]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/lightnvm/rrpc.c
ffcfee6684ba21bb51940661a5f972b42492f19a
[mirror_ubuntu-artful-kernel.git] / drivers / lightnvm / rrpc.c
1 /*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52 {
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67 {
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116 return (rblk->next_page == rrpc->dev->sec_per_blk);
117 }
118
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
121 {
122 struct nvm_block *blk = rblk->parent;
123 int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
124
125 return lun_blk * rrpc->dev->sec_per_blk;
126 }
127
128 /* Calculate global addr for the given block */
129 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
130 {
131 struct nvm_block *blk = rblk->parent;
132
133 return blk->id * rrpc->dev->sec_per_blk;
134 }
135
136 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
137 struct ppa_addr r)
138 {
139 struct ppa_addr l;
140 int secs, pgs, blks, luns;
141 sector_t ppa = r.ppa;
142
143 l.ppa = 0;
144
145 div_u64_rem(ppa, dev->sec_per_pg, &secs);
146 l.g.sec = secs;
147
148 sector_div(ppa, dev->sec_per_pg);
149 div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
150 l.g.pg = pgs;
151
152 sector_div(ppa, dev->pgs_per_blk);
153 div_u64_rem(ppa, dev->blks_per_lun, &blks);
154 l.g.blk = blks;
155
156 sector_div(ppa, dev->blks_per_lun);
157 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
158 l.g.lun = luns;
159
160 sector_div(ppa, dev->luns_per_chnl);
161 l.g.ch = ppa;
162
163 return l;
164 }
165
166 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
167 {
168 struct ppa_addr paddr;
169
170 paddr.ppa = addr;
171 return linear_to_generic_addr(dev, paddr);
172 }
173
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
176 {
177 struct rrpc *rrpc = rlun->rrpc;
178
179 BUG_ON(!rblk);
180
181 if (rlun->cur) {
182 spin_lock(&rlun->cur->lock);
183 WARN_ON(!block_is_full(rrpc, rlun->cur));
184 spin_unlock(&rlun->cur->lock);
185 }
186 rlun->cur = rblk;
187 }
188
189 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
190 unsigned long flags)
191 {
192 struct nvm_lun *lun = rlun->parent;
193 struct nvm_block *blk;
194 struct rrpc_block *rblk;
195
196 spin_lock(&lun->lock);
197 blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
198 if (!blk) {
199 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200 spin_unlock(&lun->lock);
201 return NULL;
202 }
203
204 rblk = rrpc_get_rblk(rlun, blk->id);
205 list_add_tail(&rblk->list, &rlun->open_list);
206 spin_unlock(&lun->lock);
207
208 blk->priv = rblk;
209 bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
210 rblk->next_page = 0;
211 rblk->nr_invalid_pages = 0;
212 atomic_set(&rblk->data_cmnt_size, 0);
213
214 return rblk;
215 }
216
217 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
218 {
219 struct rrpc_lun *rlun = rblk->rlun;
220 struct nvm_lun *lun = rlun->parent;
221
222 spin_lock(&lun->lock);
223 nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
224 list_del(&rblk->list);
225 spin_unlock(&lun->lock);
226 }
227
228 static void rrpc_put_blks(struct rrpc *rrpc)
229 {
230 struct rrpc_lun *rlun;
231 int i;
232
233 for (i = 0; i < rrpc->nr_luns; i++) {
234 rlun = &rrpc->luns[i];
235 if (rlun->cur)
236 rrpc_put_blk(rrpc, rlun->cur);
237 if (rlun->gc_cur)
238 rrpc_put_blk(rrpc, rlun->gc_cur);
239 }
240 }
241
242 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
243 {
244 int next = atomic_inc_return(&rrpc->next_lun);
245
246 return &rrpc->luns[next % rrpc->nr_luns];
247 }
248
249 static void rrpc_gc_kick(struct rrpc *rrpc)
250 {
251 struct rrpc_lun *rlun;
252 unsigned int i;
253
254 for (i = 0; i < rrpc->nr_luns; i++) {
255 rlun = &rrpc->luns[i];
256 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
257 }
258 }
259
260 /*
261 * timed GC every interval.
262 */
263 static void rrpc_gc_timer(unsigned long data)
264 {
265 struct rrpc *rrpc = (struct rrpc *)data;
266
267 rrpc_gc_kick(rrpc);
268 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
269 }
270
271 static void rrpc_end_sync_bio(struct bio *bio)
272 {
273 struct completion *waiting = bio->bi_private;
274
275 if (bio->bi_error)
276 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
277
278 complete(waiting);
279 }
280
281 /*
282 * rrpc_move_valid_pages -- migrate live data off the block
283 * @rrpc: the 'rrpc' structure
284 * @block: the block from which to migrate live pages
285 *
286 * Description:
287 * GC algorithms may call this function to migrate remaining live
288 * pages off the block prior to erasing it. This function blocks
289 * further execution until the operation is complete.
290 */
291 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
292 {
293 struct request_queue *q = rrpc->dev->q;
294 struct rrpc_rev_addr *rev;
295 struct nvm_rq *rqd;
296 struct bio *bio;
297 struct page *page;
298 int slot;
299 int nr_sec_per_blk = rrpc->dev->sec_per_blk;
300 u64 phys_addr;
301 DECLARE_COMPLETION_ONSTACK(wait);
302
303 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
304 return 0;
305
306 bio = bio_alloc(GFP_NOIO, 1);
307 if (!bio) {
308 pr_err("nvm: could not alloc bio to gc\n");
309 return -ENOMEM;
310 }
311
312 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
313 if (!page) {
314 bio_put(bio);
315 return -ENOMEM;
316 }
317
318 while ((slot = find_first_zero_bit(rblk->invalid_pages,
319 nr_sec_per_blk)) < nr_sec_per_blk) {
320
321 /* Lock laddr */
322 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
323
324 try:
325 spin_lock(&rrpc->rev_lock);
326 /* Get logical address from physical to logical table */
327 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
328 /* already updated by previous regular write */
329 if (rev->addr == ADDR_EMPTY) {
330 spin_unlock(&rrpc->rev_lock);
331 continue;
332 }
333
334 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
335 if (IS_ERR_OR_NULL(rqd)) {
336 spin_unlock(&rrpc->rev_lock);
337 schedule();
338 goto try;
339 }
340
341 spin_unlock(&rrpc->rev_lock);
342
343 /* Perform read to do GC */
344 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
345 bio->bi_rw = READ;
346 bio->bi_private = &wait;
347 bio->bi_end_io = rrpc_end_sync_bio;
348
349 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
350 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
351
352 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
353 pr_err("rrpc: gc read failed.\n");
354 rrpc_inflight_laddr_release(rrpc, rqd);
355 goto finished;
356 }
357 wait_for_completion_io(&wait);
358 if (bio->bi_error) {
359 rrpc_inflight_laddr_release(rrpc, rqd);
360 goto finished;
361 }
362
363 bio_reset(bio);
364 reinit_completion(&wait);
365
366 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
367 bio->bi_rw = WRITE;
368 bio->bi_private = &wait;
369 bio->bi_end_io = rrpc_end_sync_bio;
370
371 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
372
373 /* turn the command around and write the data back to a new
374 * address
375 */
376 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
377 pr_err("rrpc: gc write failed.\n");
378 rrpc_inflight_laddr_release(rrpc, rqd);
379 goto finished;
380 }
381 wait_for_completion_io(&wait);
382
383 rrpc_inflight_laddr_release(rrpc, rqd);
384 if (bio->bi_error)
385 goto finished;
386
387 bio_reset(bio);
388 }
389
390 finished:
391 mempool_free(page, rrpc->page_pool);
392 bio_put(bio);
393
394 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
395 pr_err("nvm: failed to garbage collect block\n");
396 return -EIO;
397 }
398
399 return 0;
400 }
401
402 static void rrpc_block_gc(struct work_struct *work)
403 {
404 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
405 ws_gc);
406 struct rrpc *rrpc = gcb->rrpc;
407 struct rrpc_block *rblk = gcb->rblk;
408 struct nvm_dev *dev = rrpc->dev;
409 struct nvm_lun *lun = rblk->parent->lun;
410 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
411
412 mempool_free(gcb, rrpc->gcb_pool);
413 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
414
415 if (rrpc_move_valid_pages(rrpc, rblk))
416 goto put_back;
417
418 if (nvm_erase_blk(dev, rblk->parent))
419 goto put_back;
420
421 rrpc_put_blk(rrpc, rblk);
422
423 return;
424
425 put_back:
426 spin_lock(&rlun->lock);
427 list_add_tail(&rblk->prio, &rlun->prio_list);
428 spin_unlock(&rlun->lock);
429 }
430
431 /* the block with highest number of invalid pages, will be in the beginning
432 * of the list
433 */
434 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
435 struct rrpc_block *rb)
436 {
437 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
438 return ra;
439
440 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
441 }
442
443 /* linearly find the block with highest number of invalid pages
444 * requires lun->lock
445 */
446 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
447 {
448 struct list_head *prio_list = &rlun->prio_list;
449 struct rrpc_block *rblock, *max;
450
451 BUG_ON(list_empty(prio_list));
452
453 max = list_first_entry(prio_list, struct rrpc_block, prio);
454 list_for_each_entry(rblock, prio_list, prio)
455 max = rblock_max_invalid(max, rblock);
456
457 return max;
458 }
459
460 static void rrpc_lun_gc(struct work_struct *work)
461 {
462 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
463 struct rrpc *rrpc = rlun->rrpc;
464 struct nvm_lun *lun = rlun->parent;
465 struct rrpc_block_gc *gcb;
466 unsigned int nr_blocks_need;
467
468 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
469
470 if (nr_blocks_need < rrpc->nr_luns)
471 nr_blocks_need = rrpc->nr_luns;
472
473 spin_lock(&rlun->lock);
474 while (nr_blocks_need > lun->nr_free_blocks &&
475 !list_empty(&rlun->prio_list)) {
476 struct rrpc_block *rblock = block_prio_find_max(rlun);
477 struct nvm_block *block = rblock->parent;
478
479 if (!rblock->nr_invalid_pages)
480 break;
481
482 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
483 if (!gcb)
484 break;
485
486 list_del_init(&rblock->prio);
487
488 BUG_ON(!block_is_full(rrpc, rblock));
489
490 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
491
492 gcb->rrpc = rrpc;
493 gcb->rblk = rblock;
494 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
495
496 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
497
498 nr_blocks_need--;
499 }
500 spin_unlock(&rlun->lock);
501
502 /* TODO: Hint that request queue can be started again */
503 }
504
505 static void rrpc_gc_queue(struct work_struct *work)
506 {
507 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
508 ws_gc);
509 struct rrpc *rrpc = gcb->rrpc;
510 struct rrpc_block *rblk = gcb->rblk;
511 struct nvm_lun *lun = rblk->parent->lun;
512 struct nvm_block *blk = rblk->parent;
513 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
514
515 spin_lock(&rlun->lock);
516 list_add_tail(&rblk->prio, &rlun->prio_list);
517 spin_unlock(&rlun->lock);
518
519 spin_lock(&lun->lock);
520 lun->nr_open_blocks--;
521 lun->nr_closed_blocks++;
522 blk->state &= ~NVM_BLK_ST_OPEN;
523 blk->state |= NVM_BLK_ST_CLOSED;
524 list_move_tail(&rblk->list, &rlun->closed_list);
525 spin_unlock(&lun->lock);
526
527 mempool_free(gcb, rrpc->gcb_pool);
528 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
529 rblk->parent->id);
530 }
531
532 static const struct block_device_operations rrpc_fops = {
533 .owner = THIS_MODULE,
534 };
535
536 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
537 {
538 unsigned int i;
539 struct rrpc_lun *rlun, *max_free;
540
541 if (!is_gc)
542 return get_next_lun(rrpc);
543
544 /* during GC, we don't care about RR, instead we want to make
545 * sure that we maintain evenness between the block luns.
546 */
547 max_free = &rrpc->luns[0];
548 /* prevent GC-ing lun from devouring pages of a lun with
549 * little free blocks. We don't take the lock as we only need an
550 * estimate.
551 */
552 rrpc_for_each_lun(rrpc, rlun, i) {
553 if (rlun->parent->nr_free_blocks >
554 max_free->parent->nr_free_blocks)
555 max_free = rlun;
556 }
557
558 return max_free;
559 }
560
561 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
562 struct rrpc_block *rblk, u64 paddr)
563 {
564 struct rrpc_addr *gp;
565 struct rrpc_rev_addr *rev;
566
567 BUG_ON(laddr >= rrpc->nr_sects);
568
569 gp = &rrpc->trans_map[laddr];
570 spin_lock(&rrpc->rev_lock);
571 if (gp->rblk)
572 rrpc_page_invalidate(rrpc, gp);
573
574 gp->addr = paddr;
575 gp->rblk = rblk;
576
577 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
578 rev->addr = laddr;
579 spin_unlock(&rrpc->rev_lock);
580
581 return gp;
582 }
583
584 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
585 {
586 u64 addr = ADDR_EMPTY;
587
588 spin_lock(&rblk->lock);
589 if (block_is_full(rrpc, rblk))
590 goto out;
591
592 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
593
594 rblk->next_page++;
595 out:
596 spin_unlock(&rblk->lock);
597 return addr;
598 }
599
600 /* Simple round-robin Logical to physical address translation.
601 *
602 * Retrieve the mapping using the active append point. Then update the ap for
603 * the next write to the disk.
604 *
605 * Returns rrpc_addr with the physical address and block. Remember to return to
606 * rrpc->addr_cache when request is finished.
607 */
608 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
609 int is_gc)
610 {
611 struct rrpc_lun *rlun;
612 struct rrpc_block *rblk;
613 struct nvm_lun *lun;
614 u64 paddr;
615
616 rlun = rrpc_get_lun_rr(rrpc, is_gc);
617 lun = rlun->parent;
618
619 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
620 return NULL;
621
622 spin_lock(&rlun->lock);
623
624 rblk = rlun->cur;
625 retry:
626 paddr = rrpc_alloc_addr(rrpc, rblk);
627
628 if (paddr == ADDR_EMPTY) {
629 rblk = rrpc_get_blk(rrpc, rlun, 0);
630 if (rblk) {
631 rrpc_set_lun_cur(rlun, rblk);
632 goto retry;
633 }
634
635 if (is_gc) {
636 /* retry from emergency gc block */
637 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
638 if (paddr == ADDR_EMPTY) {
639 rblk = rrpc_get_blk(rrpc, rlun, 1);
640 if (!rblk) {
641 pr_err("rrpc: no more blocks");
642 goto err;
643 }
644
645 rlun->gc_cur = rblk;
646 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
647 }
648 rblk = rlun->gc_cur;
649 }
650 }
651
652 spin_unlock(&rlun->lock);
653 return rrpc_update_map(rrpc, laddr, rblk, paddr);
654 err:
655 spin_unlock(&rlun->lock);
656 return NULL;
657 }
658
659 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
660 {
661 struct rrpc_block_gc *gcb;
662
663 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
664 if (!gcb) {
665 pr_err("rrpc: unable to queue block for gc.");
666 return;
667 }
668
669 gcb->rrpc = rrpc;
670 gcb->rblk = rblk;
671
672 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
673 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
674 }
675
676 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
677 sector_t laddr, uint8_t npages)
678 {
679 struct rrpc_addr *p;
680 struct rrpc_block *rblk;
681 struct nvm_lun *lun;
682 int cmnt_size, i;
683
684 for (i = 0; i < npages; i++) {
685 p = &rrpc->trans_map[laddr + i];
686 rblk = p->rblk;
687 lun = rblk->parent->lun;
688
689 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
690 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
691 rrpc_run_gc(rrpc, rblk);
692 }
693 }
694
695 static void rrpc_end_io(struct nvm_rq *rqd)
696 {
697 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
698 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
699 uint8_t npages = rqd->nr_pages;
700 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
701
702 if (bio_data_dir(rqd->bio) == WRITE)
703 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
704
705 bio_put(rqd->bio);
706
707 if (rrqd->flags & NVM_IOTYPE_GC)
708 return;
709
710 rrpc_unlock_rq(rrpc, rqd);
711
712 if (npages > 1)
713 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
714
715 mempool_free(rqd, rrpc->rq_pool);
716 }
717
718 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
719 struct nvm_rq *rqd, unsigned long flags, int npages)
720 {
721 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
722 struct rrpc_addr *gp;
723 sector_t laddr = rrpc_get_laddr(bio);
724 int is_gc = flags & NVM_IOTYPE_GC;
725 int i;
726
727 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
728 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
729 return NVM_IO_REQUEUE;
730 }
731
732 for (i = 0; i < npages; i++) {
733 /* We assume that mapping occurs at 4KB granularity */
734 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
735 gp = &rrpc->trans_map[laddr + i];
736
737 if (gp->rblk) {
738 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
739 gp->addr);
740 } else {
741 BUG_ON(is_gc);
742 rrpc_unlock_laddr(rrpc, r);
743 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
744 rqd->dma_ppa_list);
745 return NVM_IO_DONE;
746 }
747 }
748
749 rqd->opcode = NVM_OP_HBREAD;
750
751 return NVM_IO_OK;
752 }
753
754 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
755 unsigned long flags)
756 {
757 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
758 int is_gc = flags & NVM_IOTYPE_GC;
759 sector_t laddr = rrpc_get_laddr(bio);
760 struct rrpc_addr *gp;
761
762 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
763 return NVM_IO_REQUEUE;
764
765 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
766 gp = &rrpc->trans_map[laddr];
767
768 if (gp->rblk) {
769 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
770 } else {
771 BUG_ON(is_gc);
772 rrpc_unlock_rq(rrpc, rqd);
773 return NVM_IO_DONE;
774 }
775
776 rqd->opcode = NVM_OP_HBREAD;
777 rrqd->addr = gp;
778
779 return NVM_IO_OK;
780 }
781
782 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
783 struct nvm_rq *rqd, unsigned long flags, int npages)
784 {
785 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
786 struct rrpc_addr *p;
787 sector_t laddr = rrpc_get_laddr(bio);
788 int is_gc = flags & NVM_IOTYPE_GC;
789 int i;
790
791 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
792 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
793 return NVM_IO_REQUEUE;
794 }
795
796 for (i = 0; i < npages; i++) {
797 /* We assume that mapping occurs at 4KB granularity */
798 p = rrpc_map_page(rrpc, laddr + i, is_gc);
799 if (!p) {
800 BUG_ON(is_gc);
801 rrpc_unlock_laddr(rrpc, r);
802 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
803 rqd->dma_ppa_list);
804 rrpc_gc_kick(rrpc);
805 return NVM_IO_REQUEUE;
806 }
807
808 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
809 p->addr);
810 }
811
812 rqd->opcode = NVM_OP_HBWRITE;
813
814 return NVM_IO_OK;
815 }
816
817 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
818 struct nvm_rq *rqd, unsigned long flags)
819 {
820 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
821 struct rrpc_addr *p;
822 int is_gc = flags & NVM_IOTYPE_GC;
823 sector_t laddr = rrpc_get_laddr(bio);
824
825 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
826 return NVM_IO_REQUEUE;
827
828 p = rrpc_map_page(rrpc, laddr, is_gc);
829 if (!p) {
830 BUG_ON(is_gc);
831 rrpc_unlock_rq(rrpc, rqd);
832 rrpc_gc_kick(rrpc);
833 return NVM_IO_REQUEUE;
834 }
835
836 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
837 rqd->opcode = NVM_OP_HBWRITE;
838 rrqd->addr = p;
839
840 return NVM_IO_OK;
841 }
842
843 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
844 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
845 {
846 if (npages > 1) {
847 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
848 &rqd->dma_ppa_list);
849 if (!rqd->ppa_list) {
850 pr_err("rrpc: not able to allocate ppa list\n");
851 return NVM_IO_ERR;
852 }
853
854 if (bio_rw(bio) == WRITE)
855 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
856 npages);
857
858 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
859 }
860
861 if (bio_rw(bio) == WRITE)
862 return rrpc_write_rq(rrpc, bio, rqd, flags);
863
864 return rrpc_read_rq(rrpc, bio, rqd, flags);
865 }
866
867 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
868 struct nvm_rq *rqd, unsigned long flags)
869 {
870 int err;
871 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
872 uint8_t nr_pages = rrpc_get_pages(bio);
873 int bio_size = bio_sectors(bio) << 9;
874
875 if (bio_size < rrpc->dev->sec_size)
876 return NVM_IO_ERR;
877 else if (bio_size > rrpc->dev->max_rq_size)
878 return NVM_IO_ERR;
879
880 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
881 if (err)
882 return err;
883
884 bio_get(bio);
885 rqd->bio = bio;
886 rqd->ins = &rrpc->instance;
887 rqd->nr_pages = nr_pages;
888 rrq->flags = flags;
889
890 err = nvm_submit_io(rrpc->dev, rqd);
891 if (err) {
892 pr_err("rrpc: I/O submission failed: %d\n", err);
893 bio_put(bio);
894 if (!(flags & NVM_IOTYPE_GC)) {
895 rrpc_unlock_rq(rrpc, rqd);
896 if (rqd->nr_pages > 1)
897 nvm_dev_dma_free(rrpc->dev,
898 rqd->ppa_list, rqd->dma_ppa_list);
899 }
900 return NVM_IO_ERR;
901 }
902
903 return NVM_IO_OK;
904 }
905
906 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
907 {
908 struct rrpc *rrpc = q->queuedata;
909 struct nvm_rq *rqd;
910 int err;
911
912 if (bio->bi_rw & REQ_DISCARD) {
913 rrpc_discard(rrpc, bio);
914 return BLK_QC_T_NONE;
915 }
916
917 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
918 if (!rqd) {
919 pr_err_ratelimited("rrpc: not able to queue bio.");
920 bio_io_error(bio);
921 return BLK_QC_T_NONE;
922 }
923 memset(rqd, 0, sizeof(struct nvm_rq));
924
925 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
926 switch (err) {
927 case NVM_IO_OK:
928 return BLK_QC_T_NONE;
929 case NVM_IO_ERR:
930 bio_io_error(bio);
931 break;
932 case NVM_IO_DONE:
933 bio_endio(bio);
934 break;
935 case NVM_IO_REQUEUE:
936 spin_lock(&rrpc->bio_lock);
937 bio_list_add(&rrpc->requeue_bios, bio);
938 spin_unlock(&rrpc->bio_lock);
939 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
940 break;
941 }
942
943 mempool_free(rqd, rrpc->rq_pool);
944 return BLK_QC_T_NONE;
945 }
946
947 static void rrpc_requeue(struct work_struct *work)
948 {
949 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
950 struct bio_list bios;
951 struct bio *bio;
952
953 bio_list_init(&bios);
954
955 spin_lock(&rrpc->bio_lock);
956 bio_list_merge(&bios, &rrpc->requeue_bios);
957 bio_list_init(&rrpc->requeue_bios);
958 spin_unlock(&rrpc->bio_lock);
959
960 while ((bio = bio_list_pop(&bios)))
961 rrpc_make_rq(rrpc->disk->queue, bio);
962 }
963
964 static void rrpc_gc_free(struct rrpc *rrpc)
965 {
966 if (rrpc->krqd_wq)
967 destroy_workqueue(rrpc->krqd_wq);
968
969 if (rrpc->kgc_wq)
970 destroy_workqueue(rrpc->kgc_wq);
971 }
972
973 static int rrpc_gc_init(struct rrpc *rrpc)
974 {
975 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
976 rrpc->nr_luns);
977 if (!rrpc->krqd_wq)
978 return -ENOMEM;
979
980 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
981 if (!rrpc->kgc_wq)
982 return -ENOMEM;
983
984 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
985
986 return 0;
987 }
988
989 static void rrpc_map_free(struct rrpc *rrpc)
990 {
991 vfree(rrpc->rev_trans_map);
992 vfree(rrpc->trans_map);
993 }
994
995 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
996 {
997 struct rrpc *rrpc = (struct rrpc *)private;
998 struct nvm_dev *dev = rrpc->dev;
999 struct rrpc_addr *addr = rrpc->trans_map + slba;
1000 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1001 u64 elba = slba + nlb;
1002 u64 i;
1003
1004 if (unlikely(elba > dev->total_secs)) {
1005 pr_err("nvm: L2P data from device is out of bounds!\n");
1006 return -EINVAL;
1007 }
1008
1009 for (i = 0; i < nlb; i++) {
1010 u64 pba = le64_to_cpu(entries[i]);
1011 unsigned int mod;
1012 /* LNVM treats address-spaces as silos, LBA and PBA are
1013 * equally large and zero-indexed.
1014 */
1015 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1016 pr_err("nvm: L2P data entry is out of bounds!\n");
1017 return -EINVAL;
1018 }
1019
1020 /* Address zero is a special one. The first page on a disk is
1021 * protected. As it often holds internal device boot
1022 * information.
1023 */
1024 if (!pba)
1025 continue;
1026
1027 div_u64_rem(pba, rrpc->nr_sects, &mod);
1028
1029 addr[i].addr = pba;
1030 raddr[mod].addr = slba + i;
1031 }
1032
1033 return 0;
1034 }
1035
1036 static int rrpc_map_init(struct rrpc *rrpc)
1037 {
1038 struct nvm_dev *dev = rrpc->dev;
1039 sector_t i;
1040 int ret;
1041
1042 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1043 if (!rrpc->trans_map)
1044 return -ENOMEM;
1045
1046 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1047 * rrpc->nr_sects);
1048 if (!rrpc->rev_trans_map)
1049 return -ENOMEM;
1050
1051 for (i = 0; i < rrpc->nr_sects; i++) {
1052 struct rrpc_addr *p = &rrpc->trans_map[i];
1053 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1054
1055 p->addr = ADDR_EMPTY;
1056 r->addr = ADDR_EMPTY;
1057 }
1058
1059 if (!dev->ops->get_l2p_tbl)
1060 return 0;
1061
1062 /* Bring up the mapping table from device */
1063 ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1064 rrpc_l2p_update, rrpc);
1065 if (ret) {
1066 pr_err("nvm: rrpc: could not read L2P table.\n");
1067 return -EINVAL;
1068 }
1069
1070 return 0;
1071 }
1072
1073 /* Minimum pages needed within a lun */
1074 #define PAGE_POOL_SIZE 16
1075 #define ADDR_POOL_SIZE 64
1076
1077 static int rrpc_core_init(struct rrpc *rrpc)
1078 {
1079 down_write(&rrpc_lock);
1080 if (!rrpc_gcb_cache) {
1081 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1082 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1083 if (!rrpc_gcb_cache) {
1084 up_write(&rrpc_lock);
1085 return -ENOMEM;
1086 }
1087
1088 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1089 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1090 0, 0, NULL);
1091 if (!rrpc_rq_cache) {
1092 kmem_cache_destroy(rrpc_gcb_cache);
1093 up_write(&rrpc_lock);
1094 return -ENOMEM;
1095 }
1096 }
1097 up_write(&rrpc_lock);
1098
1099 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1100 if (!rrpc->page_pool)
1101 return -ENOMEM;
1102
1103 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1104 rrpc_gcb_cache);
1105 if (!rrpc->gcb_pool)
1106 return -ENOMEM;
1107
1108 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1109 if (!rrpc->rq_pool)
1110 return -ENOMEM;
1111
1112 spin_lock_init(&rrpc->inflights.lock);
1113 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1114
1115 return 0;
1116 }
1117
1118 static void rrpc_core_free(struct rrpc *rrpc)
1119 {
1120 mempool_destroy(rrpc->page_pool);
1121 mempool_destroy(rrpc->gcb_pool);
1122 mempool_destroy(rrpc->rq_pool);
1123 }
1124
1125 static void rrpc_luns_free(struct rrpc *rrpc)
1126 {
1127 struct nvm_dev *dev = rrpc->dev;
1128 struct nvm_lun *lun;
1129 struct rrpc_lun *rlun;
1130 int i;
1131
1132 if (!rrpc->luns)
1133 return;
1134
1135 for (i = 0; i < rrpc->nr_luns; i++) {
1136 rlun = &rrpc->luns[i];
1137 lun = rlun->parent;
1138 if (!lun)
1139 break;
1140 dev->mt->release_lun(dev, lun->id);
1141 vfree(rlun->blocks);
1142 }
1143
1144 kfree(rrpc->luns);
1145 }
1146
1147 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1148 {
1149 struct nvm_dev *dev = rrpc->dev;
1150 struct rrpc_lun *rlun;
1151 int i, j, ret = -EINVAL;
1152
1153 if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1154 pr_err("rrpc: number of pages per block too high.");
1155 return -EINVAL;
1156 }
1157
1158 spin_lock_init(&rrpc->rev_lock);
1159
1160 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1161 GFP_KERNEL);
1162 if (!rrpc->luns)
1163 return -ENOMEM;
1164
1165 /* 1:1 mapping */
1166 for (i = 0; i < rrpc->nr_luns; i++) {
1167 int lunid = lun_begin + i;
1168 struct nvm_lun *lun;
1169
1170 if (dev->mt->reserve_lun(dev, lunid)) {
1171 pr_err("rrpc: lun %u is already allocated\n", lunid);
1172 goto err;
1173 }
1174
1175 lun = dev->mt->get_lun(dev, lunid);
1176 if (!lun)
1177 goto err;
1178
1179 rlun = &rrpc->luns[i];
1180 rlun->parent = lun;
1181 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1182 rrpc->dev->blks_per_lun);
1183 if (!rlun->blocks) {
1184 ret = -ENOMEM;
1185 goto err;
1186 }
1187
1188 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1189 struct rrpc_block *rblk = &rlun->blocks[j];
1190 struct nvm_block *blk = &lun->blocks[j];
1191
1192 rblk->parent = blk;
1193 rblk->rlun = rlun;
1194 INIT_LIST_HEAD(&rblk->prio);
1195 spin_lock_init(&rblk->lock);
1196 }
1197
1198 rlun->rrpc = rrpc;
1199 INIT_LIST_HEAD(&rlun->prio_list);
1200 INIT_LIST_HEAD(&rlun->open_list);
1201 INIT_LIST_HEAD(&rlun->closed_list);
1202
1203 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1204 spin_lock_init(&rlun->lock);
1205 }
1206
1207 return 0;
1208 err:
1209 return ret;
1210 }
1211
1212 /* returns 0 on success and stores the beginning address in *begin */
1213 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1214 {
1215 struct nvm_dev *dev = rrpc->dev;
1216 struct nvmm_type *mt = dev->mt;
1217 sector_t size = rrpc->nr_sects * dev->sec_size;
1218 int ret;
1219
1220 size >>= 9;
1221
1222 ret = mt->get_area(dev, begin, size);
1223 if (!ret)
1224 *begin >>= (ilog2(dev->sec_size) - 9);
1225
1226 return ret;
1227 }
1228
1229 static void rrpc_area_free(struct rrpc *rrpc)
1230 {
1231 struct nvm_dev *dev = rrpc->dev;
1232 struct nvmm_type *mt = dev->mt;
1233 sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1234
1235 mt->put_area(dev, begin);
1236 }
1237
1238 static void rrpc_free(struct rrpc *rrpc)
1239 {
1240 rrpc_gc_free(rrpc);
1241 rrpc_map_free(rrpc);
1242 rrpc_core_free(rrpc);
1243 rrpc_luns_free(rrpc);
1244 rrpc_area_free(rrpc);
1245
1246 kfree(rrpc);
1247 }
1248
1249 static void rrpc_exit(void *private)
1250 {
1251 struct rrpc *rrpc = private;
1252
1253 del_timer(&rrpc->gc_timer);
1254
1255 flush_workqueue(rrpc->krqd_wq);
1256 flush_workqueue(rrpc->kgc_wq);
1257
1258 rrpc_free(rrpc);
1259 }
1260
1261 static sector_t rrpc_capacity(void *private)
1262 {
1263 struct rrpc *rrpc = private;
1264 struct nvm_dev *dev = rrpc->dev;
1265 sector_t reserved, provisioned;
1266
1267 /* cur, gc, and two emergency blocks for each lun */
1268 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1269 provisioned = rrpc->nr_sects - reserved;
1270
1271 if (reserved > rrpc->nr_sects) {
1272 pr_err("rrpc: not enough space available to expose storage.\n");
1273 return 0;
1274 }
1275
1276 sector_div(provisioned, 10);
1277 return provisioned * 9 * NR_PHY_IN_LOG;
1278 }
1279
1280 /*
1281 * Looks up the logical address from reverse trans map and check if its valid by
1282 * comparing the logical to physical address with the physical address.
1283 * Returns 0 on free, otherwise 1 if in use
1284 */
1285 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1286 {
1287 struct nvm_dev *dev = rrpc->dev;
1288 int offset;
1289 struct rrpc_addr *laddr;
1290 u64 bpaddr, paddr, pladdr;
1291
1292 bpaddr = block_to_rel_addr(rrpc, rblk);
1293 for (offset = 0; offset < dev->sec_per_blk; offset++) {
1294 paddr = bpaddr + offset;
1295
1296 pladdr = rrpc->rev_trans_map[paddr].addr;
1297 if (pladdr == ADDR_EMPTY)
1298 continue;
1299
1300 laddr = &rrpc->trans_map[pladdr];
1301
1302 if (paddr == laddr->addr) {
1303 laddr->rblk = rblk;
1304 } else {
1305 set_bit(offset, rblk->invalid_pages);
1306 rblk->nr_invalid_pages++;
1307 }
1308 }
1309 }
1310
1311 static int rrpc_blocks_init(struct rrpc *rrpc)
1312 {
1313 struct rrpc_lun *rlun;
1314 struct rrpc_block *rblk;
1315 int lun_iter, blk_iter;
1316
1317 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1318 rlun = &rrpc->luns[lun_iter];
1319
1320 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1321 blk_iter++) {
1322 rblk = &rlun->blocks[blk_iter];
1323 rrpc_block_map_update(rrpc, rblk);
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 static int rrpc_luns_configure(struct rrpc *rrpc)
1331 {
1332 struct rrpc_lun *rlun;
1333 struct rrpc_block *rblk;
1334 int i;
1335
1336 for (i = 0; i < rrpc->nr_luns; i++) {
1337 rlun = &rrpc->luns[i];
1338
1339 rblk = rrpc_get_blk(rrpc, rlun, 0);
1340 if (!rblk)
1341 goto err;
1342
1343 rrpc_set_lun_cur(rlun, rblk);
1344
1345 /* Emergency gc block */
1346 rblk = rrpc_get_blk(rrpc, rlun, 1);
1347 if (!rblk)
1348 goto err;
1349 rlun->gc_cur = rblk;
1350 }
1351
1352 return 0;
1353 err:
1354 rrpc_put_blks(rrpc);
1355 return -EINVAL;
1356 }
1357
1358 static struct nvm_tgt_type tt_rrpc;
1359
1360 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1361 int lun_begin, int lun_end)
1362 {
1363 struct request_queue *bqueue = dev->q;
1364 struct request_queue *tqueue = tdisk->queue;
1365 struct rrpc *rrpc;
1366 sector_t soffset;
1367 int ret;
1368
1369 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1370 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1371 dev->identity.dom);
1372 return ERR_PTR(-EINVAL);
1373 }
1374
1375 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1376 if (!rrpc)
1377 return ERR_PTR(-ENOMEM);
1378
1379 rrpc->instance.tt = &tt_rrpc;
1380 rrpc->dev = dev;
1381 rrpc->disk = tdisk;
1382
1383 bio_list_init(&rrpc->requeue_bios);
1384 spin_lock_init(&rrpc->bio_lock);
1385 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1386
1387 rrpc->nr_luns = lun_end - lun_begin + 1;
1388 rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
1389 rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1390
1391 /* simple round-robin strategy */
1392 atomic_set(&rrpc->next_lun, -1);
1393
1394 ret = rrpc_area_init(rrpc, &soffset);
1395 if (ret < 0) {
1396 pr_err("nvm: rrpc: could not initialize area\n");
1397 return ERR_PTR(ret);
1398 }
1399 rrpc->soffset = soffset;
1400
1401 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1402 if (ret) {
1403 pr_err("nvm: rrpc: could not initialize luns\n");
1404 goto err;
1405 }
1406
1407 rrpc->poffset = dev->sec_per_lun * lun_begin;
1408 rrpc->lun_offset = lun_begin;
1409
1410 ret = rrpc_core_init(rrpc);
1411 if (ret) {
1412 pr_err("nvm: rrpc: could not initialize core\n");
1413 goto err;
1414 }
1415
1416 ret = rrpc_map_init(rrpc);
1417 if (ret) {
1418 pr_err("nvm: rrpc: could not initialize maps\n");
1419 goto err;
1420 }
1421
1422 ret = rrpc_blocks_init(rrpc);
1423 if (ret) {
1424 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1425 goto err;
1426 }
1427
1428 ret = rrpc_luns_configure(rrpc);
1429 if (ret) {
1430 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1431 goto err;
1432 }
1433
1434 ret = rrpc_gc_init(rrpc);
1435 if (ret) {
1436 pr_err("nvm: rrpc: could not initialize gc\n");
1437 goto err;
1438 }
1439
1440 /* inherit the size from the underlying device */
1441 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1442 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1443
1444 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1445 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1446
1447 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1448
1449 return rrpc;
1450 err:
1451 rrpc_free(rrpc);
1452 return ERR_PTR(ret);
1453 }
1454
1455 /* round robin, page-based FTL, and cost-based GC */
1456 static struct nvm_tgt_type tt_rrpc = {
1457 .name = "rrpc",
1458 .version = {1, 0, 0},
1459
1460 .make_rq = rrpc_make_rq,
1461 .capacity = rrpc_capacity,
1462 .end_io = rrpc_end_io,
1463
1464 .init = rrpc_init,
1465 .exit = rrpc_exit,
1466 };
1467
1468 static int __init rrpc_module_init(void)
1469 {
1470 return nvm_register_tgt_type(&tt_rrpc);
1471 }
1472
1473 static void rrpc_module_exit(void)
1474 {
1475 nvm_unregister_tgt_type(&tt_rrpc);
1476 }
1477
1478 module_init(rrpc_module_init);
1479 module_exit(rrpc_module_exit);
1480 MODULE_LICENSE("GPL v2");
1481 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");