]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/vmx.c
KVM: VMX: Avoid saving and restoring msr_efer on lightweight vmexit
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 static struct page *vmx_io_bitmap_a;
38 static struct page *vmx_io_bitmap_b;
39
40 #ifdef CONFIG_X86_64
41 #define HOST_IS_64 1
42 #else
43 #define HOST_IS_64 0
44 #endif
45 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
46
47 static struct vmcs_descriptor {
48 int size;
49 int order;
50 u32 revision_id;
51 } vmcs_descriptor;
52
53 #define VMX_SEGMENT_FIELD(seg) \
54 [VCPU_SREG_##seg] = { \
55 .selector = GUEST_##seg##_SELECTOR, \
56 .base = GUEST_##seg##_BASE, \
57 .limit = GUEST_##seg##_LIMIT, \
58 .ar_bytes = GUEST_##seg##_AR_BYTES, \
59 }
60
61 static struct kvm_vmx_segment_field {
62 unsigned selector;
63 unsigned base;
64 unsigned limit;
65 unsigned ar_bytes;
66 } kvm_vmx_segment_fields[] = {
67 VMX_SEGMENT_FIELD(CS),
68 VMX_SEGMENT_FIELD(DS),
69 VMX_SEGMENT_FIELD(ES),
70 VMX_SEGMENT_FIELD(FS),
71 VMX_SEGMENT_FIELD(GS),
72 VMX_SEGMENT_FIELD(SS),
73 VMX_SEGMENT_FIELD(TR),
74 VMX_SEGMENT_FIELD(LDTR),
75 };
76
77 /*
78 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
79 * away by decrementing the array size.
80 */
81 static const u32 vmx_msr_index[] = {
82 #ifdef CONFIG_X86_64
83 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
84 #endif
85 MSR_EFER, MSR_K6_STAR,
86 };
87 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
88
89 static inline u64 msr_efer_save_restore_bits(struct vmx_msr_entry msr)
90 {
91 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
92 }
93
94 static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
95 {
96 int efer_offset = vcpu->msr_offset_efer;
97 return msr_efer_save_restore_bits(vcpu->host_msrs[efer_offset]) !=
98 msr_efer_save_restore_bits(vcpu->guest_msrs[efer_offset]);
99 }
100
101 static inline int is_page_fault(u32 intr_info)
102 {
103 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
104 INTR_INFO_VALID_MASK)) ==
105 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
106 }
107
108 static inline int is_no_device(u32 intr_info)
109 {
110 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
111 INTR_INFO_VALID_MASK)) ==
112 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
113 }
114
115 static inline int is_external_interrupt(u32 intr_info)
116 {
117 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
118 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
119 }
120
121 static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
122 {
123 int i;
124
125 for (i = 0; i < vcpu->nmsrs; ++i)
126 if (vcpu->guest_msrs[i].index == msr)
127 return i;
128 return -1;
129 }
130
131 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
132 {
133 int i;
134
135 i = __find_msr_index(vcpu, msr);
136 if (i >= 0)
137 return &vcpu->guest_msrs[i];
138 return NULL;
139 }
140
141 static void vmcs_clear(struct vmcs *vmcs)
142 {
143 u64 phys_addr = __pa(vmcs);
144 u8 error;
145
146 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
147 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
148 : "cc", "memory");
149 if (error)
150 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
151 vmcs, phys_addr);
152 }
153
154 static void __vcpu_clear(void *arg)
155 {
156 struct kvm_vcpu *vcpu = arg;
157 int cpu = raw_smp_processor_id();
158
159 if (vcpu->cpu == cpu)
160 vmcs_clear(vcpu->vmcs);
161 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
162 per_cpu(current_vmcs, cpu) = NULL;
163 }
164
165 static void vcpu_clear(struct kvm_vcpu *vcpu)
166 {
167 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
168 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
169 else
170 __vcpu_clear(vcpu);
171 vcpu->launched = 0;
172 }
173
174 static unsigned long vmcs_readl(unsigned long field)
175 {
176 unsigned long value;
177
178 asm volatile (ASM_VMX_VMREAD_RDX_RAX
179 : "=a"(value) : "d"(field) : "cc");
180 return value;
181 }
182
183 static u16 vmcs_read16(unsigned long field)
184 {
185 return vmcs_readl(field);
186 }
187
188 static u32 vmcs_read32(unsigned long field)
189 {
190 return vmcs_readl(field);
191 }
192
193 static u64 vmcs_read64(unsigned long field)
194 {
195 #ifdef CONFIG_X86_64
196 return vmcs_readl(field);
197 #else
198 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
199 #endif
200 }
201
202 static noinline void vmwrite_error(unsigned long field, unsigned long value)
203 {
204 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
205 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
206 dump_stack();
207 }
208
209 static void vmcs_writel(unsigned long field, unsigned long value)
210 {
211 u8 error;
212
213 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
214 : "=q"(error) : "a"(value), "d"(field) : "cc" );
215 if (unlikely(error))
216 vmwrite_error(field, value);
217 }
218
219 static void vmcs_write16(unsigned long field, u16 value)
220 {
221 vmcs_writel(field, value);
222 }
223
224 static void vmcs_write32(unsigned long field, u32 value)
225 {
226 vmcs_writel(field, value);
227 }
228
229 static void vmcs_write64(unsigned long field, u64 value)
230 {
231 #ifdef CONFIG_X86_64
232 vmcs_writel(field, value);
233 #else
234 vmcs_writel(field, value);
235 asm volatile ("");
236 vmcs_writel(field+1, value >> 32);
237 #endif
238 }
239
240 static void vmcs_clear_bits(unsigned long field, u32 mask)
241 {
242 vmcs_writel(field, vmcs_readl(field) & ~mask);
243 }
244
245 static void vmcs_set_bits(unsigned long field, u32 mask)
246 {
247 vmcs_writel(field, vmcs_readl(field) | mask);
248 }
249
250 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
251 {
252 u32 eb;
253
254 eb = 1u << PF_VECTOR;
255 if (!vcpu->fpu_active)
256 eb |= 1u << NM_VECTOR;
257 if (vcpu->guest_debug.enabled)
258 eb |= 1u << 1;
259 if (vcpu->rmode.active)
260 eb = ~0;
261 vmcs_write32(EXCEPTION_BITMAP, eb);
262 }
263
264 static void reload_tss(void)
265 {
266 #ifndef CONFIG_X86_64
267
268 /*
269 * VT restores TR but not its size. Useless.
270 */
271 struct descriptor_table gdt;
272 struct segment_descriptor *descs;
273
274 get_gdt(&gdt);
275 descs = (void *)gdt.base;
276 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
277 load_TR_desc();
278 #endif
279 }
280
281 static void load_transition_efer(struct kvm_vcpu *vcpu)
282 {
283 u64 trans_efer;
284 int efer_offset = vcpu->msr_offset_efer;
285
286 trans_efer = vcpu->host_msrs[efer_offset].data;
287 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
288 trans_efer |= msr_efer_save_restore_bits(
289 vcpu->guest_msrs[efer_offset]);
290 wrmsrl(MSR_EFER, trans_efer);
291 vcpu->stat.efer_reload++;
292 }
293
294 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
295 {
296 struct vmx_host_state *hs = &vcpu->vmx_host_state;
297
298 if (hs->loaded)
299 return;
300
301 hs->loaded = 1;
302 /*
303 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
304 * allow segment selectors with cpl > 0 or ti == 1.
305 */
306 hs->ldt_sel = read_ldt();
307 hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
308 hs->fs_sel = read_fs();
309 if (!(hs->fs_sel & 7))
310 vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
311 else {
312 vmcs_write16(HOST_FS_SELECTOR, 0);
313 hs->fs_gs_ldt_reload_needed = 1;
314 }
315 hs->gs_sel = read_gs();
316 if (!(hs->gs_sel & 7))
317 vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
318 else {
319 vmcs_write16(HOST_GS_SELECTOR, 0);
320 hs->fs_gs_ldt_reload_needed = 1;
321 }
322
323 #ifdef CONFIG_X86_64
324 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
325 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
326 #else
327 vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
328 vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
329 #endif
330
331 #ifdef CONFIG_X86_64
332 if (is_long_mode(vcpu)) {
333 save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
334 }
335 #endif
336 load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
337 if (msr_efer_need_save_restore(vcpu))
338 load_transition_efer(vcpu);
339 }
340
341 static void vmx_load_host_state(struct kvm_vcpu *vcpu)
342 {
343 struct vmx_host_state *hs = &vcpu->vmx_host_state;
344
345 if (!hs->loaded)
346 return;
347
348 hs->loaded = 0;
349 if (hs->fs_gs_ldt_reload_needed) {
350 load_ldt(hs->ldt_sel);
351 load_fs(hs->fs_sel);
352 /*
353 * If we have to reload gs, we must take care to
354 * preserve our gs base.
355 */
356 local_irq_disable();
357 load_gs(hs->gs_sel);
358 #ifdef CONFIG_X86_64
359 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
360 #endif
361 local_irq_enable();
362
363 reload_tss();
364 }
365 save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
366 load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
367 if (msr_efer_need_save_restore(vcpu))
368 load_msrs(vcpu->host_msrs + vcpu->msr_offset_efer, 1);
369 }
370
371 /*
372 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
373 * vcpu mutex is already taken.
374 */
375 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
376 {
377 u64 phys_addr = __pa(vcpu->vmcs);
378 int cpu;
379
380 cpu = get_cpu();
381
382 if (vcpu->cpu != cpu)
383 vcpu_clear(vcpu);
384
385 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
386 u8 error;
387
388 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
389 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
390 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
391 : "cc");
392 if (error)
393 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
394 vcpu->vmcs, phys_addr);
395 }
396
397 if (vcpu->cpu != cpu) {
398 struct descriptor_table dt;
399 unsigned long sysenter_esp;
400
401 vcpu->cpu = cpu;
402 /*
403 * Linux uses per-cpu TSS and GDT, so set these when switching
404 * processors.
405 */
406 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
407 get_gdt(&dt);
408 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
409
410 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
411 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
412 }
413 }
414
415 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
416 {
417 vmx_load_host_state(vcpu);
418 kvm_put_guest_fpu(vcpu);
419 put_cpu();
420 }
421
422 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
423 {
424 if (vcpu->fpu_active)
425 return;
426 vcpu->fpu_active = 1;
427 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
428 if (vcpu->cr0 & CR0_TS_MASK)
429 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
430 update_exception_bitmap(vcpu);
431 }
432
433 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
434 {
435 if (!vcpu->fpu_active)
436 return;
437 vcpu->fpu_active = 0;
438 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
439 update_exception_bitmap(vcpu);
440 }
441
442 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
443 {
444 vcpu_clear(vcpu);
445 }
446
447 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
448 {
449 return vmcs_readl(GUEST_RFLAGS);
450 }
451
452 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
453 {
454 vmcs_writel(GUEST_RFLAGS, rflags);
455 }
456
457 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
458 {
459 unsigned long rip;
460 u32 interruptibility;
461
462 rip = vmcs_readl(GUEST_RIP);
463 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
464 vmcs_writel(GUEST_RIP, rip);
465
466 /*
467 * We emulated an instruction, so temporary interrupt blocking
468 * should be removed, if set.
469 */
470 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
471 if (interruptibility & 3)
472 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
473 interruptibility & ~3);
474 vcpu->interrupt_window_open = 1;
475 }
476
477 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
478 {
479 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
480 vmcs_readl(GUEST_RIP));
481 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
482 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
483 GP_VECTOR |
484 INTR_TYPE_EXCEPTION |
485 INTR_INFO_DELIEVER_CODE_MASK |
486 INTR_INFO_VALID_MASK);
487 }
488
489 /*
490 * Swap MSR entry in host/guest MSR entry array.
491 */
492 void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
493 {
494 struct vmx_msr_entry tmp;
495 tmp = vcpu->guest_msrs[to];
496 vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
497 vcpu->guest_msrs[from] = tmp;
498 tmp = vcpu->host_msrs[to];
499 vcpu->host_msrs[to] = vcpu->host_msrs[from];
500 vcpu->host_msrs[from] = tmp;
501 }
502
503 /*
504 * Set up the vmcs to automatically save and restore system
505 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
506 * mode, as fiddling with msrs is very expensive.
507 */
508 static void setup_msrs(struct kvm_vcpu *vcpu)
509 {
510 int save_nmsrs;
511
512 save_nmsrs = 0;
513 #ifdef CONFIG_X86_64
514 if (is_long_mode(vcpu)) {
515 int index;
516
517 index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
518 if (index >= 0)
519 move_msr_up(vcpu, index, save_nmsrs++);
520 index = __find_msr_index(vcpu, MSR_LSTAR);
521 if (index >= 0)
522 move_msr_up(vcpu, index, save_nmsrs++);
523 index = __find_msr_index(vcpu, MSR_CSTAR);
524 if (index >= 0)
525 move_msr_up(vcpu, index, save_nmsrs++);
526 index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
527 if (index >= 0)
528 move_msr_up(vcpu, index, save_nmsrs++);
529 /*
530 * MSR_K6_STAR is only needed on long mode guests, and only
531 * if efer.sce is enabled.
532 */
533 index = __find_msr_index(vcpu, MSR_K6_STAR);
534 if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
535 move_msr_up(vcpu, index, save_nmsrs++);
536 }
537 #endif
538 vcpu->save_nmsrs = save_nmsrs;
539
540 #ifdef CONFIG_X86_64
541 vcpu->msr_offset_kernel_gs_base =
542 __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
543 #endif
544 vcpu->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
545 }
546
547 /*
548 * reads and returns guest's timestamp counter "register"
549 * guest_tsc = host_tsc + tsc_offset -- 21.3
550 */
551 static u64 guest_read_tsc(void)
552 {
553 u64 host_tsc, tsc_offset;
554
555 rdtscll(host_tsc);
556 tsc_offset = vmcs_read64(TSC_OFFSET);
557 return host_tsc + tsc_offset;
558 }
559
560 /*
561 * writes 'guest_tsc' into guest's timestamp counter "register"
562 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
563 */
564 static void guest_write_tsc(u64 guest_tsc)
565 {
566 u64 host_tsc;
567
568 rdtscll(host_tsc);
569 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
570 }
571
572 /*
573 * Reads an msr value (of 'msr_index') into 'pdata'.
574 * Returns 0 on success, non-0 otherwise.
575 * Assumes vcpu_load() was already called.
576 */
577 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
578 {
579 u64 data;
580 struct vmx_msr_entry *msr;
581
582 if (!pdata) {
583 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
584 return -EINVAL;
585 }
586
587 switch (msr_index) {
588 #ifdef CONFIG_X86_64
589 case MSR_FS_BASE:
590 data = vmcs_readl(GUEST_FS_BASE);
591 break;
592 case MSR_GS_BASE:
593 data = vmcs_readl(GUEST_GS_BASE);
594 break;
595 case MSR_EFER:
596 return kvm_get_msr_common(vcpu, msr_index, pdata);
597 #endif
598 case MSR_IA32_TIME_STAMP_COUNTER:
599 data = guest_read_tsc();
600 break;
601 case MSR_IA32_SYSENTER_CS:
602 data = vmcs_read32(GUEST_SYSENTER_CS);
603 break;
604 case MSR_IA32_SYSENTER_EIP:
605 data = vmcs_readl(GUEST_SYSENTER_EIP);
606 break;
607 case MSR_IA32_SYSENTER_ESP:
608 data = vmcs_readl(GUEST_SYSENTER_ESP);
609 break;
610 default:
611 msr = find_msr_entry(vcpu, msr_index);
612 if (msr) {
613 data = msr->data;
614 break;
615 }
616 return kvm_get_msr_common(vcpu, msr_index, pdata);
617 }
618
619 *pdata = data;
620 return 0;
621 }
622
623 /*
624 * Writes msr value into into the appropriate "register".
625 * Returns 0 on success, non-0 otherwise.
626 * Assumes vcpu_load() was already called.
627 */
628 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
629 {
630 struct vmx_msr_entry *msr;
631 int ret = 0;
632
633 switch (msr_index) {
634 #ifdef CONFIG_X86_64
635 case MSR_EFER:
636 ret = kvm_set_msr_common(vcpu, msr_index, data);
637 if (vcpu->vmx_host_state.loaded)
638 load_transition_efer(vcpu);
639 break;
640 case MSR_FS_BASE:
641 vmcs_writel(GUEST_FS_BASE, data);
642 break;
643 case MSR_GS_BASE:
644 vmcs_writel(GUEST_GS_BASE, data);
645 break;
646 #endif
647 case MSR_IA32_SYSENTER_CS:
648 vmcs_write32(GUEST_SYSENTER_CS, data);
649 break;
650 case MSR_IA32_SYSENTER_EIP:
651 vmcs_writel(GUEST_SYSENTER_EIP, data);
652 break;
653 case MSR_IA32_SYSENTER_ESP:
654 vmcs_writel(GUEST_SYSENTER_ESP, data);
655 break;
656 case MSR_IA32_TIME_STAMP_COUNTER:
657 guest_write_tsc(data);
658 break;
659 default:
660 msr = find_msr_entry(vcpu, msr_index);
661 if (msr) {
662 msr->data = data;
663 if (vcpu->vmx_host_state.loaded)
664 load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
665 break;
666 }
667 ret = kvm_set_msr_common(vcpu, msr_index, data);
668 }
669
670 return ret;
671 }
672
673 /*
674 * Sync the rsp and rip registers into the vcpu structure. This allows
675 * registers to be accessed by indexing vcpu->regs.
676 */
677 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
678 {
679 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
680 vcpu->rip = vmcs_readl(GUEST_RIP);
681 }
682
683 /*
684 * Syncs rsp and rip back into the vmcs. Should be called after possible
685 * modification.
686 */
687 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
688 {
689 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
690 vmcs_writel(GUEST_RIP, vcpu->rip);
691 }
692
693 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
694 {
695 unsigned long dr7 = 0x400;
696 int old_singlestep;
697
698 old_singlestep = vcpu->guest_debug.singlestep;
699
700 vcpu->guest_debug.enabled = dbg->enabled;
701 if (vcpu->guest_debug.enabled) {
702 int i;
703
704 dr7 |= 0x200; /* exact */
705 for (i = 0; i < 4; ++i) {
706 if (!dbg->breakpoints[i].enabled)
707 continue;
708 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
709 dr7 |= 2 << (i*2); /* global enable */
710 dr7 |= 0 << (i*4+16); /* execution breakpoint */
711 }
712
713 vcpu->guest_debug.singlestep = dbg->singlestep;
714 } else
715 vcpu->guest_debug.singlestep = 0;
716
717 if (old_singlestep && !vcpu->guest_debug.singlestep) {
718 unsigned long flags;
719
720 flags = vmcs_readl(GUEST_RFLAGS);
721 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
722 vmcs_writel(GUEST_RFLAGS, flags);
723 }
724
725 update_exception_bitmap(vcpu);
726 vmcs_writel(GUEST_DR7, dr7);
727
728 return 0;
729 }
730
731 static __init int cpu_has_kvm_support(void)
732 {
733 unsigned long ecx = cpuid_ecx(1);
734 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
735 }
736
737 static __init int vmx_disabled_by_bios(void)
738 {
739 u64 msr;
740
741 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
742 return (msr & 5) == 1; /* locked but not enabled */
743 }
744
745 static void hardware_enable(void *garbage)
746 {
747 int cpu = raw_smp_processor_id();
748 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
749 u64 old;
750
751 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
752 if ((old & 5) != 5)
753 /* enable and lock */
754 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
755 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
756 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
757 : "memory", "cc");
758 }
759
760 static void hardware_disable(void *garbage)
761 {
762 asm volatile (ASM_VMX_VMXOFF : : : "cc");
763 }
764
765 static __init void setup_vmcs_descriptor(void)
766 {
767 u32 vmx_msr_low, vmx_msr_high;
768
769 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
770 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
771 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
772 vmcs_descriptor.revision_id = vmx_msr_low;
773 }
774
775 static struct vmcs *alloc_vmcs_cpu(int cpu)
776 {
777 int node = cpu_to_node(cpu);
778 struct page *pages;
779 struct vmcs *vmcs;
780
781 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
782 if (!pages)
783 return NULL;
784 vmcs = page_address(pages);
785 memset(vmcs, 0, vmcs_descriptor.size);
786 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
787 return vmcs;
788 }
789
790 static struct vmcs *alloc_vmcs(void)
791 {
792 return alloc_vmcs_cpu(raw_smp_processor_id());
793 }
794
795 static void free_vmcs(struct vmcs *vmcs)
796 {
797 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
798 }
799
800 static void free_kvm_area(void)
801 {
802 int cpu;
803
804 for_each_online_cpu(cpu)
805 free_vmcs(per_cpu(vmxarea, cpu));
806 }
807
808 extern struct vmcs *alloc_vmcs_cpu(int cpu);
809
810 static __init int alloc_kvm_area(void)
811 {
812 int cpu;
813
814 for_each_online_cpu(cpu) {
815 struct vmcs *vmcs;
816
817 vmcs = alloc_vmcs_cpu(cpu);
818 if (!vmcs) {
819 free_kvm_area();
820 return -ENOMEM;
821 }
822
823 per_cpu(vmxarea, cpu) = vmcs;
824 }
825 return 0;
826 }
827
828 static __init int hardware_setup(void)
829 {
830 setup_vmcs_descriptor();
831 return alloc_kvm_area();
832 }
833
834 static __exit void hardware_unsetup(void)
835 {
836 free_kvm_area();
837 }
838
839 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
840 {
841 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
842
843 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
844 vmcs_write16(sf->selector, save->selector);
845 vmcs_writel(sf->base, save->base);
846 vmcs_write32(sf->limit, save->limit);
847 vmcs_write32(sf->ar_bytes, save->ar);
848 } else {
849 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
850 << AR_DPL_SHIFT;
851 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
852 }
853 }
854
855 static void enter_pmode(struct kvm_vcpu *vcpu)
856 {
857 unsigned long flags;
858
859 vcpu->rmode.active = 0;
860
861 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
862 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
863 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
864
865 flags = vmcs_readl(GUEST_RFLAGS);
866 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
867 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
868 vmcs_writel(GUEST_RFLAGS, flags);
869
870 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
871 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
872
873 update_exception_bitmap(vcpu);
874
875 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
876 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
877 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
878 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
879
880 vmcs_write16(GUEST_SS_SELECTOR, 0);
881 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
882
883 vmcs_write16(GUEST_CS_SELECTOR,
884 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
885 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
886 }
887
888 static int rmode_tss_base(struct kvm* kvm)
889 {
890 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
891 return base_gfn << PAGE_SHIFT;
892 }
893
894 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
895 {
896 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
897
898 save->selector = vmcs_read16(sf->selector);
899 save->base = vmcs_readl(sf->base);
900 save->limit = vmcs_read32(sf->limit);
901 save->ar = vmcs_read32(sf->ar_bytes);
902 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
903 vmcs_write32(sf->limit, 0xffff);
904 vmcs_write32(sf->ar_bytes, 0xf3);
905 }
906
907 static void enter_rmode(struct kvm_vcpu *vcpu)
908 {
909 unsigned long flags;
910
911 vcpu->rmode.active = 1;
912
913 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
914 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
915
916 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
917 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
918
919 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
920 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
921
922 flags = vmcs_readl(GUEST_RFLAGS);
923 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
924
925 flags |= IOPL_MASK | X86_EFLAGS_VM;
926
927 vmcs_writel(GUEST_RFLAGS, flags);
928 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
929 update_exception_bitmap(vcpu);
930
931 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
932 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
933 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
934
935 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
936 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
937 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
938 vmcs_writel(GUEST_CS_BASE, 0xf0000);
939 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
940
941 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
942 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
943 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
944 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
945 }
946
947 #ifdef CONFIG_X86_64
948
949 static void enter_lmode(struct kvm_vcpu *vcpu)
950 {
951 u32 guest_tr_ar;
952
953 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
954 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
955 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
956 __FUNCTION__);
957 vmcs_write32(GUEST_TR_AR_BYTES,
958 (guest_tr_ar & ~AR_TYPE_MASK)
959 | AR_TYPE_BUSY_64_TSS);
960 }
961
962 vcpu->shadow_efer |= EFER_LMA;
963
964 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
965 vmcs_write32(VM_ENTRY_CONTROLS,
966 vmcs_read32(VM_ENTRY_CONTROLS)
967 | VM_ENTRY_CONTROLS_IA32E_MASK);
968 }
969
970 static void exit_lmode(struct kvm_vcpu *vcpu)
971 {
972 vcpu->shadow_efer &= ~EFER_LMA;
973
974 vmcs_write32(VM_ENTRY_CONTROLS,
975 vmcs_read32(VM_ENTRY_CONTROLS)
976 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
977 }
978
979 #endif
980
981 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
982 {
983 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
984 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
985 }
986
987 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
988 {
989 vmx_fpu_deactivate(vcpu);
990
991 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
992 enter_pmode(vcpu);
993
994 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
995 enter_rmode(vcpu);
996
997 #ifdef CONFIG_X86_64
998 if (vcpu->shadow_efer & EFER_LME) {
999 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
1000 enter_lmode(vcpu);
1001 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
1002 exit_lmode(vcpu);
1003 }
1004 #endif
1005
1006 vmcs_writel(CR0_READ_SHADOW, cr0);
1007 vmcs_writel(GUEST_CR0,
1008 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1009 vcpu->cr0 = cr0;
1010
1011 if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
1012 vmx_fpu_activate(vcpu);
1013 }
1014
1015 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1016 {
1017 vmcs_writel(GUEST_CR3, cr3);
1018 if (vcpu->cr0 & CR0_PE_MASK)
1019 vmx_fpu_deactivate(vcpu);
1020 }
1021
1022 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1023 {
1024 vmcs_writel(CR4_READ_SHADOW, cr4);
1025 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1026 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1027 vcpu->cr4 = cr4;
1028 }
1029
1030 #ifdef CONFIG_X86_64
1031
1032 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1033 {
1034 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
1035
1036 vcpu->shadow_efer = efer;
1037 if (efer & EFER_LMA) {
1038 vmcs_write32(VM_ENTRY_CONTROLS,
1039 vmcs_read32(VM_ENTRY_CONTROLS) |
1040 VM_ENTRY_CONTROLS_IA32E_MASK);
1041 msr->data = efer;
1042
1043 } else {
1044 vmcs_write32(VM_ENTRY_CONTROLS,
1045 vmcs_read32(VM_ENTRY_CONTROLS) &
1046 ~VM_ENTRY_CONTROLS_IA32E_MASK);
1047
1048 msr->data = efer & ~EFER_LME;
1049 }
1050 setup_msrs(vcpu);
1051 }
1052
1053 #endif
1054
1055 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1056 {
1057 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1058
1059 return vmcs_readl(sf->base);
1060 }
1061
1062 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1063 struct kvm_segment *var, int seg)
1064 {
1065 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1066 u32 ar;
1067
1068 var->base = vmcs_readl(sf->base);
1069 var->limit = vmcs_read32(sf->limit);
1070 var->selector = vmcs_read16(sf->selector);
1071 ar = vmcs_read32(sf->ar_bytes);
1072 if (ar & AR_UNUSABLE_MASK)
1073 ar = 0;
1074 var->type = ar & 15;
1075 var->s = (ar >> 4) & 1;
1076 var->dpl = (ar >> 5) & 3;
1077 var->present = (ar >> 7) & 1;
1078 var->avl = (ar >> 12) & 1;
1079 var->l = (ar >> 13) & 1;
1080 var->db = (ar >> 14) & 1;
1081 var->g = (ar >> 15) & 1;
1082 var->unusable = (ar >> 16) & 1;
1083 }
1084
1085 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1086 {
1087 u32 ar;
1088
1089 if (var->unusable)
1090 ar = 1 << 16;
1091 else {
1092 ar = var->type & 15;
1093 ar |= (var->s & 1) << 4;
1094 ar |= (var->dpl & 3) << 5;
1095 ar |= (var->present & 1) << 7;
1096 ar |= (var->avl & 1) << 12;
1097 ar |= (var->l & 1) << 13;
1098 ar |= (var->db & 1) << 14;
1099 ar |= (var->g & 1) << 15;
1100 }
1101 if (ar == 0) /* a 0 value means unusable */
1102 ar = AR_UNUSABLE_MASK;
1103
1104 return ar;
1105 }
1106
1107 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1108 struct kvm_segment *var, int seg)
1109 {
1110 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1111 u32 ar;
1112
1113 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1114 vcpu->rmode.tr.selector = var->selector;
1115 vcpu->rmode.tr.base = var->base;
1116 vcpu->rmode.tr.limit = var->limit;
1117 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1118 return;
1119 }
1120 vmcs_writel(sf->base, var->base);
1121 vmcs_write32(sf->limit, var->limit);
1122 vmcs_write16(sf->selector, var->selector);
1123 if (vcpu->rmode.active && var->s) {
1124 /*
1125 * Hack real-mode segments into vm86 compatibility.
1126 */
1127 if (var->base == 0xffff0000 && var->selector == 0xf000)
1128 vmcs_writel(sf->base, 0xf0000);
1129 ar = 0xf3;
1130 } else
1131 ar = vmx_segment_access_rights(var);
1132 vmcs_write32(sf->ar_bytes, ar);
1133 }
1134
1135 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1136 {
1137 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1138
1139 *db = (ar >> 14) & 1;
1140 *l = (ar >> 13) & 1;
1141 }
1142
1143 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1144 {
1145 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1146 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1147 }
1148
1149 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1150 {
1151 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1152 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1153 }
1154
1155 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1156 {
1157 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1158 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1159 }
1160
1161 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1162 {
1163 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1164 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1165 }
1166
1167 static int init_rmode_tss(struct kvm* kvm)
1168 {
1169 struct page *p1, *p2, *p3;
1170 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1171 char *page;
1172
1173 p1 = gfn_to_page(kvm, fn++);
1174 p2 = gfn_to_page(kvm, fn++);
1175 p3 = gfn_to_page(kvm, fn);
1176
1177 if (!p1 || !p2 || !p3) {
1178 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1179 return 0;
1180 }
1181
1182 page = kmap_atomic(p1, KM_USER0);
1183 memset(page, 0, PAGE_SIZE);
1184 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1185 kunmap_atomic(page, KM_USER0);
1186
1187 page = kmap_atomic(p2, KM_USER0);
1188 memset(page, 0, PAGE_SIZE);
1189 kunmap_atomic(page, KM_USER0);
1190
1191 page = kmap_atomic(p3, KM_USER0);
1192 memset(page, 0, PAGE_SIZE);
1193 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1194 kunmap_atomic(page, KM_USER0);
1195
1196 return 1;
1197 }
1198
1199 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1200 {
1201 u32 msr_high, msr_low;
1202
1203 rdmsr(msr, msr_low, msr_high);
1204
1205 val &= msr_high;
1206 val |= msr_low;
1207 vmcs_write32(vmcs_field, val);
1208 }
1209
1210 static void seg_setup(int seg)
1211 {
1212 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1213
1214 vmcs_write16(sf->selector, 0);
1215 vmcs_writel(sf->base, 0);
1216 vmcs_write32(sf->limit, 0xffff);
1217 vmcs_write32(sf->ar_bytes, 0x93);
1218 }
1219
1220 /*
1221 * Sets up the vmcs for emulated real mode.
1222 */
1223 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1224 {
1225 u32 host_sysenter_cs;
1226 u32 junk;
1227 unsigned long a;
1228 struct descriptor_table dt;
1229 int i;
1230 int ret = 0;
1231 unsigned long kvm_vmx_return;
1232
1233 if (!init_rmode_tss(vcpu->kvm)) {
1234 ret = -ENOMEM;
1235 goto out;
1236 }
1237
1238 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1239 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1240 vcpu->cr8 = 0;
1241 vcpu->apic_base = 0xfee00000 |
1242 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1243 MSR_IA32_APICBASE_ENABLE;
1244
1245 fx_init(vcpu);
1246
1247 /*
1248 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1249 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1250 */
1251 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1252 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1253 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1254 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1255
1256 seg_setup(VCPU_SREG_DS);
1257 seg_setup(VCPU_SREG_ES);
1258 seg_setup(VCPU_SREG_FS);
1259 seg_setup(VCPU_SREG_GS);
1260 seg_setup(VCPU_SREG_SS);
1261
1262 vmcs_write16(GUEST_TR_SELECTOR, 0);
1263 vmcs_writel(GUEST_TR_BASE, 0);
1264 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1265 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1266
1267 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1268 vmcs_writel(GUEST_LDTR_BASE, 0);
1269 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1270 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1271
1272 vmcs_write32(GUEST_SYSENTER_CS, 0);
1273 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1274 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1275
1276 vmcs_writel(GUEST_RFLAGS, 0x02);
1277 vmcs_writel(GUEST_RIP, 0xfff0);
1278 vmcs_writel(GUEST_RSP, 0);
1279
1280 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1281 vmcs_writel(GUEST_DR7, 0x400);
1282
1283 vmcs_writel(GUEST_GDTR_BASE, 0);
1284 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1285
1286 vmcs_writel(GUEST_IDTR_BASE, 0);
1287 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1288
1289 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1290 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1291 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1292
1293 /* I/O */
1294 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1295 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1296
1297 guest_write_tsc(0);
1298
1299 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1300
1301 /* Special registers */
1302 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1303
1304 /* Control */
1305 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1306 PIN_BASED_VM_EXEC_CONTROL,
1307 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1308 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1309 );
1310 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1311 CPU_BASED_VM_EXEC_CONTROL,
1312 CPU_BASED_HLT_EXITING /* 20.6.2 */
1313 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1314 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1315 | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
1316 | CPU_BASED_MOV_DR_EXITING
1317 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1318 );
1319
1320 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1321 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1322 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1323
1324 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1325 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1326 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1327
1328 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1329 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1330 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1331 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1332 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1333 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1334 #ifdef CONFIG_X86_64
1335 rdmsrl(MSR_FS_BASE, a);
1336 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1337 rdmsrl(MSR_GS_BASE, a);
1338 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1339 #else
1340 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1341 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1342 #endif
1343
1344 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1345
1346 get_idt(&dt);
1347 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1348
1349 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1350 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1351 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1352 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1353 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1354
1355 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1356 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1357 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1358 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1359 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1360 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1361
1362 for (i = 0; i < NR_VMX_MSR; ++i) {
1363 u32 index = vmx_msr_index[i];
1364 u32 data_low, data_high;
1365 u64 data;
1366 int j = vcpu->nmsrs;
1367
1368 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1369 continue;
1370 if (wrmsr_safe(index, data_low, data_high) < 0)
1371 continue;
1372 data = data_low | ((u64)data_high << 32);
1373 vcpu->host_msrs[j].index = index;
1374 vcpu->host_msrs[j].reserved = 0;
1375 vcpu->host_msrs[j].data = data;
1376 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1377 ++vcpu->nmsrs;
1378 }
1379
1380 setup_msrs(vcpu);
1381
1382 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1383 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1384
1385 /* 22.2.1, 20.8.1 */
1386 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1387 VM_ENTRY_CONTROLS, 0);
1388 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1389
1390 #ifdef CONFIG_X86_64
1391 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1392 vmcs_writel(TPR_THRESHOLD, 0);
1393 #endif
1394
1395 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1396 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1397
1398 vcpu->cr0 = 0x60000010;
1399 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1400 vmx_set_cr4(vcpu, 0);
1401 #ifdef CONFIG_X86_64
1402 vmx_set_efer(vcpu, 0);
1403 #endif
1404 vmx_fpu_activate(vcpu);
1405 update_exception_bitmap(vcpu);
1406
1407 return 0;
1408
1409 out:
1410 return ret;
1411 }
1412
1413 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1414 {
1415 u16 ent[2];
1416 u16 cs;
1417 u16 ip;
1418 unsigned long flags;
1419 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1420 u16 sp = vmcs_readl(GUEST_RSP);
1421 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1422
1423 if (sp > ss_limit || sp < 6 ) {
1424 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1425 __FUNCTION__,
1426 vmcs_readl(GUEST_RSP),
1427 vmcs_readl(GUEST_SS_BASE),
1428 vmcs_read32(GUEST_SS_LIMIT));
1429 return;
1430 }
1431
1432 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1433 sizeof(ent)) {
1434 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1435 return;
1436 }
1437
1438 flags = vmcs_readl(GUEST_RFLAGS);
1439 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1440 ip = vmcs_readl(GUEST_RIP);
1441
1442
1443 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1444 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1445 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1446 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1447 return;
1448 }
1449
1450 vmcs_writel(GUEST_RFLAGS, flags &
1451 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1452 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1453 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1454 vmcs_writel(GUEST_RIP, ent[0]);
1455 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1456 }
1457
1458 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1459 {
1460 int word_index = __ffs(vcpu->irq_summary);
1461 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1462 int irq = word_index * BITS_PER_LONG + bit_index;
1463
1464 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1465 if (!vcpu->irq_pending[word_index])
1466 clear_bit(word_index, &vcpu->irq_summary);
1467
1468 if (vcpu->rmode.active) {
1469 inject_rmode_irq(vcpu, irq);
1470 return;
1471 }
1472 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1473 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1474 }
1475
1476
1477 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1478 struct kvm_run *kvm_run)
1479 {
1480 u32 cpu_based_vm_exec_control;
1481
1482 vcpu->interrupt_window_open =
1483 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1484 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1485
1486 if (vcpu->interrupt_window_open &&
1487 vcpu->irq_summary &&
1488 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1489 /*
1490 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1491 */
1492 kvm_do_inject_irq(vcpu);
1493
1494 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1495 if (!vcpu->interrupt_window_open &&
1496 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1497 /*
1498 * Interrupts blocked. Wait for unblock.
1499 */
1500 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1501 else
1502 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1503 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1504 }
1505
1506 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1507 {
1508 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1509
1510 set_debugreg(dbg->bp[0], 0);
1511 set_debugreg(dbg->bp[1], 1);
1512 set_debugreg(dbg->bp[2], 2);
1513 set_debugreg(dbg->bp[3], 3);
1514
1515 if (dbg->singlestep) {
1516 unsigned long flags;
1517
1518 flags = vmcs_readl(GUEST_RFLAGS);
1519 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1520 vmcs_writel(GUEST_RFLAGS, flags);
1521 }
1522 }
1523
1524 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1525 int vec, u32 err_code)
1526 {
1527 if (!vcpu->rmode.active)
1528 return 0;
1529
1530 /*
1531 * Instruction with address size override prefix opcode 0x67
1532 * Cause the #SS fault with 0 error code in VM86 mode.
1533 */
1534 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1535 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1536 return 1;
1537 return 0;
1538 }
1539
1540 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1541 {
1542 u32 intr_info, error_code;
1543 unsigned long cr2, rip;
1544 u32 vect_info;
1545 enum emulation_result er;
1546 int r;
1547
1548 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1549 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1550
1551 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1552 !is_page_fault(intr_info)) {
1553 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1554 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1555 }
1556
1557 if (is_external_interrupt(vect_info)) {
1558 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1559 set_bit(irq, vcpu->irq_pending);
1560 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1561 }
1562
1563 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1564 asm ("int $2");
1565 return 1;
1566 }
1567
1568 if (is_no_device(intr_info)) {
1569 vmx_fpu_activate(vcpu);
1570 return 1;
1571 }
1572
1573 error_code = 0;
1574 rip = vmcs_readl(GUEST_RIP);
1575 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1576 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1577 if (is_page_fault(intr_info)) {
1578 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1579
1580 spin_lock(&vcpu->kvm->lock);
1581 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1582 if (r < 0) {
1583 spin_unlock(&vcpu->kvm->lock);
1584 return r;
1585 }
1586 if (!r) {
1587 spin_unlock(&vcpu->kvm->lock);
1588 return 1;
1589 }
1590
1591 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1592 spin_unlock(&vcpu->kvm->lock);
1593
1594 switch (er) {
1595 case EMULATE_DONE:
1596 return 1;
1597 case EMULATE_DO_MMIO:
1598 ++vcpu->stat.mmio_exits;
1599 kvm_run->exit_reason = KVM_EXIT_MMIO;
1600 return 0;
1601 case EMULATE_FAIL:
1602 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1603 break;
1604 default:
1605 BUG();
1606 }
1607 }
1608
1609 if (vcpu->rmode.active &&
1610 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1611 error_code))
1612 return 1;
1613
1614 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1615 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1616 return 0;
1617 }
1618 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1619 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1620 kvm_run->ex.error_code = error_code;
1621 return 0;
1622 }
1623
1624 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1625 struct kvm_run *kvm_run)
1626 {
1627 ++vcpu->stat.irq_exits;
1628 return 1;
1629 }
1630
1631 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1632 {
1633 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1634 return 0;
1635 }
1636
1637 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1638 {
1639 u64 inst;
1640 gva_t rip;
1641 int countr_size;
1642 int i, n;
1643
1644 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1645 countr_size = 2;
1646 } else {
1647 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1648
1649 countr_size = (cs_ar & AR_L_MASK) ? 8:
1650 (cs_ar & AR_DB_MASK) ? 4: 2;
1651 }
1652
1653 rip = vmcs_readl(GUEST_RIP);
1654 if (countr_size != 8)
1655 rip += vmcs_readl(GUEST_CS_BASE);
1656
1657 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1658
1659 for (i = 0; i < n; i++) {
1660 switch (((u8*)&inst)[i]) {
1661 case 0xf0:
1662 case 0xf2:
1663 case 0xf3:
1664 case 0x2e:
1665 case 0x36:
1666 case 0x3e:
1667 case 0x26:
1668 case 0x64:
1669 case 0x65:
1670 case 0x66:
1671 break;
1672 case 0x67:
1673 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1674 default:
1675 goto done;
1676 }
1677 }
1678 return 0;
1679 done:
1680 countr_size *= 8;
1681 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1682 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1683 return 1;
1684 }
1685
1686 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1687 {
1688 u64 exit_qualification;
1689 int size, down, in, string, rep;
1690 unsigned port;
1691 unsigned long count;
1692 gva_t address;
1693
1694 ++vcpu->stat.io_exits;
1695 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1696 in = (exit_qualification & 8) != 0;
1697 size = (exit_qualification & 7) + 1;
1698 string = (exit_qualification & 16) != 0;
1699 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1700 count = 1;
1701 rep = (exit_qualification & 32) != 0;
1702 port = exit_qualification >> 16;
1703 address = 0;
1704 if (string) {
1705 if (rep && !get_io_count(vcpu, &count))
1706 return 1;
1707 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1708 }
1709 return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1710 address, rep, port);
1711 }
1712
1713 static void
1714 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1715 {
1716 /*
1717 * Patch in the VMCALL instruction:
1718 */
1719 hypercall[0] = 0x0f;
1720 hypercall[1] = 0x01;
1721 hypercall[2] = 0xc1;
1722 hypercall[3] = 0xc3;
1723 }
1724
1725 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1726 {
1727 u64 exit_qualification;
1728 int cr;
1729 int reg;
1730
1731 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1732 cr = exit_qualification & 15;
1733 reg = (exit_qualification >> 8) & 15;
1734 switch ((exit_qualification >> 4) & 3) {
1735 case 0: /* mov to cr */
1736 switch (cr) {
1737 case 0:
1738 vcpu_load_rsp_rip(vcpu);
1739 set_cr0(vcpu, vcpu->regs[reg]);
1740 skip_emulated_instruction(vcpu);
1741 return 1;
1742 case 3:
1743 vcpu_load_rsp_rip(vcpu);
1744 set_cr3(vcpu, vcpu->regs[reg]);
1745 skip_emulated_instruction(vcpu);
1746 return 1;
1747 case 4:
1748 vcpu_load_rsp_rip(vcpu);
1749 set_cr4(vcpu, vcpu->regs[reg]);
1750 skip_emulated_instruction(vcpu);
1751 return 1;
1752 case 8:
1753 vcpu_load_rsp_rip(vcpu);
1754 set_cr8(vcpu, vcpu->regs[reg]);
1755 skip_emulated_instruction(vcpu);
1756 return 1;
1757 };
1758 break;
1759 case 2: /* clts */
1760 vcpu_load_rsp_rip(vcpu);
1761 vmx_fpu_deactivate(vcpu);
1762 vcpu->cr0 &= ~CR0_TS_MASK;
1763 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1764 vmx_fpu_activate(vcpu);
1765 skip_emulated_instruction(vcpu);
1766 return 1;
1767 case 1: /*mov from cr*/
1768 switch (cr) {
1769 case 3:
1770 vcpu_load_rsp_rip(vcpu);
1771 vcpu->regs[reg] = vcpu->cr3;
1772 vcpu_put_rsp_rip(vcpu);
1773 skip_emulated_instruction(vcpu);
1774 return 1;
1775 case 8:
1776 vcpu_load_rsp_rip(vcpu);
1777 vcpu->regs[reg] = vcpu->cr8;
1778 vcpu_put_rsp_rip(vcpu);
1779 skip_emulated_instruction(vcpu);
1780 return 1;
1781 }
1782 break;
1783 case 3: /* lmsw */
1784 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1785
1786 skip_emulated_instruction(vcpu);
1787 return 1;
1788 default:
1789 break;
1790 }
1791 kvm_run->exit_reason = 0;
1792 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1793 (int)(exit_qualification >> 4) & 3, cr);
1794 return 0;
1795 }
1796
1797 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1798 {
1799 u64 exit_qualification;
1800 unsigned long val;
1801 int dr, reg;
1802
1803 /*
1804 * FIXME: this code assumes the host is debugging the guest.
1805 * need to deal with guest debugging itself too.
1806 */
1807 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1808 dr = exit_qualification & 7;
1809 reg = (exit_qualification >> 8) & 15;
1810 vcpu_load_rsp_rip(vcpu);
1811 if (exit_qualification & 16) {
1812 /* mov from dr */
1813 switch (dr) {
1814 case 6:
1815 val = 0xffff0ff0;
1816 break;
1817 case 7:
1818 val = 0x400;
1819 break;
1820 default:
1821 val = 0;
1822 }
1823 vcpu->regs[reg] = val;
1824 } else {
1825 /* mov to dr */
1826 }
1827 vcpu_put_rsp_rip(vcpu);
1828 skip_emulated_instruction(vcpu);
1829 return 1;
1830 }
1831
1832 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1833 {
1834 kvm_emulate_cpuid(vcpu);
1835 return 1;
1836 }
1837
1838 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1839 {
1840 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1841 u64 data;
1842
1843 if (vmx_get_msr(vcpu, ecx, &data)) {
1844 vmx_inject_gp(vcpu, 0);
1845 return 1;
1846 }
1847
1848 /* FIXME: handling of bits 32:63 of rax, rdx */
1849 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1850 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1851 skip_emulated_instruction(vcpu);
1852 return 1;
1853 }
1854
1855 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1856 {
1857 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1858 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1859 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1860
1861 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1862 vmx_inject_gp(vcpu, 0);
1863 return 1;
1864 }
1865
1866 skip_emulated_instruction(vcpu);
1867 return 1;
1868 }
1869
1870 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1871 struct kvm_run *kvm_run)
1872 {
1873 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1874 kvm_run->cr8 = vcpu->cr8;
1875 kvm_run->apic_base = vcpu->apic_base;
1876 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1877 vcpu->irq_summary == 0);
1878 }
1879
1880 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1881 struct kvm_run *kvm_run)
1882 {
1883 /*
1884 * If the user space waits to inject interrupts, exit as soon as
1885 * possible
1886 */
1887 if (kvm_run->request_interrupt_window &&
1888 !vcpu->irq_summary) {
1889 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1890 ++vcpu->stat.irq_window_exits;
1891 return 0;
1892 }
1893 return 1;
1894 }
1895
1896 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1897 {
1898 skip_emulated_instruction(vcpu);
1899 if (vcpu->irq_summary)
1900 return 1;
1901
1902 kvm_run->exit_reason = KVM_EXIT_HLT;
1903 ++vcpu->stat.halt_exits;
1904 return 0;
1905 }
1906
1907 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1908 {
1909 skip_emulated_instruction(vcpu);
1910 return kvm_hypercall(vcpu, kvm_run);
1911 }
1912
1913 /*
1914 * The exit handlers return 1 if the exit was handled fully and guest execution
1915 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1916 * to be done to userspace and return 0.
1917 */
1918 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1919 struct kvm_run *kvm_run) = {
1920 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1921 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1922 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1923 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1924 [EXIT_REASON_CR_ACCESS] = handle_cr,
1925 [EXIT_REASON_DR_ACCESS] = handle_dr,
1926 [EXIT_REASON_CPUID] = handle_cpuid,
1927 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1928 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1929 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1930 [EXIT_REASON_HLT] = handle_halt,
1931 [EXIT_REASON_VMCALL] = handle_vmcall,
1932 };
1933
1934 static const int kvm_vmx_max_exit_handlers =
1935 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1936
1937 /*
1938 * The guest has exited. See if we can fix it or if we need userspace
1939 * assistance.
1940 */
1941 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1942 {
1943 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1944 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1945
1946 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1947 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1948 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1949 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1950 if (exit_reason < kvm_vmx_max_exit_handlers
1951 && kvm_vmx_exit_handlers[exit_reason])
1952 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1953 else {
1954 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1955 kvm_run->hw.hardware_exit_reason = exit_reason;
1956 }
1957 return 0;
1958 }
1959
1960 /*
1961 * Check if userspace requested an interrupt window, and that the
1962 * interrupt window is open.
1963 *
1964 * No need to exit to userspace if we already have an interrupt queued.
1965 */
1966 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1967 struct kvm_run *kvm_run)
1968 {
1969 return (!vcpu->irq_summary &&
1970 kvm_run->request_interrupt_window &&
1971 vcpu->interrupt_window_open &&
1972 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1973 }
1974
1975 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1976 {
1977 u8 fail;
1978 int r;
1979
1980 preempted:
1981 if (!vcpu->mmio_read_completed)
1982 do_interrupt_requests(vcpu, kvm_run);
1983
1984 if (vcpu->guest_debug.enabled)
1985 kvm_guest_debug_pre(vcpu);
1986
1987 again:
1988 vmx_save_host_state(vcpu);
1989 kvm_load_guest_fpu(vcpu);
1990
1991 /*
1992 * Loading guest fpu may have cleared host cr0.ts
1993 */
1994 vmcs_writel(HOST_CR0, read_cr0());
1995
1996 asm (
1997 /* Store host registers */
1998 "pushf \n\t"
1999 #ifdef CONFIG_X86_64
2000 "push %%rax; push %%rbx; push %%rdx;"
2001 "push %%rsi; push %%rdi; push %%rbp;"
2002 "push %%r8; push %%r9; push %%r10; push %%r11;"
2003 "push %%r12; push %%r13; push %%r14; push %%r15;"
2004 "push %%rcx \n\t"
2005 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2006 #else
2007 "pusha; push %%ecx \n\t"
2008 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2009 #endif
2010 /* Check if vmlaunch of vmresume is needed */
2011 "cmp $0, %1 \n\t"
2012 /* Load guest registers. Don't clobber flags. */
2013 #ifdef CONFIG_X86_64
2014 "mov %c[cr2](%3), %%rax \n\t"
2015 "mov %%rax, %%cr2 \n\t"
2016 "mov %c[rax](%3), %%rax \n\t"
2017 "mov %c[rbx](%3), %%rbx \n\t"
2018 "mov %c[rdx](%3), %%rdx \n\t"
2019 "mov %c[rsi](%3), %%rsi \n\t"
2020 "mov %c[rdi](%3), %%rdi \n\t"
2021 "mov %c[rbp](%3), %%rbp \n\t"
2022 "mov %c[r8](%3), %%r8 \n\t"
2023 "mov %c[r9](%3), %%r9 \n\t"
2024 "mov %c[r10](%3), %%r10 \n\t"
2025 "mov %c[r11](%3), %%r11 \n\t"
2026 "mov %c[r12](%3), %%r12 \n\t"
2027 "mov %c[r13](%3), %%r13 \n\t"
2028 "mov %c[r14](%3), %%r14 \n\t"
2029 "mov %c[r15](%3), %%r15 \n\t"
2030 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2031 #else
2032 "mov %c[cr2](%3), %%eax \n\t"
2033 "mov %%eax, %%cr2 \n\t"
2034 "mov %c[rax](%3), %%eax \n\t"
2035 "mov %c[rbx](%3), %%ebx \n\t"
2036 "mov %c[rdx](%3), %%edx \n\t"
2037 "mov %c[rsi](%3), %%esi \n\t"
2038 "mov %c[rdi](%3), %%edi \n\t"
2039 "mov %c[rbp](%3), %%ebp \n\t"
2040 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2041 #endif
2042 /* Enter guest mode */
2043 "jne .Llaunched \n\t"
2044 ASM_VMX_VMLAUNCH "\n\t"
2045 "jmp .Lkvm_vmx_return \n\t"
2046 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2047 ".Lkvm_vmx_return: "
2048 /* Save guest registers, load host registers, keep flags */
2049 #ifdef CONFIG_X86_64
2050 "xchg %3, (%%rsp) \n\t"
2051 "mov %%rax, %c[rax](%3) \n\t"
2052 "mov %%rbx, %c[rbx](%3) \n\t"
2053 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2054 "mov %%rdx, %c[rdx](%3) \n\t"
2055 "mov %%rsi, %c[rsi](%3) \n\t"
2056 "mov %%rdi, %c[rdi](%3) \n\t"
2057 "mov %%rbp, %c[rbp](%3) \n\t"
2058 "mov %%r8, %c[r8](%3) \n\t"
2059 "mov %%r9, %c[r9](%3) \n\t"
2060 "mov %%r10, %c[r10](%3) \n\t"
2061 "mov %%r11, %c[r11](%3) \n\t"
2062 "mov %%r12, %c[r12](%3) \n\t"
2063 "mov %%r13, %c[r13](%3) \n\t"
2064 "mov %%r14, %c[r14](%3) \n\t"
2065 "mov %%r15, %c[r15](%3) \n\t"
2066 "mov %%cr2, %%rax \n\t"
2067 "mov %%rax, %c[cr2](%3) \n\t"
2068 "mov (%%rsp), %3 \n\t"
2069
2070 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2071 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2072 "pop %%rbp; pop %%rdi; pop %%rsi;"
2073 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2074 #else
2075 "xchg %3, (%%esp) \n\t"
2076 "mov %%eax, %c[rax](%3) \n\t"
2077 "mov %%ebx, %c[rbx](%3) \n\t"
2078 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2079 "mov %%edx, %c[rdx](%3) \n\t"
2080 "mov %%esi, %c[rsi](%3) \n\t"
2081 "mov %%edi, %c[rdi](%3) \n\t"
2082 "mov %%ebp, %c[rbp](%3) \n\t"
2083 "mov %%cr2, %%eax \n\t"
2084 "mov %%eax, %c[cr2](%3) \n\t"
2085 "mov (%%esp), %3 \n\t"
2086
2087 "pop %%ecx; popa \n\t"
2088 #endif
2089 "setbe %0 \n\t"
2090 "popf \n\t"
2091 : "=q" (fail)
2092 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
2093 "c"(vcpu),
2094 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2095 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2096 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2097 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2098 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2099 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2100 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2101 #ifdef CONFIG_X86_64
2102 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2103 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2104 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2105 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2106 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2107 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2108 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2109 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2110 #endif
2111 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2112 : "cc", "memory" );
2113
2114 ++vcpu->stat.exits;
2115
2116 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2117
2118 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2119
2120 if (unlikely(fail)) {
2121 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2122 kvm_run->fail_entry.hardware_entry_failure_reason
2123 = vmcs_read32(VM_INSTRUCTION_ERROR);
2124 r = 0;
2125 goto out;
2126 }
2127 /*
2128 * Profile KVM exit RIPs:
2129 */
2130 if (unlikely(prof_on == KVM_PROFILING))
2131 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2132
2133 vcpu->launched = 1;
2134 r = kvm_handle_exit(kvm_run, vcpu);
2135 if (r > 0) {
2136 /* Give scheduler a change to reschedule. */
2137 if (signal_pending(current)) {
2138 r = -EINTR;
2139 kvm_run->exit_reason = KVM_EXIT_INTR;
2140 ++vcpu->stat.signal_exits;
2141 goto out;
2142 }
2143
2144 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2145 r = -EINTR;
2146 kvm_run->exit_reason = KVM_EXIT_INTR;
2147 ++vcpu->stat.request_irq_exits;
2148 goto out;
2149 }
2150 if (!need_resched()) {
2151 ++vcpu->stat.light_exits;
2152 goto again;
2153 }
2154 }
2155
2156 out:
2157 if (r > 0) {
2158 kvm_resched(vcpu);
2159 goto preempted;
2160 }
2161
2162 post_kvm_run_save(vcpu, kvm_run);
2163 return r;
2164 }
2165
2166 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2167 {
2168 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2169 }
2170
2171 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2172 unsigned long addr,
2173 u32 err_code)
2174 {
2175 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2176
2177 ++vcpu->stat.pf_guest;
2178
2179 if (is_page_fault(vect_info)) {
2180 printk(KERN_DEBUG "inject_page_fault: "
2181 "double fault 0x%lx @ 0x%lx\n",
2182 addr, vmcs_readl(GUEST_RIP));
2183 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2184 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2185 DF_VECTOR |
2186 INTR_TYPE_EXCEPTION |
2187 INTR_INFO_DELIEVER_CODE_MASK |
2188 INTR_INFO_VALID_MASK);
2189 return;
2190 }
2191 vcpu->cr2 = addr;
2192 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2193 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2194 PF_VECTOR |
2195 INTR_TYPE_EXCEPTION |
2196 INTR_INFO_DELIEVER_CODE_MASK |
2197 INTR_INFO_VALID_MASK);
2198
2199 }
2200
2201 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2202 {
2203 if (vcpu->vmcs) {
2204 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2205 free_vmcs(vcpu->vmcs);
2206 vcpu->vmcs = NULL;
2207 }
2208 }
2209
2210 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2211 {
2212 vmx_free_vmcs(vcpu);
2213 }
2214
2215 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2216 {
2217 struct vmcs *vmcs;
2218
2219 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2220 if (!vcpu->guest_msrs)
2221 return -ENOMEM;
2222
2223 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2224 if (!vcpu->host_msrs)
2225 goto out_free_guest_msrs;
2226
2227 vmcs = alloc_vmcs();
2228 if (!vmcs)
2229 goto out_free_msrs;
2230
2231 vmcs_clear(vmcs);
2232 vcpu->vmcs = vmcs;
2233 vcpu->launched = 0;
2234
2235 return 0;
2236
2237 out_free_msrs:
2238 kfree(vcpu->host_msrs);
2239 vcpu->host_msrs = NULL;
2240
2241 out_free_guest_msrs:
2242 kfree(vcpu->guest_msrs);
2243 vcpu->guest_msrs = NULL;
2244
2245 return -ENOMEM;
2246 }
2247
2248 static struct kvm_arch_ops vmx_arch_ops = {
2249 .cpu_has_kvm_support = cpu_has_kvm_support,
2250 .disabled_by_bios = vmx_disabled_by_bios,
2251 .hardware_setup = hardware_setup,
2252 .hardware_unsetup = hardware_unsetup,
2253 .hardware_enable = hardware_enable,
2254 .hardware_disable = hardware_disable,
2255
2256 .vcpu_create = vmx_create_vcpu,
2257 .vcpu_free = vmx_free_vcpu,
2258
2259 .vcpu_load = vmx_vcpu_load,
2260 .vcpu_put = vmx_vcpu_put,
2261 .vcpu_decache = vmx_vcpu_decache,
2262
2263 .set_guest_debug = set_guest_debug,
2264 .get_msr = vmx_get_msr,
2265 .set_msr = vmx_set_msr,
2266 .get_segment_base = vmx_get_segment_base,
2267 .get_segment = vmx_get_segment,
2268 .set_segment = vmx_set_segment,
2269 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2270 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2271 .set_cr0 = vmx_set_cr0,
2272 .set_cr3 = vmx_set_cr3,
2273 .set_cr4 = vmx_set_cr4,
2274 #ifdef CONFIG_X86_64
2275 .set_efer = vmx_set_efer,
2276 #endif
2277 .get_idt = vmx_get_idt,
2278 .set_idt = vmx_set_idt,
2279 .get_gdt = vmx_get_gdt,
2280 .set_gdt = vmx_set_gdt,
2281 .cache_regs = vcpu_load_rsp_rip,
2282 .decache_regs = vcpu_put_rsp_rip,
2283 .get_rflags = vmx_get_rflags,
2284 .set_rflags = vmx_set_rflags,
2285
2286 .tlb_flush = vmx_flush_tlb,
2287 .inject_page_fault = vmx_inject_page_fault,
2288
2289 .inject_gp = vmx_inject_gp,
2290
2291 .run = vmx_vcpu_run,
2292 .skip_emulated_instruction = skip_emulated_instruction,
2293 .vcpu_setup = vmx_vcpu_setup,
2294 .patch_hypercall = vmx_patch_hypercall,
2295 };
2296
2297 static int __init vmx_init(void)
2298 {
2299 void *iova;
2300 int r;
2301
2302 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2303 if (!vmx_io_bitmap_a)
2304 return -ENOMEM;
2305
2306 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2307 if (!vmx_io_bitmap_b) {
2308 r = -ENOMEM;
2309 goto out;
2310 }
2311
2312 /*
2313 * Allow direct access to the PC debug port (it is often used for I/O
2314 * delays, but the vmexits simply slow things down).
2315 */
2316 iova = kmap(vmx_io_bitmap_a);
2317 memset(iova, 0xff, PAGE_SIZE);
2318 clear_bit(0x80, iova);
2319 kunmap(vmx_io_bitmap_a);
2320
2321 iova = kmap(vmx_io_bitmap_b);
2322 memset(iova, 0xff, PAGE_SIZE);
2323 kunmap(vmx_io_bitmap_b);
2324
2325 r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2326 if (r)
2327 goto out1;
2328
2329 return 0;
2330
2331 out1:
2332 __free_page(vmx_io_bitmap_b);
2333 out:
2334 __free_page(vmx_io_bitmap_a);
2335 return r;
2336 }
2337
2338 static void __exit vmx_exit(void)
2339 {
2340 __free_page(vmx_io_bitmap_b);
2341 __free_page(vmx_io_bitmap_a);
2342
2343 kvm_exit_arch();
2344 }
2345
2346 module_init(vmx_init)
2347 module_exit(vmx_exit)