]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/lightnvm/pblk-rb.c
Merge branch 'nvme-4.13' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-artful-kernel.git] / drivers / lightnvm / pblk-rb.c
1 /*
2 * Copyright (C) 2016 CNEX Labs
3 * Initial release: Javier Gonzalez <javier@cnexlabs.com>
4 *
5 * Based upon the circular ringbuffer.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * pblk-rb.c - pblk's write buffer
17 */
18
19 #include <linux/circ_buf.h>
20
21 #include "pblk.h"
22
23 static DECLARE_RWSEM(pblk_rb_lock);
24
25 void pblk_rb_data_free(struct pblk_rb *rb)
26 {
27 struct pblk_rb_pages *p, *t;
28
29 down_write(&pblk_rb_lock);
30 list_for_each_entry_safe(p, t, &rb->pages, list) {
31 free_pages((unsigned long)page_address(p->pages), p->order);
32 list_del(&p->list);
33 kfree(p);
34 }
35 up_write(&pblk_rb_lock);
36 }
37
38 /*
39 * Initialize ring buffer. The data and metadata buffers must be previously
40 * allocated and their size must be a power of two
41 * (Documentation/circular-buffers.txt)
42 */
43 int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
44 unsigned int power_size, unsigned int power_seg_sz)
45 {
46 struct pblk *pblk = container_of(rb, struct pblk, rwb);
47 unsigned int init_entry = 0;
48 unsigned int alloc_order = power_size;
49 unsigned int max_order = MAX_ORDER - 1;
50 unsigned int order, iter;
51
52 down_write(&pblk_rb_lock);
53 rb->entries = rb_entry_base;
54 rb->seg_size = (1 << power_seg_sz);
55 rb->nr_entries = (1 << power_size);
56 rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
57 rb->sync_point = EMPTY_ENTRY;
58
59 spin_lock_init(&rb->w_lock);
60 spin_lock_init(&rb->s_lock);
61
62 INIT_LIST_HEAD(&rb->pages);
63
64 if (alloc_order >= max_order) {
65 order = max_order;
66 iter = (1 << (alloc_order - max_order));
67 } else {
68 order = alloc_order;
69 iter = 1;
70 }
71
72 do {
73 struct pblk_rb_entry *entry;
74 struct pblk_rb_pages *page_set;
75 void *kaddr;
76 unsigned long set_size;
77 int i;
78
79 page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
80 if (!page_set) {
81 up_write(&pblk_rb_lock);
82 return -ENOMEM;
83 }
84
85 page_set->order = order;
86 page_set->pages = alloc_pages(GFP_KERNEL, order);
87 if (!page_set->pages) {
88 kfree(page_set);
89 pblk_rb_data_free(rb);
90 up_write(&pblk_rb_lock);
91 return -ENOMEM;
92 }
93 kaddr = page_address(page_set->pages);
94
95 entry = &rb->entries[init_entry];
96 entry->data = kaddr;
97 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
98 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
99
100 set_size = (1 << order);
101 for (i = 1; i < set_size; i++) {
102 entry = &rb->entries[init_entry];
103 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
104 entry->data = kaddr + (i * rb->seg_size);
105 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
106 bio_list_init(&entry->w_ctx.bios);
107 }
108
109 list_add_tail(&page_set->list, &rb->pages);
110 iter--;
111 } while (iter > 0);
112 up_write(&pblk_rb_lock);
113
114 #ifdef CONFIG_NVM_DEBUG
115 atomic_set(&rb->inflight_sync_point, 0);
116 #endif
117
118 /*
119 * Initialize rate-limiter, which controls access to the write buffer
120 * but user and GC I/O
121 */
122 pblk_rl_init(&pblk->rl, rb->nr_entries);
123
124 return 0;
125 }
126
127 /*
128 * pblk_rb_calculate_size -- calculate the size of the write buffer
129 */
130 unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
131 {
132 /* Alloc a write buffer that can at least fit 128 entries */
133 return (1 << max(get_count_order(nr_entries), 7));
134 }
135
136 void *pblk_rb_entries_ref(struct pblk_rb *rb)
137 {
138 return rb->entries;
139 }
140
141 static void clean_wctx(struct pblk_w_ctx *w_ctx)
142 {
143 int flags;
144
145 try:
146 flags = READ_ONCE(w_ctx->flags);
147 if (!(flags & PBLK_SUBMITTED_ENTRY))
148 goto try;
149
150 /* Release flags on context. Protect from writes and reads */
151 smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
152 pblk_ppa_set_empty(&w_ctx->ppa);
153 w_ctx->lba = ADDR_EMPTY;
154 }
155
156 #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
157 #define pblk_rb_ring_space(rb, head, tail, size) \
158 (CIRC_SPACE(head, tail, size))
159
160 /*
161 * Buffer space is calculated with respect to the back pointer signaling
162 * synchronized entries to the media.
163 */
164 static unsigned int pblk_rb_space(struct pblk_rb *rb)
165 {
166 unsigned int mem = READ_ONCE(rb->mem);
167 unsigned int sync = READ_ONCE(rb->sync);
168
169 return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
170 }
171
172 /*
173 * Buffer count is calculated with respect to the submission entry signaling the
174 * entries that are available to send to the media
175 */
176 unsigned int pblk_rb_read_count(struct pblk_rb *rb)
177 {
178 unsigned int mem = READ_ONCE(rb->mem);
179 unsigned int subm = READ_ONCE(rb->subm);
180
181 return pblk_rb_ring_count(mem, subm, rb->nr_entries);
182 }
183
184 unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
185 {
186 unsigned int mem = READ_ONCE(rb->mem);
187 unsigned int sync = READ_ONCE(rb->sync);
188
189 return pblk_rb_ring_count(mem, sync, rb->nr_entries);
190 }
191
192 unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
193 {
194 unsigned int subm;
195
196 subm = READ_ONCE(rb->subm);
197 /* Commit read means updating submission pointer */
198 smp_store_release(&rb->subm,
199 (subm + nr_entries) & (rb->nr_entries - 1));
200
201 return subm;
202 }
203
204 static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int *l2p_upd,
205 unsigned int to_update)
206 {
207 struct pblk *pblk = container_of(rb, struct pblk, rwb);
208 struct pblk_line *line;
209 struct pblk_rb_entry *entry;
210 struct pblk_w_ctx *w_ctx;
211 unsigned int user_io = 0, gc_io = 0;
212 unsigned int i;
213 int flags;
214
215 for (i = 0; i < to_update; i++) {
216 entry = &rb->entries[*l2p_upd];
217 w_ctx = &entry->w_ctx;
218
219 flags = READ_ONCE(entry->w_ctx.flags);
220 if (flags & PBLK_IOTYPE_USER)
221 user_io++;
222 else if (flags & PBLK_IOTYPE_GC)
223 gc_io++;
224 else
225 WARN(1, "pblk: unknown IO type\n");
226
227 pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
228 entry->cacheline);
229
230 line = &pblk->lines[pblk_tgt_ppa_to_line(w_ctx->ppa)];
231 kref_put(&line->ref, pblk_line_put);
232 clean_wctx(w_ctx);
233 *l2p_upd = (*l2p_upd + 1) & (rb->nr_entries - 1);
234 }
235
236 pblk_rl_out(&pblk->rl, user_io, gc_io);
237
238 return 0;
239 }
240
241 /*
242 * When we move the l2p_update pointer, we update the l2p table - lookups will
243 * point to the physical address instead of to the cacheline in the write buffer
244 * from this moment on.
245 */
246 static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
247 unsigned int mem, unsigned int sync)
248 {
249 unsigned int space, count;
250 int ret = 0;
251
252 lockdep_assert_held(&rb->w_lock);
253
254 /* Update l2p only as buffer entries are being overwritten */
255 space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
256 if (space > nr_entries)
257 goto out;
258
259 count = nr_entries - space;
260 /* l2p_update used exclusively under rb->w_lock */
261 ret = __pblk_rb_update_l2p(rb, &rb->l2p_update, count);
262
263 out:
264 return ret;
265 }
266
267 /*
268 * Update the l2p entry for all sectors stored on the write buffer. This means
269 * that all future lookups to the l2p table will point to a device address, not
270 * to the cacheline in the write buffer.
271 */
272 void pblk_rb_sync_l2p(struct pblk_rb *rb)
273 {
274 unsigned int sync;
275 unsigned int to_update;
276
277 spin_lock(&rb->w_lock);
278
279 /* Protect from reads and writes */
280 sync = smp_load_acquire(&rb->sync);
281
282 to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
283 __pblk_rb_update_l2p(rb, &rb->l2p_update, to_update);
284
285 spin_unlock(&rb->w_lock);
286 }
287
288 /*
289 * Write @nr_entries to ring buffer from @data buffer if there is enough space.
290 * Typically, 4KB data chunks coming from a bio will be copied to the ring
291 * buffer, thus the write will fail if not all incoming data can be copied.
292 *
293 */
294 static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
295 struct pblk_w_ctx w_ctx,
296 struct pblk_rb_entry *entry)
297 {
298 memcpy(entry->data, data, rb->seg_size);
299
300 entry->w_ctx.lba = w_ctx.lba;
301 entry->w_ctx.ppa = w_ctx.ppa;
302 }
303
304 void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
305 struct pblk_w_ctx w_ctx, unsigned int ring_pos)
306 {
307 struct pblk *pblk = container_of(rb, struct pblk, rwb);
308 struct pblk_rb_entry *entry;
309 int flags;
310
311 entry = &rb->entries[ring_pos];
312 flags = READ_ONCE(entry->w_ctx.flags);
313 #ifdef CONFIG_NVM_DEBUG
314 /* Caller must guarantee that the entry is free */
315 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
316 #endif
317
318 __pblk_rb_write_entry(rb, data, w_ctx, entry);
319
320 pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
321 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
322
323 /* Release flags on write context. Protect from writes */
324 smp_store_release(&entry->w_ctx.flags, flags);
325 }
326
327 void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
328 struct pblk_w_ctx w_ctx, struct pblk_line *gc_line,
329 unsigned int ring_pos)
330 {
331 struct pblk *pblk = container_of(rb, struct pblk, rwb);
332 struct pblk_rb_entry *entry;
333 int flags;
334
335 entry = &rb->entries[ring_pos];
336 flags = READ_ONCE(entry->w_ctx.flags);
337 #ifdef CONFIG_NVM_DEBUG
338 /* Caller must guarantee that the entry is free */
339 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
340 #endif
341
342 __pblk_rb_write_entry(rb, data, w_ctx, entry);
343
344 if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, gc_line))
345 entry->w_ctx.lba = ADDR_EMPTY;
346
347 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
348
349 /* Release flags on write context. Protect from writes */
350 smp_store_release(&entry->w_ctx.flags, flags);
351 }
352
353 static int pblk_rb_sync_point_set(struct pblk_rb *rb, struct bio *bio,
354 unsigned int pos)
355 {
356 struct pblk_rb_entry *entry;
357 unsigned int subm, sync_point;
358 int flags;
359
360 subm = READ_ONCE(rb->subm);
361
362 #ifdef CONFIG_NVM_DEBUG
363 atomic_inc(&rb->inflight_sync_point);
364 #endif
365
366 if (pos == subm)
367 return 0;
368
369 sync_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
370 entry = &rb->entries[sync_point];
371
372 flags = READ_ONCE(entry->w_ctx.flags);
373 flags |= PBLK_FLUSH_ENTRY;
374
375 /* Release flags on context. Protect from writes */
376 smp_store_release(&entry->w_ctx.flags, flags);
377
378 /* Protect syncs */
379 smp_store_release(&rb->sync_point, sync_point);
380
381 if (!bio)
382 return 0;
383
384 spin_lock_irq(&rb->s_lock);
385 bio_list_add(&entry->w_ctx.bios, bio);
386 spin_unlock_irq(&rb->s_lock);
387
388 return 1;
389 }
390
391 static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
392 unsigned int *pos)
393 {
394 unsigned int mem;
395 unsigned int sync;
396
397 sync = READ_ONCE(rb->sync);
398 mem = READ_ONCE(rb->mem);
399
400 if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
401 return 0;
402
403 if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
404 return 0;
405
406 *pos = mem;
407
408 return 1;
409 }
410
411 static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
412 unsigned int *pos)
413 {
414 if (!__pblk_rb_may_write(rb, nr_entries, pos))
415 return 0;
416
417 /* Protect from read count */
418 smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
419 return 1;
420 }
421
422 void pblk_rb_flush(struct pblk_rb *rb)
423 {
424 struct pblk *pblk = container_of(rb, struct pblk, rwb);
425 unsigned int mem = READ_ONCE(rb->mem);
426
427 if (pblk_rb_sync_point_set(rb, NULL, mem))
428 return;
429
430 pblk_write_should_kick(pblk);
431 }
432
433 static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
434 unsigned int *pos, struct bio *bio,
435 int *io_ret)
436 {
437 unsigned int mem;
438
439 if (!__pblk_rb_may_write(rb, nr_entries, pos))
440 return 0;
441
442 mem = (*pos + nr_entries) & (rb->nr_entries - 1);
443 *io_ret = NVM_IO_DONE;
444
445 if (bio->bi_opf & REQ_PREFLUSH) {
446 struct pblk *pblk = container_of(rb, struct pblk, rwb);
447
448 #ifdef CONFIG_NVM_DEBUG
449 atomic_long_inc(&pblk->nr_flush);
450 #endif
451 if (pblk_rb_sync_point_set(&pblk->rwb, bio, mem))
452 *io_ret = NVM_IO_OK;
453 }
454
455 /* Protect from read count */
456 smp_store_release(&rb->mem, mem);
457 return 1;
458 }
459
460 /*
461 * Atomically check that (i) there is space on the write buffer for the
462 * incoming I/O, and (ii) the current I/O type has enough budget in the write
463 * buffer (rate-limiter).
464 */
465 int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
466 unsigned int nr_entries, unsigned int *pos)
467 {
468 struct pblk *pblk = container_of(rb, struct pblk, rwb);
469 int io_ret;
470
471 spin_lock(&rb->w_lock);
472 io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
473 if (io_ret) {
474 spin_unlock(&rb->w_lock);
475 return io_ret;
476 }
477
478 if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
479 spin_unlock(&rb->w_lock);
480 return NVM_IO_REQUEUE;
481 }
482
483 pblk_rl_user_in(&pblk->rl, nr_entries);
484 spin_unlock(&rb->w_lock);
485
486 return io_ret;
487 }
488
489 /*
490 * Look at pblk_rb_may_write_user comment
491 */
492 int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
493 unsigned int *pos)
494 {
495 struct pblk *pblk = container_of(rb, struct pblk, rwb);
496
497 spin_lock(&rb->w_lock);
498 if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
499 spin_unlock(&rb->w_lock);
500 return 0;
501 }
502
503 if (!pblk_rb_may_write(rb, nr_entries, pos)) {
504 spin_unlock(&rb->w_lock);
505 return 0;
506 }
507
508 pblk_rl_gc_in(&pblk->rl, nr_entries);
509 spin_unlock(&rb->w_lock);
510
511 return 1;
512 }
513
514 /*
515 * The caller of this function must ensure that the backpointer will not
516 * overwrite the entries passed on the list.
517 */
518 unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio,
519 struct list_head *list,
520 unsigned int max)
521 {
522 struct pblk_rb_entry *entry, *tentry;
523 struct page *page;
524 unsigned int read = 0;
525 int ret;
526
527 list_for_each_entry_safe(entry, tentry, list, index) {
528 if (read > max) {
529 pr_err("pblk: too many entries on list\n");
530 goto out;
531 }
532
533 page = virt_to_page(entry->data);
534 if (!page) {
535 pr_err("pblk: could not allocate write bio page\n");
536 goto out;
537 }
538
539 ret = bio_add_page(bio, page, rb->seg_size, 0);
540 if (ret != rb->seg_size) {
541 pr_err("pblk: could not add page to write bio\n");
542 goto out;
543 }
544
545 list_del(&entry->index);
546 read++;
547 }
548
549 out:
550 return read;
551 }
552
553 /*
554 * Read available entries on rb and add them to the given bio. To avoid a memory
555 * copy, a page reference to the write buffer is used to be added to the bio.
556 *
557 * This function is used by the write thread to form the write bio that will
558 * persist data on the write buffer to the media.
559 */
560 unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
561 struct bio *bio, unsigned int pos,
562 unsigned int nr_entries, unsigned int count)
563 {
564 struct pblk *pblk = container_of(rb, struct pblk, rwb);
565 struct request_queue *q = pblk->dev->q;
566 struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
567 struct pblk_rb_entry *entry;
568 struct page *page;
569 unsigned int pad = 0, to_read = nr_entries;
570 unsigned int i;
571 int flags;
572
573 if (count < nr_entries) {
574 pad = nr_entries - count;
575 to_read = count;
576 }
577
578 c_ctx->sentry = pos;
579 c_ctx->nr_valid = to_read;
580 c_ctx->nr_padded = pad;
581
582 for (i = 0; i < to_read; i++) {
583 entry = &rb->entries[pos];
584
585 /* A write has been allowed into the buffer, but data is still
586 * being copied to it. It is ok to busy wait.
587 */
588 try:
589 flags = READ_ONCE(entry->w_ctx.flags);
590 if (!(flags & PBLK_WRITTEN_DATA)) {
591 io_schedule();
592 goto try;
593 }
594
595 page = virt_to_page(entry->data);
596 if (!page) {
597 pr_err("pblk: could not allocate write bio page\n");
598 flags &= ~PBLK_WRITTEN_DATA;
599 flags |= PBLK_SUBMITTED_ENTRY;
600 /* Release flags on context. Protect from writes */
601 smp_store_release(&entry->w_ctx.flags, flags);
602 return NVM_IO_ERR;
603 }
604
605 if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
606 rb->seg_size) {
607 pr_err("pblk: could not add page to write bio\n");
608 flags &= ~PBLK_WRITTEN_DATA;
609 flags |= PBLK_SUBMITTED_ENTRY;
610 /* Release flags on context. Protect from writes */
611 smp_store_release(&entry->w_ctx.flags, flags);
612 return NVM_IO_ERR;
613 }
614
615 if (flags & PBLK_FLUSH_ENTRY) {
616 unsigned int sync_point;
617
618 sync_point = READ_ONCE(rb->sync_point);
619 if (sync_point == pos) {
620 /* Protect syncs */
621 smp_store_release(&rb->sync_point, EMPTY_ENTRY);
622 }
623
624 flags &= ~PBLK_FLUSH_ENTRY;
625 #ifdef CONFIG_NVM_DEBUG
626 atomic_dec(&rb->inflight_sync_point);
627 #endif
628 }
629
630 flags &= ~PBLK_WRITTEN_DATA;
631 flags |= PBLK_SUBMITTED_ENTRY;
632
633 /* Release flags on context. Protect from writes */
634 smp_store_release(&entry->w_ctx.flags, flags);
635
636 pos = (pos + 1) & (rb->nr_entries - 1);
637 }
638
639 if (pad) {
640 if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
641 pr_err("pblk: could not pad page in write bio\n");
642 return NVM_IO_ERR;
643 }
644 }
645
646 #ifdef CONFIG_NVM_DEBUG
647 atomic_long_add(pad, &((struct pblk *)
648 (container_of(rb, struct pblk, rwb)))->padded_writes);
649 #endif
650
651 return NVM_IO_OK;
652 }
653
654 /*
655 * Copy to bio only if the lba matches the one on the given cache entry.
656 * Otherwise, it means that the entry has been overwritten, and the bio should
657 * be directed to disk.
658 */
659 int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
660 struct ppa_addr ppa, int bio_iter, bool advanced_bio)
661 {
662 struct pblk *pblk = container_of(rb, struct pblk, rwb);
663 struct pblk_rb_entry *entry;
664 struct pblk_w_ctx *w_ctx;
665 struct ppa_addr l2p_ppa;
666 u64 pos = pblk_addr_to_cacheline(ppa);
667 void *data;
668 int flags;
669 int ret = 1;
670
671
672 #ifdef CONFIG_NVM_DEBUG
673 /* Caller must ensure that the access will not cause an overflow */
674 BUG_ON(pos >= rb->nr_entries);
675 #endif
676 entry = &rb->entries[pos];
677 w_ctx = &entry->w_ctx;
678 flags = READ_ONCE(w_ctx->flags);
679
680 spin_lock(&rb->w_lock);
681 spin_lock(&pblk->trans_lock);
682 l2p_ppa = pblk_trans_map_get(pblk, lba);
683 spin_unlock(&pblk->trans_lock);
684
685 /* Check if the entry has been overwritten or is scheduled to be */
686 if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
687 flags & PBLK_WRITABLE_ENTRY) {
688 ret = 0;
689 goto out;
690 }
691
692 /* Only advance the bio if it hasn't been advanced already. If advanced,
693 * this bio is at least a partial bio (i.e., it has partially been
694 * filled with data from the cache). If part of the data resides on the
695 * media, we will read later on
696 */
697 if (unlikely(!advanced_bio))
698 bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
699
700 data = bio_data(bio);
701 memcpy(data, entry->data, rb->seg_size);
702
703 out:
704 spin_unlock(&rb->w_lock);
705 return ret;
706 }
707
708 struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
709 {
710 unsigned int entry = pos & (rb->nr_entries - 1);
711
712 return &rb->entries[entry].w_ctx;
713 }
714
715 unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
716 __acquires(&rb->s_lock)
717 {
718 if (flags)
719 spin_lock_irqsave(&rb->s_lock, *flags);
720 else
721 spin_lock_irq(&rb->s_lock);
722
723 return rb->sync;
724 }
725
726 void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
727 __releases(&rb->s_lock)
728 {
729 lockdep_assert_held(&rb->s_lock);
730
731 if (flags)
732 spin_unlock_irqrestore(&rb->s_lock, *flags);
733 else
734 spin_unlock_irq(&rb->s_lock);
735 }
736
737 unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
738 {
739 unsigned int sync;
740 unsigned int i;
741
742 lockdep_assert_held(&rb->s_lock);
743
744 sync = READ_ONCE(rb->sync);
745
746 for (i = 0; i < nr_entries; i++)
747 sync = (sync + 1) & (rb->nr_entries - 1);
748
749 /* Protect from counts */
750 smp_store_release(&rb->sync, sync);
751
752 return sync;
753 }
754
755 unsigned int pblk_rb_sync_point_count(struct pblk_rb *rb)
756 {
757 unsigned int subm, sync_point;
758 unsigned int count;
759
760 /* Protect syncs */
761 sync_point = smp_load_acquire(&rb->sync_point);
762 if (sync_point == EMPTY_ENTRY)
763 return 0;
764
765 subm = READ_ONCE(rb->subm);
766
767 /* The sync point itself counts as a sector to sync */
768 count = pblk_rb_ring_count(sync_point, subm, rb->nr_entries) + 1;
769
770 return count;
771 }
772
773 /*
774 * Scan from the current position of the sync pointer to find the entry that
775 * corresponds to the given ppa. This is necessary since write requests can be
776 * completed out of order. The assumption is that the ppa is close to the sync
777 * pointer thus the search will not take long.
778 *
779 * The caller of this function must guarantee that the sync pointer will no
780 * reach the entry while it is using the metadata associated with it. With this
781 * assumption in mind, there is no need to take the sync lock.
782 */
783 struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
784 struct ppa_addr *ppa)
785 {
786 unsigned int sync, subm, count;
787 unsigned int i;
788
789 sync = READ_ONCE(rb->sync);
790 subm = READ_ONCE(rb->subm);
791 count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
792
793 for (i = 0; i < count; i++)
794 sync = (sync + 1) & (rb->nr_entries - 1);
795
796 return NULL;
797 }
798
799 int pblk_rb_tear_down_check(struct pblk_rb *rb)
800 {
801 struct pblk_rb_entry *entry;
802 int i;
803 int ret = 0;
804
805 spin_lock(&rb->w_lock);
806 spin_lock_irq(&rb->s_lock);
807
808 if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
809 (rb->sync == rb->l2p_update) &&
810 (rb->sync_point == EMPTY_ENTRY)) {
811 goto out;
812 }
813
814 if (!rb->entries) {
815 ret = 1;
816 goto out;
817 }
818
819 for (i = 0; i < rb->nr_entries; i++) {
820 entry = &rb->entries[i];
821
822 if (!entry->data) {
823 ret = 1;
824 goto out;
825 }
826 }
827
828 out:
829 spin_unlock(&rb->w_lock);
830 spin_unlock_irq(&rb->s_lock);
831
832 return ret;
833 }
834
835 unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
836 {
837 return (pos & (rb->nr_entries - 1));
838 }
839
840 int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
841 {
842 return (pos >= rb->nr_entries);
843 }
844
845 ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
846 {
847 struct pblk *pblk = container_of(rb, struct pblk, rwb);
848 struct pblk_c_ctx *c;
849 ssize_t offset;
850 int queued_entries = 0;
851
852 spin_lock_irq(&rb->s_lock);
853 list_for_each_entry(c, &pblk->compl_list, list)
854 queued_entries++;
855 spin_unlock_irq(&rb->s_lock);
856
857 if (rb->sync_point != EMPTY_ENTRY)
858 offset = scnprintf(buf, PAGE_SIZE,
859 "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
860 rb->nr_entries,
861 rb->mem,
862 rb->subm,
863 rb->sync,
864 rb->l2p_update,
865 #ifdef CONFIG_NVM_DEBUG
866 atomic_read(&rb->inflight_sync_point),
867 #else
868 0,
869 #endif
870 rb->sync_point,
871 pblk_rb_read_count(rb),
872 pblk_rb_space(rb),
873 pblk_rb_sync_point_count(rb),
874 queued_entries);
875 else
876 offset = scnprintf(buf, PAGE_SIZE,
877 "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
878 rb->nr_entries,
879 rb->mem,
880 rb->subm,
881 rb->sync,
882 rb->l2p_update,
883 #ifdef CONFIG_NVM_DEBUG
884 atomic_read(&rb->inflight_sync_point),
885 #else
886 0,
887 #endif
888 pblk_rb_read_count(rb),
889 pblk_rb_space(rb),
890 pblk_rb_sync_point_count(rb),
891 queued_entries);
892
893 return offset;
894 }