]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/vmx.c
[PATCH] KVM: Improve reporting of vmwrite errors
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43 int size;
44 int order;
45 u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg) \
49 [VCPU_SREG_##seg] = { \
50 .selector = GUEST_##seg##_SELECTOR, \
51 .base = GUEST_##seg##_BASE, \
52 .limit = GUEST_##seg##_LIMIT, \
53 .ar_bytes = GUEST_##seg##_AR_BYTES, \
54 }
55
56 static struct kvm_vmx_segment_field {
57 unsigned selector;
58 unsigned base;
59 unsigned limit;
60 unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62 VMX_SEGMENT_FIELD(CS),
63 VMX_SEGMENT_FIELD(DS),
64 VMX_SEGMENT_FIELD(ES),
65 VMX_SEGMENT_FIELD(FS),
66 VMX_SEGMENT_FIELD(GS),
67 VMX_SEGMENT_FIELD(SS),
68 VMX_SEGMENT_FIELD(TR),
69 VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef CONFIG_X86_64
74 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76 MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 static inline int is_page_fault(u32 intr_info)
81 {
82 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
83 INTR_INFO_VALID_MASK)) ==
84 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
85 }
86
87 static inline int is_external_interrupt(u32 intr_info)
88 {
89 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
90 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
91 }
92
93 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
94 {
95 int i;
96
97 for (i = 0; i < vcpu->nmsrs; ++i)
98 if (vcpu->guest_msrs[i].index == msr)
99 return &vcpu->guest_msrs[i];
100 return 0;
101 }
102
103 static void vmcs_clear(struct vmcs *vmcs)
104 {
105 u64 phys_addr = __pa(vmcs);
106 u8 error;
107
108 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
109 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
110 : "cc", "memory");
111 if (error)
112 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
113 vmcs, phys_addr);
114 }
115
116 static void __vcpu_clear(void *arg)
117 {
118 struct kvm_vcpu *vcpu = arg;
119 int cpu = raw_smp_processor_id();
120
121 if (vcpu->cpu == cpu)
122 vmcs_clear(vcpu->vmcs);
123 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
124 per_cpu(current_vmcs, cpu) = NULL;
125 }
126
127 static unsigned long vmcs_readl(unsigned long field)
128 {
129 unsigned long value;
130
131 asm volatile (ASM_VMX_VMREAD_RDX_RAX
132 : "=a"(value) : "d"(field) : "cc");
133 return value;
134 }
135
136 static u16 vmcs_read16(unsigned long field)
137 {
138 return vmcs_readl(field);
139 }
140
141 static u32 vmcs_read32(unsigned long field)
142 {
143 return vmcs_readl(field);
144 }
145
146 static u64 vmcs_read64(unsigned long field)
147 {
148 #ifdef CONFIG_X86_64
149 return vmcs_readl(field);
150 #else
151 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
152 #endif
153 }
154
155 static noinline void vmwrite_error(unsigned long field, unsigned long value)
156 {
157 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
158 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
159 dump_stack();
160 }
161
162 static void vmcs_writel(unsigned long field, unsigned long value)
163 {
164 u8 error;
165
166 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
167 : "=q"(error) : "a"(value), "d"(field) : "cc" );
168 if (unlikely(error))
169 vmwrite_error(field, value);
170 }
171
172 static void vmcs_write16(unsigned long field, u16 value)
173 {
174 vmcs_writel(field, value);
175 }
176
177 static void vmcs_write32(unsigned long field, u32 value)
178 {
179 vmcs_writel(field, value);
180 }
181
182 static void vmcs_write64(unsigned long field, u64 value)
183 {
184 #ifdef CONFIG_X86_64
185 vmcs_writel(field, value);
186 #else
187 vmcs_writel(field, value);
188 asm volatile ("");
189 vmcs_writel(field+1, value >> 32);
190 #endif
191 }
192
193 /*
194 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
195 * vcpu mutex is already taken.
196 */
197 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 u64 phys_addr = __pa(vcpu->vmcs);
200 int cpu;
201
202 cpu = get_cpu();
203
204 if (vcpu->cpu != cpu) {
205 smp_call_function(__vcpu_clear, vcpu, 0, 1);
206 vcpu->launched = 0;
207 }
208
209 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
210 u8 error;
211
212 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
213 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
214 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
215 : "cc");
216 if (error)
217 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
218 vcpu->vmcs, phys_addr);
219 }
220
221 if (vcpu->cpu != cpu) {
222 struct descriptor_table dt;
223 unsigned long sysenter_esp;
224
225 vcpu->cpu = cpu;
226 /*
227 * Linux uses per-cpu TSS and GDT, so set these when switching
228 * processors.
229 */
230 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
231 get_gdt(&dt);
232 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
233
234 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
235 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
236 }
237 return vcpu;
238 }
239
240 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
241 {
242 put_cpu();
243 }
244
245 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
246 {
247 return vmcs_readl(GUEST_RFLAGS);
248 }
249
250 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
251 {
252 vmcs_writel(GUEST_RFLAGS, rflags);
253 }
254
255 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
256 {
257 unsigned long rip;
258 u32 interruptibility;
259
260 rip = vmcs_readl(GUEST_RIP);
261 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
262 vmcs_writel(GUEST_RIP, rip);
263
264 /*
265 * We emulated an instruction, so temporary interrupt blocking
266 * should be removed, if set.
267 */
268 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
269 if (interruptibility & 3)
270 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
271 interruptibility & ~3);
272 vcpu->interrupt_window_open = 1;
273 }
274
275 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
276 {
277 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
278 vmcs_readl(GUEST_RIP));
279 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
280 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
281 GP_VECTOR |
282 INTR_TYPE_EXCEPTION |
283 INTR_INFO_DELIEVER_CODE_MASK |
284 INTR_INFO_VALID_MASK);
285 }
286
287 /*
288 * reads and returns guest's timestamp counter "register"
289 * guest_tsc = host_tsc + tsc_offset -- 21.3
290 */
291 static u64 guest_read_tsc(void)
292 {
293 u64 host_tsc, tsc_offset;
294
295 rdtscll(host_tsc);
296 tsc_offset = vmcs_read64(TSC_OFFSET);
297 return host_tsc + tsc_offset;
298 }
299
300 /*
301 * writes 'guest_tsc' into guest's timestamp counter "register"
302 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
303 */
304 static void guest_write_tsc(u64 guest_tsc)
305 {
306 u64 host_tsc;
307
308 rdtscll(host_tsc);
309 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
310 }
311
312 static void reload_tss(void)
313 {
314 #ifndef CONFIG_X86_64
315
316 /*
317 * VT restores TR but not its size. Useless.
318 */
319 struct descriptor_table gdt;
320 struct segment_descriptor *descs;
321
322 get_gdt(&gdt);
323 descs = (void *)gdt.base;
324 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
325 load_TR_desc();
326 #endif
327 }
328
329 /*
330 * Reads an msr value (of 'msr_index') into 'pdata'.
331 * Returns 0 on success, non-0 otherwise.
332 * Assumes vcpu_load() was already called.
333 */
334 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
335 {
336 u64 data;
337 struct vmx_msr_entry *msr;
338
339 if (!pdata) {
340 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
341 return -EINVAL;
342 }
343
344 switch (msr_index) {
345 #ifdef CONFIG_X86_64
346 case MSR_FS_BASE:
347 data = vmcs_readl(GUEST_FS_BASE);
348 break;
349 case MSR_GS_BASE:
350 data = vmcs_readl(GUEST_GS_BASE);
351 break;
352 case MSR_EFER:
353 return kvm_get_msr_common(vcpu, msr_index, pdata);
354 #endif
355 case MSR_IA32_TIME_STAMP_COUNTER:
356 data = guest_read_tsc();
357 break;
358 case MSR_IA32_SYSENTER_CS:
359 data = vmcs_read32(GUEST_SYSENTER_CS);
360 break;
361 case MSR_IA32_SYSENTER_EIP:
362 data = vmcs_read32(GUEST_SYSENTER_EIP);
363 break;
364 case MSR_IA32_SYSENTER_ESP:
365 data = vmcs_read32(GUEST_SYSENTER_ESP);
366 break;
367 default:
368 msr = find_msr_entry(vcpu, msr_index);
369 if (msr) {
370 data = msr->data;
371 break;
372 }
373 return kvm_get_msr_common(vcpu, msr_index, pdata);
374 }
375
376 *pdata = data;
377 return 0;
378 }
379
380 /*
381 * Writes msr value into into the appropriate "register".
382 * Returns 0 on success, non-0 otherwise.
383 * Assumes vcpu_load() was already called.
384 */
385 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
386 {
387 struct vmx_msr_entry *msr;
388 switch (msr_index) {
389 #ifdef CONFIG_X86_64
390 case MSR_EFER:
391 return kvm_set_msr_common(vcpu, msr_index, data);
392 case MSR_FS_BASE:
393 vmcs_writel(GUEST_FS_BASE, data);
394 break;
395 case MSR_GS_BASE:
396 vmcs_writel(GUEST_GS_BASE, data);
397 break;
398 #endif
399 case MSR_IA32_SYSENTER_CS:
400 vmcs_write32(GUEST_SYSENTER_CS, data);
401 break;
402 case MSR_IA32_SYSENTER_EIP:
403 vmcs_write32(GUEST_SYSENTER_EIP, data);
404 break;
405 case MSR_IA32_SYSENTER_ESP:
406 vmcs_write32(GUEST_SYSENTER_ESP, data);
407 break;
408 case MSR_IA32_TIME_STAMP_COUNTER: {
409 guest_write_tsc(data);
410 break;
411 }
412 default:
413 msr = find_msr_entry(vcpu, msr_index);
414 if (msr) {
415 msr->data = data;
416 break;
417 }
418 return kvm_set_msr_common(vcpu, msr_index, data);
419 msr->data = data;
420 break;
421 }
422
423 return 0;
424 }
425
426 /*
427 * Sync the rsp and rip registers into the vcpu structure. This allows
428 * registers to be accessed by indexing vcpu->regs.
429 */
430 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
431 {
432 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
433 vcpu->rip = vmcs_readl(GUEST_RIP);
434 }
435
436 /*
437 * Syncs rsp and rip back into the vmcs. Should be called after possible
438 * modification.
439 */
440 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
441 {
442 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
443 vmcs_writel(GUEST_RIP, vcpu->rip);
444 }
445
446 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
447 {
448 unsigned long dr7 = 0x400;
449 u32 exception_bitmap;
450 int old_singlestep;
451
452 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
453 old_singlestep = vcpu->guest_debug.singlestep;
454
455 vcpu->guest_debug.enabled = dbg->enabled;
456 if (vcpu->guest_debug.enabled) {
457 int i;
458
459 dr7 |= 0x200; /* exact */
460 for (i = 0; i < 4; ++i) {
461 if (!dbg->breakpoints[i].enabled)
462 continue;
463 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
464 dr7 |= 2 << (i*2); /* global enable */
465 dr7 |= 0 << (i*4+16); /* execution breakpoint */
466 }
467
468 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
469
470 vcpu->guest_debug.singlestep = dbg->singlestep;
471 } else {
472 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
473 vcpu->guest_debug.singlestep = 0;
474 }
475
476 if (old_singlestep && !vcpu->guest_debug.singlestep) {
477 unsigned long flags;
478
479 flags = vmcs_readl(GUEST_RFLAGS);
480 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
481 vmcs_writel(GUEST_RFLAGS, flags);
482 }
483
484 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
485 vmcs_writel(GUEST_DR7, dr7);
486
487 return 0;
488 }
489
490 static __init int cpu_has_kvm_support(void)
491 {
492 unsigned long ecx = cpuid_ecx(1);
493 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
494 }
495
496 static __init int vmx_disabled_by_bios(void)
497 {
498 u64 msr;
499
500 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
501 return (msr & 5) == 1; /* locked but not enabled */
502 }
503
504 static __init void hardware_enable(void *garbage)
505 {
506 int cpu = raw_smp_processor_id();
507 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
508 u64 old;
509
510 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
511 if ((old & 5) != 5)
512 /* enable and lock */
513 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
514 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
515 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
516 : "memory", "cc");
517 }
518
519 static void hardware_disable(void *garbage)
520 {
521 asm volatile (ASM_VMX_VMXOFF : : : "cc");
522 }
523
524 static __init void setup_vmcs_descriptor(void)
525 {
526 u32 vmx_msr_low, vmx_msr_high;
527
528 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
529 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
530 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
531 vmcs_descriptor.revision_id = vmx_msr_low;
532 }
533
534 static struct vmcs *alloc_vmcs_cpu(int cpu)
535 {
536 int node = cpu_to_node(cpu);
537 struct page *pages;
538 struct vmcs *vmcs;
539
540 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
541 if (!pages)
542 return NULL;
543 vmcs = page_address(pages);
544 memset(vmcs, 0, vmcs_descriptor.size);
545 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
546 return vmcs;
547 }
548
549 static struct vmcs *alloc_vmcs(void)
550 {
551 return alloc_vmcs_cpu(raw_smp_processor_id());
552 }
553
554 static void free_vmcs(struct vmcs *vmcs)
555 {
556 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
557 }
558
559 static __exit void free_kvm_area(void)
560 {
561 int cpu;
562
563 for_each_online_cpu(cpu)
564 free_vmcs(per_cpu(vmxarea, cpu));
565 }
566
567 extern struct vmcs *alloc_vmcs_cpu(int cpu);
568
569 static __init int alloc_kvm_area(void)
570 {
571 int cpu;
572
573 for_each_online_cpu(cpu) {
574 struct vmcs *vmcs;
575
576 vmcs = alloc_vmcs_cpu(cpu);
577 if (!vmcs) {
578 free_kvm_area();
579 return -ENOMEM;
580 }
581
582 per_cpu(vmxarea, cpu) = vmcs;
583 }
584 return 0;
585 }
586
587 static __init int hardware_setup(void)
588 {
589 setup_vmcs_descriptor();
590 return alloc_kvm_area();
591 }
592
593 static __exit void hardware_unsetup(void)
594 {
595 free_kvm_area();
596 }
597
598 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
599 {
600 if (vcpu->rmode.active)
601 vmcs_write32(EXCEPTION_BITMAP, ~0);
602 else
603 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
604 }
605
606 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
607 {
608 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
609
610 if (vmcs_readl(sf->base) == save->base) {
611 vmcs_write16(sf->selector, save->selector);
612 vmcs_writel(sf->base, save->base);
613 vmcs_write32(sf->limit, save->limit);
614 vmcs_write32(sf->ar_bytes, save->ar);
615 } else {
616 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
617 << AR_DPL_SHIFT;
618 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
619 }
620 }
621
622 static void enter_pmode(struct kvm_vcpu *vcpu)
623 {
624 unsigned long flags;
625
626 vcpu->rmode.active = 0;
627
628 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
629 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
630 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
631
632 flags = vmcs_readl(GUEST_RFLAGS);
633 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
634 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
635 vmcs_writel(GUEST_RFLAGS, flags);
636
637 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
638 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
639
640 update_exception_bitmap(vcpu);
641
642 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
643 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
644 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
645 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
646
647 vmcs_write16(GUEST_SS_SELECTOR, 0);
648 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
649
650 vmcs_write16(GUEST_CS_SELECTOR,
651 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
652 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
653 }
654
655 static int rmode_tss_base(struct kvm* kvm)
656 {
657 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
658 return base_gfn << PAGE_SHIFT;
659 }
660
661 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
662 {
663 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
664
665 save->selector = vmcs_read16(sf->selector);
666 save->base = vmcs_readl(sf->base);
667 save->limit = vmcs_read32(sf->limit);
668 save->ar = vmcs_read32(sf->ar_bytes);
669 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
670 vmcs_write32(sf->limit, 0xffff);
671 vmcs_write32(sf->ar_bytes, 0xf3);
672 }
673
674 static void enter_rmode(struct kvm_vcpu *vcpu)
675 {
676 unsigned long flags;
677
678 vcpu->rmode.active = 1;
679
680 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
681 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
682
683 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
684 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
685
686 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
687 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
688
689 flags = vmcs_readl(GUEST_RFLAGS);
690 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
691
692 flags |= IOPL_MASK | X86_EFLAGS_VM;
693
694 vmcs_writel(GUEST_RFLAGS, flags);
695 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
696 update_exception_bitmap(vcpu);
697
698 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
699 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
700 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
701
702 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
703 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
704 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
705
706 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
707 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
708 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
709 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
710 }
711
712 #ifdef CONFIG_X86_64
713
714 static void enter_lmode(struct kvm_vcpu *vcpu)
715 {
716 u32 guest_tr_ar;
717
718 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
719 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
720 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
721 __FUNCTION__);
722 vmcs_write32(GUEST_TR_AR_BYTES,
723 (guest_tr_ar & ~AR_TYPE_MASK)
724 | AR_TYPE_BUSY_64_TSS);
725 }
726
727 vcpu->shadow_efer |= EFER_LMA;
728
729 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
730 vmcs_write32(VM_ENTRY_CONTROLS,
731 vmcs_read32(VM_ENTRY_CONTROLS)
732 | VM_ENTRY_CONTROLS_IA32E_MASK);
733 }
734
735 static void exit_lmode(struct kvm_vcpu *vcpu)
736 {
737 vcpu->shadow_efer &= ~EFER_LMA;
738
739 vmcs_write32(VM_ENTRY_CONTROLS,
740 vmcs_read32(VM_ENTRY_CONTROLS)
741 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
742 }
743
744 #endif
745
746 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
747 {
748 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
749 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
750
751 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
752 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
753 }
754
755 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
756 {
757 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
758 enter_pmode(vcpu);
759
760 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
761 enter_rmode(vcpu);
762
763 #ifdef CONFIG_X86_64
764 if (vcpu->shadow_efer & EFER_LME) {
765 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
766 enter_lmode(vcpu);
767 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
768 exit_lmode(vcpu);
769 }
770 #endif
771
772 vmcs_writel(CR0_READ_SHADOW, cr0);
773 vmcs_writel(GUEST_CR0,
774 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
775 vcpu->cr0 = cr0;
776 }
777
778 /*
779 * Used when restoring the VM to avoid corrupting segment registers
780 */
781 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
782 {
783 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
784 update_exception_bitmap(vcpu);
785 vmcs_writel(CR0_READ_SHADOW, cr0);
786 vmcs_writel(GUEST_CR0,
787 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
788 vcpu->cr0 = cr0;
789 }
790
791 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
792 {
793 vmcs_writel(GUEST_CR3, cr3);
794 }
795
796 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
797 {
798 vmcs_writel(CR4_READ_SHADOW, cr4);
799 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
800 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
801 vcpu->cr4 = cr4;
802 }
803
804 #ifdef CONFIG_X86_64
805
806 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
807 {
808 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
809
810 vcpu->shadow_efer = efer;
811 if (efer & EFER_LMA) {
812 vmcs_write32(VM_ENTRY_CONTROLS,
813 vmcs_read32(VM_ENTRY_CONTROLS) |
814 VM_ENTRY_CONTROLS_IA32E_MASK);
815 msr->data = efer;
816
817 } else {
818 vmcs_write32(VM_ENTRY_CONTROLS,
819 vmcs_read32(VM_ENTRY_CONTROLS) &
820 ~VM_ENTRY_CONTROLS_IA32E_MASK);
821
822 msr->data = efer & ~EFER_LME;
823 }
824 }
825
826 #endif
827
828 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
829 {
830 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
831
832 return vmcs_readl(sf->base);
833 }
834
835 static void vmx_get_segment(struct kvm_vcpu *vcpu,
836 struct kvm_segment *var, int seg)
837 {
838 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
839 u32 ar;
840
841 var->base = vmcs_readl(sf->base);
842 var->limit = vmcs_read32(sf->limit);
843 var->selector = vmcs_read16(sf->selector);
844 ar = vmcs_read32(sf->ar_bytes);
845 if (ar & AR_UNUSABLE_MASK)
846 ar = 0;
847 var->type = ar & 15;
848 var->s = (ar >> 4) & 1;
849 var->dpl = (ar >> 5) & 3;
850 var->present = (ar >> 7) & 1;
851 var->avl = (ar >> 12) & 1;
852 var->l = (ar >> 13) & 1;
853 var->db = (ar >> 14) & 1;
854 var->g = (ar >> 15) & 1;
855 var->unusable = (ar >> 16) & 1;
856 }
857
858 static void vmx_set_segment(struct kvm_vcpu *vcpu,
859 struct kvm_segment *var, int seg)
860 {
861 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
862 u32 ar;
863
864 vmcs_writel(sf->base, var->base);
865 vmcs_write32(sf->limit, var->limit);
866 vmcs_write16(sf->selector, var->selector);
867 if (var->unusable)
868 ar = 1 << 16;
869 else {
870 ar = var->type & 15;
871 ar |= (var->s & 1) << 4;
872 ar |= (var->dpl & 3) << 5;
873 ar |= (var->present & 1) << 7;
874 ar |= (var->avl & 1) << 12;
875 ar |= (var->l & 1) << 13;
876 ar |= (var->db & 1) << 14;
877 ar |= (var->g & 1) << 15;
878 }
879 if (ar == 0) /* a 0 value means unusable */
880 ar = AR_UNUSABLE_MASK;
881 vmcs_write32(sf->ar_bytes, ar);
882 }
883
884 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
885 {
886 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
887
888 *db = (ar >> 14) & 1;
889 *l = (ar >> 13) & 1;
890 }
891
892 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
893 {
894 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
895 dt->base = vmcs_readl(GUEST_IDTR_BASE);
896 }
897
898 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
899 {
900 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
901 vmcs_writel(GUEST_IDTR_BASE, dt->base);
902 }
903
904 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
905 {
906 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
907 dt->base = vmcs_readl(GUEST_GDTR_BASE);
908 }
909
910 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
911 {
912 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
913 vmcs_writel(GUEST_GDTR_BASE, dt->base);
914 }
915
916 static int init_rmode_tss(struct kvm* kvm)
917 {
918 struct page *p1, *p2, *p3;
919 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
920 char *page;
921
922 p1 = _gfn_to_page(kvm, fn++);
923 p2 = _gfn_to_page(kvm, fn++);
924 p3 = _gfn_to_page(kvm, fn);
925
926 if (!p1 || !p2 || !p3) {
927 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
928 return 0;
929 }
930
931 page = kmap_atomic(p1, KM_USER0);
932 memset(page, 0, PAGE_SIZE);
933 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
934 kunmap_atomic(page, KM_USER0);
935
936 page = kmap_atomic(p2, KM_USER0);
937 memset(page, 0, PAGE_SIZE);
938 kunmap_atomic(page, KM_USER0);
939
940 page = kmap_atomic(p3, KM_USER0);
941 memset(page, 0, PAGE_SIZE);
942 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
943 kunmap_atomic(page, KM_USER0);
944
945 return 1;
946 }
947
948 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
949 {
950 u32 msr_high, msr_low;
951
952 rdmsr(msr, msr_low, msr_high);
953
954 val &= msr_high;
955 val |= msr_low;
956 vmcs_write32(vmcs_field, val);
957 }
958
959 static void seg_setup(int seg)
960 {
961 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
962
963 vmcs_write16(sf->selector, 0);
964 vmcs_writel(sf->base, 0);
965 vmcs_write32(sf->limit, 0xffff);
966 vmcs_write32(sf->ar_bytes, 0x93);
967 }
968
969 /*
970 * Sets up the vmcs for emulated real mode.
971 */
972 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
973 {
974 u32 host_sysenter_cs;
975 u32 junk;
976 unsigned long a;
977 struct descriptor_table dt;
978 int i;
979 int ret = 0;
980 int nr_good_msrs;
981 extern asmlinkage void kvm_vmx_return(void);
982
983 if (!init_rmode_tss(vcpu->kvm)) {
984 ret = -ENOMEM;
985 goto out;
986 }
987
988 memset(vcpu->regs, 0, sizeof(vcpu->regs));
989 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
990 vcpu->cr8 = 0;
991 vcpu->apic_base = 0xfee00000 |
992 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
993 MSR_IA32_APICBASE_ENABLE;
994
995 fx_init(vcpu);
996
997 /*
998 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
999 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1000 */
1001 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1002 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1003 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1004 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1005
1006 seg_setup(VCPU_SREG_DS);
1007 seg_setup(VCPU_SREG_ES);
1008 seg_setup(VCPU_SREG_FS);
1009 seg_setup(VCPU_SREG_GS);
1010 seg_setup(VCPU_SREG_SS);
1011
1012 vmcs_write16(GUEST_TR_SELECTOR, 0);
1013 vmcs_writel(GUEST_TR_BASE, 0);
1014 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1015 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1016
1017 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1018 vmcs_writel(GUEST_LDTR_BASE, 0);
1019 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1020 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1021
1022 vmcs_write32(GUEST_SYSENTER_CS, 0);
1023 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1024 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1025
1026 vmcs_writel(GUEST_RFLAGS, 0x02);
1027 vmcs_writel(GUEST_RIP, 0xfff0);
1028 vmcs_writel(GUEST_RSP, 0);
1029
1030 vmcs_writel(GUEST_CR3, 0);
1031
1032 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1033 vmcs_writel(GUEST_DR7, 0x400);
1034
1035 vmcs_writel(GUEST_GDTR_BASE, 0);
1036 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1037
1038 vmcs_writel(GUEST_IDTR_BASE, 0);
1039 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1040
1041 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1042 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1043 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1044
1045 /* I/O */
1046 vmcs_write64(IO_BITMAP_A, 0);
1047 vmcs_write64(IO_BITMAP_B, 0);
1048
1049 guest_write_tsc(0);
1050
1051 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1052
1053 /* Special registers */
1054 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1055
1056 /* Control */
1057 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1058 PIN_BASED_VM_EXEC_CONTROL,
1059 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1060 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1061 );
1062 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1063 CPU_BASED_VM_EXEC_CONTROL,
1064 CPU_BASED_HLT_EXITING /* 20.6.2 */
1065 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1066 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1067 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1068 | CPU_BASED_MOV_DR_EXITING
1069 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1070 );
1071
1072 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1073 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1074 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1075 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1076
1077 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1078 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1079 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1080
1081 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1082 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1083 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1084 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1085 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1086 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1087 #ifdef CONFIG_X86_64
1088 rdmsrl(MSR_FS_BASE, a);
1089 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1090 rdmsrl(MSR_GS_BASE, a);
1091 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1092 #else
1093 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1094 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1095 #endif
1096
1097 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1098
1099 get_idt(&dt);
1100 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1101
1102
1103 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1104
1105 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1106 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1107 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1108 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1109 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1110 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1111
1112 for (i = 0; i < NR_VMX_MSR; ++i) {
1113 u32 index = vmx_msr_index[i];
1114 u32 data_low, data_high;
1115 u64 data;
1116 int j = vcpu->nmsrs;
1117
1118 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1119 continue;
1120 data = data_low | ((u64)data_high << 32);
1121 vcpu->host_msrs[j].index = index;
1122 vcpu->host_msrs[j].reserved = 0;
1123 vcpu->host_msrs[j].data = data;
1124 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1125 ++vcpu->nmsrs;
1126 }
1127 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1128
1129 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1130 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1131 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1132 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1133 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1134 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1135 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1136 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1137 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1138 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1139 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1140 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1141
1142
1143 /* 22.2.1, 20.8.1 */
1144 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1145 VM_ENTRY_CONTROLS, 0);
1146 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1147
1148 #ifdef CONFIG_X86_64
1149 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1150 vmcs_writel(TPR_THRESHOLD, 0);
1151 #endif
1152
1153 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1154 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1155
1156 vcpu->cr0 = 0x60000010;
1157 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1158 vmx_set_cr4(vcpu, 0);
1159 #ifdef CONFIG_X86_64
1160 vmx_set_efer(vcpu, 0);
1161 #endif
1162
1163 return 0;
1164
1165 out:
1166 return ret;
1167 }
1168
1169 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1170 {
1171 u16 ent[2];
1172 u16 cs;
1173 u16 ip;
1174 unsigned long flags;
1175 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1176 u16 sp = vmcs_readl(GUEST_RSP);
1177 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1178
1179 if (sp > ss_limit || sp - 6 > sp) {
1180 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1181 __FUNCTION__,
1182 vmcs_readl(GUEST_RSP),
1183 vmcs_readl(GUEST_SS_BASE),
1184 vmcs_read32(GUEST_SS_LIMIT));
1185 return;
1186 }
1187
1188 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1189 sizeof(ent)) {
1190 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1191 return;
1192 }
1193
1194 flags = vmcs_readl(GUEST_RFLAGS);
1195 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1196 ip = vmcs_readl(GUEST_RIP);
1197
1198
1199 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1200 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1201 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1202 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1203 return;
1204 }
1205
1206 vmcs_writel(GUEST_RFLAGS, flags &
1207 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1208 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1209 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1210 vmcs_writel(GUEST_RIP, ent[0]);
1211 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1212 }
1213
1214 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1215 {
1216 int word_index = __ffs(vcpu->irq_summary);
1217 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1218 int irq = word_index * BITS_PER_LONG + bit_index;
1219
1220 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1221 if (!vcpu->irq_pending[word_index])
1222 clear_bit(word_index, &vcpu->irq_summary);
1223
1224 if (vcpu->rmode.active) {
1225 inject_rmode_irq(vcpu, irq);
1226 return;
1227 }
1228 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1229 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1230 }
1231
1232
1233 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1234 struct kvm_run *kvm_run)
1235 {
1236 u32 cpu_based_vm_exec_control;
1237
1238 vcpu->interrupt_window_open =
1239 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1240 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1241
1242 if (vcpu->interrupt_window_open &&
1243 vcpu->irq_summary &&
1244 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1245 /*
1246 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1247 */
1248 kvm_do_inject_irq(vcpu);
1249
1250 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1251 if (!vcpu->interrupt_window_open &&
1252 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1253 /*
1254 * Interrupts blocked. Wait for unblock.
1255 */
1256 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1257 else
1258 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1259 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1260 }
1261
1262 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1263 {
1264 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1265
1266 set_debugreg(dbg->bp[0], 0);
1267 set_debugreg(dbg->bp[1], 1);
1268 set_debugreg(dbg->bp[2], 2);
1269 set_debugreg(dbg->bp[3], 3);
1270
1271 if (dbg->singlestep) {
1272 unsigned long flags;
1273
1274 flags = vmcs_readl(GUEST_RFLAGS);
1275 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1276 vmcs_writel(GUEST_RFLAGS, flags);
1277 }
1278 }
1279
1280 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1281 int vec, u32 err_code)
1282 {
1283 if (!vcpu->rmode.active)
1284 return 0;
1285
1286 if (vec == GP_VECTOR && err_code == 0)
1287 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1288 return 1;
1289 return 0;
1290 }
1291
1292 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1293 {
1294 u32 intr_info, error_code;
1295 unsigned long cr2, rip;
1296 u32 vect_info;
1297 enum emulation_result er;
1298 int r;
1299
1300 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1301 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1302
1303 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1304 !is_page_fault(intr_info)) {
1305 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1306 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1307 }
1308
1309 if (is_external_interrupt(vect_info)) {
1310 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1311 set_bit(irq, vcpu->irq_pending);
1312 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1313 }
1314
1315 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1316 asm ("int $2");
1317 return 1;
1318 }
1319 error_code = 0;
1320 rip = vmcs_readl(GUEST_RIP);
1321 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1322 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1323 if (is_page_fault(intr_info)) {
1324 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1325
1326 spin_lock(&vcpu->kvm->lock);
1327 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1328 if (r < 0) {
1329 spin_unlock(&vcpu->kvm->lock);
1330 return r;
1331 }
1332 if (!r) {
1333 spin_unlock(&vcpu->kvm->lock);
1334 return 1;
1335 }
1336
1337 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1338 spin_unlock(&vcpu->kvm->lock);
1339
1340 switch (er) {
1341 case EMULATE_DONE:
1342 return 1;
1343 case EMULATE_DO_MMIO:
1344 ++kvm_stat.mmio_exits;
1345 kvm_run->exit_reason = KVM_EXIT_MMIO;
1346 return 0;
1347 case EMULATE_FAIL:
1348 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1349 break;
1350 default:
1351 BUG();
1352 }
1353 }
1354
1355 if (vcpu->rmode.active &&
1356 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1357 error_code))
1358 return 1;
1359
1360 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1361 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1362 return 0;
1363 }
1364 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1365 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1366 kvm_run->ex.error_code = error_code;
1367 return 0;
1368 }
1369
1370 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1371 struct kvm_run *kvm_run)
1372 {
1373 ++kvm_stat.irq_exits;
1374 return 1;
1375 }
1376
1377
1378 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1379 {
1380 u64 inst;
1381 gva_t rip;
1382 int countr_size;
1383 int i, n;
1384
1385 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1386 countr_size = 2;
1387 } else {
1388 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1389
1390 countr_size = (cs_ar & AR_L_MASK) ? 8:
1391 (cs_ar & AR_DB_MASK) ? 4: 2;
1392 }
1393
1394 rip = vmcs_readl(GUEST_RIP);
1395 if (countr_size != 8)
1396 rip += vmcs_readl(GUEST_CS_BASE);
1397
1398 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1399
1400 for (i = 0; i < n; i++) {
1401 switch (((u8*)&inst)[i]) {
1402 case 0xf0:
1403 case 0xf2:
1404 case 0xf3:
1405 case 0x2e:
1406 case 0x36:
1407 case 0x3e:
1408 case 0x26:
1409 case 0x64:
1410 case 0x65:
1411 case 0x66:
1412 break;
1413 case 0x67:
1414 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1415 default:
1416 goto done;
1417 }
1418 }
1419 return 0;
1420 done:
1421 countr_size *= 8;
1422 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1423 return 1;
1424 }
1425
1426 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1427 {
1428 u64 exit_qualification;
1429
1430 ++kvm_stat.io_exits;
1431 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1432 kvm_run->exit_reason = KVM_EXIT_IO;
1433 if (exit_qualification & 8)
1434 kvm_run->io.direction = KVM_EXIT_IO_IN;
1435 else
1436 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1437 kvm_run->io.size = (exit_qualification & 7) + 1;
1438 kvm_run->io.string = (exit_qualification & 16) != 0;
1439 kvm_run->io.string_down
1440 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1441 kvm_run->io.rep = (exit_qualification & 32) != 0;
1442 kvm_run->io.port = exit_qualification >> 16;
1443 if (kvm_run->io.string) {
1444 if (!get_io_count(vcpu, &kvm_run->io.count))
1445 return 1;
1446 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1447 } else
1448 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1449 return 0;
1450 }
1451
1452 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1453 {
1454 u64 exit_qualification;
1455 int cr;
1456 int reg;
1457
1458 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1459 cr = exit_qualification & 15;
1460 reg = (exit_qualification >> 8) & 15;
1461 switch ((exit_qualification >> 4) & 3) {
1462 case 0: /* mov to cr */
1463 switch (cr) {
1464 case 0:
1465 vcpu_load_rsp_rip(vcpu);
1466 set_cr0(vcpu, vcpu->regs[reg]);
1467 skip_emulated_instruction(vcpu);
1468 return 1;
1469 case 3:
1470 vcpu_load_rsp_rip(vcpu);
1471 set_cr3(vcpu, vcpu->regs[reg]);
1472 skip_emulated_instruction(vcpu);
1473 return 1;
1474 case 4:
1475 vcpu_load_rsp_rip(vcpu);
1476 set_cr4(vcpu, vcpu->regs[reg]);
1477 skip_emulated_instruction(vcpu);
1478 return 1;
1479 case 8:
1480 vcpu_load_rsp_rip(vcpu);
1481 set_cr8(vcpu, vcpu->regs[reg]);
1482 skip_emulated_instruction(vcpu);
1483 return 1;
1484 };
1485 break;
1486 case 1: /*mov from cr*/
1487 switch (cr) {
1488 case 3:
1489 vcpu_load_rsp_rip(vcpu);
1490 vcpu->regs[reg] = vcpu->cr3;
1491 vcpu_put_rsp_rip(vcpu);
1492 skip_emulated_instruction(vcpu);
1493 return 1;
1494 case 8:
1495 printk(KERN_DEBUG "handle_cr: read CR8 "
1496 "cpu erratum AA15\n");
1497 vcpu_load_rsp_rip(vcpu);
1498 vcpu->regs[reg] = vcpu->cr8;
1499 vcpu_put_rsp_rip(vcpu);
1500 skip_emulated_instruction(vcpu);
1501 return 1;
1502 }
1503 break;
1504 case 3: /* lmsw */
1505 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1506
1507 skip_emulated_instruction(vcpu);
1508 return 1;
1509 default:
1510 break;
1511 }
1512 kvm_run->exit_reason = 0;
1513 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1514 (int)(exit_qualification >> 4) & 3, cr);
1515 return 0;
1516 }
1517
1518 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1519 {
1520 u64 exit_qualification;
1521 unsigned long val;
1522 int dr, reg;
1523
1524 /*
1525 * FIXME: this code assumes the host is debugging the guest.
1526 * need to deal with guest debugging itself too.
1527 */
1528 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1529 dr = exit_qualification & 7;
1530 reg = (exit_qualification >> 8) & 15;
1531 vcpu_load_rsp_rip(vcpu);
1532 if (exit_qualification & 16) {
1533 /* mov from dr */
1534 switch (dr) {
1535 case 6:
1536 val = 0xffff0ff0;
1537 break;
1538 case 7:
1539 val = 0x400;
1540 break;
1541 default:
1542 val = 0;
1543 }
1544 vcpu->regs[reg] = val;
1545 } else {
1546 /* mov to dr */
1547 }
1548 vcpu_put_rsp_rip(vcpu);
1549 skip_emulated_instruction(vcpu);
1550 return 1;
1551 }
1552
1553 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1554 {
1555 kvm_run->exit_reason = KVM_EXIT_CPUID;
1556 return 0;
1557 }
1558
1559 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1560 {
1561 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1562 u64 data;
1563
1564 if (vmx_get_msr(vcpu, ecx, &data)) {
1565 vmx_inject_gp(vcpu, 0);
1566 return 1;
1567 }
1568
1569 /* FIXME: handling of bits 32:63 of rax, rdx */
1570 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1571 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1572 skip_emulated_instruction(vcpu);
1573 return 1;
1574 }
1575
1576 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1577 {
1578 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1579 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1580 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1581
1582 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1583 vmx_inject_gp(vcpu, 0);
1584 return 1;
1585 }
1586
1587 skip_emulated_instruction(vcpu);
1588 return 1;
1589 }
1590
1591 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1592 struct kvm_run *kvm_run)
1593 {
1594 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1595 kvm_run->cr8 = vcpu->cr8;
1596 kvm_run->apic_base = vcpu->apic_base;
1597 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1598 vcpu->irq_summary == 0);
1599 }
1600
1601 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1602 struct kvm_run *kvm_run)
1603 {
1604 /*
1605 * If the user space waits to inject interrupts, exit as soon as
1606 * possible
1607 */
1608 if (kvm_run->request_interrupt_window &&
1609 !vcpu->irq_summary &&
1610 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) {
1611 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1612 ++kvm_stat.irq_window_exits;
1613 return 0;
1614 }
1615 return 1;
1616 }
1617
1618 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1619 {
1620 skip_emulated_instruction(vcpu);
1621 if (vcpu->irq_summary)
1622 return 1;
1623
1624 kvm_run->exit_reason = KVM_EXIT_HLT;
1625 ++kvm_stat.halt_exits;
1626 return 0;
1627 }
1628
1629 /*
1630 * The exit handlers return 1 if the exit was handled fully and guest execution
1631 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1632 * to be done to userspace and return 0.
1633 */
1634 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1635 struct kvm_run *kvm_run) = {
1636 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1637 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1638 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1639 [EXIT_REASON_CR_ACCESS] = handle_cr,
1640 [EXIT_REASON_DR_ACCESS] = handle_dr,
1641 [EXIT_REASON_CPUID] = handle_cpuid,
1642 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1643 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1644 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1645 [EXIT_REASON_HLT] = handle_halt,
1646 };
1647
1648 static const int kvm_vmx_max_exit_handlers =
1649 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1650
1651 /*
1652 * The guest has exited. See if we can fix it or if we need userspace
1653 * assistance.
1654 */
1655 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1656 {
1657 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1658 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1659
1660 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1661 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1662 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1663 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1664 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1665 if (exit_reason < kvm_vmx_max_exit_handlers
1666 && kvm_vmx_exit_handlers[exit_reason])
1667 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1668 else {
1669 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1670 kvm_run->hw.hardware_exit_reason = exit_reason;
1671 }
1672 return 0;
1673 }
1674
1675 /*
1676 * Check if userspace requested an interrupt window, and that the
1677 * interrupt window is open.
1678 *
1679 * No need to exit to userspace if we already have an interrupt queued.
1680 */
1681 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1682 struct kvm_run *kvm_run)
1683 {
1684 return (!vcpu->irq_summary &&
1685 kvm_run->request_interrupt_window &&
1686 vcpu->interrupt_window_open &&
1687 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1688 }
1689
1690 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1691 {
1692 u8 fail;
1693 u16 fs_sel, gs_sel, ldt_sel;
1694 int fs_gs_ldt_reload_needed;
1695 int r;
1696
1697 again:
1698 /*
1699 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1700 * allow segment selectors with cpl > 0 or ti == 1.
1701 */
1702 fs_sel = read_fs();
1703 gs_sel = read_gs();
1704 ldt_sel = read_ldt();
1705 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1706 if (!fs_gs_ldt_reload_needed) {
1707 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1708 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1709 } else {
1710 vmcs_write16(HOST_FS_SELECTOR, 0);
1711 vmcs_write16(HOST_GS_SELECTOR, 0);
1712 }
1713
1714 #ifdef CONFIG_X86_64
1715 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1716 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1717 #else
1718 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1719 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1720 #endif
1721
1722 do_interrupt_requests(vcpu, kvm_run);
1723
1724 if (vcpu->guest_debug.enabled)
1725 kvm_guest_debug_pre(vcpu);
1726
1727 fx_save(vcpu->host_fx_image);
1728 fx_restore(vcpu->guest_fx_image);
1729
1730 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1731 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1732
1733 asm (
1734 /* Store host registers */
1735 "pushf \n\t"
1736 #ifdef CONFIG_X86_64
1737 "push %%rax; push %%rbx; push %%rdx;"
1738 "push %%rsi; push %%rdi; push %%rbp;"
1739 "push %%r8; push %%r9; push %%r10; push %%r11;"
1740 "push %%r12; push %%r13; push %%r14; push %%r15;"
1741 "push %%rcx \n\t"
1742 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1743 #else
1744 "pusha; push %%ecx \n\t"
1745 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1746 #endif
1747 /* Check if vmlaunch of vmresume is needed */
1748 "cmp $0, %1 \n\t"
1749 /* Load guest registers. Don't clobber flags. */
1750 #ifdef CONFIG_X86_64
1751 "mov %c[cr2](%3), %%rax \n\t"
1752 "mov %%rax, %%cr2 \n\t"
1753 "mov %c[rax](%3), %%rax \n\t"
1754 "mov %c[rbx](%3), %%rbx \n\t"
1755 "mov %c[rdx](%3), %%rdx \n\t"
1756 "mov %c[rsi](%3), %%rsi \n\t"
1757 "mov %c[rdi](%3), %%rdi \n\t"
1758 "mov %c[rbp](%3), %%rbp \n\t"
1759 "mov %c[r8](%3), %%r8 \n\t"
1760 "mov %c[r9](%3), %%r9 \n\t"
1761 "mov %c[r10](%3), %%r10 \n\t"
1762 "mov %c[r11](%3), %%r11 \n\t"
1763 "mov %c[r12](%3), %%r12 \n\t"
1764 "mov %c[r13](%3), %%r13 \n\t"
1765 "mov %c[r14](%3), %%r14 \n\t"
1766 "mov %c[r15](%3), %%r15 \n\t"
1767 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1768 #else
1769 "mov %c[cr2](%3), %%eax \n\t"
1770 "mov %%eax, %%cr2 \n\t"
1771 "mov %c[rax](%3), %%eax \n\t"
1772 "mov %c[rbx](%3), %%ebx \n\t"
1773 "mov %c[rdx](%3), %%edx \n\t"
1774 "mov %c[rsi](%3), %%esi \n\t"
1775 "mov %c[rdi](%3), %%edi \n\t"
1776 "mov %c[rbp](%3), %%ebp \n\t"
1777 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1778 #endif
1779 /* Enter guest mode */
1780 "jne launched \n\t"
1781 ASM_VMX_VMLAUNCH "\n\t"
1782 "jmp kvm_vmx_return \n\t"
1783 "launched: " ASM_VMX_VMRESUME "\n\t"
1784 ".globl kvm_vmx_return \n\t"
1785 "kvm_vmx_return: "
1786 /* Save guest registers, load host registers, keep flags */
1787 #ifdef CONFIG_X86_64
1788 "xchg %3, 0(%%rsp) \n\t"
1789 "mov %%rax, %c[rax](%3) \n\t"
1790 "mov %%rbx, %c[rbx](%3) \n\t"
1791 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1792 "mov %%rdx, %c[rdx](%3) \n\t"
1793 "mov %%rsi, %c[rsi](%3) \n\t"
1794 "mov %%rdi, %c[rdi](%3) \n\t"
1795 "mov %%rbp, %c[rbp](%3) \n\t"
1796 "mov %%r8, %c[r8](%3) \n\t"
1797 "mov %%r9, %c[r9](%3) \n\t"
1798 "mov %%r10, %c[r10](%3) \n\t"
1799 "mov %%r11, %c[r11](%3) \n\t"
1800 "mov %%r12, %c[r12](%3) \n\t"
1801 "mov %%r13, %c[r13](%3) \n\t"
1802 "mov %%r14, %c[r14](%3) \n\t"
1803 "mov %%r15, %c[r15](%3) \n\t"
1804 "mov %%cr2, %%rax \n\t"
1805 "mov %%rax, %c[cr2](%3) \n\t"
1806 "mov 0(%%rsp), %3 \n\t"
1807
1808 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1809 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1810 "pop %%rbp; pop %%rdi; pop %%rsi;"
1811 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1812 #else
1813 "xchg %3, 0(%%esp) \n\t"
1814 "mov %%eax, %c[rax](%3) \n\t"
1815 "mov %%ebx, %c[rbx](%3) \n\t"
1816 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1817 "mov %%edx, %c[rdx](%3) \n\t"
1818 "mov %%esi, %c[rsi](%3) \n\t"
1819 "mov %%edi, %c[rdi](%3) \n\t"
1820 "mov %%ebp, %c[rbp](%3) \n\t"
1821 "mov %%cr2, %%eax \n\t"
1822 "mov %%eax, %c[cr2](%3) \n\t"
1823 "mov 0(%%esp), %3 \n\t"
1824
1825 "pop %%ecx; popa \n\t"
1826 #endif
1827 "setbe %0 \n\t"
1828 "popf \n\t"
1829 : "=g" (fail)
1830 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1831 "c"(vcpu),
1832 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1833 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1834 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1835 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1836 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1837 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1838 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1839 #ifdef CONFIG_X86_64
1840 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1841 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1842 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1843 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1844 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1845 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1846 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1847 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1848 #endif
1849 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1850 : "cc", "memory" );
1851
1852 ++kvm_stat.exits;
1853
1854 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1855 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1856
1857 fx_save(vcpu->guest_fx_image);
1858 fx_restore(vcpu->host_fx_image);
1859 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1860
1861 #ifndef CONFIG_X86_64
1862 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1863 #endif
1864
1865 kvm_run->exit_type = 0;
1866 if (fail) {
1867 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1868 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1869 r = 0;
1870 } else {
1871 if (fs_gs_ldt_reload_needed) {
1872 load_ldt(ldt_sel);
1873 load_fs(fs_sel);
1874 /*
1875 * If we have to reload gs, we must take care to
1876 * preserve our gs base.
1877 */
1878 local_irq_disable();
1879 load_gs(gs_sel);
1880 #ifdef CONFIG_X86_64
1881 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1882 #endif
1883 local_irq_enable();
1884
1885 reload_tss();
1886 }
1887 vcpu->launched = 1;
1888 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1889 r = kvm_handle_exit(kvm_run, vcpu);
1890 if (r > 0) {
1891 /* Give scheduler a change to reschedule. */
1892 if (signal_pending(current)) {
1893 ++kvm_stat.signal_exits;
1894 post_kvm_run_save(vcpu, kvm_run);
1895 return -EINTR;
1896 }
1897
1898 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1899 ++kvm_stat.request_irq_exits;
1900 post_kvm_run_save(vcpu, kvm_run);
1901 return -EINTR;
1902 }
1903
1904 kvm_resched(vcpu);
1905 goto again;
1906 }
1907 }
1908
1909 post_kvm_run_save(vcpu, kvm_run);
1910 return r;
1911 }
1912
1913 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1914 {
1915 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1916 }
1917
1918 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1919 unsigned long addr,
1920 u32 err_code)
1921 {
1922 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1923
1924 ++kvm_stat.pf_guest;
1925
1926 if (is_page_fault(vect_info)) {
1927 printk(KERN_DEBUG "inject_page_fault: "
1928 "double fault 0x%lx @ 0x%lx\n",
1929 addr, vmcs_readl(GUEST_RIP));
1930 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1931 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1932 DF_VECTOR |
1933 INTR_TYPE_EXCEPTION |
1934 INTR_INFO_DELIEVER_CODE_MASK |
1935 INTR_INFO_VALID_MASK);
1936 return;
1937 }
1938 vcpu->cr2 = addr;
1939 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1940 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1941 PF_VECTOR |
1942 INTR_TYPE_EXCEPTION |
1943 INTR_INFO_DELIEVER_CODE_MASK |
1944 INTR_INFO_VALID_MASK);
1945
1946 }
1947
1948 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1949 {
1950 if (vcpu->vmcs) {
1951 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1952 free_vmcs(vcpu->vmcs);
1953 vcpu->vmcs = NULL;
1954 }
1955 }
1956
1957 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1958 {
1959 vmx_free_vmcs(vcpu);
1960 }
1961
1962 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1963 {
1964 struct vmcs *vmcs;
1965
1966 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1967 if (!vcpu->guest_msrs)
1968 return -ENOMEM;
1969
1970 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1971 if (!vcpu->host_msrs)
1972 goto out_free_guest_msrs;
1973
1974 vmcs = alloc_vmcs();
1975 if (!vmcs)
1976 goto out_free_msrs;
1977
1978 vmcs_clear(vmcs);
1979 vcpu->vmcs = vmcs;
1980 vcpu->launched = 0;
1981
1982 return 0;
1983
1984 out_free_msrs:
1985 kfree(vcpu->host_msrs);
1986 vcpu->host_msrs = NULL;
1987
1988 out_free_guest_msrs:
1989 kfree(vcpu->guest_msrs);
1990 vcpu->guest_msrs = NULL;
1991
1992 return -ENOMEM;
1993 }
1994
1995 static struct kvm_arch_ops vmx_arch_ops = {
1996 .cpu_has_kvm_support = cpu_has_kvm_support,
1997 .disabled_by_bios = vmx_disabled_by_bios,
1998 .hardware_setup = hardware_setup,
1999 .hardware_unsetup = hardware_unsetup,
2000 .hardware_enable = hardware_enable,
2001 .hardware_disable = hardware_disable,
2002
2003 .vcpu_create = vmx_create_vcpu,
2004 .vcpu_free = vmx_free_vcpu,
2005
2006 .vcpu_load = vmx_vcpu_load,
2007 .vcpu_put = vmx_vcpu_put,
2008
2009 .set_guest_debug = set_guest_debug,
2010 .get_msr = vmx_get_msr,
2011 .set_msr = vmx_set_msr,
2012 .get_segment_base = vmx_get_segment_base,
2013 .get_segment = vmx_get_segment,
2014 .set_segment = vmx_set_segment,
2015 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2016 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2017 .set_cr0 = vmx_set_cr0,
2018 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2019 .set_cr3 = vmx_set_cr3,
2020 .set_cr4 = vmx_set_cr4,
2021 #ifdef CONFIG_X86_64
2022 .set_efer = vmx_set_efer,
2023 #endif
2024 .get_idt = vmx_get_idt,
2025 .set_idt = vmx_set_idt,
2026 .get_gdt = vmx_get_gdt,
2027 .set_gdt = vmx_set_gdt,
2028 .cache_regs = vcpu_load_rsp_rip,
2029 .decache_regs = vcpu_put_rsp_rip,
2030 .get_rflags = vmx_get_rflags,
2031 .set_rflags = vmx_set_rflags,
2032
2033 .tlb_flush = vmx_flush_tlb,
2034 .inject_page_fault = vmx_inject_page_fault,
2035
2036 .inject_gp = vmx_inject_gp,
2037
2038 .run = vmx_vcpu_run,
2039 .skip_emulated_instruction = skip_emulated_instruction,
2040 .vcpu_setup = vmx_vcpu_setup,
2041 };
2042
2043 static int __init vmx_init(void)
2044 {
2045 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2046 }
2047
2048 static void __exit vmx_exit(void)
2049 {
2050 kvm_exit_arch();
2051 }
2052
2053 module_init(vmx_init)
2054 module_exit(vmx_exit)