regs = vcpu_load_rsp_rip,
2414 .decache_regs = vcpu_put_rsp_rip,
2415 .get_rflags = vmx_get_rflags,
2416 .set_rflags = vmx_set_rflags,
2417
2418 .tlb_flush = vmx_flush_tlb,
2419 .inject_page_fault = vmx_inject_page_fault,
2420
2421 .inject_gp = vmx_inject_gp,
2422
2423 .run = vmx_vcpu_run,
2424 .skip_emulated_instruction = skip_emulated_instruction,
2425 .patch_hypercall = vmx_patch_hypercall,
2426 };
2427
2428 static int __init vmx_init(void)
2429 {
2430 void *iova;
2431 int r;
2432
2433 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2434 if (!vmx_io_bitmap_a)
2435 return -ENOMEM;
2436
2437 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2438 if (!vmx_io_bitmap_b) {
2439 r = -ENOMEM;
2440 goto out;
2441 }
2442
2443 /*
2444 * Allow direct access to the PC debug port (it is often used for I/O
2445 * delays, but the vmexits simply slow things down).
2446 */
2447 iova = kmap(vmx_io_bitmap_a);
2448 memset(iova, 0xff, PAGE_SIZE);
2449 clear_bit(0x80, iova);
2450 kunmap(vmx_io_bitmap_a);
2451
2452 iova = kmap(vmx_io_bitmap_b);
2453 memset(iova, 0xff, PAGE_SIZE);
2454 kunmap(vmx_io_bitmap_b);
2455
2456 r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2457 if (r)
2458 goto out1;
2459
2460 return 0;
2461
2462 out1:
2463 __free_page(vmx_io_bitmap_b);
2464 out:
2465 __free_page(vmx_io_bitmap_a);
2466 return r;
2467 }
2468
2469 static void __exit vmx_exit(void)
2470 {
2471 __free_page(vmx_io_bitmap_b);
2472 __free_page(vmx_io_bitmap_a);
2473
2474 kvm_exit_arch();
2475 }
2476
2477 module_init(vmx_init)
2478 module_exit(vmx_exit)