]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/lightnvm/rrpc.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / lightnvm / rrpc.c
1 /*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52 {
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67 {
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116 return (rblk->next_page == rrpc->dev->sec_per_blk);
117 }
118
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
121 {
122 struct nvm_block *blk = rblk->parent;
123 int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
124
125 return lun_blk * rrpc->dev->sec_per_blk;
126 }
127
128 /* Calculate global addr for the given block */
129 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
130 {
131 struct nvm_block *blk = rblk->parent;
132
133 return blk->id * rrpc->dev->sec_per_blk;
134 }
135
136 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
137 struct ppa_addr r)
138 {
139 struct ppa_addr l;
140 int secs, pgs, blks, luns;
141 sector_t ppa = r.ppa;
142
143 l.ppa = 0;
144
145 div_u64_rem(ppa, dev->sec_per_pg, &secs);
146 l.g.sec = secs;
147
148 sector_div(ppa, dev->sec_per_pg);
149 div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
150 l.g.pg = pgs;
151
152 sector_div(ppa, dev->pgs_per_blk);
153 div_u64_rem(ppa, dev->blks_per_lun, &blks);
154 l.g.blk = blks;
155
156 sector_div(ppa, dev->blks_per_lun);
157 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
158 l.g.lun = luns;
159
160 sector_div(ppa, dev->luns_per_chnl);
161 l.g.ch = ppa;
162
163 return l;
164 }
165
166 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
167 {
168 struct ppa_addr paddr;
169
170 paddr.ppa = addr;
171 return linear_to_generic_addr(dev, paddr);
172 }
173
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
176 {
177 struct rrpc *rrpc = rlun->rrpc;
178
179 BUG_ON(!rblk);
180
181 if (rlun->cur) {
182 spin_lock(&rlun->cur->lock);
183 WARN_ON(!block_is_full(rrpc, rlun->cur));
184 spin_unlock(&rlun->cur->lock);
185 }
186 rlun->cur = rblk;
187 }
188
189 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
190 unsigned long flags)
191 {
192 struct nvm_lun *lun = rlun->parent;
193 struct nvm_block *blk;
194 struct rrpc_block *rblk;
195
196 spin_lock(&lun->lock);
197 blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
198 if (!blk) {
199 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200 spin_unlock(&lun->lock);
201 return NULL;
202 }
203
204 rblk = rrpc_get_rblk(rlun, blk->id);
205 list_add_tail(&rblk->list, &rlun->open_list);
206 spin_unlock(&lun->lock);
207
208 blk->priv = rblk;
209 bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
210 rblk->next_page = 0;
211 rblk->nr_invalid_pages = 0;
212 atomic_set(&rblk->data_cmnt_size, 0);
213
214 return rblk;
215 }
216
217 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
218 {
219 struct rrpc_lun *rlun = rblk->rlun;
220 struct nvm_lun *lun = rlun->parent;
221
222 spin_lock(&lun->lock);
223 nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
224 list_del(&rblk->list);
225 spin_unlock(&lun->lock);
226 }
227
228 static void rrpc_put_blks(struct rrpc *rrpc)
229 {
230 struct rrpc_lun *rlun;
231 int i;
232
233 for (i = 0; i < rrpc->nr_luns; i++) {
234 rlun = &rrpc->luns[i];
235 if (rlun->cur)
236 rrpc_put_blk(rrpc, rlun->cur);
237 if (rlun->gc_cur)
238 rrpc_put_blk(rrpc, rlun->gc_cur);
239 }
240 }
241
242 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
243 {
244 int next = atomic_inc_return(&rrpc->next_lun);
245
246 return &rrpc->luns[next % rrpc->nr_luns];
247 }
248
249 static void rrpc_gc_kick(struct rrpc *rrpc)
250 {
251 struct rrpc_lun *rlun;
252 unsigned int i;
253
254 for (i = 0; i < rrpc->nr_luns; i++) {
255 rlun = &rrpc->luns[i];
256 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
257 }
258 }
259
260 /*
261 * timed GC every interval.
262 */
263 static void rrpc_gc_timer(unsigned long data)
264 {
265 struct rrpc *rrpc = (struct rrpc *)data;
266
267 rrpc_gc_kick(rrpc);
268 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
269 }
270
271 static void rrpc_end_sync_bio(struct bio *bio)
272 {
273 struct completion *waiting = bio->bi_private;
274
275 if (bio->bi_error)
276 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
277
278 complete(waiting);
279 }
280
281 /*
282 * rrpc_move_valid_pages -- migrate live data off the block
283 * @rrpc: the 'rrpc' structure
284 * @block: the block from which to migrate live pages
285 *
286 * Description:
287 * GC algorithms may call this function to migrate remaining live
288 * pages off the block prior to erasing it. This function blocks
289 * further execution until the operation is complete.
290 */
291 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
292 {
293 struct request_queue *q = rrpc->dev->q;
294 struct rrpc_rev_addr *rev;
295 struct nvm_rq *rqd;
296 struct bio *bio;
297 struct page *page;
298 int slot;
299 int nr_sec_per_blk = rrpc->dev->sec_per_blk;
300 u64 phys_addr;
301 DECLARE_COMPLETION_ONSTACK(wait);
302
303 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
304 return 0;
305
306 bio = bio_alloc(GFP_NOIO, 1);
307 if (!bio) {
308 pr_err("nvm: could not alloc bio to gc\n");
309 return -ENOMEM;
310 }
311
312 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
313 if (!page) {
314 bio_put(bio);
315 return -ENOMEM;
316 }
317
318 while ((slot = find_first_zero_bit(rblk->invalid_pages,
319 nr_sec_per_blk)) < nr_sec_per_blk) {
320
321 /* Lock laddr */
322 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
323
324 try:
325 spin_lock(&rrpc->rev_lock);
326 /* Get logical address from physical to logical table */
327 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
328 /* already updated by previous regular write */
329 if (rev->addr == ADDR_EMPTY) {
330 spin_unlock(&rrpc->rev_lock);
331 continue;
332 }
333
334 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
335 if (IS_ERR_OR_NULL(rqd)) {
336 spin_unlock(&rrpc->rev_lock);
337 schedule();
338 goto try;
339 }
340
341 spin_unlock(&rrpc->rev_lock);
342
343 /* Perform read to do GC */
344 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
345 bio->bi_rw = READ;
346 bio->bi_private = &wait;
347 bio->bi_end_io = rrpc_end_sync_bio;
348
349 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
350 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
351
352 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
353 pr_err("rrpc: gc read failed.\n");
354 rrpc_inflight_laddr_release(rrpc, rqd);
355 goto finished;
356 }
357 wait_for_completion_io(&wait);
358 if (bio->bi_error) {
359 rrpc_inflight_laddr_release(rrpc, rqd);
360 goto finished;
361 }
362
363 bio_reset(bio);
364 reinit_completion(&wait);
365
366 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
367 bio->bi_rw = WRITE;
368 bio->bi_private = &wait;
369 bio->bi_end_io = rrpc_end_sync_bio;
370
371 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
372
373 /* turn the command around and write the data back to a new
374 * address
375 */
376 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
377 pr_err("rrpc: gc write failed.\n");
378 rrpc_inflight_laddr_release(rrpc, rqd);
379 goto finished;
380 }
381 wait_for_completion_io(&wait);
382
383 rrpc_inflight_laddr_release(rrpc, rqd);
384 if (bio->bi_error)
385 goto finished;
386
387 bio_reset(bio);
388 }
389
390 finished:
391 mempool_free(page, rrpc->page_pool);
392 bio_put(bio);
393
394 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
395 pr_err("nvm: failed to garbage collect block\n");
396 return -EIO;
397 }
398
399 return 0;
400 }
401
402 static void rrpc_block_gc(struct work_struct *work)
403 {
404 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
405 ws_gc);
406 struct rrpc *rrpc = gcb->rrpc;
407 struct rrpc_block *rblk = gcb->rblk;
408 struct nvm_dev *dev = rrpc->dev;
409 struct nvm_lun *lun = rblk->parent->lun;
410 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
411
412 mempool_free(gcb, rrpc->gcb_pool);
413 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
414
415 if (rrpc_move_valid_pages(rrpc, rblk))
416 goto put_back;
417
418 if (nvm_erase_blk(dev, rblk->parent))
419 goto put_back;
420
421 rrpc_put_blk(rrpc, rblk);
422
423 return;
424
425 put_back:
426 spin_lock(&rlun->lock);
427 list_add_tail(&rblk->prio, &rlun->prio_list);
428 spin_unlock(&rlun->lock);
429 }
430
431 /* the block with highest number of invalid pages, will be in the beginning
432 * of the list
433 */
434 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
435 struct rrpc_block *rb)
436 {
437 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
438 return ra;
439
440 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
441 }
442
443 /* linearly find the block with highest number of invalid pages
444 * requires lun->lock
445 */
446 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
447 {
448 struct list_head *prio_list = &rlun->prio_list;
449 struct rrpc_block *rblock, *max;
450
451 BUG_ON(list_empty(prio_list));
452
453 max = list_first_entry(prio_list, struct rrpc_block, prio);
454 list_for_each_entry(rblock, prio_list, prio)
455 max = rblock_max_invalid(max, rblock);
456
457 return max;
458 }
459
460 static void rrpc_lun_gc(struct work_struct *work)
461 {
462 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
463 struct rrpc *rrpc = rlun->rrpc;
464 struct nvm_lun *lun = rlun->parent;
465 struct rrpc_block_gc *gcb;
466 unsigned int nr_blocks_need;
467
468 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
469
470 if (nr_blocks_need < rrpc->nr_luns)
471 nr_blocks_need = rrpc->nr_luns;
472
473 spin_lock(&rlun->lock);
474 while (nr_blocks_need > lun->nr_free_blocks &&
475 !list_empty(&rlun->prio_list)) {
476 struct rrpc_block *rblock = block_prio_find_max(rlun);
477 struct nvm_block *block = rblock->parent;
478
479 if (!rblock->nr_invalid_pages)
480 break;
481
482 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
483 if (!gcb)
484 break;
485
486 list_del_init(&rblock->prio);
487
488 BUG_ON(!block_is_full(rrpc, rblock));
489
490 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
491
492 gcb->rrpc = rrpc;
493 gcb->rblk = rblock;
494 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
495
496 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
497
498 nr_blocks_need--;
499 }
500 spin_unlock(&rlun->lock);
501
502 /* TODO: Hint that request queue can be started again */
503 }
504
505 static void rrpc_gc_queue(struct work_struct *work)
506 {
507 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
508 ws_gc);
509 struct rrpc *rrpc = gcb->rrpc;
510 struct rrpc_block *rblk = gcb->rblk;
511 struct nvm_lun *lun = rblk->parent->lun;
512 struct nvm_block *blk = rblk->parent;
513 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
514
515 spin_lock(&rlun->lock);
516 list_add_tail(&rblk->prio, &rlun->prio_list);
517 spin_unlock(&rlun->lock);
518
519 spin_lock(&lun->lock);
520 lun->nr_open_blocks--;
521 lun->nr_closed_blocks++;
522 blk->state &= ~NVM_BLK_ST_OPEN;
523 blk->state |= NVM_BLK_ST_CLOSED;
524 list_move_tail(&rblk->list, &rlun->closed_list);
525 spin_unlock(&lun->lock);
526
527 mempool_free(gcb, rrpc->gcb_pool);
528 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
529 rblk->parent->id);
530 }
531
532 static const struct block_device_operations rrpc_fops = {
533 .owner = THIS_MODULE,
534 };
535
536 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
537 {
538 unsigned int i;
539 struct rrpc_lun *rlun, *max_free;
540
541 if (!is_gc)
542 return get_next_lun(rrpc);
543
544 /* during GC, we don't care about RR, instead we want to make
545 * sure that we maintain evenness between the block luns.
546 */
547 max_free = &rrpc->luns[0];
548 /* prevent GC-ing lun from devouring pages of a lun with
549 * little free blocks. We don't take the lock as we only need an
550 * estimate.
551 */
552 rrpc_for_each_lun(rrpc, rlun, i) {
553 if (rlun->parent->nr_free_blocks >
554 max_free->parent->nr_free_blocks)
555 max_free = rlun;
556 }
557
558 return max_free;
559 }
560
561 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
562 struct rrpc_block *rblk, u64 paddr)
563 {
564 struct rrpc_addr *gp;
565 struct rrpc_rev_addr *rev;
566
567 BUG_ON(laddr >= rrpc->nr_sects);
568
569 gp = &rrpc->trans_map[laddr];
570 spin_lock(&rrpc->rev_lock);
571 if (gp->rblk)
572 rrpc_page_invalidate(rrpc, gp);
573
574 gp->addr = paddr;
575 gp->rblk = rblk;
576
577 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
578 rev->addr = laddr;
579 spin_unlock(&rrpc->rev_lock);
580
581 return gp;
582 }
583
584 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
585 {
586 u64 addr = ADDR_EMPTY;
587
588 spin_lock(&rblk->lock);
589 if (block_is_full(rrpc, rblk))
590 goto out;
591
592 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
593
594 rblk->next_page++;
595 out:
596 spin_unlock(&rblk->lock);
597 return addr;
598 }
599
600 /* Simple round-robin Logical to physical address translation.
601 *
602 * Retrieve the mapping using the active append point. Then update the ap for
603 * the next write to the disk.
604 *
605 * Returns rrpc_addr with the physical address and block. Remember to return to
606 * rrpc->addr_cache when request is finished.
607 */
608 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
609 int is_gc)
610 {
611 struct rrpc_lun *rlun;
612 struct rrpc_block *rblk;
613 struct nvm_lun *lun;
614 u64 paddr;
615
616 rlun = rrpc_get_lun_rr(rrpc, is_gc);
617 lun = rlun->parent;
618
619 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
620 return NULL;
621
622 spin_lock(&rlun->lock);
623
624 rblk = rlun->cur;
625 retry:
626 paddr = rrpc_alloc_addr(rrpc, rblk);
627
628 if (paddr == ADDR_EMPTY) {
629 rblk = rrpc_get_blk(rrpc, rlun, 0);
630 if (rblk) {
631 rrpc_set_lun_cur(rlun, rblk);
632 goto retry;
633 }
634
635 if (is_gc) {
636 /* retry from emergency gc block */
637 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
638 if (paddr == ADDR_EMPTY) {
639 rblk = rrpc_get_blk(rrpc, rlun, 1);
640 if (!rblk) {
641 pr_err("rrpc: no more blocks");
642 goto err;
643 }
644
645 rlun->gc_cur = rblk;
646 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
647 }
648 rblk = rlun->gc_cur;
649 }
650 }
651
652 spin_unlock(&rlun->lock);
653 return rrpc_update_map(rrpc, laddr, rblk, paddr);
654 err:
655 spin_unlock(&rlun->lock);
656 return NULL;
657 }
658
659 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
660 {
661 struct rrpc_block_gc *gcb;
662
663 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
664 if (!gcb) {
665 pr_err("rrpc: unable to queue block for gc.");
666 return;
667 }
668
669 gcb->rrpc = rrpc;
670 gcb->rblk = rblk;
671
672 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
673 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
674 }
675
676 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
677 sector_t laddr, uint8_t npages)
678 {
679 struct rrpc_addr *p;
680 struct rrpc_block *rblk;
681 struct nvm_lun *lun;
682 int cmnt_size, i;
683
684 for (i = 0; i < npages; i++) {
685 p = &rrpc->trans_map[laddr + i];
686 rblk = p->rblk;
687 lun = rblk->parent->lun;
688
689 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
690 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
691 rrpc_run_gc(rrpc, rblk);
692 }
693 }
694
695 static void rrpc_end_io(struct nvm_rq *rqd)
696 {
697 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
698 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
699 uint8_t npages = rqd->nr_pages;
700 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
701
702 if (bio_data_dir(rqd->bio) == WRITE)
703 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
704
705 bio_put(rqd->bio);
706
707 if (rrqd->flags & NVM_IOTYPE_GC)
708 return;
709
710 rrpc_unlock_rq(rrpc, rqd);
711
712 if (npages > 1)
713 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
714 if (rqd->metadata)
715 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
716
717 mempool_free(rqd, rrpc->rq_pool);
718 }
719
720 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
721 struct nvm_rq *rqd, unsigned long flags, int npages)
722 {
723 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
724 struct rrpc_addr *gp;
725 sector_t laddr = rrpc_get_laddr(bio);
726 int is_gc = flags & NVM_IOTYPE_GC;
727 int i;
728
729 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
730 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
731 return NVM_IO_REQUEUE;
732 }
733
734 for (i = 0; i < npages; i++) {
735 /* We assume that mapping occurs at 4KB granularity */
736 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
737 gp = &rrpc->trans_map[laddr + i];
738
739 if (gp->rblk) {
740 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
741 gp->addr);
742 } else {
743 BUG_ON(is_gc);
744 rrpc_unlock_laddr(rrpc, r);
745 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
746 rqd->dma_ppa_list);
747 return NVM_IO_DONE;
748 }
749 }
750
751 rqd->opcode = NVM_OP_HBREAD;
752
753 return NVM_IO_OK;
754 }
755
756 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
757 unsigned long flags)
758 {
759 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
760 int is_gc = flags & NVM_IOTYPE_GC;
761 sector_t laddr = rrpc_get_laddr(bio);
762 struct rrpc_addr *gp;
763
764 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
765 return NVM_IO_REQUEUE;
766
767 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
768 gp = &rrpc->trans_map[laddr];
769
770 if (gp->rblk) {
771 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
772 } else {
773 BUG_ON(is_gc);
774 rrpc_unlock_rq(rrpc, rqd);
775 return NVM_IO_DONE;
776 }
777
778 rqd->opcode = NVM_OP_HBREAD;
779 rrqd->addr = gp;
780
781 return NVM_IO_OK;
782 }
783
784 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
785 struct nvm_rq *rqd, unsigned long flags, int npages)
786 {
787 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
788 struct rrpc_addr *p;
789 sector_t laddr = rrpc_get_laddr(bio);
790 int is_gc = flags & NVM_IOTYPE_GC;
791 int i;
792
793 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
794 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
795 return NVM_IO_REQUEUE;
796 }
797
798 for (i = 0; i < npages; i++) {
799 /* We assume that mapping occurs at 4KB granularity */
800 p = rrpc_map_page(rrpc, laddr + i, is_gc);
801 if (!p) {
802 BUG_ON(is_gc);
803 rrpc_unlock_laddr(rrpc, r);
804 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
805 rqd->dma_ppa_list);
806 rrpc_gc_kick(rrpc);
807 return NVM_IO_REQUEUE;
808 }
809
810 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
811 p->addr);
812 }
813
814 rqd->opcode = NVM_OP_HBWRITE;
815
816 return NVM_IO_OK;
817 }
818
819 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
820 struct nvm_rq *rqd, unsigned long flags)
821 {
822 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
823 struct rrpc_addr *p;
824 int is_gc = flags & NVM_IOTYPE_GC;
825 sector_t laddr = rrpc_get_laddr(bio);
826
827 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
828 return NVM_IO_REQUEUE;
829
830 p = rrpc_map_page(rrpc, laddr, is_gc);
831 if (!p) {
832 BUG_ON(is_gc);
833 rrpc_unlock_rq(rrpc, rqd);
834 rrpc_gc_kick(rrpc);
835 return NVM_IO_REQUEUE;
836 }
837
838 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
839 rqd->opcode = NVM_OP_HBWRITE;
840 rrqd->addr = p;
841
842 return NVM_IO_OK;
843 }
844
845 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
846 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
847 {
848 if (npages > 1) {
849 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
850 &rqd->dma_ppa_list);
851 if (!rqd->ppa_list) {
852 pr_err("rrpc: not able to allocate ppa list\n");
853 return NVM_IO_ERR;
854 }
855
856 if (bio_rw(bio) == WRITE)
857 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
858 npages);
859
860 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
861 }
862
863 if (bio_rw(bio) == WRITE)
864 return rrpc_write_rq(rrpc, bio, rqd, flags);
865
866 return rrpc_read_rq(rrpc, bio, rqd, flags);
867 }
868
869 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
870 struct nvm_rq *rqd, unsigned long flags)
871 {
872 int err;
873 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
874 uint8_t nr_pages = rrpc_get_pages(bio);
875 int bio_size = bio_sectors(bio) << 9;
876
877 if (bio_size < rrpc->dev->sec_size)
878 return NVM_IO_ERR;
879 else if (bio_size > rrpc->dev->max_rq_size)
880 return NVM_IO_ERR;
881
882 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
883 if (err)
884 return err;
885
886 bio_get(bio);
887 rqd->bio = bio;
888 rqd->ins = &rrpc->instance;
889 rqd->nr_pages = nr_pages;
890 rrq->flags = flags;
891
892 err = nvm_submit_io(rrpc->dev, rqd);
893 if (err) {
894 pr_err("rrpc: I/O submission failed: %d\n", err);
895 bio_put(bio);
896 if (!(flags & NVM_IOTYPE_GC)) {
897 rrpc_unlock_rq(rrpc, rqd);
898 if (rqd->nr_pages > 1)
899 nvm_dev_dma_free(rrpc->dev,
900 rqd->ppa_list, rqd->dma_ppa_list);
901 }
902 return NVM_IO_ERR;
903 }
904
905 return NVM_IO_OK;
906 }
907
908 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
909 {
910 struct rrpc *rrpc = q->queuedata;
911 struct nvm_rq *rqd;
912 int err;
913
914 if (bio->bi_rw & REQ_DISCARD) {
915 rrpc_discard(rrpc, bio);
916 return BLK_QC_T_NONE;
917 }
918
919 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
920 if (!rqd) {
921 pr_err_ratelimited("rrpc: not able to queue bio.");
922 bio_io_error(bio);
923 return BLK_QC_T_NONE;
924 }
925 memset(rqd, 0, sizeof(struct nvm_rq));
926
927 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
928 switch (err) {
929 case NVM_IO_OK:
930 return BLK_QC_T_NONE;
931 case NVM_IO_ERR:
932 bio_io_error(bio);
933 break;
934 case NVM_IO_DONE:
935 bio_endio(bio);
936 break;
937 case NVM_IO_REQUEUE:
938 spin_lock(&rrpc->bio_lock);
939 bio_list_add(&rrpc->requeue_bios, bio);
940 spin_unlock(&rrpc->bio_lock);
941 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
942 break;
943 }
944
945 mempool_free(rqd, rrpc->rq_pool);
946 return BLK_QC_T_NONE;
947 }
948
949 static void rrpc_requeue(struct work_struct *work)
950 {
951 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
952 struct bio_list bios;
953 struct bio *bio;
954
955 bio_list_init(&bios);
956
957 spin_lock(&rrpc->bio_lock);
958 bio_list_merge(&bios, &rrpc->requeue_bios);
959 bio_list_init(&rrpc->requeue_bios);
960 spin_unlock(&rrpc->bio_lock);
961
962 while ((bio = bio_list_pop(&bios)))
963 rrpc_make_rq(rrpc->disk->queue, bio);
964 }
965
966 static void rrpc_gc_free(struct rrpc *rrpc)
967 {
968 struct rrpc_lun *rlun;
969 int i;
970
971 if (rrpc->krqd_wq)
972 destroy_workqueue(rrpc->krqd_wq);
973
974 if (rrpc->kgc_wq)
975 destroy_workqueue(rrpc->kgc_wq);
976
977 if (!rrpc->luns)
978 return;
979
980 for (i = 0; i < rrpc->nr_luns; i++) {
981 rlun = &rrpc->luns[i];
982
983 if (!rlun->blocks)
984 break;
985 vfree(rlun->blocks);
986 }
987 }
988
989 static int rrpc_gc_init(struct rrpc *rrpc)
990 {
991 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
992 rrpc->nr_luns);
993 if (!rrpc->krqd_wq)
994 return -ENOMEM;
995
996 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
997 if (!rrpc->kgc_wq)
998 return -ENOMEM;
999
1000 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
1001
1002 return 0;
1003 }
1004
1005 static void rrpc_map_free(struct rrpc *rrpc)
1006 {
1007 vfree(rrpc->rev_trans_map);
1008 vfree(rrpc->trans_map);
1009 }
1010
1011 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
1012 {
1013 struct rrpc *rrpc = (struct rrpc *)private;
1014 struct nvm_dev *dev = rrpc->dev;
1015 struct rrpc_addr *addr = rrpc->trans_map + slba;
1016 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1017 u64 elba = slba + nlb;
1018 u64 i;
1019
1020 if (unlikely(elba > dev->total_secs)) {
1021 pr_err("nvm: L2P data from device is out of bounds!\n");
1022 return -EINVAL;
1023 }
1024
1025 for (i = 0; i < nlb; i++) {
1026 u64 pba = le64_to_cpu(entries[i]);
1027 unsigned int mod;
1028 /* LNVM treats address-spaces as silos, LBA and PBA are
1029 * equally large and zero-indexed.
1030 */
1031 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1032 pr_err("nvm: L2P data entry is out of bounds!\n");
1033 return -EINVAL;
1034 }
1035
1036 /* Address zero is a special one. The first page on a disk is
1037 * protected. As it often holds internal device boot
1038 * information.
1039 */
1040 if (!pba)
1041 continue;
1042
1043 div_u64_rem(pba, rrpc->nr_sects, &mod);
1044
1045 addr[i].addr = pba;
1046 raddr[mod].addr = slba + i;
1047 }
1048
1049 return 0;
1050 }
1051
1052 static int rrpc_map_init(struct rrpc *rrpc)
1053 {
1054 struct nvm_dev *dev = rrpc->dev;
1055 sector_t i;
1056 int ret;
1057
1058 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1059 if (!rrpc->trans_map)
1060 return -ENOMEM;
1061
1062 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1063 * rrpc->nr_sects);
1064 if (!rrpc->rev_trans_map)
1065 return -ENOMEM;
1066
1067 for (i = 0; i < rrpc->nr_sects; i++) {
1068 struct rrpc_addr *p = &rrpc->trans_map[i];
1069 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1070
1071 p->addr = ADDR_EMPTY;
1072 r->addr = ADDR_EMPTY;
1073 }
1074
1075 if (!dev->ops->get_l2p_tbl)
1076 return 0;
1077
1078 /* Bring up the mapping table from device */
1079 ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_secs, rrpc_l2p_update,
1080 rrpc);
1081 if (ret) {
1082 pr_err("nvm: rrpc: could not read L2P table.\n");
1083 return -EINVAL;
1084 }
1085
1086 return 0;
1087 }
1088
1089
1090 /* Minimum pages needed within a lun */
1091 #define PAGE_POOL_SIZE 16
1092 #define ADDR_POOL_SIZE 64
1093
1094 static int rrpc_core_init(struct rrpc *rrpc)
1095 {
1096 down_write(&rrpc_lock);
1097 if (!rrpc_gcb_cache) {
1098 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1099 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1100 if (!rrpc_gcb_cache) {
1101 up_write(&rrpc_lock);
1102 return -ENOMEM;
1103 }
1104
1105 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1106 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1107 0, 0, NULL);
1108 if (!rrpc_rq_cache) {
1109 kmem_cache_destroy(rrpc_gcb_cache);
1110 up_write(&rrpc_lock);
1111 return -ENOMEM;
1112 }
1113 }
1114 up_write(&rrpc_lock);
1115
1116 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1117 if (!rrpc->page_pool)
1118 return -ENOMEM;
1119
1120 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1121 rrpc_gcb_cache);
1122 if (!rrpc->gcb_pool)
1123 return -ENOMEM;
1124
1125 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1126 if (!rrpc->rq_pool)
1127 return -ENOMEM;
1128
1129 spin_lock_init(&rrpc->inflights.lock);
1130 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1131
1132 return 0;
1133 }
1134
1135 static void rrpc_core_free(struct rrpc *rrpc)
1136 {
1137 mempool_destroy(rrpc->page_pool);
1138 mempool_destroy(rrpc->gcb_pool);
1139 mempool_destroy(rrpc->rq_pool);
1140 }
1141
1142 static void rrpc_luns_free(struct rrpc *rrpc)
1143 {
1144 kfree(rrpc->luns);
1145 }
1146
1147 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1148 {
1149 struct nvm_dev *dev = rrpc->dev;
1150 struct rrpc_lun *rlun;
1151 int i, j;
1152
1153 if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1154 pr_err("rrpc: number of pages per block too high.");
1155 return -EINVAL;
1156 }
1157
1158 spin_lock_init(&rrpc->rev_lock);
1159
1160 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1161 GFP_KERNEL);
1162 if (!rrpc->luns)
1163 return -ENOMEM;
1164
1165 /* 1:1 mapping */
1166 for (i = 0; i < rrpc->nr_luns; i++) {
1167 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1168
1169 rlun = &rrpc->luns[i];
1170 rlun->rrpc = rrpc;
1171 rlun->parent = lun;
1172 INIT_LIST_HEAD(&rlun->prio_list);
1173 INIT_LIST_HEAD(&rlun->open_list);
1174 INIT_LIST_HEAD(&rlun->closed_list);
1175
1176 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1177 spin_lock_init(&rlun->lock);
1178
1179 rrpc->total_blocks += dev->blks_per_lun;
1180 rrpc->nr_sects += dev->sec_per_lun;
1181
1182 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1183 rrpc->dev->blks_per_lun);
1184 if (!rlun->blocks)
1185 goto err;
1186
1187 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1188 struct rrpc_block *rblk = &rlun->blocks[j];
1189 struct nvm_block *blk = &lun->blocks[j];
1190
1191 rblk->parent = blk;
1192 rblk->rlun = rlun;
1193 INIT_LIST_HEAD(&rblk->prio);
1194 spin_lock_init(&rblk->lock);
1195 }
1196 }
1197
1198 return 0;
1199 err:
1200 return -ENOMEM;
1201 }
1202
1203 static void rrpc_free(struct rrpc *rrpc)
1204 {
1205 rrpc_gc_free(rrpc);
1206 rrpc_map_free(rrpc);
1207 rrpc_core_free(rrpc);
1208 rrpc_luns_free(rrpc);
1209
1210 kfree(rrpc);
1211 }
1212
1213 static void rrpc_exit(void *private)
1214 {
1215 struct rrpc *rrpc = private;
1216
1217 del_timer(&rrpc->gc_timer);
1218
1219 flush_workqueue(rrpc->krqd_wq);
1220 flush_workqueue(rrpc->kgc_wq);
1221
1222 rrpc_free(rrpc);
1223 }
1224
1225 static sector_t rrpc_capacity(void *private)
1226 {
1227 struct rrpc *rrpc = private;
1228 struct nvm_dev *dev = rrpc->dev;
1229 sector_t reserved, provisioned;
1230
1231 /* cur, gc, and two emergency blocks for each lun */
1232 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1233 provisioned = rrpc->nr_sects - reserved;
1234
1235 if (reserved > rrpc->nr_sects) {
1236 pr_err("rrpc: not enough space available to expose storage.\n");
1237 return 0;
1238 }
1239
1240 sector_div(provisioned, 10);
1241 return provisioned * 9 * NR_PHY_IN_LOG;
1242 }
1243
1244 /*
1245 * Looks up the logical address from reverse trans map and check if its valid by
1246 * comparing the logical to physical address with the physical address.
1247 * Returns 0 on free, otherwise 1 if in use
1248 */
1249 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1250 {
1251 struct nvm_dev *dev = rrpc->dev;
1252 int offset;
1253 struct rrpc_addr *laddr;
1254 u64 bpaddr, paddr, pladdr;
1255
1256 bpaddr = block_to_rel_addr(rrpc, rblk);
1257 for (offset = 0; offset < dev->sec_per_blk; offset++) {
1258 paddr = bpaddr + offset;
1259
1260 pladdr = rrpc->rev_trans_map[paddr].addr;
1261 if (pladdr == ADDR_EMPTY)
1262 continue;
1263
1264 laddr = &rrpc->trans_map[pladdr];
1265
1266 if (paddr == laddr->addr) {
1267 laddr->rblk = rblk;
1268 } else {
1269 set_bit(offset, rblk->invalid_pages);
1270 rblk->nr_invalid_pages++;
1271 }
1272 }
1273 }
1274
1275 static int rrpc_blocks_init(struct rrpc *rrpc)
1276 {
1277 struct rrpc_lun *rlun;
1278 struct rrpc_block *rblk;
1279 int lun_iter, blk_iter;
1280
1281 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1282 rlun = &rrpc->luns[lun_iter];
1283
1284 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1285 blk_iter++) {
1286 rblk = &rlun->blocks[blk_iter];
1287 rrpc_block_map_update(rrpc, rblk);
1288 }
1289 }
1290
1291 return 0;
1292 }
1293
1294 static int rrpc_luns_configure(struct rrpc *rrpc)
1295 {
1296 struct rrpc_lun *rlun;
1297 struct rrpc_block *rblk;
1298 int i;
1299
1300 for (i = 0; i < rrpc->nr_luns; i++) {
1301 rlun = &rrpc->luns[i];
1302
1303 rblk = rrpc_get_blk(rrpc, rlun, 0);
1304 if (!rblk)
1305 goto err;
1306
1307 rrpc_set_lun_cur(rlun, rblk);
1308
1309 /* Emergency gc block */
1310 rblk = rrpc_get_blk(rrpc, rlun, 1);
1311 if (!rblk)
1312 goto err;
1313 rlun->gc_cur = rblk;
1314 }
1315
1316 return 0;
1317 err:
1318 rrpc_put_blks(rrpc);
1319 return -EINVAL;
1320 }
1321
1322 static struct nvm_tgt_type tt_rrpc;
1323
1324 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1325 int lun_begin, int lun_end)
1326 {
1327 struct request_queue *bqueue = dev->q;
1328 struct request_queue *tqueue = tdisk->queue;
1329 struct rrpc *rrpc;
1330 int ret;
1331
1332 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1333 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1334 dev->identity.dom);
1335 return ERR_PTR(-EINVAL);
1336 }
1337
1338 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1339 if (!rrpc)
1340 return ERR_PTR(-ENOMEM);
1341
1342 rrpc->instance.tt = &tt_rrpc;
1343 rrpc->dev = dev;
1344 rrpc->disk = tdisk;
1345
1346 bio_list_init(&rrpc->requeue_bios);
1347 spin_lock_init(&rrpc->bio_lock);
1348 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1349
1350 rrpc->nr_luns = lun_end - lun_begin + 1;
1351
1352 /* simple round-robin strategy */
1353 atomic_set(&rrpc->next_lun, -1);
1354
1355 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1356 if (ret) {
1357 pr_err("nvm: rrpc: could not initialize luns\n");
1358 goto err;
1359 }
1360
1361 rrpc->poffset = dev->sec_per_lun * lun_begin;
1362 rrpc->lun_offset = lun_begin;
1363
1364 ret = rrpc_core_init(rrpc);
1365 if (ret) {
1366 pr_err("nvm: rrpc: could not initialize core\n");
1367 goto err;
1368 }
1369
1370 ret = rrpc_map_init(rrpc);
1371 if (ret) {
1372 pr_err("nvm: rrpc: could not initialize maps\n");
1373 goto err;
1374 }
1375
1376 ret = rrpc_blocks_init(rrpc);
1377 if (ret) {
1378 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1379 goto err;
1380 }
1381
1382 ret = rrpc_luns_configure(rrpc);
1383 if (ret) {
1384 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1385 goto err;
1386 }
1387
1388 ret = rrpc_gc_init(rrpc);
1389 if (ret) {
1390 pr_err("nvm: rrpc: could not initialize gc\n");
1391 goto err;
1392 }
1393
1394 /* inherit the size from the underlying device */
1395 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1396 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1397
1398 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1399 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1400
1401 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1402
1403 return rrpc;
1404 err:
1405 rrpc_free(rrpc);
1406 return ERR_PTR(ret);
1407 }
1408
1409 /* round robin, page-based FTL, and cost-based GC */
1410 static struct nvm_tgt_type tt_rrpc = {
1411 .name = "rrpc",
1412 .version = {1, 0, 0},
1413
1414 .make_rq = rrpc_make_rq,
1415 .capacity = rrpc_capacity,
1416 .end_io = rrpc_end_io,
1417
1418 .init = rrpc_init,
1419 .exit = rrpc_exit,
1420 };
1421
1422 static int __init rrpc_module_init(void)
1423 {
1424 return nvm_register_target(&tt_rrpc);
1425 }
1426
1427 static void rrpc_module_exit(void)
1428 {
1429 nvm_unregister_target(&tt_rrpc);
1430 }
1431
1432 module_init(rrpc_module_init);
1433 module_exit(rrpc_module_exit);
1434 MODULE_LICENSE("GPL v2");
1435 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");