]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/lightnvm/rrpc.c
lightnvm: do not assume sequential lun alloc.
[mirror_ubuntu-artful-kernel.git] / drivers / lightnvm / rrpc.c
1 /*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52 {
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67 {
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116 return (rblk->next_page == rrpc->dev->sec_per_blk);
117 }
118
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
121 {
122 struct nvm_block *blk = rblk->parent;
123 int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
124
125 return lun_blk * rrpc->dev->sec_per_blk;
126 }
127
128 /* Calculate global addr for the given block */
129 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
130 {
131 struct nvm_block *blk = rblk->parent;
132
133 return blk->id * rrpc->dev->sec_per_blk;
134 }
135
136 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
137 struct ppa_addr r)
138 {
139 struct ppa_addr l;
140 int secs, pgs, blks, luns;
141 sector_t ppa = r.ppa;
142
143 l.ppa = 0;
144
145 div_u64_rem(ppa, dev->sec_per_pg, &secs);
146 l.g.sec = secs;
147
148 sector_div(ppa, dev->sec_per_pg);
149 div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
150 l.g.pg = pgs;
151
152 sector_div(ppa, dev->pgs_per_blk);
153 div_u64_rem(ppa, dev->blks_per_lun, &blks);
154 l.g.blk = blks;
155
156 sector_div(ppa, dev->blks_per_lun);
157 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
158 l.g.lun = luns;
159
160 sector_div(ppa, dev->luns_per_chnl);
161 l.g.ch = ppa;
162
163 return l;
164 }
165
166 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
167 {
168 struct ppa_addr paddr;
169
170 paddr.ppa = addr;
171 return linear_to_generic_addr(dev, paddr);
172 }
173
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
176 {
177 struct rrpc *rrpc = rlun->rrpc;
178
179 BUG_ON(!rblk);
180
181 if (rlun->cur) {
182 spin_lock(&rlun->cur->lock);
183 WARN_ON(!block_is_full(rrpc, rlun->cur));
184 spin_unlock(&rlun->cur->lock);
185 }
186 rlun->cur = rblk;
187 }
188
189 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
190 unsigned long flags)
191 {
192 struct nvm_lun *lun = rlun->parent;
193 struct nvm_block *blk;
194 struct rrpc_block *rblk;
195
196 spin_lock(&lun->lock);
197 blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
198 if (!blk) {
199 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200 spin_unlock(&lun->lock);
201 return NULL;
202 }
203
204 rblk = rrpc_get_rblk(rlun, blk->id);
205 list_add_tail(&rblk->list, &rlun->open_list);
206 spin_unlock(&lun->lock);
207
208 blk->priv = rblk;
209 bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
210 rblk->next_page = 0;
211 rblk->nr_invalid_pages = 0;
212 atomic_set(&rblk->data_cmnt_size, 0);
213
214 return rblk;
215 }
216
217 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
218 {
219 struct rrpc_lun *rlun = rblk->rlun;
220 struct nvm_lun *lun = rlun->parent;
221
222 spin_lock(&lun->lock);
223 nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
224 list_del(&rblk->list);
225 spin_unlock(&lun->lock);
226 }
227
228 static void rrpc_put_blks(struct rrpc *rrpc)
229 {
230 struct rrpc_lun *rlun;
231 int i;
232
233 for (i = 0; i < rrpc->nr_luns; i++) {
234 rlun = &rrpc->luns[i];
235 if (rlun->cur)
236 rrpc_put_blk(rrpc, rlun->cur);
237 if (rlun->gc_cur)
238 rrpc_put_blk(rrpc, rlun->gc_cur);
239 }
240 }
241
242 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
243 {
244 int next = atomic_inc_return(&rrpc->next_lun);
245
246 return &rrpc->luns[next % rrpc->nr_luns];
247 }
248
249 static void rrpc_gc_kick(struct rrpc *rrpc)
250 {
251 struct rrpc_lun *rlun;
252 unsigned int i;
253
254 for (i = 0; i < rrpc->nr_luns; i++) {
255 rlun = &rrpc->luns[i];
256 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
257 }
258 }
259
260 /*
261 * timed GC every interval.
262 */
263 static void rrpc_gc_timer(unsigned long data)
264 {
265 struct rrpc *rrpc = (struct rrpc *)data;
266
267 rrpc_gc_kick(rrpc);
268 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
269 }
270
271 static void rrpc_end_sync_bio(struct bio *bio)
272 {
273 struct completion *waiting = bio->bi_private;
274
275 if (bio->bi_error)
276 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
277
278 complete(waiting);
279 }
280
281 /*
282 * rrpc_move_valid_pages -- migrate live data off the block
283 * @rrpc: the 'rrpc' structure
284 * @block: the block from which to migrate live pages
285 *
286 * Description:
287 * GC algorithms may call this function to migrate remaining live
288 * pages off the block prior to erasing it. This function blocks
289 * further execution until the operation is complete.
290 */
291 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
292 {
293 struct request_queue *q = rrpc->dev->q;
294 struct rrpc_rev_addr *rev;
295 struct nvm_rq *rqd;
296 struct bio *bio;
297 struct page *page;
298 int slot;
299 int nr_sec_per_blk = rrpc->dev->sec_per_blk;
300 u64 phys_addr;
301 DECLARE_COMPLETION_ONSTACK(wait);
302
303 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
304 return 0;
305
306 bio = bio_alloc(GFP_NOIO, 1);
307 if (!bio) {
308 pr_err("nvm: could not alloc bio to gc\n");
309 return -ENOMEM;
310 }
311
312 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
313 if (!page) {
314 bio_put(bio);
315 return -ENOMEM;
316 }
317
318 while ((slot = find_first_zero_bit(rblk->invalid_pages,
319 nr_sec_per_blk)) < nr_sec_per_blk) {
320
321 /* Lock laddr */
322 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
323
324 try:
325 spin_lock(&rrpc->rev_lock);
326 /* Get logical address from physical to logical table */
327 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
328 /* already updated by previous regular write */
329 if (rev->addr == ADDR_EMPTY) {
330 spin_unlock(&rrpc->rev_lock);
331 continue;
332 }
333
334 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
335 if (IS_ERR_OR_NULL(rqd)) {
336 spin_unlock(&rrpc->rev_lock);
337 schedule();
338 goto try;
339 }
340
341 spin_unlock(&rrpc->rev_lock);
342
343 /* Perform read to do GC */
344 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
345 bio->bi_rw = READ;
346 bio->bi_private = &wait;
347 bio->bi_end_io = rrpc_end_sync_bio;
348
349 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
350 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
351
352 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
353 pr_err("rrpc: gc read failed.\n");
354 rrpc_inflight_laddr_release(rrpc, rqd);
355 goto finished;
356 }
357 wait_for_completion_io(&wait);
358 if (bio->bi_error) {
359 rrpc_inflight_laddr_release(rrpc, rqd);
360 goto finished;
361 }
362
363 bio_reset(bio);
364 reinit_completion(&wait);
365
366 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
367 bio->bi_rw = WRITE;
368 bio->bi_private = &wait;
369 bio->bi_end_io = rrpc_end_sync_bio;
370
371 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
372
373 /* turn the command around and write the data back to a new
374 * address
375 */
376 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
377 pr_err("rrpc: gc write failed.\n");
378 rrpc_inflight_laddr_release(rrpc, rqd);
379 goto finished;
380 }
381 wait_for_completion_io(&wait);
382
383 rrpc_inflight_laddr_release(rrpc, rqd);
384 if (bio->bi_error)
385 goto finished;
386
387 bio_reset(bio);
388 }
389
390 finished:
391 mempool_free(page, rrpc->page_pool);
392 bio_put(bio);
393
394 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
395 pr_err("nvm: failed to garbage collect block\n");
396 return -EIO;
397 }
398
399 return 0;
400 }
401
402 static void rrpc_block_gc(struct work_struct *work)
403 {
404 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
405 ws_gc);
406 struct rrpc *rrpc = gcb->rrpc;
407 struct rrpc_block *rblk = gcb->rblk;
408 struct rrpc_lun *rlun = rblk->rlun;
409 struct nvm_dev *dev = rrpc->dev;
410
411 mempool_free(gcb, rrpc->gcb_pool);
412 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
413
414 if (rrpc_move_valid_pages(rrpc, rblk))
415 goto put_back;
416
417 if (nvm_erase_blk(dev, rblk->parent))
418 goto put_back;
419
420 rrpc_put_blk(rrpc, rblk);
421
422 return;
423
424 put_back:
425 spin_lock(&rlun->lock);
426 list_add_tail(&rblk->prio, &rlun->prio_list);
427 spin_unlock(&rlun->lock);
428 }
429
430 /* the block with highest number of invalid pages, will be in the beginning
431 * of the list
432 */
433 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
434 struct rrpc_block *rb)
435 {
436 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
437 return ra;
438
439 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
440 }
441
442 /* linearly find the block with highest number of invalid pages
443 * requires lun->lock
444 */
445 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
446 {
447 struct list_head *prio_list = &rlun->prio_list;
448 struct rrpc_block *rblock, *max;
449
450 BUG_ON(list_empty(prio_list));
451
452 max = list_first_entry(prio_list, struct rrpc_block, prio);
453 list_for_each_entry(rblock, prio_list, prio)
454 max = rblock_max_invalid(max, rblock);
455
456 return max;
457 }
458
459 static void rrpc_lun_gc(struct work_struct *work)
460 {
461 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
462 struct rrpc *rrpc = rlun->rrpc;
463 struct nvm_lun *lun = rlun->parent;
464 struct rrpc_block_gc *gcb;
465 unsigned int nr_blocks_need;
466
467 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
468
469 if (nr_blocks_need < rrpc->nr_luns)
470 nr_blocks_need = rrpc->nr_luns;
471
472 spin_lock(&rlun->lock);
473 while (nr_blocks_need > lun->nr_free_blocks &&
474 !list_empty(&rlun->prio_list)) {
475 struct rrpc_block *rblock = block_prio_find_max(rlun);
476 struct nvm_block *block = rblock->parent;
477
478 if (!rblock->nr_invalid_pages)
479 break;
480
481 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
482 if (!gcb)
483 break;
484
485 list_del_init(&rblock->prio);
486
487 BUG_ON(!block_is_full(rrpc, rblock));
488
489 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
490
491 gcb->rrpc = rrpc;
492 gcb->rblk = rblock;
493 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
494
495 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
496
497 nr_blocks_need--;
498 }
499 spin_unlock(&rlun->lock);
500
501 /* TODO: Hint that request queue can be started again */
502 }
503
504 static void rrpc_gc_queue(struct work_struct *work)
505 {
506 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
507 ws_gc);
508 struct rrpc *rrpc = gcb->rrpc;
509 struct rrpc_block *rblk = gcb->rblk;
510 struct rrpc_lun *rlun = rblk->rlun;
511 struct nvm_lun *lun = rblk->parent->lun;
512 struct nvm_block *blk = rblk->parent;
513
514 spin_lock(&rlun->lock);
515 list_add_tail(&rblk->prio, &rlun->prio_list);
516 spin_unlock(&rlun->lock);
517
518 spin_lock(&lun->lock);
519 lun->nr_open_blocks--;
520 lun->nr_closed_blocks++;
521 blk->state &= ~NVM_BLK_ST_OPEN;
522 blk->state |= NVM_BLK_ST_CLOSED;
523 list_move_tail(&rblk->list, &rlun->closed_list);
524 spin_unlock(&lun->lock);
525
526 mempool_free(gcb, rrpc->gcb_pool);
527 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
528 rblk->parent->id);
529 }
530
531 static const struct block_device_operations rrpc_fops = {
532 .owner = THIS_MODULE,
533 };
534
535 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
536 {
537 unsigned int i;
538 struct rrpc_lun *rlun, *max_free;
539
540 if (!is_gc)
541 return get_next_lun(rrpc);
542
543 /* during GC, we don't care about RR, instead we want to make
544 * sure that we maintain evenness between the block luns.
545 */
546 max_free = &rrpc->luns[0];
547 /* prevent GC-ing lun from devouring pages of a lun with
548 * little free blocks. We don't take the lock as we only need an
549 * estimate.
550 */
551 rrpc_for_each_lun(rrpc, rlun, i) {
552 if (rlun->parent->nr_free_blocks >
553 max_free->parent->nr_free_blocks)
554 max_free = rlun;
555 }
556
557 return max_free;
558 }
559
560 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
561 struct rrpc_block *rblk, u64 paddr)
562 {
563 struct rrpc_addr *gp;
564 struct rrpc_rev_addr *rev;
565
566 BUG_ON(laddr >= rrpc->nr_sects);
567
568 gp = &rrpc->trans_map[laddr];
569 spin_lock(&rrpc->rev_lock);
570 if (gp->rblk)
571 rrpc_page_invalidate(rrpc, gp);
572
573 gp->addr = paddr;
574 gp->rblk = rblk;
575
576 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
577 rev->addr = laddr;
578 spin_unlock(&rrpc->rev_lock);
579
580 return gp;
581 }
582
583 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
584 {
585 u64 addr = ADDR_EMPTY;
586
587 spin_lock(&rblk->lock);
588 if (block_is_full(rrpc, rblk))
589 goto out;
590
591 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
592
593 rblk->next_page++;
594 out:
595 spin_unlock(&rblk->lock);
596 return addr;
597 }
598
599 /* Simple round-robin Logical to physical address translation.
600 *
601 * Retrieve the mapping using the active append point. Then update the ap for
602 * the next write to the disk.
603 *
604 * Returns rrpc_addr with the physical address and block. Remember to return to
605 * rrpc->addr_cache when request is finished.
606 */
607 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
608 int is_gc)
609 {
610 struct rrpc_lun *rlun;
611 struct rrpc_block *rblk;
612 struct nvm_lun *lun;
613 u64 paddr;
614
615 rlun = rrpc_get_lun_rr(rrpc, is_gc);
616 lun = rlun->parent;
617
618 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
619 return NULL;
620
621 spin_lock(&rlun->lock);
622
623 rblk = rlun->cur;
624 retry:
625 paddr = rrpc_alloc_addr(rrpc, rblk);
626
627 if (paddr == ADDR_EMPTY) {
628 rblk = rrpc_get_blk(rrpc, rlun, 0);
629 if (rblk) {
630 rrpc_set_lun_cur(rlun, rblk);
631 goto retry;
632 }
633
634 if (is_gc) {
635 /* retry from emergency gc block */
636 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
637 if (paddr == ADDR_EMPTY) {
638 rblk = rrpc_get_blk(rrpc, rlun, 1);
639 if (!rblk) {
640 pr_err("rrpc: no more blocks");
641 goto err;
642 }
643
644 rlun->gc_cur = rblk;
645 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
646 }
647 rblk = rlun->gc_cur;
648 }
649 }
650
651 spin_unlock(&rlun->lock);
652 return rrpc_update_map(rrpc, laddr, rblk, paddr);
653 err:
654 spin_unlock(&rlun->lock);
655 return NULL;
656 }
657
658 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
659 {
660 struct rrpc_block_gc *gcb;
661
662 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
663 if (!gcb) {
664 pr_err("rrpc: unable to queue block for gc.");
665 return;
666 }
667
668 gcb->rrpc = rrpc;
669 gcb->rblk = rblk;
670
671 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
672 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
673 }
674
675 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
676 sector_t laddr, uint8_t npages)
677 {
678 struct rrpc_addr *p;
679 struct rrpc_block *rblk;
680 struct nvm_lun *lun;
681 int cmnt_size, i;
682
683 for (i = 0; i < npages; i++) {
684 p = &rrpc->trans_map[laddr + i];
685 rblk = p->rblk;
686 lun = rblk->parent->lun;
687
688 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
689 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
690 rrpc_run_gc(rrpc, rblk);
691 }
692 }
693
694 static void rrpc_end_io(struct nvm_rq *rqd)
695 {
696 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
697 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
698 uint8_t npages = rqd->nr_pages;
699 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
700
701 if (bio_data_dir(rqd->bio) == WRITE)
702 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
703
704 bio_put(rqd->bio);
705
706 if (rrqd->flags & NVM_IOTYPE_GC)
707 return;
708
709 rrpc_unlock_rq(rrpc, rqd);
710
711 if (npages > 1)
712 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
713
714 mempool_free(rqd, rrpc->rq_pool);
715 }
716
717 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
718 struct nvm_rq *rqd, unsigned long flags, int npages)
719 {
720 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
721 struct rrpc_addr *gp;
722 sector_t laddr = rrpc_get_laddr(bio);
723 int is_gc = flags & NVM_IOTYPE_GC;
724 int i;
725
726 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
727 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
728 return NVM_IO_REQUEUE;
729 }
730
731 for (i = 0; i < npages; i++) {
732 /* We assume that mapping occurs at 4KB granularity */
733 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
734 gp = &rrpc->trans_map[laddr + i];
735
736 if (gp->rblk) {
737 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
738 gp->addr);
739 } else {
740 BUG_ON(is_gc);
741 rrpc_unlock_laddr(rrpc, r);
742 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
743 rqd->dma_ppa_list);
744 return NVM_IO_DONE;
745 }
746 }
747
748 rqd->opcode = NVM_OP_HBREAD;
749
750 return NVM_IO_OK;
751 }
752
753 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
754 unsigned long flags)
755 {
756 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
757 int is_gc = flags & NVM_IOTYPE_GC;
758 sector_t laddr = rrpc_get_laddr(bio);
759 struct rrpc_addr *gp;
760
761 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
762 return NVM_IO_REQUEUE;
763
764 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
765 gp = &rrpc->trans_map[laddr];
766
767 if (gp->rblk) {
768 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
769 } else {
770 BUG_ON(is_gc);
771 rrpc_unlock_rq(rrpc, rqd);
772 return NVM_IO_DONE;
773 }
774
775 rqd->opcode = NVM_OP_HBREAD;
776 rrqd->addr = gp;
777
778 return NVM_IO_OK;
779 }
780
781 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
782 struct nvm_rq *rqd, unsigned long flags, int npages)
783 {
784 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
785 struct rrpc_addr *p;
786 sector_t laddr = rrpc_get_laddr(bio);
787 int is_gc = flags & NVM_IOTYPE_GC;
788 int i;
789
790 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
791 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
792 return NVM_IO_REQUEUE;
793 }
794
795 for (i = 0; i < npages; i++) {
796 /* We assume that mapping occurs at 4KB granularity */
797 p = rrpc_map_page(rrpc, laddr + i, is_gc);
798 if (!p) {
799 BUG_ON(is_gc);
800 rrpc_unlock_laddr(rrpc, r);
801 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
802 rqd->dma_ppa_list);
803 rrpc_gc_kick(rrpc);
804 return NVM_IO_REQUEUE;
805 }
806
807 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
808 p->addr);
809 }
810
811 rqd->opcode = NVM_OP_HBWRITE;
812
813 return NVM_IO_OK;
814 }
815
816 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
817 struct nvm_rq *rqd, unsigned long flags)
818 {
819 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
820 struct rrpc_addr *p;
821 int is_gc = flags & NVM_IOTYPE_GC;
822 sector_t laddr = rrpc_get_laddr(bio);
823
824 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
825 return NVM_IO_REQUEUE;
826
827 p = rrpc_map_page(rrpc, laddr, is_gc);
828 if (!p) {
829 BUG_ON(is_gc);
830 rrpc_unlock_rq(rrpc, rqd);
831 rrpc_gc_kick(rrpc);
832 return NVM_IO_REQUEUE;
833 }
834
835 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
836 rqd->opcode = NVM_OP_HBWRITE;
837 rrqd->addr = p;
838
839 return NVM_IO_OK;
840 }
841
842 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
843 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
844 {
845 if (npages > 1) {
846 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
847 &rqd->dma_ppa_list);
848 if (!rqd->ppa_list) {
849 pr_err("rrpc: not able to allocate ppa list\n");
850 return NVM_IO_ERR;
851 }
852
853 if (bio_rw(bio) == WRITE)
854 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
855 npages);
856
857 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
858 }
859
860 if (bio_rw(bio) == WRITE)
861 return rrpc_write_rq(rrpc, bio, rqd, flags);
862
863 return rrpc_read_rq(rrpc, bio, rqd, flags);
864 }
865
866 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
867 struct nvm_rq *rqd, unsigned long flags)
868 {
869 int err;
870 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
871 uint8_t nr_pages = rrpc_get_pages(bio);
872 int bio_size = bio_sectors(bio) << 9;
873
874 if (bio_size < rrpc->dev->sec_size)
875 return NVM_IO_ERR;
876 else if (bio_size > rrpc->dev->max_rq_size)
877 return NVM_IO_ERR;
878
879 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
880 if (err)
881 return err;
882
883 bio_get(bio);
884 rqd->bio = bio;
885 rqd->ins = &rrpc->instance;
886 rqd->nr_pages = nr_pages;
887 rrq->flags = flags;
888
889 err = nvm_submit_io(rrpc->dev, rqd);
890 if (err) {
891 pr_err("rrpc: I/O submission failed: %d\n", err);
892 bio_put(bio);
893 if (!(flags & NVM_IOTYPE_GC)) {
894 rrpc_unlock_rq(rrpc, rqd);
895 if (rqd->nr_pages > 1)
896 nvm_dev_dma_free(rrpc->dev,
897 rqd->ppa_list, rqd->dma_ppa_list);
898 }
899 return NVM_IO_ERR;
900 }
901
902 return NVM_IO_OK;
903 }
904
905 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
906 {
907 struct rrpc *rrpc = q->queuedata;
908 struct nvm_rq *rqd;
909 int err;
910
911 if (bio->bi_rw & REQ_DISCARD) {
912 rrpc_discard(rrpc, bio);
913 return BLK_QC_T_NONE;
914 }
915
916 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
917 if (!rqd) {
918 pr_err_ratelimited("rrpc: not able to queue bio.");
919 bio_io_error(bio);
920 return BLK_QC_T_NONE;
921 }
922 memset(rqd, 0, sizeof(struct nvm_rq));
923
924 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
925 switch (err) {
926 case NVM_IO_OK:
927 return BLK_QC_T_NONE;
928 case NVM_IO_ERR:
929 bio_io_error(bio);
930 break;
931 case NVM_IO_DONE:
932 bio_endio(bio);
933 break;
934 case NVM_IO_REQUEUE:
935 spin_lock(&rrpc->bio_lock);
936 bio_list_add(&rrpc->requeue_bios, bio);
937 spin_unlock(&rrpc->bio_lock);
938 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
939 break;
940 }
941
942 mempool_free(rqd, rrpc->rq_pool);
943 return BLK_QC_T_NONE;
944 }
945
946 static void rrpc_requeue(struct work_struct *work)
947 {
948 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
949 struct bio_list bios;
950 struct bio *bio;
951
952 bio_list_init(&bios);
953
954 spin_lock(&rrpc->bio_lock);
955 bio_list_merge(&bios, &rrpc->requeue_bios);
956 bio_list_init(&rrpc->requeue_bios);
957 spin_unlock(&rrpc->bio_lock);
958
959 while ((bio = bio_list_pop(&bios)))
960 rrpc_make_rq(rrpc->disk->queue, bio);
961 }
962
963 static void rrpc_gc_free(struct rrpc *rrpc)
964 {
965 if (rrpc->krqd_wq)
966 destroy_workqueue(rrpc->krqd_wq);
967
968 if (rrpc->kgc_wq)
969 destroy_workqueue(rrpc->kgc_wq);
970 }
971
972 static int rrpc_gc_init(struct rrpc *rrpc)
973 {
974 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
975 rrpc->nr_luns);
976 if (!rrpc->krqd_wq)
977 return -ENOMEM;
978
979 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
980 if (!rrpc->kgc_wq)
981 return -ENOMEM;
982
983 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
984
985 return 0;
986 }
987
988 static void rrpc_map_free(struct rrpc *rrpc)
989 {
990 vfree(rrpc->rev_trans_map);
991 vfree(rrpc->trans_map);
992 }
993
994 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
995 {
996 struct rrpc *rrpc = (struct rrpc *)private;
997 struct nvm_dev *dev = rrpc->dev;
998 struct rrpc_addr *addr = rrpc->trans_map + slba;
999 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1000 u64 elba = slba + nlb;
1001 u64 i;
1002
1003 if (unlikely(elba > dev->total_secs)) {
1004 pr_err("nvm: L2P data from device is out of bounds!\n");
1005 return -EINVAL;
1006 }
1007
1008 for (i = 0; i < nlb; i++) {
1009 u64 pba = le64_to_cpu(entries[i]);
1010 unsigned int mod;
1011 /* LNVM treats address-spaces as silos, LBA and PBA are
1012 * equally large and zero-indexed.
1013 */
1014 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1015 pr_err("nvm: L2P data entry is out of bounds!\n");
1016 return -EINVAL;
1017 }
1018
1019 /* Address zero is a special one. The first page on a disk is
1020 * protected. As it often holds internal device boot
1021 * information.
1022 */
1023 if (!pba)
1024 continue;
1025
1026 div_u64_rem(pba, rrpc->nr_sects, &mod);
1027
1028 addr[i].addr = pba;
1029 raddr[mod].addr = slba + i;
1030 }
1031
1032 return 0;
1033 }
1034
1035 static int rrpc_map_init(struct rrpc *rrpc)
1036 {
1037 struct nvm_dev *dev = rrpc->dev;
1038 sector_t i;
1039 int ret;
1040
1041 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1042 if (!rrpc->trans_map)
1043 return -ENOMEM;
1044
1045 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1046 * rrpc->nr_sects);
1047 if (!rrpc->rev_trans_map)
1048 return -ENOMEM;
1049
1050 for (i = 0; i < rrpc->nr_sects; i++) {
1051 struct rrpc_addr *p = &rrpc->trans_map[i];
1052 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1053
1054 p->addr = ADDR_EMPTY;
1055 r->addr = ADDR_EMPTY;
1056 }
1057
1058 if (!dev->ops->get_l2p_tbl)
1059 return 0;
1060
1061 /* Bring up the mapping table from device */
1062 ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1063 rrpc_l2p_update, rrpc);
1064 if (ret) {
1065 pr_err("nvm: rrpc: could not read L2P table.\n");
1066 return -EINVAL;
1067 }
1068
1069 return 0;
1070 }
1071
1072 /* Minimum pages needed within a lun */
1073 #define PAGE_POOL_SIZE 16
1074 #define ADDR_POOL_SIZE 64
1075
1076 static int rrpc_core_init(struct rrpc *rrpc)
1077 {
1078 down_write(&rrpc_lock);
1079 if (!rrpc_gcb_cache) {
1080 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1081 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1082 if (!rrpc_gcb_cache) {
1083 up_write(&rrpc_lock);
1084 return -ENOMEM;
1085 }
1086
1087 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1088 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1089 0, 0, NULL);
1090 if (!rrpc_rq_cache) {
1091 kmem_cache_destroy(rrpc_gcb_cache);
1092 up_write(&rrpc_lock);
1093 return -ENOMEM;
1094 }
1095 }
1096 up_write(&rrpc_lock);
1097
1098 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1099 if (!rrpc->page_pool)
1100 return -ENOMEM;
1101
1102 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1103 rrpc_gcb_cache);
1104 if (!rrpc->gcb_pool)
1105 return -ENOMEM;
1106
1107 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1108 if (!rrpc->rq_pool)
1109 return -ENOMEM;
1110
1111 spin_lock_init(&rrpc->inflights.lock);
1112 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1113
1114 return 0;
1115 }
1116
1117 static void rrpc_core_free(struct rrpc *rrpc)
1118 {
1119 mempool_destroy(rrpc->page_pool);
1120 mempool_destroy(rrpc->gcb_pool);
1121 mempool_destroy(rrpc->rq_pool);
1122 }
1123
1124 static void rrpc_luns_free(struct rrpc *rrpc)
1125 {
1126 struct nvm_dev *dev = rrpc->dev;
1127 struct nvm_lun *lun;
1128 struct rrpc_lun *rlun;
1129 int i;
1130
1131 if (!rrpc->luns)
1132 return;
1133
1134 for (i = 0; i < rrpc->nr_luns; i++) {
1135 rlun = &rrpc->luns[i];
1136 lun = rlun->parent;
1137 if (!lun)
1138 break;
1139 dev->mt->release_lun(dev, lun->id);
1140 vfree(rlun->blocks);
1141 }
1142
1143 kfree(rrpc->luns);
1144 }
1145
1146 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1147 {
1148 struct nvm_dev *dev = rrpc->dev;
1149 struct rrpc_lun *rlun;
1150 int i, j, ret = -EINVAL;
1151
1152 if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1153 pr_err("rrpc: number of pages per block too high.");
1154 return -EINVAL;
1155 }
1156
1157 spin_lock_init(&rrpc->rev_lock);
1158
1159 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1160 GFP_KERNEL);
1161 if (!rrpc->luns)
1162 return -ENOMEM;
1163
1164 /* 1:1 mapping */
1165 for (i = 0; i < rrpc->nr_luns; i++) {
1166 int lunid = lun_begin + i;
1167 struct nvm_lun *lun;
1168
1169 if (dev->mt->reserve_lun(dev, lunid)) {
1170 pr_err("rrpc: lun %u is already allocated\n", lunid);
1171 goto err;
1172 }
1173
1174 lun = dev->mt->get_lun(dev, lunid);
1175 if (!lun)
1176 goto err;
1177
1178 rlun = &rrpc->luns[i];
1179 rlun->parent = lun;
1180 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1181 rrpc->dev->blks_per_lun);
1182 if (!rlun->blocks) {
1183 ret = -ENOMEM;
1184 goto err;
1185 }
1186
1187 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1188 struct rrpc_block *rblk = &rlun->blocks[j];
1189 struct nvm_block *blk = &lun->blocks[j];
1190
1191 rblk->parent = blk;
1192 rblk->rlun = rlun;
1193 INIT_LIST_HEAD(&rblk->prio);
1194 spin_lock_init(&rblk->lock);
1195 }
1196
1197 rlun->rrpc = rrpc;
1198 INIT_LIST_HEAD(&rlun->prio_list);
1199 INIT_LIST_HEAD(&rlun->open_list);
1200 INIT_LIST_HEAD(&rlun->closed_list);
1201
1202 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1203 spin_lock_init(&rlun->lock);
1204 }
1205
1206 return 0;
1207 err:
1208 return ret;
1209 }
1210
1211 /* returns 0 on success and stores the beginning address in *begin */
1212 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1213 {
1214 struct nvm_dev *dev = rrpc->dev;
1215 struct nvmm_type *mt = dev->mt;
1216 sector_t size = rrpc->nr_sects * dev->sec_size;
1217 int ret;
1218
1219 size >>= 9;
1220
1221 ret = mt->get_area(dev, begin, size);
1222 if (!ret)
1223 *begin >>= (ilog2(dev->sec_size) - 9);
1224
1225 return ret;
1226 }
1227
1228 static void rrpc_area_free(struct rrpc *rrpc)
1229 {
1230 struct nvm_dev *dev = rrpc->dev;
1231 struct nvmm_type *mt = dev->mt;
1232 sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1233
1234 mt->put_area(dev, begin);
1235 }
1236
1237 static void rrpc_free(struct rrpc *rrpc)
1238 {
1239 rrpc_gc_free(rrpc);
1240 rrpc_map_free(rrpc);
1241 rrpc_core_free(rrpc);
1242 rrpc_luns_free(rrpc);
1243 rrpc_area_free(rrpc);
1244
1245 kfree(rrpc);
1246 }
1247
1248 static void rrpc_exit(void *private)
1249 {
1250 struct rrpc *rrpc = private;
1251
1252 del_timer(&rrpc->gc_timer);
1253
1254 flush_workqueue(rrpc->krqd_wq);
1255 flush_workqueue(rrpc->kgc_wq);
1256
1257 rrpc_free(rrpc);
1258 }
1259
1260 static sector_t rrpc_capacity(void *private)
1261 {
1262 struct rrpc *rrpc = private;
1263 struct nvm_dev *dev = rrpc->dev;
1264 sector_t reserved, provisioned;
1265
1266 /* cur, gc, and two emergency blocks for each lun */
1267 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1268 provisioned = rrpc->nr_sects - reserved;
1269
1270 if (reserved > rrpc->nr_sects) {
1271 pr_err("rrpc: not enough space available to expose storage.\n");
1272 return 0;
1273 }
1274
1275 sector_div(provisioned, 10);
1276 return provisioned * 9 * NR_PHY_IN_LOG;
1277 }
1278
1279 /*
1280 * Looks up the logical address from reverse trans map and check if its valid by
1281 * comparing the logical to physical address with the physical address.
1282 * Returns 0 on free, otherwise 1 if in use
1283 */
1284 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1285 {
1286 struct nvm_dev *dev = rrpc->dev;
1287 int offset;
1288 struct rrpc_addr *laddr;
1289 u64 bpaddr, paddr, pladdr;
1290
1291 bpaddr = block_to_rel_addr(rrpc, rblk);
1292 for (offset = 0; offset < dev->sec_per_blk; offset++) {
1293 paddr = bpaddr + offset;
1294
1295 pladdr = rrpc->rev_trans_map[paddr].addr;
1296 if (pladdr == ADDR_EMPTY)
1297 continue;
1298
1299 laddr = &rrpc->trans_map[pladdr];
1300
1301 if (paddr == laddr->addr) {
1302 laddr->rblk = rblk;
1303 } else {
1304 set_bit(offset, rblk->invalid_pages);
1305 rblk->nr_invalid_pages++;
1306 }
1307 }
1308 }
1309
1310 static int rrpc_blocks_init(struct rrpc *rrpc)
1311 {
1312 struct rrpc_lun *rlun;
1313 struct rrpc_block *rblk;
1314 int lun_iter, blk_iter;
1315
1316 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1317 rlun = &rrpc->luns[lun_iter];
1318
1319 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1320 blk_iter++) {
1321 rblk = &rlun->blocks[blk_iter];
1322 rrpc_block_map_update(rrpc, rblk);
1323 }
1324 }
1325
1326 return 0;
1327 }
1328
1329 static int rrpc_luns_configure(struct rrpc *rrpc)
1330 {
1331 struct rrpc_lun *rlun;
1332 struct rrpc_block *rblk;
1333 int i;
1334
1335 for (i = 0; i < rrpc->nr_luns; i++) {
1336 rlun = &rrpc->luns[i];
1337
1338 rblk = rrpc_get_blk(rrpc, rlun, 0);
1339 if (!rblk)
1340 goto err;
1341
1342 rrpc_set_lun_cur(rlun, rblk);
1343
1344 /* Emergency gc block */
1345 rblk = rrpc_get_blk(rrpc, rlun, 1);
1346 if (!rblk)
1347 goto err;
1348 rlun->gc_cur = rblk;
1349 }
1350
1351 return 0;
1352 err:
1353 rrpc_put_blks(rrpc);
1354 return -EINVAL;
1355 }
1356
1357 static struct nvm_tgt_type tt_rrpc;
1358
1359 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1360 int lun_begin, int lun_end)
1361 {
1362 struct request_queue *bqueue = dev->q;
1363 struct request_queue *tqueue = tdisk->queue;
1364 struct rrpc *rrpc;
1365 sector_t soffset;
1366 int ret;
1367
1368 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1369 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1370 dev->identity.dom);
1371 return ERR_PTR(-EINVAL);
1372 }
1373
1374 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1375 if (!rrpc)
1376 return ERR_PTR(-ENOMEM);
1377
1378 rrpc->instance.tt = &tt_rrpc;
1379 rrpc->dev = dev;
1380 rrpc->disk = tdisk;
1381
1382 bio_list_init(&rrpc->requeue_bios);
1383 spin_lock_init(&rrpc->bio_lock);
1384 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1385
1386 rrpc->nr_luns = lun_end - lun_begin + 1;
1387 rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
1388 rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1389
1390 /* simple round-robin strategy */
1391 atomic_set(&rrpc->next_lun, -1);
1392
1393 ret = rrpc_area_init(rrpc, &soffset);
1394 if (ret < 0) {
1395 pr_err("nvm: rrpc: could not initialize area\n");
1396 return ERR_PTR(ret);
1397 }
1398 rrpc->soffset = soffset;
1399
1400 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1401 if (ret) {
1402 pr_err("nvm: rrpc: could not initialize luns\n");
1403 goto err;
1404 }
1405
1406 rrpc->poffset = dev->sec_per_lun * lun_begin;
1407 rrpc->lun_offset = lun_begin;
1408
1409 ret = rrpc_core_init(rrpc);
1410 if (ret) {
1411 pr_err("nvm: rrpc: could not initialize core\n");
1412 goto err;
1413 }
1414
1415 ret = rrpc_map_init(rrpc);
1416 if (ret) {
1417 pr_err("nvm: rrpc: could not initialize maps\n");
1418 goto err;
1419 }
1420
1421 ret = rrpc_blocks_init(rrpc);
1422 if (ret) {
1423 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1424 goto err;
1425 }
1426
1427 ret = rrpc_luns_configure(rrpc);
1428 if (ret) {
1429 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1430 goto err;
1431 }
1432
1433 ret = rrpc_gc_init(rrpc);
1434 if (ret) {
1435 pr_err("nvm: rrpc: could not initialize gc\n");
1436 goto err;
1437 }
1438
1439 /* inherit the size from the underlying device */
1440 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1441 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1442
1443 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1444 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1445
1446 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1447
1448 return rrpc;
1449 err:
1450 rrpc_free(rrpc);
1451 return ERR_PTR(ret);
1452 }
1453
1454 /* round robin, page-based FTL, and cost-based GC */
1455 static struct nvm_tgt_type tt_rrpc = {
1456 .name = "rrpc",
1457 .version = {1, 0, 0},
1458
1459 .make_rq = rrpc_make_rq,
1460 .capacity = rrpc_capacity,
1461 .end_io = rrpc_end_io,
1462
1463 .init = rrpc_init,
1464 .exit = rrpc_exit,
1465 };
1466
1467 static int __init rrpc_module_init(void)
1468 {
1469 return nvm_register_tgt_type(&tt_rrpc);
1470 }
1471
1472 static void rrpc_module_exit(void)
1473 {
1474 nvm_unregister_tgt_type(&tt_rrpc);
1475 }
1476
1477 module_init(rrpc_module_init);
1478 module_exit(rrpc_module_exit);
1479 MODULE_LICENSE("GPL v2");
1480 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");