]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/lightnvm/pblk-rb.c
misc: rtsx: make various functions static
[mirror_ubuntu-bionic-kernel.git] / drivers / lightnvm / pblk-rb.c
1 /*
2 * Copyright (C) 2016 CNEX Labs
3 * Initial release: Javier Gonzalez <javier@cnexlabs.com>
4 *
5 * Based upon the circular ringbuffer.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * pblk-rb.c - pblk's write buffer
17 */
18
19 #include <linux/circ_buf.h>
20
21 #include "pblk.h"
22
23 static DECLARE_RWSEM(pblk_rb_lock);
24
25 void pblk_rb_data_free(struct pblk_rb *rb)
26 {
27 struct pblk_rb_pages *p, *t;
28
29 down_write(&pblk_rb_lock);
30 list_for_each_entry_safe(p, t, &rb->pages, list) {
31 free_pages((unsigned long)page_address(p->pages), p->order);
32 list_del(&p->list);
33 kfree(p);
34 }
35 up_write(&pblk_rb_lock);
36 }
37
38 /*
39 * Initialize ring buffer. The data and metadata buffers must be previously
40 * allocated and their size must be a power of two
41 * (Documentation/circular-buffers.txt)
42 */
43 int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
44 unsigned int power_size, unsigned int power_seg_sz)
45 {
46 struct pblk *pblk = container_of(rb, struct pblk, rwb);
47 unsigned int init_entry = 0;
48 unsigned int alloc_order = power_size;
49 unsigned int max_order = MAX_ORDER - 1;
50 unsigned int order, iter;
51
52 down_write(&pblk_rb_lock);
53 rb->entries = rb_entry_base;
54 rb->seg_size = (1 << power_seg_sz);
55 rb->nr_entries = (1 << power_size);
56 rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
57 rb->sync_point = EMPTY_ENTRY;
58
59 spin_lock_init(&rb->w_lock);
60 spin_lock_init(&rb->s_lock);
61
62 INIT_LIST_HEAD(&rb->pages);
63
64 if (alloc_order >= max_order) {
65 order = max_order;
66 iter = (1 << (alloc_order - max_order));
67 } else {
68 order = alloc_order;
69 iter = 1;
70 }
71
72 do {
73 struct pblk_rb_entry *entry;
74 struct pblk_rb_pages *page_set;
75 void *kaddr;
76 unsigned long set_size;
77 int i;
78
79 page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
80 if (!page_set) {
81 up_write(&pblk_rb_lock);
82 return -ENOMEM;
83 }
84
85 page_set->order = order;
86 page_set->pages = alloc_pages(GFP_KERNEL, order);
87 if (!page_set->pages) {
88 kfree(page_set);
89 pblk_rb_data_free(rb);
90 up_write(&pblk_rb_lock);
91 return -ENOMEM;
92 }
93 kaddr = page_address(page_set->pages);
94
95 entry = &rb->entries[init_entry];
96 entry->data = kaddr;
97 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
98 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
99
100 set_size = (1 << order);
101 for (i = 1; i < set_size; i++) {
102 entry = &rb->entries[init_entry];
103 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
104 entry->data = kaddr + (i * rb->seg_size);
105 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
106 bio_list_init(&entry->w_ctx.bios);
107 }
108
109 list_add_tail(&page_set->list, &rb->pages);
110 iter--;
111 } while (iter > 0);
112 up_write(&pblk_rb_lock);
113
114 #ifdef CONFIG_NVM_DEBUG
115 atomic_set(&rb->inflight_sync_point, 0);
116 #endif
117
118 /*
119 * Initialize rate-limiter, which controls access to the write buffer
120 * but user and GC I/O
121 */
122 pblk_rl_init(&pblk->rl, rb->nr_entries);
123
124 return 0;
125 }
126
127 /*
128 * pblk_rb_calculate_size -- calculate the size of the write buffer
129 */
130 unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
131 {
132 /* Alloc a write buffer that can at least fit 128 entries */
133 return (1 << max(get_count_order(nr_entries), 7));
134 }
135
136 void *pblk_rb_entries_ref(struct pblk_rb *rb)
137 {
138 return rb->entries;
139 }
140
141 static void clean_wctx(struct pblk_w_ctx *w_ctx)
142 {
143 int flags;
144
145 flags = READ_ONCE(w_ctx->flags);
146 WARN_ONCE(!(flags & PBLK_SUBMITTED_ENTRY),
147 "pblk: overwriting unsubmitted data\n");
148
149 /* Release flags on context. Protect from writes and reads */
150 smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
151 pblk_ppa_set_empty(&w_ctx->ppa);
152 w_ctx->lba = ADDR_EMPTY;
153 }
154
155 #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
156 #define pblk_rb_ring_space(rb, head, tail, size) \
157 (CIRC_SPACE(head, tail, size))
158
159 /*
160 * Buffer space is calculated with respect to the back pointer signaling
161 * synchronized entries to the media.
162 */
163 static unsigned int pblk_rb_space(struct pblk_rb *rb)
164 {
165 unsigned int mem = READ_ONCE(rb->mem);
166 unsigned int sync = READ_ONCE(rb->sync);
167
168 return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
169 }
170
171 /*
172 * Buffer count is calculated with respect to the submission entry signaling the
173 * entries that are available to send to the media
174 */
175 unsigned int pblk_rb_read_count(struct pblk_rb *rb)
176 {
177 unsigned int mem = READ_ONCE(rb->mem);
178 unsigned int subm = READ_ONCE(rb->subm);
179
180 return pblk_rb_ring_count(mem, subm, rb->nr_entries);
181 }
182
183 unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
184 {
185 unsigned int mem = READ_ONCE(rb->mem);
186 unsigned int sync = READ_ONCE(rb->sync);
187
188 return pblk_rb_ring_count(mem, sync, rb->nr_entries);
189 }
190
191 unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
192 {
193 unsigned int subm;
194
195 subm = READ_ONCE(rb->subm);
196 /* Commit read means updating submission pointer */
197 smp_store_release(&rb->subm,
198 (subm + nr_entries) & (rb->nr_entries - 1));
199
200 return subm;
201 }
202
203 static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int to_update)
204 {
205 struct pblk *pblk = container_of(rb, struct pblk, rwb);
206 struct pblk_line *line;
207 struct pblk_rb_entry *entry;
208 struct pblk_w_ctx *w_ctx;
209 unsigned int user_io = 0, gc_io = 0;
210 unsigned int i;
211 int flags;
212
213 for (i = 0; i < to_update; i++) {
214 entry = &rb->entries[rb->l2p_update];
215 w_ctx = &entry->w_ctx;
216
217 flags = READ_ONCE(entry->w_ctx.flags);
218 if (flags & PBLK_IOTYPE_USER)
219 user_io++;
220 else if (flags & PBLK_IOTYPE_GC)
221 gc_io++;
222 else
223 WARN(1, "pblk: unknown IO type\n");
224
225 pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
226 entry->cacheline);
227
228 line = &pblk->lines[pblk_tgt_ppa_to_line(w_ctx->ppa)];
229 kref_put(&line->ref, pblk_line_put);
230 clean_wctx(w_ctx);
231 rb->l2p_update = (rb->l2p_update + 1) & (rb->nr_entries - 1);
232 }
233
234 pblk_rl_out(&pblk->rl, user_io, gc_io);
235
236 return 0;
237 }
238
239 /*
240 * When we move the l2p_update pointer, we update the l2p table - lookups will
241 * point to the physical address instead of to the cacheline in the write buffer
242 * from this moment on.
243 */
244 static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
245 unsigned int mem, unsigned int sync)
246 {
247 unsigned int space, count;
248 int ret = 0;
249
250 lockdep_assert_held(&rb->w_lock);
251
252 /* Update l2p only as buffer entries are being overwritten */
253 space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
254 if (space > nr_entries)
255 goto out;
256
257 count = nr_entries - space;
258 /* l2p_update used exclusively under rb->w_lock */
259 ret = __pblk_rb_update_l2p(rb, count);
260
261 out:
262 return ret;
263 }
264
265 /*
266 * Update the l2p entry for all sectors stored on the write buffer. This means
267 * that all future lookups to the l2p table will point to a device address, not
268 * to the cacheline in the write buffer.
269 */
270 void pblk_rb_sync_l2p(struct pblk_rb *rb)
271 {
272 unsigned int sync;
273 unsigned int to_update;
274
275 spin_lock(&rb->w_lock);
276
277 /* Protect from reads and writes */
278 sync = smp_load_acquire(&rb->sync);
279
280 to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
281 __pblk_rb_update_l2p(rb, to_update);
282
283 spin_unlock(&rb->w_lock);
284 }
285
286 /*
287 * Write @nr_entries to ring buffer from @data buffer if there is enough space.
288 * Typically, 4KB data chunks coming from a bio will be copied to the ring
289 * buffer, thus the write will fail if not all incoming data can be copied.
290 *
291 */
292 static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
293 struct pblk_w_ctx w_ctx,
294 struct pblk_rb_entry *entry)
295 {
296 memcpy(entry->data, data, rb->seg_size);
297
298 entry->w_ctx.lba = w_ctx.lba;
299 entry->w_ctx.ppa = w_ctx.ppa;
300 }
301
302 void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
303 struct pblk_w_ctx w_ctx, unsigned int ring_pos)
304 {
305 struct pblk *pblk = container_of(rb, struct pblk, rwb);
306 struct pblk_rb_entry *entry;
307 int flags;
308
309 entry = &rb->entries[ring_pos];
310 flags = READ_ONCE(entry->w_ctx.flags);
311 #ifdef CONFIG_NVM_DEBUG
312 /* Caller must guarantee that the entry is free */
313 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
314 #endif
315
316 __pblk_rb_write_entry(rb, data, w_ctx, entry);
317
318 pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
319 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
320
321 /* Release flags on write context. Protect from writes */
322 smp_store_release(&entry->w_ctx.flags, flags);
323 }
324
325 void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
326 struct pblk_w_ctx w_ctx, struct pblk_line *line,
327 u64 paddr, unsigned int ring_pos)
328 {
329 struct pblk *pblk = container_of(rb, struct pblk, rwb);
330 struct pblk_rb_entry *entry;
331 int flags;
332
333 entry = &rb->entries[ring_pos];
334 flags = READ_ONCE(entry->w_ctx.flags);
335 #ifdef CONFIG_NVM_DEBUG
336 /* Caller must guarantee that the entry is free */
337 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
338 #endif
339
340 __pblk_rb_write_entry(rb, data, w_ctx, entry);
341
342 if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, line, paddr))
343 entry->w_ctx.lba = ADDR_EMPTY;
344
345 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
346
347 /* Release flags on write context. Protect from writes */
348 smp_store_release(&entry->w_ctx.flags, flags);
349 }
350
351 static int pblk_rb_sync_point_set(struct pblk_rb *rb, struct bio *bio,
352 unsigned int pos)
353 {
354 struct pblk_rb_entry *entry;
355 unsigned int subm, sync_point;
356
357 subm = READ_ONCE(rb->subm);
358
359 #ifdef CONFIG_NVM_DEBUG
360 atomic_inc(&rb->inflight_sync_point);
361 #endif
362
363 if (pos == subm)
364 return 0;
365
366 sync_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
367 entry = &rb->entries[sync_point];
368
369 /* Protect syncs */
370 smp_store_release(&rb->sync_point, sync_point);
371
372 if (!bio)
373 return 0;
374
375 spin_lock_irq(&rb->s_lock);
376 bio_list_add(&entry->w_ctx.bios, bio);
377 spin_unlock_irq(&rb->s_lock);
378
379 return 1;
380 }
381
382 static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
383 unsigned int *pos)
384 {
385 unsigned int mem;
386 unsigned int sync;
387
388 sync = READ_ONCE(rb->sync);
389 mem = READ_ONCE(rb->mem);
390
391 if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
392 return 0;
393
394 if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
395 return 0;
396
397 *pos = mem;
398
399 return 1;
400 }
401
402 static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
403 unsigned int *pos)
404 {
405 if (!__pblk_rb_may_write(rb, nr_entries, pos))
406 return 0;
407
408 /* Protect from read count */
409 smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
410 return 1;
411 }
412
413 void pblk_rb_flush(struct pblk_rb *rb)
414 {
415 struct pblk *pblk = container_of(rb, struct pblk, rwb);
416 unsigned int mem = READ_ONCE(rb->mem);
417
418 if (pblk_rb_sync_point_set(rb, NULL, mem))
419 return;
420
421 pblk_write_should_kick(pblk);
422 }
423
424 static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
425 unsigned int *pos, struct bio *bio,
426 int *io_ret)
427 {
428 unsigned int mem;
429
430 if (!__pblk_rb_may_write(rb, nr_entries, pos))
431 return 0;
432
433 mem = (*pos + nr_entries) & (rb->nr_entries - 1);
434 *io_ret = NVM_IO_DONE;
435
436 if (bio->bi_opf & REQ_PREFLUSH) {
437 struct pblk *pblk = container_of(rb, struct pblk, rwb);
438
439 #ifdef CONFIG_NVM_DEBUG
440 atomic_long_inc(&pblk->nr_flush);
441 #endif
442 if (pblk_rb_sync_point_set(&pblk->rwb, bio, mem))
443 *io_ret = NVM_IO_OK;
444 }
445
446 /* Protect from read count */
447 smp_store_release(&rb->mem, mem);
448
449 return 1;
450 }
451
452 /*
453 * Atomically check that (i) there is space on the write buffer for the
454 * incoming I/O, and (ii) the current I/O type has enough budget in the write
455 * buffer (rate-limiter).
456 */
457 int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
458 unsigned int nr_entries, unsigned int *pos)
459 {
460 struct pblk *pblk = container_of(rb, struct pblk, rwb);
461 int io_ret;
462
463 spin_lock(&rb->w_lock);
464 io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
465 if (io_ret) {
466 spin_unlock(&rb->w_lock);
467 return io_ret;
468 }
469
470 if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
471 spin_unlock(&rb->w_lock);
472 return NVM_IO_REQUEUE;
473 }
474
475 pblk_rl_user_in(&pblk->rl, nr_entries);
476 spin_unlock(&rb->w_lock);
477
478 return io_ret;
479 }
480
481 /*
482 * Look at pblk_rb_may_write_user comment
483 */
484 int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
485 unsigned int *pos)
486 {
487 struct pblk *pblk = container_of(rb, struct pblk, rwb);
488
489 spin_lock(&rb->w_lock);
490 if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
491 spin_unlock(&rb->w_lock);
492 return 0;
493 }
494
495 if (!pblk_rb_may_write(rb, nr_entries, pos)) {
496 spin_unlock(&rb->w_lock);
497 return 0;
498 }
499
500 pblk_rl_gc_in(&pblk->rl, nr_entries);
501 spin_unlock(&rb->w_lock);
502
503 return 1;
504 }
505
506 /*
507 * The caller of this function must ensure that the backpointer will not
508 * overwrite the entries passed on the list.
509 */
510 unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio,
511 struct list_head *list,
512 unsigned int max)
513 {
514 struct pblk_rb_entry *entry, *tentry;
515 struct page *page;
516 unsigned int read = 0;
517 int ret;
518
519 list_for_each_entry_safe(entry, tentry, list, index) {
520 if (read > max) {
521 pr_err("pblk: too many entries on list\n");
522 goto out;
523 }
524
525 page = virt_to_page(entry->data);
526 if (!page) {
527 pr_err("pblk: could not allocate write bio page\n");
528 goto out;
529 }
530
531 ret = bio_add_page(bio, page, rb->seg_size, 0);
532 if (ret != rb->seg_size) {
533 pr_err("pblk: could not add page to write bio\n");
534 goto out;
535 }
536
537 list_del(&entry->index);
538 read++;
539 }
540
541 out:
542 return read;
543 }
544
545 /*
546 * Read available entries on rb and add them to the given bio. To avoid a memory
547 * copy, a page reference to the write buffer is used to be added to the bio.
548 *
549 * This function is used by the write thread to form the write bio that will
550 * persist data on the write buffer to the media.
551 */
552 unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
553 unsigned int pos, unsigned int nr_entries,
554 unsigned int count)
555 {
556 struct pblk *pblk = container_of(rb, struct pblk, rwb);
557 struct request_queue *q = pblk->dev->q;
558 struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
559 struct bio *bio = rqd->bio;
560 struct pblk_rb_entry *entry;
561 struct page *page;
562 unsigned int pad = 0, to_read = nr_entries;
563 unsigned int i;
564 int flags;
565
566 if (count < nr_entries) {
567 pad = nr_entries - count;
568 to_read = count;
569 }
570
571 c_ctx->sentry = pos;
572 c_ctx->nr_valid = to_read;
573 c_ctx->nr_padded = pad;
574
575 for (i = 0; i < to_read; i++) {
576 entry = &rb->entries[pos];
577
578 /* A write has been allowed into the buffer, but data is still
579 * being copied to it. It is ok to busy wait.
580 */
581 try:
582 flags = READ_ONCE(entry->w_ctx.flags);
583 if (!(flags & PBLK_WRITTEN_DATA)) {
584 io_schedule();
585 goto try;
586 }
587
588 page = virt_to_page(entry->data);
589 if (!page) {
590 pr_err("pblk: could not allocate write bio page\n");
591 flags &= ~PBLK_WRITTEN_DATA;
592 flags |= PBLK_SUBMITTED_ENTRY;
593 /* Release flags on context. Protect from writes */
594 smp_store_release(&entry->w_ctx.flags, flags);
595 return NVM_IO_ERR;
596 }
597
598 if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
599 rb->seg_size) {
600 pr_err("pblk: could not add page to write bio\n");
601 flags &= ~PBLK_WRITTEN_DATA;
602 flags |= PBLK_SUBMITTED_ENTRY;
603 /* Release flags on context. Protect from writes */
604 smp_store_release(&entry->w_ctx.flags, flags);
605 return NVM_IO_ERR;
606 }
607
608 if (flags & PBLK_FLUSH_ENTRY) {
609 unsigned int sync_point;
610
611 sync_point = READ_ONCE(rb->sync_point);
612 if (sync_point == pos) {
613 /* Protect syncs */
614 smp_store_release(&rb->sync_point, EMPTY_ENTRY);
615 }
616
617 flags &= ~PBLK_FLUSH_ENTRY;
618 #ifdef CONFIG_NVM_DEBUG
619 atomic_dec(&rb->inflight_sync_point);
620 #endif
621 }
622
623 flags &= ~PBLK_WRITTEN_DATA;
624 flags |= PBLK_SUBMITTED_ENTRY;
625
626 /* Release flags on context. Protect from writes */
627 smp_store_release(&entry->w_ctx.flags, flags);
628
629 pos = (pos + 1) & (rb->nr_entries - 1);
630 }
631
632 if (pad) {
633 if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
634 pr_err("pblk: could not pad page in write bio\n");
635 return NVM_IO_ERR;
636 }
637 }
638
639 #ifdef CONFIG_NVM_DEBUG
640 atomic_long_add(pad, &((struct pblk *)
641 (container_of(rb, struct pblk, rwb)))->padded_writes);
642 #endif
643
644 return NVM_IO_OK;
645 }
646
647 /*
648 * Copy to bio only if the lba matches the one on the given cache entry.
649 * Otherwise, it means that the entry has been overwritten, and the bio should
650 * be directed to disk.
651 */
652 int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
653 struct ppa_addr ppa, int bio_iter, bool advanced_bio)
654 {
655 struct pblk *pblk = container_of(rb, struct pblk, rwb);
656 struct pblk_rb_entry *entry;
657 struct pblk_w_ctx *w_ctx;
658 struct ppa_addr l2p_ppa;
659 u64 pos = pblk_addr_to_cacheline(ppa);
660 void *data;
661 int flags;
662 int ret = 1;
663
664
665 #ifdef CONFIG_NVM_DEBUG
666 /* Caller must ensure that the access will not cause an overflow */
667 BUG_ON(pos >= rb->nr_entries);
668 #endif
669 entry = &rb->entries[pos];
670 w_ctx = &entry->w_ctx;
671 flags = READ_ONCE(w_ctx->flags);
672
673 spin_lock(&rb->w_lock);
674 spin_lock(&pblk->trans_lock);
675 l2p_ppa = pblk_trans_map_get(pblk, lba);
676 spin_unlock(&pblk->trans_lock);
677
678 /* Check if the entry has been overwritten or is scheduled to be */
679 if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
680 flags & PBLK_WRITABLE_ENTRY) {
681 ret = 0;
682 goto out;
683 }
684
685 /* Only advance the bio if it hasn't been advanced already. If advanced,
686 * this bio is at least a partial bio (i.e., it has partially been
687 * filled with data from the cache). If part of the data resides on the
688 * media, we will read later on
689 */
690 if (unlikely(!advanced_bio))
691 bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
692
693 data = bio_data(bio);
694 memcpy(data, entry->data, rb->seg_size);
695
696 out:
697 spin_unlock(&rb->w_lock);
698 return ret;
699 }
700
701 struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
702 {
703 unsigned int entry = pos & (rb->nr_entries - 1);
704
705 return &rb->entries[entry].w_ctx;
706 }
707
708 unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
709 __acquires(&rb->s_lock)
710 {
711 if (flags)
712 spin_lock_irqsave(&rb->s_lock, *flags);
713 else
714 spin_lock_irq(&rb->s_lock);
715
716 return rb->sync;
717 }
718
719 void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
720 __releases(&rb->s_lock)
721 {
722 lockdep_assert_held(&rb->s_lock);
723
724 if (flags)
725 spin_unlock_irqrestore(&rb->s_lock, *flags);
726 else
727 spin_unlock_irq(&rb->s_lock);
728 }
729
730 unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
731 {
732 unsigned int sync;
733 unsigned int i;
734
735 lockdep_assert_held(&rb->s_lock);
736
737 sync = READ_ONCE(rb->sync);
738
739 for (i = 0; i < nr_entries; i++)
740 sync = (sync + 1) & (rb->nr_entries - 1);
741
742 /* Protect from counts */
743 smp_store_release(&rb->sync, sync);
744
745 return sync;
746 }
747
748 unsigned int pblk_rb_sync_point_count(struct pblk_rb *rb)
749 {
750 unsigned int subm, sync_point;
751 unsigned int count;
752
753 /* Protect syncs */
754 sync_point = smp_load_acquire(&rb->sync_point);
755 if (sync_point == EMPTY_ENTRY)
756 return 0;
757
758 subm = READ_ONCE(rb->subm);
759
760 /* The sync point itself counts as a sector to sync */
761 count = pblk_rb_ring_count(sync_point, subm, rb->nr_entries) + 1;
762
763 return count;
764 }
765
766 /*
767 * Scan from the current position of the sync pointer to find the entry that
768 * corresponds to the given ppa. This is necessary since write requests can be
769 * completed out of order. The assumption is that the ppa is close to the sync
770 * pointer thus the search will not take long.
771 *
772 * The caller of this function must guarantee that the sync pointer will no
773 * reach the entry while it is using the metadata associated with it. With this
774 * assumption in mind, there is no need to take the sync lock.
775 */
776 struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
777 struct ppa_addr *ppa)
778 {
779 unsigned int sync, subm, count;
780 unsigned int i;
781
782 sync = READ_ONCE(rb->sync);
783 subm = READ_ONCE(rb->subm);
784 count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
785
786 for (i = 0; i < count; i++)
787 sync = (sync + 1) & (rb->nr_entries - 1);
788
789 return NULL;
790 }
791
792 int pblk_rb_tear_down_check(struct pblk_rb *rb)
793 {
794 struct pblk_rb_entry *entry;
795 int i;
796 int ret = 0;
797
798 spin_lock(&rb->w_lock);
799 spin_lock_irq(&rb->s_lock);
800
801 if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
802 (rb->sync == rb->l2p_update) &&
803 (rb->sync_point == EMPTY_ENTRY)) {
804 goto out;
805 }
806
807 if (!rb->entries) {
808 ret = 1;
809 goto out;
810 }
811
812 for (i = 0; i < rb->nr_entries; i++) {
813 entry = &rb->entries[i];
814
815 if (!entry->data) {
816 ret = 1;
817 goto out;
818 }
819 }
820
821 out:
822 spin_unlock(&rb->w_lock);
823 spin_unlock_irq(&rb->s_lock);
824
825 return ret;
826 }
827
828 unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
829 {
830 return (pos & (rb->nr_entries - 1));
831 }
832
833 int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
834 {
835 return (pos >= rb->nr_entries);
836 }
837
838 ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
839 {
840 struct pblk *pblk = container_of(rb, struct pblk, rwb);
841 struct pblk_c_ctx *c;
842 ssize_t offset;
843 int queued_entries = 0;
844
845 spin_lock_irq(&rb->s_lock);
846 list_for_each_entry(c, &pblk->compl_list, list)
847 queued_entries++;
848 spin_unlock_irq(&rb->s_lock);
849
850 if (rb->sync_point != EMPTY_ENTRY)
851 offset = scnprintf(buf, PAGE_SIZE,
852 "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
853 rb->nr_entries,
854 rb->mem,
855 rb->subm,
856 rb->sync,
857 rb->l2p_update,
858 #ifdef CONFIG_NVM_DEBUG
859 atomic_read(&rb->inflight_sync_point),
860 #else
861 0,
862 #endif
863 rb->sync_point,
864 pblk_rb_read_count(rb),
865 pblk_rb_space(rb),
866 pblk_rb_sync_point_count(rb),
867 queued_entries);
868 else
869 offset = scnprintf(buf, PAGE_SIZE,
870 "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
871 rb->nr_entries,
872 rb->mem,
873 rb->subm,
874 rb->sync,
875 rb->l2p_update,
876 #ifdef CONFIG_NVM_DEBUG
877 atomic_read(&rb->inflight_sync_point),
878 #else
879 0,
880 #endif
881 pblk_rb_read_count(rb),
882 pblk_rb_space(rb),
883 pblk_rb_sync_point_count(rb),
884 queued_entries);
885
886 return offset;
887 }