]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/kvm/vmx.c
Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 struct vmcs {
37 u32 revision_id;
38 u32 abort;
39 char data[0];
40 };
41
42 struct vcpu_vmx {
43 struct kvm_vcpu vcpu;
44 int launched;
45 u8 fail;
46 struct kvm_msr_entry *guest_msrs;
47 struct kvm_msr_entry *host_msrs;
48 int nmsrs;
49 int save_nmsrs;
50 int msr_offset_efer;
51 #ifdef CONFIG_X86_64
52 int msr_offset_kernel_gs_base;
53 #endif
54 struct vmcs *vmcs;
55 struct {
56 int loaded;
57 u16 fs_sel, gs_sel, ldt_sel;
58 int gs_ldt_reload_needed;
59 int fs_reload_needed;
60 }host_state;
61
62 };
63
64 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
65 {
66 return container_of(vcpu, struct vcpu_vmx, vcpu);
67 }
68
69 static int init_rmode_tss(struct kvm *kvm);
70
71 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
73
74 static struct page *vmx_io_bitmap_a;
75 static struct page *vmx_io_bitmap_b;
76
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
78
79 static struct vmcs_config {
80 int size;
81 int order;
82 u32 revision_id;
83 u32 pin_based_exec_ctrl;
84 u32 cpu_based_exec_ctrl;
85 u32 vmexit_ctrl;
86 u32 vmentry_ctrl;
87 } vmcs_config;
88
89 #define VMX_SEGMENT_FIELD(seg) \
90 [VCPU_SREG_##seg] = { \
91 .selector = GUEST_##seg##_SELECTOR, \
92 .base = GUEST_##seg##_BASE, \
93 .limit = GUEST_##seg##_LIMIT, \
94 .ar_bytes = GUEST_##seg##_AR_BYTES, \
95 }
96
97 static struct kvm_vmx_segment_field {
98 unsigned selector;
99 unsigned base;
100 unsigned limit;
101 unsigned ar_bytes;
102 } kvm_vmx_segment_fields[] = {
103 VMX_SEGMENT_FIELD(CS),
104 VMX_SEGMENT_FIELD(DS),
105 VMX_SEGMENT_FIELD(ES),
106 VMX_SEGMENT_FIELD(FS),
107 VMX_SEGMENT_FIELD(GS),
108 VMX_SEGMENT_FIELD(SS),
109 VMX_SEGMENT_FIELD(TR),
110 VMX_SEGMENT_FIELD(LDTR),
111 };
112
113 /*
114 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115 * away by decrementing the array size.
116 */
117 static const u32 vmx_msr_index[] = {
118 #ifdef CONFIG_X86_64
119 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
120 #endif
121 MSR_EFER, MSR_K6_STAR,
122 };
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
124
125 static void load_msrs(struct kvm_msr_entry *e, int n)
126 {
127 int i;
128
129 for (i = 0; i < n; ++i)
130 wrmsrl(e[i].index, e[i].data);
131 }
132
133 static void save_msrs(struct kvm_msr_entry *e, int n)
134 {
135 int i;
136
137 for (i = 0; i < n; ++i)
138 rdmsrl(e[i].index, e[i].data);
139 }
140
141 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
142 {
143 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
144 }
145
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
147 {
148 int efer_offset = vmx->msr_offset_efer;
149 return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
151 }
152
153 static inline int is_page_fault(u32 intr_info)
154 {
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
158 }
159
160 static inline int is_no_device(u32 intr_info)
161 {
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
165 }
166
167 static inline int is_external_interrupt(u32 intr_info)
168 {
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
170 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
171 }
172
173 static inline int cpu_has_vmx_tpr_shadow(void)
174 {
175 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
176 }
177
178 static inline int vm_need_tpr_shadow(struct kvm *kvm)
179 {
180 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
181 }
182
183 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
184 {
185 int i;
186
187 for (i = 0; i < vmx->nmsrs; ++i)
188 if (vmx->guest_msrs[i].index == msr)
189 return i;
190 return -1;
191 }
192
193 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
194 {
195 int i;
196
197 i = __find_msr_index(vmx, msr);
198 if (i >= 0)
199 return &vmx->guest_msrs[i];
200 return NULL;
201 }
202
203 static void vmcs_clear(struct vmcs *vmcs)
204 {
205 u64 phys_addr = __pa(vmcs);
206 u8 error;
207
208 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
209 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210 : "cc", "memory");
211 if (error)
212 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
213 vmcs, phys_addr);
214 }
215
216 static void __vcpu_clear(void *arg)
217 {
218 struct vcpu_vmx *vmx = arg;
219 int cpu = raw_smp_processor_id();
220
221 if (vmx->vcpu.cpu == cpu)
222 vmcs_clear(vmx->vmcs);
223 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
224 per_cpu(current_vmcs, cpu) = NULL;
225 rdtscll(vmx->vcpu.host_tsc);
226 }
227
228 static void vcpu_clear(struct vcpu_vmx *vmx)
229 {
230 if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
231 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
232 vmx, 0, 1);
233 else
234 __vcpu_clear(vmx);
235 vmx->launched = 0;
236 }
237
238 static unsigned long vmcs_readl(unsigned long field)
239 {
240 unsigned long value;
241
242 asm volatile (ASM_VMX_VMREAD_RDX_RAX
243 : "=a"(value) : "d"(field) : "cc");
244 return value;
245 }
246
247 static u16 vmcs_read16(unsigned long field)
248 {
249 return vmcs_readl(field);
250 }
251
252 static u32 vmcs_read32(unsigned long field)
253 {
254 return vmcs_readl(field);
255 }
256
257 static u64 vmcs_read64(unsigned long field)
258 {
259 #ifdef CONFIG_X86_64
260 return vmcs_readl(field);
261 #else
262 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
263 #endif
264 }
265
266 static noinline void vmwrite_error(unsigned long field, unsigned long value)
267 {
268 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
269 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
270 dump_stack();
271 }
272
273 static void vmcs_writel(unsigned long field, unsigned long value)
274 {
275 u8 error;
276
277 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
278 : "=q"(error) : "a"(value), "d"(field) : "cc" );
279 if (unlikely(error))
280 vmwrite_error(field, value);
281 }
282
283 static void vmcs_write16(unsigned long field, u16 value)
284 {
285 vmcs_writel(field, value);
286 }
287
288 static void vmcs_write32(unsigned long field, u32 value)
289 {
290 vmcs_writel(field, value);
291 }
292
293 static void vmcs_write64(unsigned long field, u64 value)
294 {
295 #ifdef CONFIG_X86_64
296 vmcs_writel(field, value);
297 #else
298 vmcs_writel(field, value);
299 asm volatile ("");
300 vmcs_writel(field+1, value >> 32);
301 #endif
302 }
303
304 static void vmcs_clear_bits(unsigned long field, u32 mask)
305 {
306 vmcs_writel(field, vmcs_readl(field) & ~mask);
307 }
308
309 static void vmcs_set_bits(unsigned long field, u32 mask)
310 {
311 vmcs_writel(field, vmcs_readl(field) | mask);
312 }
313
314 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
315 {
316 u32 eb;
317
318 eb = 1u << PF_VECTOR;
319 if (!vcpu->fpu_active)
320 eb |= 1u << NM_VECTOR;
321 if (vcpu->guest_debug.enabled)
322 eb |= 1u << 1;
323 if (vcpu->rmode.active)
324 eb = ~0;
325 vmcs_write32(EXCEPTION_BITMAP, eb);
326 }
327
328 static void reload_tss(void)
329 {
330 #ifndef CONFIG_X86_64
331
332 /*
333 * VT restores TR but not its size. Useless.
334 */
335 struct descriptor_table gdt;
336 struct segment_descriptor *descs;
337
338 get_gdt(&gdt);
339 descs = (void *)gdt.base;
340 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
341 load_TR_desc();
342 #endif
343 }
344
345 static void load_transition_efer(struct vcpu_vmx *vmx)
346 {
347 u64 trans_efer;
348 int efer_offset = vmx->msr_offset_efer;
349
350 trans_efer = vmx->host_msrs[efer_offset].data;
351 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
352 trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
353 wrmsrl(MSR_EFER, trans_efer);
354 vmx->vcpu.stat.efer_reload++;
355 }
356
357 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
358 {
359 struct vcpu_vmx *vmx = to_vmx(vcpu);
360
361 if (vmx->host_state.loaded)
362 return;
363
364 vmx->host_state.loaded = 1;
365 /*
366 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
367 * allow segment selectors with cpl > 0 or ti == 1.
368 */
369 vmx->host_state.ldt_sel = read_ldt();
370 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
371 vmx->host_state.fs_sel = read_fs();
372 if (!(vmx->host_state.fs_sel & 7)) {
373 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
374 vmx->host_state.fs_reload_needed = 0;
375 } else {
376 vmcs_write16(HOST_FS_SELECTOR, 0);
377 vmx->host_state.fs_reload_needed = 1;
378 }
379 vmx->host_state.gs_sel = read_gs();
380 if (!(vmx->host_state.gs_sel & 7))
381 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
382 else {
383 vmcs_write16(HOST_GS_SELECTOR, 0);
384 vmx->host_state.gs_ldt_reload_needed = 1;
385 }
386
387 #ifdef CONFIG_X86_64
388 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
389 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
390 #else
391 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
392 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
393 #endif
394
395 #ifdef CONFIG_X86_64
396 if (is_long_mode(&vmx->vcpu)) {
397 save_msrs(vmx->host_msrs +
398 vmx->msr_offset_kernel_gs_base, 1);
399 }
400 #endif
401 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
402 if (msr_efer_need_save_restore(vmx))
403 load_transition_efer(vmx);
404 }
405
406 static void vmx_load_host_state(struct vcpu_vmx *vmx)
407 {
408 unsigned long flags;
409
410 if (!vmx->host_state.loaded)
411 return;
412
413 vmx->host_state.loaded = 0;
414 if (vmx->host_state.fs_reload_needed)
415 load_fs(vmx->host_state.fs_sel);
416 if (vmx->host_state.gs_ldt_reload_needed) {
417 load_ldt(vmx->host_state.ldt_sel);
418 /*
419 * If we have to reload gs, we must take care to
420 * preserve our gs base.
421 */
422 local_irq_save(flags);
423 load_gs(vmx->host_state.gs_sel);
424 #ifdef CONFIG_X86_64
425 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
426 #endif
427 local_irq_restore(flags);
428 }
429 reload_tss();
430 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
431 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
432 if (msr_efer_need_save_restore(vmx))
433 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
434 }
435
436 /*
437 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
438 * vcpu mutex is already taken.
439 */
440 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
441 {
442 struct vcpu_vmx *vmx = to_vmx(vcpu);
443 u64 phys_addr = __pa(vmx->vmcs);
444 u64 tsc_this, delta;
445
446 if (vcpu->cpu != cpu) {
447 vcpu_clear(vmx);
448 kvm_migrate_apic_timer(vcpu);
449 }
450
451 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
452 u8 error;
453
454 per_cpu(current_vmcs, cpu) = vmx->vmcs;
455 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
456 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
457 : "cc");
458 if (error)
459 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
460 vmx->vmcs, phys_addr);
461 }
462
463 if (vcpu->cpu != cpu) {
464 struct descriptor_table dt;
465 unsigned long sysenter_esp;
466
467 vcpu->cpu = cpu;
468 /*
469 * Linux uses per-cpu TSS and GDT, so set these when switching
470 * processors.
471 */
472 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
473 get_gdt(&dt);
474 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
475
476 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
477 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
478
479 /*
480 * Make sure the time stamp counter is monotonous.
481 */
482 rdtscll(tsc_this);
483 delta = vcpu->host_tsc - tsc_this;
484 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
485 }
486 }
487
488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
489 {
490 vmx_load_host_state(to_vmx(vcpu));
491 kvm_put_guest_fpu(vcpu);
492 }
493
494 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
495 {
496 if (vcpu->fpu_active)
497 return;
498 vcpu->fpu_active = 1;
499 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
500 if (vcpu->cr0 & X86_CR0_TS)
501 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
502 update_exception_bitmap(vcpu);
503 }
504
505 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
506 {
507 if (!vcpu->fpu_active)
508 return;
509 vcpu->fpu_active = 0;
510 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
511 update_exception_bitmap(vcpu);
512 }
513
514 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
515 {
516 vcpu_clear(to_vmx(vcpu));
517 }
518
519 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
520 {
521 return vmcs_readl(GUEST_RFLAGS);
522 }
523
524 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
525 {
526 vmcs_writel(GUEST_RFLAGS, rflags);
527 }
528
529 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
530 {
531 unsigned long rip;
532 u32 interruptibility;
533
534 rip = vmcs_readl(GUEST_RIP);
535 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
536 vmcs_writel(GUEST_RIP, rip);
537
538 /*
539 * We emulated an instruction, so temporary interrupt blocking
540 * should be removed, if set.
541 */
542 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
543 if (interruptibility & 3)
544 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
545 interruptibility & ~3);
546 vcpu->interrupt_window_open = 1;
547 }
548
549 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
550 {
551 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
552 vmcs_readl(GUEST_RIP));
553 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
555 GP_VECTOR |
556 INTR_TYPE_EXCEPTION |
557 INTR_INFO_DELIEVER_CODE_MASK |
558 INTR_INFO_VALID_MASK);
559 }
560
561 /*
562 * Swap MSR entry in host/guest MSR entry array.
563 */
564 #ifdef CONFIG_X86_64
565 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
566 {
567 struct kvm_msr_entry tmp;
568
569 tmp = vmx->guest_msrs[to];
570 vmx->guest_msrs[to] = vmx->guest_msrs[from];
571 vmx->guest_msrs[from] = tmp;
572 tmp = vmx->host_msrs[to];
573 vmx->host_msrs[to] = vmx->host_msrs[from];
574 vmx->host_msrs[from] = tmp;
575 }
576 #endif
577
578 /*
579 * Set up the vmcs to automatically save and restore system
580 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
581 * mode, as fiddling with msrs is very expensive.
582 */
583 static void setup_msrs(struct vcpu_vmx *vmx)
584 {
585 int save_nmsrs;
586
587 save_nmsrs = 0;
588 #ifdef CONFIG_X86_64
589 if (is_long_mode(&vmx->vcpu)) {
590 int index;
591
592 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
593 if (index >= 0)
594 move_msr_up(vmx, index, save_nmsrs++);
595 index = __find_msr_index(vmx, MSR_LSTAR);
596 if (index >= 0)
597 move_msr_up(vmx, index, save_nmsrs++);
598 index = __find_msr_index(vmx, MSR_CSTAR);
599 if (index >= 0)
600 move_msr_up(vmx, index, save_nmsrs++);
601 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
602 if (index >= 0)
603 move_msr_up(vmx, index, save_nmsrs++);
604 /*
605 * MSR_K6_STAR is only needed on long mode guests, and only
606 * if efer.sce is enabled.
607 */
608 index = __find_msr_index(vmx, MSR_K6_STAR);
609 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
610 move_msr_up(vmx, index, save_nmsrs++);
611 }
612 #endif
613 vmx->save_nmsrs = save_nmsrs;
614
615 #ifdef CONFIG_X86_64
616 vmx->msr_offset_kernel_gs_base =
617 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
618 #endif
619 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
620 }
621
622 /*
623 * reads and returns guest's timestamp counter "register"
624 * guest_tsc = host_tsc + tsc_offset -- 21.3
625 */
626 static u64 guest_read_tsc(void)
627 {
628 u64 host_tsc, tsc_offset;
629
630 rdtscll(host_tsc);
631 tsc_offset = vmcs_read64(TSC_OFFSET);
632 return host_tsc + tsc_offset;
633 }
634
635 /*
636 * writes 'guest_tsc' into guest's timestamp counter "register"
637 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
638 */
639 static void guest_write_tsc(u64 guest_tsc)
640 {
641 u64 host_tsc;
642
643 rdtscll(host_tsc);
644 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
645 }
646
647 /*
648 * Reads an msr value (of 'msr_index') into 'pdata'.
649 * Returns 0 on success, non-0 otherwise.
650 * Assumes vcpu_load() was already called.
651 */
652 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
653 {
654 u64 data;
655 struct kvm_msr_entry *msr;
656
657 if (!pdata) {
658 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
659 return -EINVAL;
660 }
661
662 switch (msr_index) {
663 #ifdef CONFIG_X86_64
664 case MSR_FS_BASE:
665 data = vmcs_readl(GUEST_FS_BASE);
666 break;
667 case MSR_GS_BASE:
668 data = vmcs_readl(GUEST_GS_BASE);
669 break;
670 case MSR_EFER:
671 return kvm_get_msr_common(vcpu, msr_index, pdata);
672 #endif
673 case MSR_IA32_TIME_STAMP_COUNTER:
674 data = guest_read_tsc();
675 break;
676 case MSR_IA32_SYSENTER_CS:
677 data = vmcs_read32(GUEST_SYSENTER_CS);
678 break;
679 case MSR_IA32_SYSENTER_EIP:
680 data = vmcs_readl(GUEST_SYSENTER_EIP);
681 break;
682 case MSR_IA32_SYSENTER_ESP:
683 data = vmcs_readl(GUEST_SYSENTER_ESP);
684 break;
685 default:
686 msr = find_msr_entry(to_vmx(vcpu), msr_index);
687 if (msr) {
688 data = msr->data;
689 break;
690 }
691 return kvm_get_msr_common(vcpu, msr_index, pdata);
692 }
693
694 *pdata = data;
695 return 0;
696 }
697
698 /*
699 * Writes msr value into into the appropriate "register".
700 * Returns 0 on success, non-0 otherwise.
701 * Assumes vcpu_load() was already called.
702 */
703 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
704 {
705 struct vcpu_vmx *vmx = to_vmx(vcpu);
706 struct kvm_msr_entry *msr;
707 int ret = 0;
708
709 switch (msr_index) {
710 #ifdef CONFIG_X86_64
711 case MSR_EFER:
712 ret = kvm_set_msr_common(vcpu, msr_index, data);
713 if (vmx->host_state.loaded)
714 load_transition_efer(vmx);
715 break;
716 case MSR_FS_BASE:
717 vmcs_writel(GUEST_FS_BASE, data);
718 break;
719 case MSR_GS_BASE:
720 vmcs_writel(GUEST_GS_BASE, data);
721 break;
722 #endif
723 case MSR_IA32_SYSENTER_CS:
724 vmcs_write32(GUEST_SYSENTER_CS, data);
725 break;
726 case MSR_IA32_SYSENTER_EIP:
727 vmcs_writel(GUEST_SYSENTER_EIP, data);
728 break;
729 case MSR_IA32_SYSENTER_ESP:
730 vmcs_writel(GUEST_SYSENTER_ESP, data);
731 break;
732 case MSR_IA32_TIME_STAMP_COUNTER:
733 guest_write_tsc(data);
734 break;
735 default:
736 msr = find_msr_entry(vmx, msr_index);
737 if (msr) {
738 msr->data = data;
739 if (vmx->host_state.loaded)
740 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
741 break;
742 }
743 ret = kvm_set_msr_common(vcpu, msr_index, data);
744 }
745
746 return ret;
747 }
748
749 /*
750 * Sync the rsp and rip registers into the vcpu structure. This allows
751 * registers to be accessed by indexing vcpu->regs.
752 */
753 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
754 {
755 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
756 vcpu->rip = vmcs_readl(GUEST_RIP);
757 }
758
759 /*
760 * Syncs rsp and rip back into the vmcs. Should be called after possible
761 * modification.
762 */
763 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
764 {
765 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
766 vmcs_writel(GUEST_RIP, vcpu->rip);
767 }
768
769 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
770 {
771 unsigned long dr7 = 0x400;
772 int old_singlestep;
773
774 old_singlestep = vcpu->guest_debug.singlestep;
775
776 vcpu->guest_debug.enabled = dbg->enabled;
777 if (vcpu->guest_debug.enabled) {
778 int i;
779
780 dr7 |= 0x200; /* exact */
781 for (i = 0; i < 4; ++i) {
782 if (!dbg->breakpoints[i].enabled)
783 continue;
784 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
785 dr7 |= 2 << (i*2); /* global enable */
786 dr7 |= 0 << (i*4+16); /* execution breakpoint */
787 }
788
789 vcpu->guest_debug.singlestep = dbg->singlestep;
790 } else
791 vcpu->guest_debug.singlestep = 0;
792
793 if (old_singlestep && !vcpu->guest_debug.singlestep) {
794 unsigned long flags;
795
796 flags = vmcs_readl(GUEST_RFLAGS);
797 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
798 vmcs_writel(GUEST_RFLAGS, flags);
799 }
800
801 update_exception_bitmap(vcpu);
802 vmcs_writel(GUEST_DR7, dr7);
803
804 return 0;
805 }
806
807 static int vmx_get_irq(struct kvm_vcpu *vcpu)
808 {
809 u32 idtv_info_field;
810
811 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
812 if (idtv_info_field & INTR_INFO_VALID_MASK) {
813 if (is_external_interrupt(idtv_info_field))
814 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
815 else
816 printk("pending exception: not handled yet\n");
817 }
818 return -1;
819 }
820
821 static __init int cpu_has_kvm_support(void)
822 {
823 unsigned long ecx = cpuid_ecx(1);
824 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
825 }
826
827 static __init int vmx_disabled_by_bios(void)
828 {
829 u64 msr;
830
831 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
832 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
833 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
834 == MSR_IA32_FEATURE_CONTROL_LOCKED;
835 /* locked but not enabled */
836 }
837
838 static void hardware_enable(void *garbage)
839 {
840 int cpu = raw_smp_processor_id();
841 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
842 u64 old;
843
844 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
845 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
846 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
847 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
848 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
849 /* enable and lock */
850 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
851 MSR_IA32_FEATURE_CONTROL_LOCKED |
852 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
853 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
854 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
855 : "memory", "cc");
856 }
857
858 static void hardware_disable(void *garbage)
859 {
860 asm volatile (ASM_VMX_VMXOFF : : : "cc");
861 }
862
863 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
864 u32 msr, u32* result)
865 {
866 u32 vmx_msr_low, vmx_msr_high;
867 u32 ctl = ctl_min | ctl_opt;
868
869 rdmsr(msr, vmx_msr_low, vmx_msr_high);
870
871 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
872 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
873
874 /* Ensure minimum (required) set of control bits are supported. */
875 if (ctl_min & ~ctl)
876 return -EIO;
877
878 *result = ctl;
879 return 0;
880 }
881
882 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
883 {
884 u32 vmx_msr_low, vmx_msr_high;
885 u32 min, opt;
886 u32 _pin_based_exec_control = 0;
887 u32 _cpu_based_exec_control = 0;
888 u32 _vmexit_control = 0;
889 u32 _vmentry_control = 0;
890
891 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
892 opt = 0;
893 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
894 &_pin_based_exec_control) < 0)
895 return -EIO;
896
897 min = CPU_BASED_HLT_EXITING |
898 #ifdef CONFIG_X86_64
899 CPU_BASED_CR8_LOAD_EXITING |
900 CPU_BASED_CR8_STORE_EXITING |
901 #endif
902 CPU_BASED_USE_IO_BITMAPS |
903 CPU_BASED_MOV_DR_EXITING |
904 CPU_BASED_USE_TSC_OFFSETING;
905 #ifdef CONFIG_X86_64
906 opt = CPU_BASED_TPR_SHADOW;
907 #else
908 opt = 0;
909 #endif
910 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
911 &_cpu_based_exec_control) < 0)
912 return -EIO;
913 #ifdef CONFIG_X86_64
914 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
915 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
916 ~CPU_BASED_CR8_STORE_EXITING;
917 #endif
918
919 min = 0;
920 #ifdef CONFIG_X86_64
921 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
922 #endif
923 opt = 0;
924 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
925 &_vmexit_control) < 0)
926 return -EIO;
927
928 min = opt = 0;
929 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
930 &_vmentry_control) < 0)
931 return -EIO;
932
933 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
934
935 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
936 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
937 return -EIO;
938
939 #ifdef CONFIG_X86_64
940 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
941 if (vmx_msr_high & (1u<<16))
942 return -EIO;
943 #endif
944
945 /* Require Write-Back (WB) memory type for VMCS accesses. */
946 if (((vmx_msr_high >> 18) & 15) != 6)
947 return -EIO;
948
949 vmcs_conf->size = vmx_msr_high & 0x1fff;
950 vmcs_conf->order = get_order(vmcs_config.size);
951 vmcs_conf->revision_id = vmx_msr_low;
952
953 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
954 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
955 vmcs_conf->vmexit_ctrl = _vmexit_control;
956 vmcs_conf->vmentry_ctrl = _vmentry_control;
957
958 return 0;
959 }
960
961 static struct vmcs *alloc_vmcs_cpu(int cpu)
962 {
963 int node = cpu_to_node(cpu);
964 struct page *pages;
965 struct vmcs *vmcs;
966
967 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
968 if (!pages)
969 return NULL;
970 vmcs = page_address(pages);
971 memset(vmcs, 0, vmcs_config.size);
972 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
973 return vmcs;
974 }
975
976 static struct vmcs *alloc_vmcs(void)
977 {
978 return alloc_vmcs_cpu(raw_smp_processor_id());
979 }
980
981 static void free_vmcs(struct vmcs *vmcs)
982 {
983 free_pages((unsigned long)vmcs, vmcs_config.order);
984 }
985
986 static void free_kvm_area(void)
987 {
988 int cpu;
989
990 for_each_online_cpu(cpu)
991 free_vmcs(per_cpu(vmxarea, cpu));
992 }
993
994 static __init int alloc_kvm_area(void)
995 {
996 int cpu;
997
998 for_each_online_cpu(cpu) {
999 struct vmcs *vmcs;
1000
1001 vmcs = alloc_vmcs_cpu(cpu);
1002 if (!vmcs) {
1003 free_kvm_area();
1004 return -ENOMEM;
1005 }
1006
1007 per_cpu(vmxarea, cpu) = vmcs;
1008 }
1009 return 0;
1010 }
1011
1012 static __init int hardware_setup(void)
1013 {
1014 if (setup_vmcs_config(&vmcs_config) < 0)
1015 return -EIO;
1016 return alloc_kvm_area();
1017 }
1018
1019 static __exit void hardware_unsetup(void)
1020 {
1021 free_kvm_area();
1022 }
1023
1024 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1025 {
1026 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1027
1028 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1029 vmcs_write16(sf->selector, save->selector);
1030 vmcs_writel(sf->base, save->base);
1031 vmcs_write32(sf->limit, save->limit);
1032 vmcs_write32(sf->ar_bytes, save->ar);
1033 } else {
1034 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1035 << AR_DPL_SHIFT;
1036 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1037 }
1038 }
1039
1040 static void enter_pmode(struct kvm_vcpu *vcpu)
1041 {
1042 unsigned long flags;
1043
1044 vcpu->rmode.active = 0;
1045
1046 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1047 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1048 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1049
1050 flags = vmcs_readl(GUEST_RFLAGS);
1051 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1052 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1053 vmcs_writel(GUEST_RFLAGS, flags);
1054
1055 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1056 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1057
1058 update_exception_bitmap(vcpu);
1059
1060 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1061 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1062 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1063 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1064
1065 vmcs_write16(GUEST_SS_SELECTOR, 0);
1066 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1067
1068 vmcs_write16(GUEST_CS_SELECTOR,
1069 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1070 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1071 }
1072
1073 static gva_t rmode_tss_base(struct kvm* kvm)
1074 {
1075 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1076 return base_gfn << PAGE_SHIFT;
1077 }
1078
1079 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1080 {
1081 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1082
1083 save->selector = vmcs_read16(sf->selector);
1084 save->base = vmcs_readl(sf->base);
1085 save->limit = vmcs_read32(sf->limit);
1086 save->ar = vmcs_read32(sf->ar_bytes);
1087 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1088 vmcs_write32(sf->limit, 0xffff);
1089 vmcs_write32(sf->ar_bytes, 0xf3);
1090 }
1091
1092 static void enter_rmode(struct kvm_vcpu *vcpu)
1093 {
1094 unsigned long flags;
1095
1096 vcpu->rmode.active = 1;
1097
1098 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1099 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1100
1101 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1102 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1103
1104 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1105 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1106
1107 flags = vmcs_readl(GUEST_RFLAGS);
1108 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1109
1110 flags |= IOPL_MASK | X86_EFLAGS_VM;
1111
1112 vmcs_writel(GUEST_RFLAGS, flags);
1113 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1114 update_exception_bitmap(vcpu);
1115
1116 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1117 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1118 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1119
1120 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1121 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1122 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1123 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1124 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1125
1126 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1127 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1128 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1129 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1130
1131 init_rmode_tss(vcpu->kvm);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135
1136 static void enter_lmode(struct kvm_vcpu *vcpu)
1137 {
1138 u32 guest_tr_ar;
1139
1140 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1141 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1142 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1143 __FUNCTION__);
1144 vmcs_write32(GUEST_TR_AR_BYTES,
1145 (guest_tr_ar & ~AR_TYPE_MASK)
1146 | AR_TYPE_BUSY_64_TSS);
1147 }
1148
1149 vcpu->shadow_efer |= EFER_LMA;
1150
1151 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1152 vmcs_write32(VM_ENTRY_CONTROLS,
1153 vmcs_read32(VM_ENTRY_CONTROLS)
1154 | VM_ENTRY_IA32E_MODE);
1155 }
1156
1157 static void exit_lmode(struct kvm_vcpu *vcpu)
1158 {
1159 vcpu->shadow_efer &= ~EFER_LMA;
1160
1161 vmcs_write32(VM_ENTRY_CONTROLS,
1162 vmcs_read32(VM_ENTRY_CONTROLS)
1163 & ~VM_ENTRY_IA32E_MODE);
1164 }
1165
1166 #endif
1167
1168 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1169 {
1170 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1171 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1172 }
1173
1174 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1175 {
1176 vmx_fpu_deactivate(vcpu);
1177
1178 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1179 enter_pmode(vcpu);
1180
1181 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1182 enter_rmode(vcpu);
1183
1184 #ifdef CONFIG_X86_64
1185 if (vcpu->shadow_efer & EFER_LME) {
1186 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1187 enter_lmode(vcpu);
1188 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1189 exit_lmode(vcpu);
1190 }
1191 #endif
1192
1193 vmcs_writel(CR0_READ_SHADOW, cr0);
1194 vmcs_writel(GUEST_CR0,
1195 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1196 vcpu->cr0 = cr0;
1197
1198 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1199 vmx_fpu_activate(vcpu);
1200 }
1201
1202 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1203 {
1204 vmcs_writel(GUEST_CR3, cr3);
1205 if (vcpu->cr0 & X86_CR0_PE)
1206 vmx_fpu_deactivate(vcpu);
1207 }
1208
1209 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1210 {
1211 vmcs_writel(CR4_READ_SHADOW, cr4);
1212 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1213 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1214 vcpu->cr4 = cr4;
1215 }
1216
1217 #ifdef CONFIG_X86_64
1218
1219 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1220 {
1221 struct vcpu_vmx *vmx = to_vmx(vcpu);
1222 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1223
1224 vcpu->shadow_efer = efer;
1225 if (efer & EFER_LMA) {
1226 vmcs_write32(VM_ENTRY_CONTROLS,
1227 vmcs_read32(VM_ENTRY_CONTROLS) |
1228 VM_ENTRY_IA32E_MODE);
1229 msr->data = efer;
1230
1231 } else {
1232 vmcs_write32(VM_ENTRY_CONTROLS,
1233 vmcs_read32(VM_ENTRY_CONTROLS) &
1234 ~VM_ENTRY_IA32E_MODE);
1235
1236 msr->data = efer & ~EFER_LME;
1237 }
1238 setup_msrs(vmx);
1239 }
1240
1241 #endif
1242
1243 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1244 {
1245 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1246
1247 return vmcs_readl(sf->base);
1248 }
1249
1250 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1251 struct kvm_segment *var, int seg)
1252 {
1253 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1254 u32 ar;
1255
1256 var->base = vmcs_readl(sf->base);
1257 var->limit = vmcs_read32(sf->limit);
1258 var->selector = vmcs_read16(sf->selector);
1259 ar = vmcs_read32(sf->ar_bytes);
1260 if (ar & AR_UNUSABLE_MASK)
1261 ar = 0;
1262 var->type = ar & 15;
1263 var->s = (ar >> 4) & 1;
1264 var->dpl = (ar >> 5) & 3;
1265 var->present = (ar >> 7) & 1;
1266 var->avl = (ar >> 12) & 1;
1267 var->l = (ar >> 13) & 1;
1268 var->db = (ar >> 14) & 1;
1269 var->g = (ar >> 15) & 1;
1270 var->unusable = (ar >> 16) & 1;
1271 }
1272
1273 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1274 {
1275 u32 ar;
1276
1277 if (var->unusable)
1278 ar = 1 << 16;
1279 else {
1280 ar = var->type & 15;
1281 ar |= (var->s & 1) << 4;
1282 ar |= (var->dpl & 3) << 5;
1283 ar |= (var->present & 1) << 7;
1284 ar |= (var->avl & 1) << 12;
1285 ar |= (var->l & 1) << 13;
1286 ar |= (var->db & 1) << 14;
1287 ar |= (var->g & 1) << 15;
1288 }
1289 if (ar == 0) /* a 0 value means unusable */
1290 ar = AR_UNUSABLE_MASK;
1291
1292 return ar;
1293 }
1294
1295 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1296 struct kvm_segment *var, int seg)
1297 {
1298 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1299 u32 ar;
1300
1301 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1302 vcpu->rmode.tr.selector = var->selector;
1303 vcpu->rmode.tr.base = var->base;
1304 vcpu->rmode.tr.limit = var->limit;
1305 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1306 return;
1307 }
1308 vmcs_writel(sf->base, var->base);
1309 vmcs_write32(sf->limit, var->limit);
1310 vmcs_write16(sf->selector, var->selector);
1311 if (vcpu->rmode.active && var->s) {
1312 /*
1313 * Hack real-mode segments into vm86 compatibility.
1314 */
1315 if (var->base == 0xffff0000 && var->selector == 0xf000)
1316 vmcs_writel(sf->base, 0xf0000);
1317 ar = 0xf3;
1318 } else
1319 ar = vmx_segment_access_rights(var);
1320 vmcs_write32(sf->ar_bytes, ar);
1321 }
1322
1323 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1324 {
1325 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1326
1327 *db = (ar >> 14) & 1;
1328 *l = (ar >> 13) & 1;
1329 }
1330
1331 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1332 {
1333 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1334 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1335 }
1336
1337 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1338 {
1339 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1340 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1341 }
1342
1343 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1344 {
1345 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1346 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1347 }
1348
1349 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1350 {
1351 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1352 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1353 }
1354
1355 static int init_rmode_tss(struct kvm* kvm)
1356 {
1357 struct page *p1, *p2, *p3;
1358 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1359 char *page;
1360
1361 p1 = gfn_to_page(kvm, fn++);
1362 p2 = gfn_to_page(kvm, fn++);
1363 p3 = gfn_to_page(kvm, fn);
1364
1365 if (!p1 || !p2 || !p3) {
1366 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1367 return 0;
1368 }
1369
1370 page = kmap_atomic(p1, KM_USER0);
1371 clear_page(page);
1372 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1373 kunmap_atomic(page, KM_USER0);
1374
1375 page = kmap_atomic(p2, KM_USER0);
1376 clear_page(page);
1377 kunmap_atomic(page, KM_USER0);
1378
1379 page = kmap_atomic(p3, KM_USER0);
1380 clear_page(page);
1381 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1382 kunmap_atomic(page, KM_USER0);
1383
1384 return 1;
1385 }
1386
1387 static void seg_setup(int seg)
1388 {
1389 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1390
1391 vmcs_write16(sf->selector, 0);
1392 vmcs_writel(sf->base, 0);
1393 vmcs_write32(sf->limit, 0xffff);
1394 vmcs_write32(sf->ar_bytes, 0x93);
1395 }
1396
1397 /*
1398 * Sets up the vmcs for emulated real mode.
1399 */
1400 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1401 {
1402 u32 host_sysenter_cs;
1403 u32 junk;
1404 unsigned long a;
1405 struct descriptor_table dt;
1406 int i;
1407 int ret = 0;
1408 unsigned long kvm_vmx_return;
1409 u64 msr;
1410 u32 exec_control;
1411
1412 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1413 ret = -ENOMEM;
1414 goto out;
1415 }
1416
1417 vmx->vcpu.rmode.active = 0;
1418
1419 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1420 set_cr8(&vmx->vcpu, 0);
1421 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1422 if (vmx->vcpu.vcpu_id == 0)
1423 msr |= MSR_IA32_APICBASE_BSP;
1424 kvm_set_apic_base(&vmx->vcpu, msr);
1425
1426 fx_init(&vmx->vcpu);
1427
1428 /*
1429 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1430 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1431 */
1432 if (vmx->vcpu.vcpu_id == 0) {
1433 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1434 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1435 } else {
1436 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1437 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1438 }
1439 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1440 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1441
1442 seg_setup(VCPU_SREG_DS);
1443 seg_setup(VCPU_SREG_ES);
1444 seg_setup(VCPU_SREG_FS);
1445 seg_setup(VCPU_SREG_GS);
1446 seg_setup(VCPU_SREG_SS);
1447
1448 vmcs_write16(GUEST_TR_SELECTOR, 0);
1449 vmcs_writel(GUEST_TR_BASE, 0);
1450 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1451 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1452
1453 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1454 vmcs_writel(GUEST_LDTR_BASE, 0);
1455 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1456 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1457
1458 vmcs_write32(GUEST_SYSENTER_CS, 0);
1459 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1460 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1461
1462 vmcs_writel(GUEST_RFLAGS, 0x02);
1463 if (vmx->vcpu.vcpu_id == 0)
1464 vmcs_writel(GUEST_RIP, 0xfff0);
1465 else
1466 vmcs_writel(GUEST_RIP, 0);
1467 vmcs_writel(GUEST_RSP, 0);
1468
1469 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1470 vmcs_writel(GUEST_DR7, 0x400);
1471
1472 vmcs_writel(GUEST_GDTR_BASE, 0);
1473 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1474
1475 vmcs_writel(GUEST_IDTR_BASE, 0);
1476 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1477
1478 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1479 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1480 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1481
1482 /* I/O */
1483 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1484 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1485
1486 guest_write_tsc(0);
1487
1488 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1489
1490 /* Special registers */
1491 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1492
1493 /* Control */
1494 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1495 vmcs_config.pin_based_exec_ctrl);
1496
1497 exec_control = vmcs_config.cpu_based_exec_ctrl;
1498 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1499 exec_control &= ~CPU_BASED_TPR_SHADOW;
1500 #ifdef CONFIG_X86_64
1501 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1502 CPU_BASED_CR8_LOAD_EXITING;
1503 #endif
1504 }
1505 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1506
1507 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1508 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1509 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1510
1511 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1512 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1513 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1514
1515 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1516 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1517 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1518 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1519 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1520 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1521 #ifdef CONFIG_X86_64
1522 rdmsrl(MSR_FS_BASE, a);
1523 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1524 rdmsrl(MSR_GS_BASE, a);
1525 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1526 #else
1527 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1528 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1529 #endif
1530
1531 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1532
1533 get_idt(&dt);
1534 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1535
1536 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1537 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1538 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1539 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1540 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1541
1542 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1543 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1544 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1545 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1546 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1547 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1548
1549 for (i = 0; i < NR_VMX_MSR; ++i) {
1550 u32 index = vmx_msr_index[i];
1551 u32 data_low, data_high;
1552 u64 data;
1553 int j = vmx->nmsrs;
1554
1555 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1556 continue;
1557 if (wrmsr_safe(index, data_low, data_high) < 0)
1558 continue;
1559 data = data_low | ((u64)data_high << 32);
1560 vmx->host_msrs[j].index = index;
1561 vmx->host_msrs[j].reserved = 0;
1562 vmx->host_msrs[j].data = data;
1563 vmx->guest_msrs[j] = vmx->host_msrs[j];
1564 ++vmx->nmsrs;
1565 }
1566
1567 setup_msrs(vmx);
1568
1569 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1570
1571 /* 22.2.1, 20.8.1 */
1572 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1573
1574 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1575
1576 #ifdef CONFIG_X86_64
1577 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1578 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1579 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1580 page_to_phys(vmx->vcpu.apic->regs_page));
1581 vmcs_write32(TPR_THRESHOLD, 0);
1582 #endif
1583
1584 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1585 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1586
1587 vmx->vcpu.cr0 = 0x60000010;
1588 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1589 vmx_set_cr4(&vmx->vcpu, 0);
1590 #ifdef CONFIG_X86_64
1591 vmx_set_efer(&vmx->vcpu, 0);
1592 #endif
1593 vmx_fpu_activate(&vmx->vcpu);
1594 update_exception_bitmap(&vmx->vcpu);
1595
1596 return 0;
1597
1598 out:
1599 return ret;
1600 }
1601
1602 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1603 {
1604 struct vcpu_vmx *vmx = to_vmx(vcpu);
1605
1606 vmx_vcpu_setup(vmx);
1607 }
1608
1609 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1610 {
1611 u16 ent[2];
1612 u16 cs;
1613 u16 ip;
1614 unsigned long flags;
1615 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1616 u16 sp = vmcs_readl(GUEST_RSP);
1617 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1618
1619 if (sp > ss_limit || sp < 6 ) {
1620 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1621 __FUNCTION__,
1622 vmcs_readl(GUEST_RSP),
1623 vmcs_readl(GUEST_SS_BASE),
1624 vmcs_read32(GUEST_SS_LIMIT));
1625 return;
1626 }
1627
1628 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1629 X86EMUL_CONTINUE) {
1630 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1631 return;
1632 }
1633
1634 flags = vmcs_readl(GUEST_RFLAGS);
1635 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1636 ip = vmcs_readl(GUEST_RIP);
1637
1638
1639 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1640 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1641 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1642 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1643 return;
1644 }
1645
1646 vmcs_writel(GUEST_RFLAGS, flags &
1647 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1648 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1649 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1650 vmcs_writel(GUEST_RIP, ent[0]);
1651 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1652 }
1653
1654 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1655 {
1656 if (vcpu->rmode.active) {
1657 inject_rmode_irq(vcpu, irq);
1658 return;
1659 }
1660 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1661 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1662 }
1663
1664 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1665 {
1666 int word_index = __ffs(vcpu->irq_summary);
1667 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1668 int irq = word_index * BITS_PER_LONG + bit_index;
1669
1670 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1671 if (!vcpu->irq_pending[word_index])
1672 clear_bit(word_index, &vcpu->irq_summary);
1673 vmx_inject_irq(vcpu, irq);
1674 }
1675
1676
1677 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1678 struct kvm_run *kvm_run)
1679 {
1680 u32 cpu_based_vm_exec_control;
1681
1682 vcpu->interrupt_window_open =
1683 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1684 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1685
1686 if (vcpu->interrupt_window_open &&
1687 vcpu->irq_summary &&
1688 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1689 /*
1690 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1691 */
1692 kvm_do_inject_irq(vcpu);
1693
1694 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1695 if (!vcpu->interrupt_window_open &&
1696 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1697 /*
1698 * Interrupts blocked. Wait for unblock.
1699 */
1700 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1701 else
1702 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1703 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1704 }
1705
1706 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1707 {
1708 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1709
1710 set_debugreg(dbg->bp[0], 0);
1711 set_debugreg(dbg->bp[1], 1);
1712 set_debugreg(dbg->bp[2], 2);
1713 set_debugreg(dbg->bp[3], 3);
1714
1715 if (dbg->singlestep) {
1716 unsigned long flags;
1717
1718 flags = vmcs_readl(GUEST_RFLAGS);
1719 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1720 vmcs_writel(GUEST_RFLAGS, flags);
1721 }
1722 }
1723
1724 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1725 int vec, u32 err_code)
1726 {
1727 if (!vcpu->rmode.active)
1728 return 0;
1729
1730 /*
1731 * Instruction with address size override prefix opcode 0x67
1732 * Cause the #SS fault with 0 error code in VM86 mode.
1733 */
1734 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1735 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1736 return 1;
1737 return 0;
1738 }
1739
1740 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1741 {
1742 u32 intr_info, error_code;
1743 unsigned long cr2, rip;
1744 u32 vect_info;
1745 enum emulation_result er;
1746 int r;
1747
1748 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1749 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1750
1751 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1752 !is_page_fault(intr_info)) {
1753 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1754 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1755 }
1756
1757 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1758 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1759 set_bit(irq, vcpu->irq_pending);
1760 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1761 }
1762
1763 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1764 asm ("int $2");
1765 return 1;
1766 }
1767
1768 if (is_no_device(intr_info)) {
1769 vmx_fpu_activate(vcpu);
1770 return 1;
1771 }
1772
1773 error_code = 0;
1774 rip = vmcs_readl(GUEST_RIP);
1775 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1776 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1777 if (is_page_fault(intr_info)) {
1778 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1779
1780 mutex_lock(&vcpu->kvm->lock);
1781 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1782 if (r < 0) {
1783 mutex_unlock(&vcpu->kvm->lock);
1784 return r;
1785 }
1786 if (!r) {
1787 mutex_unlock(&vcpu->kvm->lock);
1788 return 1;
1789 }
1790
1791 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1792 mutex_unlock(&vcpu->kvm->lock);
1793
1794 switch (er) {
1795 case EMULATE_DONE:
1796 return 1;
1797 case EMULATE_DO_MMIO:
1798 ++vcpu->stat.mmio_exits;
1799 return 0;
1800 case EMULATE_FAIL:
1801 kvm_report_emulation_failure(vcpu, "pagetable");
1802 break;
1803 default:
1804 BUG();
1805 }
1806 }
1807
1808 if (vcpu->rmode.active &&
1809 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1810 error_code)) {
1811 if (vcpu->halt_request) {
1812 vcpu->halt_request = 0;
1813 return kvm_emulate_halt(vcpu);
1814 }
1815 return 1;
1816 }
1817
1818 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1819 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1820 return 0;
1821 }
1822 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1823 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1824 kvm_run->ex.error_code = error_code;
1825 return 0;
1826 }
1827
1828 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1829 struct kvm_run *kvm_run)
1830 {
1831 ++vcpu->stat.irq_exits;
1832 return 1;
1833 }
1834
1835 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1836 {
1837 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1838 return 0;
1839 }
1840
1841 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1842 {
1843 unsigned long exit_qualification;
1844 int size, down, in, string, rep;
1845 unsigned port;
1846
1847 ++vcpu->stat.io_exits;
1848 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1849 string = (exit_qualification & 16) != 0;
1850
1851 if (string) {
1852 if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1853 return 0;
1854 return 1;
1855 }
1856
1857 size = (exit_qualification & 7) + 1;
1858 in = (exit_qualification & 8) != 0;
1859 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1860 rep = (exit_qualification & 32) != 0;
1861 port = exit_qualification >> 16;
1862
1863 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1864 }
1865
1866 static void
1867 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1868 {
1869 /*
1870 * Patch in the VMCALL instruction:
1871 */
1872 hypercall[0] = 0x0f;
1873 hypercall[1] = 0x01;
1874 hypercall[2] = 0xc1;
1875 hypercall[3] = 0xc3;
1876 }
1877
1878 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1879 {
1880 unsigned long exit_qualification;
1881 int cr;
1882 int reg;
1883
1884 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1885 cr = exit_qualification & 15;
1886 reg = (exit_qualification >> 8) & 15;
1887 switch ((exit_qualification >> 4) & 3) {
1888 case 0: /* mov to cr */
1889 switch (cr) {
1890 case 0:
1891 vcpu_load_rsp_rip(vcpu);
1892 set_cr0(vcpu, vcpu->regs[reg]);
1893 skip_emulated_instruction(vcpu);
1894 return 1;
1895 case 3:
1896 vcpu_load_rsp_rip(vcpu);
1897 set_cr3(vcpu, vcpu->regs[reg]);
1898 skip_emulated_instruction(vcpu);
1899 return 1;
1900 case 4:
1901 vcpu_load_rsp_rip(vcpu);
1902 set_cr4(vcpu, vcpu->regs[reg]);
1903 skip_emulated_instruction(vcpu);
1904 return 1;
1905 case 8:
1906 vcpu_load_rsp_rip(vcpu);
1907 set_cr8(vcpu, vcpu->regs[reg]);
1908 skip_emulated_instruction(vcpu);
1909 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1910 return 0;
1911 };
1912 break;
1913 case 2: /* clts */
1914 vcpu_load_rsp_rip(vcpu);
1915 vmx_fpu_deactivate(vcpu);
1916 vcpu->cr0 &= ~X86_CR0_TS;
1917 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1918 vmx_fpu_activate(vcpu);
1919 skip_emulated_instruction(vcpu);
1920 return 1;
1921 case 1: /*mov from cr*/
1922 switch (cr) {
1923 case 3:
1924 vcpu_load_rsp_rip(vcpu);
1925 vcpu->regs[reg] = vcpu->cr3;
1926 vcpu_put_rsp_rip(vcpu);
1927 skip_emulated_instruction(vcpu);
1928 return 1;
1929 case 8:
1930 vcpu_load_rsp_rip(vcpu);
1931 vcpu->regs[reg] = get_cr8(vcpu);
1932 vcpu_put_rsp_rip(vcpu);
1933 skip_emulated_instruction(vcpu);
1934 return 1;
1935 }
1936 break;
1937 case 3: /* lmsw */
1938 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1939
1940 skip_emulated_instruction(vcpu);
1941 return 1;
1942 default:
1943 break;
1944 }
1945 kvm_run->exit_reason = 0;
1946 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1947 (int)(exit_qualification >> 4) & 3, cr);
1948 return 0;
1949 }
1950
1951 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1952 {
1953 unsigned long exit_qualification;
1954 unsigned long val;
1955 int dr, reg;
1956
1957 /*
1958 * FIXME: this code assumes the host is debugging the guest.
1959 * need to deal with guest debugging itself too.
1960 */
1961 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1962 dr = exit_qualification & 7;
1963 reg = (exit_qualification >> 8) & 15;
1964 vcpu_load_rsp_rip(vcpu);
1965 if (exit_qualification & 16) {
1966 /* mov from dr */
1967 switch (dr) {
1968 case 6:
1969 val = 0xffff0ff0;
1970 break;
1971 case 7:
1972 val = 0x400;
1973 break;
1974 default:
1975 val = 0;
1976 }
1977 vcpu->regs[reg] = val;
1978 } else {
1979 /* mov to dr */
1980 }
1981 vcpu_put_rsp_rip(vcpu);
1982 skip_emulated_instruction(vcpu);
1983 return 1;
1984 }
1985
1986 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1987 {
1988 kvm_emulate_cpuid(vcpu);
1989 return 1;
1990 }
1991
1992 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1993 {
1994 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1995 u64 data;
1996
1997 if (vmx_get_msr(vcpu, ecx, &data)) {
1998 vmx_inject_gp(vcpu, 0);
1999 return 1;
2000 }
2001
2002 /* FIXME: handling of bits 32:63 of rax, rdx */
2003 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2004 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2005 skip_emulated_instruction(vcpu);
2006 return 1;
2007 }
2008
2009 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2010 {
2011 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2012 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2013 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2014
2015 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2016 vmx_inject_gp(vcpu, 0);
2017 return 1;
2018 }
2019
2020 skip_emulated_instruction(vcpu);
2021 return 1;
2022 }
2023
2024 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2025 struct kvm_run *kvm_run)
2026 {
2027 return 1;
2028 }
2029
2030 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2031 struct kvm_run *kvm_run)
2032 {
2033 u32 cpu_based_vm_exec_control;
2034
2035 /* clear pending irq */
2036 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2037 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2038 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2039 /*
2040 * If the user space waits to inject interrupts, exit as soon as
2041 * possible
2042 */
2043 if (kvm_run->request_interrupt_window &&
2044 !vcpu->irq_summary) {
2045 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2046 ++vcpu->stat.irq_window_exits;
2047 return 0;
2048 }
2049 return 1;
2050 }
2051
2052 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2053 {
2054 skip_emulated_instruction(vcpu);
2055 return kvm_emulate_halt(vcpu);
2056 }
2057
2058 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2059 {
2060 skip_emulated_instruction(vcpu);
2061 return kvm_hypercall(vcpu, kvm_run);
2062 }
2063
2064 /*
2065 * The exit handlers return 1 if the exit was handled fully and guest execution
2066 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2067 * to be done to userspace and return 0.
2068 */
2069 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2070 struct kvm_run *kvm_run) = {
2071 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2072 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2073 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2074 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2075 [EXIT_REASON_CR_ACCESS] = handle_cr,
2076 [EXIT_REASON_DR_ACCESS] = handle_dr,
2077 [EXIT_REASON_CPUID] = handle_cpuid,
2078 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2079 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2080 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2081 [EXIT_REASON_HLT] = handle_halt,
2082 [EXIT_REASON_VMCALL] = handle_vmcall,
2083 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
2084 };
2085
2086 static const int kvm_vmx_max_exit_handlers =
2087 ARRAY_SIZE(kvm_vmx_exit_handlers);
2088
2089 /*
2090 * The guest has exited. See if we can fix it or if we need userspace
2091 * assistance.
2092 */
2093 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2094 {
2095 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2096 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2097 struct vcpu_vmx *vmx = to_vmx(vcpu);
2098
2099 if (unlikely(vmx->fail)) {
2100 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2101 kvm_run->fail_entry.hardware_entry_failure_reason
2102 = vmcs_read32(VM_INSTRUCTION_ERROR);
2103 return 0;
2104 }
2105
2106 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2107 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2108 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2109 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2110 if (exit_reason < kvm_vmx_max_exit_handlers
2111 && kvm_vmx_exit_handlers[exit_reason])
2112 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2113 else {
2114 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2115 kvm_run->hw.hardware_exit_reason = exit_reason;
2116 }
2117 return 0;
2118 }
2119
2120 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2121 {
2122 }
2123
2124 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2125 {
2126 int max_irr, tpr;
2127
2128 if (!vm_need_tpr_shadow(vcpu->kvm))
2129 return;
2130
2131 if (!kvm_lapic_enabled(vcpu) ||
2132 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2133 vmcs_write32(TPR_THRESHOLD, 0);
2134 return;
2135 }
2136
2137 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2138 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2139 }
2140
2141 static void enable_irq_window(struct kvm_vcpu *vcpu)
2142 {
2143 u32 cpu_based_vm_exec_control;
2144
2145 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2146 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2147 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2148 }
2149
2150 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2151 {
2152 u32 idtv_info_field, intr_info_field;
2153 int has_ext_irq, interrupt_window_open;
2154 int vector;
2155
2156 kvm_inject_pending_timer_irqs(vcpu);
2157 update_tpr_threshold(vcpu);
2158
2159 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2160 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2161 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2162 if (intr_info_field & INTR_INFO_VALID_MASK) {
2163 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2164 /* TODO: fault when IDT_Vectoring */
2165 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2166 }
2167 if (has_ext_irq)
2168 enable_irq_window(vcpu);
2169 return;
2170 }
2171 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2172 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2173 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2174 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2175
2176 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2177 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2178 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2179 if (unlikely(has_ext_irq))
2180 enable_irq_window(vcpu);
2181 return;
2182 }
2183 if (!has_ext_irq)
2184 return;
2185 interrupt_window_open =
2186 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2187 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2188 if (interrupt_window_open) {
2189 vector = kvm_cpu_get_interrupt(vcpu);
2190 vmx_inject_irq(vcpu, vector);
2191 kvm_timer_intr_post(vcpu, vector);
2192 } else
2193 enable_irq_window(vcpu);
2194 }
2195
2196 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2197 {
2198 struct vcpu_vmx *vmx = to_vmx(vcpu);
2199
2200 /*
2201 * Loading guest fpu may have cleared host cr0.ts
2202 */
2203 vmcs_writel(HOST_CR0, read_cr0());
2204
2205 asm (
2206 /* Store host registers */
2207 #ifdef CONFIG_X86_64
2208 "push %%rax; push %%rbx; push %%rdx;"
2209 "push %%rsi; push %%rdi; push %%rbp;"
2210 "push %%r8; push %%r9; push %%r10; push %%r11;"
2211 "push %%r12; push %%r13; push %%r14; push %%r15;"
2212 "push %%rcx \n\t"
2213 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2214 #else
2215 "pusha; push %%ecx \n\t"
2216 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2217 #endif
2218 /* Check if vmlaunch of vmresume is needed */
2219 "cmp $0, %1 \n\t"
2220 /* Load guest registers. Don't clobber flags. */
2221 #ifdef CONFIG_X86_64
2222 "mov %c[cr2](%3), %%rax \n\t"
2223 "mov %%rax, %%cr2 \n\t"
2224 "mov %c[rax](%3), %%rax \n\t"
2225 "mov %c[rbx](%3), %%rbx \n\t"
2226 "mov %c[rdx](%3), %%rdx \n\t"
2227 "mov %c[rsi](%3), %%rsi \n\t"
2228 "mov %c[rdi](%3), %%rdi \n\t"
2229 "mov %c[rbp](%3), %%rbp \n\t"
2230 "mov %c[r8](%3), %%r8 \n\t"
2231 "mov %c[r9](%3), %%r9 \n\t"
2232 "mov %c[r10](%3), %%r10 \n\t"
2233 "mov %c[r11](%3), %%r11 \n\t"
2234 "mov %c[r12](%3), %%r12 \n\t"
2235 "mov %c[r13](%3), %%r13 \n\t"
2236 "mov %c[r14](%3), %%r14 \n\t"
2237 "mov %c[r15](%3), %%r15 \n\t"
2238 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2239 #else
2240 "mov %c[cr2](%3), %%eax \n\t"
2241 "mov %%eax, %%cr2 \n\t"
2242 "mov %c[rax](%3), %%eax \n\t"
2243 "mov %c[rbx](%3), %%ebx \n\t"
2244 "mov %c[rdx](%3), %%edx \n\t"
2245 "mov %c[rsi](%3), %%esi \n\t"
2246 "mov %c[rdi](%3), %%edi \n\t"
2247 "mov %c[rbp](%3), %%ebp \n\t"
2248 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2249 #endif
2250 /* Enter guest mode */
2251 "jne .Llaunched \n\t"
2252 ASM_VMX_VMLAUNCH "\n\t"
2253 "jmp .Lkvm_vmx_return \n\t"
2254 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2255 ".Lkvm_vmx_return: "
2256 /* Save guest registers, load host registers, keep flags */
2257 #ifdef CONFIG_X86_64
2258 "xchg %3, (%%rsp) \n\t"
2259 "mov %%rax, %c[rax](%3) \n\t"
2260 "mov %%rbx, %c[rbx](%3) \n\t"
2261 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2262 "mov %%rdx, %c[rdx](%3) \n\t"
2263 "mov %%rsi, %c[rsi](%3) \n\t"
2264 "mov %%rdi, %c[rdi](%3) \n\t"
2265 "mov %%rbp, %c[rbp](%3) \n\t"
2266 "mov %%r8, %c[r8](%3) \n\t"
2267 "mov %%r9, %c[r9](%3) \n\t"
2268 "mov %%r10, %c[r10](%3) \n\t"
2269 "mov %%r11, %c[r11](%3) \n\t"
2270 "mov %%r12, %c[r12](%3) \n\t"
2271 "mov %%r13, %c[r13](%3) \n\t"
2272 "mov %%r14, %c[r14](%3) \n\t"
2273 "mov %%r15, %c[r15](%3) \n\t"
2274 "mov %%cr2, %%rax \n\t"
2275 "mov %%rax, %c[cr2](%3) \n\t"
2276 "mov (%%rsp), %3 \n\t"
2277
2278 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2279 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2280 "pop %%rbp; pop %%rdi; pop %%rsi;"
2281 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2282 #else
2283 "xchg %3, (%%esp) \n\t"
2284 "mov %%eax, %c[rax](%3) \n\t"
2285 "mov %%ebx, %c[rbx](%3) \n\t"
2286 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2287 "mov %%edx, %c[rdx](%3) \n\t"
2288 "mov %%esi, %c[rsi](%3) \n\t"
2289 "mov %%edi, %c[rdi](%3) \n\t"
2290 "mov %%ebp, %c[rbp](%3) \n\t"
2291 "mov %%cr2, %%eax \n\t"
2292 "mov %%eax, %c[cr2](%3) \n\t"
2293 "mov (%%esp), %3 \n\t"
2294
2295 "pop %%ecx; popa \n\t"
2296 #endif
2297 "setbe %0 \n\t"
2298 : "=q" (vmx->fail)
2299 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2300 "c"(vcpu),
2301 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2302 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2303 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2304 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2305 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2306 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2307 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2308 #ifdef CONFIG_X86_64
2309 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2310 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2311 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2312 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2313 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2314 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2315 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2316 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2317 #endif
2318 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2319 : "cc", "memory" );
2320
2321 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2322
2323 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2324 vmx->launched = 1;
2325 }
2326
2327 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2328 unsigned long addr,
2329 u32 err_code)
2330 {
2331 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2332
2333 ++vcpu->stat.pf_guest;
2334
2335 if (is_page_fault(vect_info)) {
2336 printk(KERN_DEBUG "inject_page_fault: "
2337 "double fault 0x%lx @ 0x%lx\n",
2338 addr, vmcs_readl(GUEST_RIP));
2339 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2340 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2341 DF_VECTOR |
2342 INTR_TYPE_EXCEPTION |
2343 INTR_INFO_DELIEVER_CODE_MASK |
2344 INTR_INFO_VALID_MASK);
2345 return;
2346 }
2347 vcpu->cr2 = addr;
2348 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2349 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2350 PF_VECTOR |
2351 INTR_TYPE_EXCEPTION |
2352 INTR_INFO_DELIEVER_CODE_MASK |
2353 INTR_INFO_VALID_MASK);
2354
2355 }
2356
2357 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2358 {
2359 struct vcpu_vmx *vmx = to_vmx(vcpu);
2360
2361 if (vmx->vmcs) {
2362 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2363 free_vmcs(vmx->vmcs);
2364 vmx->vmcs = NULL;
2365 }
2366 }
2367
2368 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2369 {
2370 struct vcpu_vmx *vmx = to_vmx(vcpu);
2371
2372 vmx_free_vmcs(vcpu);
2373 kfree(vmx->host_msrs);
2374 kfree(vmx->guest_msrs);
2375 kvm_vcpu_uninit(vcpu);
2376 kmem_cache_free(kvm_vcpu_cache, vmx);
2377 }
2378
2379 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2380 {
2381 int err;
2382 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2383 int cpu;
2384
2385 if (!vmx)
2386 return ERR_PTR(-ENOMEM);
2387
2388 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2389 if (err)
2390 goto free_vcpu;
2391
2392 if (irqchip_in_kernel(kvm)) {
2393 err = kvm_create_lapic(&vmx->vcpu);
2394 if (err < 0)
2395 goto free_vcpu;
2396 }
2397
2398 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2399 if (!vmx->guest_msrs) {
2400 err = -ENOMEM;
2401 goto uninit_vcpu;
2402 }
2403
2404 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2405 if (!vmx->host_msrs)
2406 goto free_guest_msrs;
2407
2408 vmx->vmcs = alloc_vmcs();
2409 if (!vmx->vmcs)
2410 goto free_msrs;
2411
2412 vmcs_clear(vmx->vmcs);
2413
2414 cpu = get_cpu();
2415 vmx_vcpu_load(&vmx->vcpu, cpu);
2416 err = vmx_vcpu_setup(vmx);
2417 vmx_vcpu_put(&vmx->vcpu);
2418 put_cpu();
2419 if (err)
2420 goto free_vmcs;
2421
2422 return &vmx->vcpu;
2423
2424 free_vmcs:
2425 free_vmcs(vmx->vmcs);
2426 free_msrs:
2427 kfree(vmx->host_msrs);
2428 free_guest_msrs:
2429 kfree(vmx->guest_msrs);
2430 uninit_vcpu:
2431 kvm_vcpu_uninit(&vmx->vcpu);
2432 free_vcpu:
2433 kmem_cache_free(kvm_vcpu_cache, vmx);
2434 return ERR_PTR(err);
2435 }
2436
2437 static void __init vmx_check_processor_compat(void *rtn)
2438 {
2439 struct vmcs_config vmcs_conf;
2440
2441 *(int *)rtn = 0;
2442 if (setup_vmcs_config(&vmcs_conf) < 0)
2443 *(int *)rtn = -EIO;
2444 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2445 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2446 smp_processor_id());
2447 *(int *)rtn = -EIO;
2448 }
2449 }
2450
2451 static struct kvm_x86_ops vmx_x86_ops = {
2452 .cpu_has_kvm_support = cpu_has_kvm_support,
2453 .disabled_by_bios = vmx_disabled_by_bios,
2454 .hardware_setup = hardware_setup,
2455 .hardware_unsetup = hardware_unsetup,
2456 .check_processor_compatibility = vmx_check_processor_compat,
2457 .hardware_enable = hardware_enable,
2458 .hardware_disable = hardware_disable,
2459
2460 .vcpu_create = vmx_create_vcpu,
2461 .vcpu_free = vmx_free_vcpu,
2462 .vcpu_reset = vmx_vcpu_reset,
2463
2464 .prepare_guest_switch = vmx_save_host_state,
2465 .vcpu_load = vmx_vcpu_load,
2466 .vcpu_put = vmx_vcpu_put,
2467 .vcpu_decache = vmx_vcpu_decache,
2468
2469 .set_guest_debug = set_guest_debug,
2470 .guest_debug_pre = kvm_guest_debug_pre,
2471 .get_msr = vmx_get_msr,
2472 .set_msr = vmx_set_msr,
2473 .get_segment_base = vmx_get_segment_base,
2474 .get_segment = vmx_get_segment,
2475 .set_segment = vmx_set_segment,
2476 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2477 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2478 .set_cr0 = vmx_set_cr0,
2479 .set_cr3 = vmx_set_cr3,
2480 .set_cr4 = vmx_set_cr4,
2481 #ifdef CONFIG_X86_64
2482 .set_efer = vmx_set_efer,
2483 #endif
2484 .get_idt = vmx_get_idt,
2485 .set_idt = vmx_set_idt,
2486 .get_gdt = vmx_get_gdt,
2487 .set_gdt = vmx_set_gdt,
2488 .cache_regs = vcpu_load_rsp_rip,
2489 .decache_regs = vcpu_put_rsp_rip,
2490 .get_rflags = vmx_get_rflags,
2491 .set_rflags = vmx_set_rflags,
2492
2493 .tlb_flush = vmx_flush_tlb,
2494 .inject_page_fault = vmx_inject_page_fault,
2495
2496 .inject_gp = vmx_inject_gp,
2497
2498 .run = vmx_vcpu_run,
2499 .handle_exit = kvm_handle_exit,
2500 .skip_emulated_instruction = skip_emulated_instruction,
2501 .patch_hypercall = vmx_patch_hypercall,
2502 .get_irq = vmx_get_irq,
2503 .set_irq = vmx_inject_irq,
2504 .inject_pending_irq = vmx_intr_assist,
2505 .inject_pending_vectors = do_interrupt_requests,
2506 };
2507
2508 static int __init vmx_init(void)
2509 {
2510 void *iova;
2511 int r;
2512
2513 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2514 if (!vmx_io_bitmap_a)
2515 return -ENOMEM;
2516
2517 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2518 if (!vmx_io_bitmap_b) {
2519 r = -ENOMEM;
2520 goto out;
2521 }
2522
2523 /*
2524 * Allow direct access to the PC debug port (it is often used for I/O
2525 * delays, but the vmexits simply slow things down).
2526 */
2527 iova = kmap(vmx_io_bitmap_a);
2528 memset(iova, 0xff, PAGE_SIZE);
2529 clear_bit(0x80, iova);
2530 kunmap(vmx_io_bitmap_a);
2531
2532 iova = kmap(vmx_io_bitmap_b);
2533 memset(iova, 0xff, PAGE_SIZE);
2534 kunmap(vmx_io_bitmap_b);
2535
2536 r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2537 if (r)
2538 goto out1;
2539
2540 return 0;
2541
2542 out1:
2543 __free_page(vmx_io_bitmap_b);
2544 out:
2545 __free_page(vmx_io_bitmap_a);
2546 return r;
2547 }
2548
2549 static void __exit vmx_exit(void)
2550 {
2551 __free_page(vmx_io_bitmap_b);
2552 __free_page(vmx_io_bitmap_a);
2553
2554 kvm_exit_x86();
2555 }
2556
2557 module_init(vmx_init)
2558 module_exit(vmx_exit)