]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/lguest/lguest_user.c
scsi: cxlflash: Create character device to provide host management interface
[mirror_ubuntu-zesty-kernel.git] / drivers / lguest / lguest_user.c
1 /*P:200 This contains all the /dev/lguest code, whereby the userspace
2 * launcher controls and communicates with the Guest. For example,
3 * the first write will tell us the Guest's memory layout and entry
4 * point. A read will run the Guest until something happens, such as
5 * a signal or the Guest accessing a device.
6 :*/
7 #include <linux/uaccess.h>
8 #include <linux/miscdevice.h>
9 #include <linux/fs.h>
10 #include <linux/sched.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/export.h>
14 #include "lg.h"
15
16 /*L:052
17 The Launcher can get the registers, and also set some of them.
18 */
19 static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input)
20 {
21 unsigned long which;
22
23 /* We re-use the ptrace structure to specify which register to read. */
24 if (get_user(which, input) != 0)
25 return -EFAULT;
26
27 /*
28 * We set up the cpu register pointer, and their next read will
29 * actually get the value (instead of running the guest).
30 *
31 * The last argument 'true' says we can access any register.
32 */
33 cpu->reg_read = lguest_arch_regptr(cpu, which, true);
34 if (!cpu->reg_read)
35 return -ENOENT;
36
37 /* And because this is a write() call, we return the length used. */
38 return sizeof(unsigned long) * 2;
39 }
40
41 static int setreg(struct lg_cpu *cpu, const unsigned long __user *input)
42 {
43 unsigned long which, value, *reg;
44
45 /* We re-use the ptrace structure to specify which register to read. */
46 if (get_user(which, input) != 0)
47 return -EFAULT;
48 input++;
49 if (get_user(value, input) != 0)
50 return -EFAULT;
51
52 /* The last argument 'false' means we can't access all registers. */
53 reg = lguest_arch_regptr(cpu, which, false);
54 if (!reg)
55 return -ENOENT;
56
57 *reg = value;
58
59 /* And because this is a write() call, we return the length used. */
60 return sizeof(unsigned long) * 3;
61 }
62
63 /*L:050
64 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
65 * number to /dev/lguest.
66 */
67 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
68 {
69 unsigned long irq;
70
71 if (get_user(irq, input) != 0)
72 return -EFAULT;
73 if (irq >= LGUEST_IRQS)
74 return -EINVAL;
75
76 /*
77 * Next time the Guest runs, the core code will see if it can deliver
78 * this interrupt.
79 */
80 set_interrupt(cpu, irq);
81 return 0;
82 }
83
84 /*L:053
85 * Deliver a trap: this is used by the Launcher if it can't emulate
86 * an instruction.
87 */
88 static int trap(struct lg_cpu *cpu, const unsigned long __user *input)
89 {
90 unsigned long trapnum;
91
92 if (get_user(trapnum, input) != 0)
93 return -EFAULT;
94
95 if (!deliver_trap(cpu, trapnum))
96 return -EINVAL;
97
98 return 0;
99 }
100
101 /*L:040
102 * Once our Guest is initialized, the Launcher makes it run by reading
103 * from /dev/lguest.
104 */
105 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
106 {
107 struct lguest *lg = file->private_data;
108 struct lg_cpu *cpu;
109 unsigned int cpu_id = *o;
110
111 /* You must write LHREQ_INITIALIZE first! */
112 if (!lg)
113 return -EINVAL;
114
115 /* Watch out for arbitrary vcpu indexes! */
116 if (cpu_id >= lg->nr_cpus)
117 return -EINVAL;
118
119 cpu = &lg->cpus[cpu_id];
120
121 /* If you're not the task which owns the Guest, go away. */
122 if (current != cpu->tsk)
123 return -EPERM;
124
125 /* If the Guest is already dead, we indicate why */
126 if (lg->dead) {
127 size_t len;
128
129 /* lg->dead either contains an error code, or a string. */
130 if (IS_ERR(lg->dead))
131 return PTR_ERR(lg->dead);
132
133 /* We can only return as much as the buffer they read with. */
134 len = min(size, strlen(lg->dead)+1);
135 if (copy_to_user(user, lg->dead, len) != 0)
136 return -EFAULT;
137 return len;
138 }
139
140 /*
141 * If we returned from read() last time because the Guest sent I/O,
142 * clear the flag.
143 */
144 if (cpu->pending.trap)
145 cpu->pending.trap = 0;
146
147 /* Run the Guest until something interesting happens. */
148 return run_guest(cpu, (unsigned long __user *)user);
149 }
150
151 /*L:025
152 * This actually initializes a CPU. For the moment, a Guest is only
153 * uniprocessor, so "id" is always 0.
154 */
155 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
156 {
157 /* We have a limited number of CPUs in the lguest struct. */
158 if (id >= ARRAY_SIZE(cpu->lg->cpus))
159 return -EINVAL;
160
161 /* Set up this CPU's id, and pointer back to the lguest struct. */
162 cpu->id = id;
163 cpu->lg = container_of(cpu, struct lguest, cpus[id]);
164 cpu->lg->nr_cpus++;
165
166 /* Each CPU has a timer it can set. */
167 init_clockdev(cpu);
168
169 /*
170 * We need a complete page for the Guest registers: they are accessible
171 * to the Guest and we can only grant it access to whole pages.
172 */
173 cpu->regs_page = get_zeroed_page(GFP_KERNEL);
174 if (!cpu->regs_page)
175 return -ENOMEM;
176
177 /* We actually put the registers at the end of the page. */
178 cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
179
180 /*
181 * Now we initialize the Guest's registers, handing it the start
182 * address.
183 */
184 lguest_arch_setup_regs(cpu, start_ip);
185
186 /*
187 * We keep a pointer to the Launcher task (ie. current task) for when
188 * other Guests want to wake this one (eg. console input).
189 */
190 cpu->tsk = current;
191
192 /*
193 * We need to keep a pointer to the Launcher's memory map, because if
194 * the Launcher dies we need to clean it up. If we don't keep a
195 * reference, it is destroyed before close() is called.
196 */
197 cpu->mm = get_task_mm(cpu->tsk);
198
199 /*
200 * We remember which CPU's pages this Guest used last, for optimization
201 * when the same Guest runs on the same CPU twice.
202 */
203 cpu->last_pages = NULL;
204
205 /* No error == success. */
206 return 0;
207 }
208
209 /*L:020
210 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
211 * addition to the LHREQ_INITIALIZE value). These are:
212 *
213 * base: The start of the Guest-physical memory inside the Launcher memory.
214 *
215 * pfnlimit: The highest (Guest-physical) page number the Guest should be
216 * allowed to access. The Guest memory lives inside the Launcher, so it sets
217 * this to ensure the Guest can only reach its own memory.
218 *
219 * start: The first instruction to execute ("eip" in x86-speak).
220 */
221 static int initialize(struct file *file, const unsigned long __user *input)
222 {
223 /* "struct lguest" contains all we (the Host) know about a Guest. */
224 struct lguest *lg;
225 int err;
226 unsigned long args[4];
227
228 /*
229 * We grab the Big Lguest lock, which protects against multiple
230 * simultaneous initializations.
231 */
232 mutex_lock(&lguest_lock);
233 /* You can't initialize twice! Close the device and start again... */
234 if (file->private_data) {
235 err = -EBUSY;
236 goto unlock;
237 }
238
239 if (copy_from_user(args, input, sizeof(args)) != 0) {
240 err = -EFAULT;
241 goto unlock;
242 }
243
244 lg = kzalloc(sizeof(*lg), GFP_KERNEL);
245 if (!lg) {
246 err = -ENOMEM;
247 goto unlock;
248 }
249
250 /* Populate the easy fields of our "struct lguest" */
251 lg->mem_base = (void __user *)args[0];
252 lg->pfn_limit = args[1];
253 lg->device_limit = args[3];
254
255 /* This is the first cpu (cpu 0) and it will start booting at args[2] */
256 err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
257 if (err)
258 goto free_lg;
259
260 /*
261 * Initialize the Guest's shadow page tables. This allocates
262 * memory, so can fail.
263 */
264 err = init_guest_pagetable(lg);
265 if (err)
266 goto free_regs;
267
268 /* We keep our "struct lguest" in the file's private_data. */
269 file->private_data = lg;
270
271 mutex_unlock(&lguest_lock);
272
273 /* And because this is a write() call, we return the length used. */
274 return sizeof(args);
275
276 free_regs:
277 /* FIXME: This should be in free_vcpu */
278 free_page(lg->cpus[0].regs_page);
279 free_lg:
280 kfree(lg);
281 unlock:
282 mutex_unlock(&lguest_lock);
283 return err;
284 }
285
286 /*L:010
287 * The first operation the Launcher does must be a write. All writes
288 * start with an unsigned long number: for the first write this must be
289 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
290 * writes of other values to send interrupts or set up receipt of notifications.
291 *
292 * Note that we overload the "offset" in the /dev/lguest file to indicate what
293 * CPU number we're dealing with. Currently this is always 0 since we only
294 * support uniprocessor Guests, but you can see the beginnings of SMP support
295 * here.
296 */
297 static ssize_t write(struct file *file, const char __user *in,
298 size_t size, loff_t *off)
299 {
300 /*
301 * Once the Guest is initialized, we hold the "struct lguest" in the
302 * file private data.
303 */
304 struct lguest *lg = file->private_data;
305 const unsigned long __user *input = (const unsigned long __user *)in;
306 unsigned long req;
307 struct lg_cpu *uninitialized_var(cpu);
308 unsigned int cpu_id = *off;
309
310 /* The first value tells us what this request is. */
311 if (get_user(req, input) != 0)
312 return -EFAULT;
313 input++;
314
315 /* If you haven't initialized, you must do that first. */
316 if (req != LHREQ_INITIALIZE) {
317 if (!lg || (cpu_id >= lg->nr_cpus))
318 return -EINVAL;
319 cpu = &lg->cpus[cpu_id];
320
321 /* Once the Guest is dead, you can only read() why it died. */
322 if (lg->dead)
323 return -ENOENT;
324 }
325
326 switch (req) {
327 case LHREQ_INITIALIZE:
328 return initialize(file, input);
329 case LHREQ_IRQ:
330 return user_send_irq(cpu, input);
331 case LHREQ_GETREG:
332 return getreg_setup(cpu, input);
333 case LHREQ_SETREG:
334 return setreg(cpu, input);
335 case LHREQ_TRAP:
336 return trap(cpu, input);
337 default:
338 return -EINVAL;
339 }
340 }
341
342 static int open(struct inode *inode, struct file *file)
343 {
344 file->private_data = NULL;
345
346 return 0;
347 }
348
349 /*L:060
350 * The final piece of interface code is the close() routine. It reverses
351 * everything done in initialize(). This is usually called because the
352 * Launcher exited.
353 *
354 * Note that the close routine returns 0 or a negative error number: it can't
355 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
356 * letting them do it.
357 :*/
358 static int close(struct inode *inode, struct file *file)
359 {
360 struct lguest *lg = file->private_data;
361 unsigned int i;
362
363 /* If we never successfully initialized, there's nothing to clean up */
364 if (!lg)
365 return 0;
366
367 /*
368 * We need the big lock, to protect from inter-guest I/O and other
369 * Launchers initializing guests.
370 */
371 mutex_lock(&lguest_lock);
372
373 /* Free up the shadow page tables for the Guest. */
374 free_guest_pagetable(lg);
375
376 for (i = 0; i < lg->nr_cpus; i++) {
377 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
378 hrtimer_cancel(&lg->cpus[i].hrt);
379 /* We can free up the register page we allocated. */
380 free_page(lg->cpus[i].regs_page);
381 /*
382 * Now all the memory cleanups are done, it's safe to release
383 * the Launcher's memory management structure.
384 */
385 mmput(lg->cpus[i].mm);
386 }
387
388 /*
389 * If lg->dead doesn't contain an error code it will be NULL or a
390 * kmalloc()ed string, either of which is ok to hand to kfree().
391 */
392 if (!IS_ERR(lg->dead))
393 kfree(lg->dead);
394 /* Free the memory allocated to the lguest_struct */
395 kfree(lg);
396 /* Release lock and exit. */
397 mutex_unlock(&lguest_lock);
398
399 return 0;
400 }
401
402 /*L:000
403 * Welcome to our journey through the Launcher!
404 *
405 * The Launcher is the Host userspace program which sets up, runs and services
406 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
407 * doing things are inaccurate: the Launcher does all the device handling for
408 * the Guest, but the Guest can't know that.
409 *
410 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
411 * shall see more of that later.
412 *
413 * We begin our understanding with the Host kernel interface which the Launcher
414 * uses: reading and writing a character device called /dev/lguest. All the
415 * work happens in the read(), write() and close() routines:
416 */
417 static const struct file_operations lguest_fops = {
418 .owner = THIS_MODULE,
419 .open = open,
420 .release = close,
421 .write = write,
422 .read = read,
423 .llseek = default_llseek,
424 };
425 /*:*/
426
427 /*
428 * This is a textbook example of a "misc" character device. Populate a "struct
429 * miscdevice" and register it with misc_register().
430 */
431 static struct miscdevice lguest_dev = {
432 .minor = MISC_DYNAMIC_MINOR,
433 .name = "lguest",
434 .fops = &lguest_fops,
435 };
436
437 int __init lguest_device_init(void)
438 {
439 return misc_register(&lguest_dev);
440 }
441
442 void __exit lguest_device_remove(void)
443 {
444 misc_deregister(&lguest_dev);
445 }