]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/lguest/core.c
Merge tag 'for-4.2' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-focal-kernel.git] / drivers / lguest / core.c
1 /*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
3 * Switcher and analyzes the return, such as determining if the Guest wants the
4 * Host to do something. This file also contains useful helper routines.
5 :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <asm/paravirt.h>
17 #include <asm/pgtable.h>
18 #include <asm/uaccess.h>
19 #include <asm/poll.h>
20 #include <asm/asm-offsets.h>
21 #include "lg.h"
22
23 unsigned long switcher_addr;
24 struct page **lg_switcher_pages;
25 static struct vm_struct *switcher_vma;
26
27 /* This One Big lock protects all inter-guest data structures. */
28 DEFINE_MUTEX(lguest_lock);
29
30 /*H:010
31 * We need to set up the Switcher at a high virtual address. Remember the
32 * Switcher is a few hundred bytes of assembler code which actually changes the
33 * CPU to run the Guest, and then changes back to the Host when a trap or
34 * interrupt happens.
35 *
36 * The Switcher code must be at the same virtual address in the Guest as the
37 * Host since it will be running as the switchover occurs.
38 *
39 * Trying to map memory at a particular address is an unusual thing to do, so
40 * it's not a simple one-liner.
41 */
42 static __init int map_switcher(void)
43 {
44 int i, err;
45
46 /*
47 * Map the Switcher in to high memory.
48 *
49 * It turns out that if we choose the address 0xFFC00000 (4MB under the
50 * top virtual address), it makes setting up the page tables really
51 * easy.
52 */
53
54 /* We assume Switcher text fits into a single page. */
55 if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
56 printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
57 end_switcher_text - start_switcher_text);
58 return -EINVAL;
59 }
60
61 /*
62 * We allocate an array of struct page pointers. map_vm_area() wants
63 * this, rather than just an array of pages.
64 */
65 lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
66 * TOTAL_SWITCHER_PAGES,
67 GFP_KERNEL);
68 if (!lg_switcher_pages) {
69 err = -ENOMEM;
70 goto out;
71 }
72
73 /*
74 * Now we actually allocate the pages. The Guest will see these pages,
75 * so we make sure they're zeroed.
76 */
77 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
78 lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
79 if (!lg_switcher_pages[i]) {
80 err = -ENOMEM;
81 goto free_some_pages;
82 }
83 }
84
85 /*
86 * We place the Switcher underneath the fixmap area, which is the
87 * highest virtual address we can get. This is important, since we
88 * tell the Guest it can't access this memory, so we want its ceiling
89 * as high as possible.
90 */
91 switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE;
92
93 /*
94 * Now we reserve the "virtual memory area" we want. We might
95 * not get it in theory, but in practice it's worked so far.
96 * The end address needs +1 because __get_vm_area allocates an
97 * extra guard page, so we need space for that.
98 */
99 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
100 VM_ALLOC, switcher_addr, switcher_addr
101 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
102 if (!switcher_vma) {
103 err = -ENOMEM;
104 printk("lguest: could not map switcher pages high\n");
105 goto free_pages;
106 }
107
108 /*
109 * This code actually sets up the pages we've allocated to appear at
110 * switcher_addr. map_vm_area() takes the vma we allocated above, the
111 * kind of pages we're mapping (kernel pages), and a pointer to our
112 * array of struct pages.
113 */
114 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, lg_switcher_pages);
115 if (err) {
116 printk("lguest: map_vm_area failed: %i\n", err);
117 goto free_vma;
118 }
119
120 /*
121 * Now the Switcher is mapped at the right address, we can't fail!
122 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
123 */
124 memcpy(switcher_vma->addr, start_switcher_text,
125 end_switcher_text - start_switcher_text);
126
127 printk(KERN_INFO "lguest: mapped switcher at %p\n",
128 switcher_vma->addr);
129 /* And we succeeded... */
130 return 0;
131
132 free_vma:
133 vunmap(switcher_vma->addr);
134 free_pages:
135 i = TOTAL_SWITCHER_PAGES;
136 free_some_pages:
137 for (--i; i >= 0; i--)
138 __free_pages(lg_switcher_pages[i], 0);
139 kfree(lg_switcher_pages);
140 out:
141 return err;
142 }
143 /*:*/
144
145 /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
146 static void unmap_switcher(void)
147 {
148 unsigned int i;
149
150 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
151 vunmap(switcher_vma->addr);
152 /* Now we just need to free the pages we copied the switcher into */
153 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
154 __free_pages(lg_switcher_pages[i], 0);
155 kfree(lg_switcher_pages);
156 }
157
158 /*H:032
159 * Dealing With Guest Memory.
160 *
161 * Before we go too much further into the Host, we need to grok the routines
162 * we use to deal with Guest memory.
163 *
164 * When the Guest gives us (what it thinks is) a physical address, we can use
165 * the normal copy_from_user() & copy_to_user() on the corresponding place in
166 * the memory region allocated by the Launcher.
167 *
168 * But we can't trust the Guest: it might be trying to access the Launcher
169 * code. We have to check that the range is below the pfn_limit the Launcher
170 * gave us. We have to make sure that addr + len doesn't give us a false
171 * positive by overflowing, too.
172 */
173 bool lguest_address_ok(const struct lguest *lg,
174 unsigned long addr, unsigned long len)
175 {
176 return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
177 }
178
179 /*
180 * This routine copies memory from the Guest. Here we can see how useful the
181 * kill_lguest() routine we met in the Launcher can be: we return a random
182 * value (all zeroes) instead of needing to return an error.
183 */
184 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
185 {
186 if (!lguest_address_ok(cpu->lg, addr, bytes)
187 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
188 /* copy_from_user should do this, but as we rely on it... */
189 memset(b, 0, bytes);
190 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
191 }
192 }
193
194 /* This is the write (copy into Guest) version. */
195 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
196 unsigned bytes)
197 {
198 if (!lguest_address_ok(cpu->lg, addr, bytes)
199 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
200 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
201 }
202 /*:*/
203
204 /*H:030
205 * Let's jump straight to the the main loop which runs the Guest.
206 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
207 * going around and around until something interesting happens.
208 */
209 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
210 {
211 /* If the launcher asked for a register with LHREQ_GETREG */
212 if (cpu->reg_read) {
213 if (put_user(*cpu->reg_read, user))
214 return -EFAULT;
215 cpu->reg_read = NULL;
216 return sizeof(*cpu->reg_read);
217 }
218
219 /* We stop running once the Guest is dead. */
220 while (!cpu->lg->dead) {
221 unsigned int irq;
222 bool more;
223
224 /* First we run any hypercalls the Guest wants done. */
225 if (cpu->hcall)
226 do_hypercalls(cpu);
227
228 /* Do we have to tell the Launcher about a trap? */
229 if (cpu->pending.trap) {
230 if (copy_to_user(user, &cpu->pending,
231 sizeof(cpu->pending)))
232 return -EFAULT;
233 return sizeof(cpu->pending);
234 }
235
236 /*
237 * All long-lived kernel loops need to check with this horrible
238 * thing called the freezer. If the Host is trying to suspend,
239 * it stops us.
240 */
241 try_to_freeze();
242
243 /* Check for signals */
244 if (signal_pending(current))
245 return -ERESTARTSYS;
246
247 /*
248 * Check if there are any interrupts which can be delivered now:
249 * if so, this sets up the hander to be executed when we next
250 * run the Guest.
251 */
252 irq = interrupt_pending(cpu, &more);
253 if (irq < LGUEST_IRQS)
254 try_deliver_interrupt(cpu, irq, more);
255
256 /*
257 * Just make absolutely sure the Guest is still alive. One of
258 * those hypercalls could have been fatal, for example.
259 */
260 if (cpu->lg->dead)
261 break;
262
263 /*
264 * If the Guest asked to be stopped, we sleep. The Guest's
265 * clock timer will wake us.
266 */
267 if (cpu->halted) {
268 set_current_state(TASK_INTERRUPTIBLE);
269 /*
270 * Just before we sleep, make sure no interrupt snuck in
271 * which we should be doing.
272 */
273 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
274 set_current_state(TASK_RUNNING);
275 else
276 schedule();
277 continue;
278 }
279
280 /*
281 * OK, now we're ready to jump into the Guest. First we put up
282 * the "Do Not Disturb" sign:
283 */
284 local_irq_disable();
285
286 /* Actually run the Guest until something happens. */
287 lguest_arch_run_guest(cpu);
288
289 /* Now we're ready to be interrupted or moved to other CPUs */
290 local_irq_enable();
291
292 /* Now we deal with whatever happened to the Guest. */
293 lguest_arch_handle_trap(cpu);
294 }
295
296 /* Special case: Guest is 'dead' but wants a reboot. */
297 if (cpu->lg->dead == ERR_PTR(-ERESTART))
298 return -ERESTART;
299
300 /* The Guest is dead => "No such file or directory" */
301 return -ENOENT;
302 }
303
304 /*H:000
305 * Welcome to the Host!
306 *
307 * By this point your brain has been tickled by the Guest code and numbed by
308 * the Launcher code; prepare for it to be stretched by the Host code. This is
309 * the heart. Let's begin at the initialization routine for the Host's lg
310 * module.
311 */
312 static int __init init(void)
313 {
314 int err;
315
316 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
317 if (get_kernel_rpl() != 0) {
318 printk("lguest is afraid of being a guest\n");
319 return -EPERM;
320 }
321
322 /* First we put the Switcher up in very high virtual memory. */
323 err = map_switcher();
324 if (err)
325 goto out;
326
327 /* We might need to reserve an interrupt vector. */
328 err = init_interrupts();
329 if (err)
330 goto unmap;
331
332 /* /dev/lguest needs to be registered. */
333 err = lguest_device_init();
334 if (err)
335 goto free_interrupts;
336
337 /* Finally we do some architecture-specific setup. */
338 lguest_arch_host_init();
339
340 /* All good! */
341 return 0;
342
343 free_interrupts:
344 free_interrupts();
345 unmap:
346 unmap_switcher();
347 out:
348 return err;
349 }
350
351 /* Cleaning up is just the same code, backwards. With a little French. */
352 static void __exit fini(void)
353 {
354 lguest_device_remove();
355 free_interrupts();
356 unmap_switcher();
357
358 lguest_arch_host_fini();
359 }
360 /*:*/
361
362 /*
363 * The Host side of lguest can be a module. This is a nice way for people to
364 * play with it.
365 */
366 module_init(init);
367 module_exit(fini);
368 MODULE_LICENSE("GPL");
369 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");