]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mailbox/bcm-flexrm-mailbox.c
Merge tag 'for-5.7-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-hirsute-kernel.git] / drivers / mailbox / bcm-flexrm-mailbox.c
1 /*
2 * Copyright (C) 2017 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
7 *
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 /*
15 * Broadcom FlexRM Mailbox Driver
16 *
17 * Each Broadcom FlexSparx4 offload engine is implemented as an
18 * extension to Broadcom FlexRM ring manager. The FlexRM ring
19 * manager provides a set of rings which can be used to submit
20 * work to a FlexSparx4 offload engine.
21 *
22 * This driver creates a mailbox controller using a set of FlexRM
23 * rings where each mailbox channel represents a separate FlexRM ring.
24 */
25
26 #include <asm/barrier.h>
27 #include <asm/byteorder.h>
28 #include <linux/atomic.h>
29 #include <linux/bitmap.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/kernel.h>
38 #include <linux/mailbox_controller.h>
39 #include <linux/mailbox_client.h>
40 #include <linux/mailbox/brcm-message.h>
41 #include <linux/module.h>
42 #include <linux/msi.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/platform_device.h>
46 #include <linux/spinlock.h>
47
48 /* ====== FlexRM register defines ===== */
49
50 /* FlexRM configuration */
51 #define RING_REGS_SIZE 0x10000
52 #define RING_DESC_SIZE 8
53 #define RING_DESC_INDEX(offset) \
54 ((offset) / RING_DESC_SIZE)
55 #define RING_DESC_OFFSET(index) \
56 ((index) * RING_DESC_SIZE)
57 #define RING_MAX_REQ_COUNT 1024
58 #define RING_BD_ALIGN_ORDER 12
59 #define RING_BD_ALIGN_CHECK(addr) \
60 (!((addr) & ((0x1 << RING_BD_ALIGN_ORDER) - 1)))
61 #define RING_BD_TOGGLE_INVALID(offset) \
62 (((offset) >> RING_BD_ALIGN_ORDER) & 0x1)
63 #define RING_BD_TOGGLE_VALID(offset) \
64 (!RING_BD_TOGGLE_INVALID(offset))
65 #define RING_BD_DESC_PER_REQ 32
66 #define RING_BD_DESC_COUNT \
67 (RING_MAX_REQ_COUNT * RING_BD_DESC_PER_REQ)
68 #define RING_BD_SIZE \
69 (RING_BD_DESC_COUNT * RING_DESC_SIZE)
70 #define RING_CMPL_ALIGN_ORDER 13
71 #define RING_CMPL_DESC_COUNT RING_MAX_REQ_COUNT
72 #define RING_CMPL_SIZE \
73 (RING_CMPL_DESC_COUNT * RING_DESC_SIZE)
74 #define RING_VER_MAGIC 0x76303031
75
76 /* Per-Ring register offsets */
77 #define RING_VER 0x000
78 #define RING_BD_START_ADDR 0x004
79 #define RING_BD_READ_PTR 0x008
80 #define RING_BD_WRITE_PTR 0x00c
81 #define RING_BD_READ_PTR_DDR_LS 0x010
82 #define RING_BD_READ_PTR_DDR_MS 0x014
83 #define RING_CMPL_START_ADDR 0x018
84 #define RING_CMPL_WRITE_PTR 0x01c
85 #define RING_NUM_REQ_RECV_LS 0x020
86 #define RING_NUM_REQ_RECV_MS 0x024
87 #define RING_NUM_REQ_TRANS_LS 0x028
88 #define RING_NUM_REQ_TRANS_MS 0x02c
89 #define RING_NUM_REQ_OUTSTAND 0x030
90 #define RING_CONTROL 0x034
91 #define RING_FLUSH_DONE 0x038
92 #define RING_MSI_ADDR_LS 0x03c
93 #define RING_MSI_ADDR_MS 0x040
94 #define RING_MSI_CONTROL 0x048
95 #define RING_BD_READ_PTR_DDR_CONTROL 0x04c
96 #define RING_MSI_DATA_VALUE 0x064
97
98 /* Register RING_BD_START_ADDR fields */
99 #define BD_LAST_UPDATE_HW_SHIFT 28
100 #define BD_LAST_UPDATE_HW_MASK 0x1
101 #define BD_START_ADDR_VALUE(pa) \
102 ((u32)((((dma_addr_t)(pa)) >> RING_BD_ALIGN_ORDER) & 0x0fffffff))
103 #define BD_START_ADDR_DECODE(val) \
104 ((dma_addr_t)((val) & 0x0fffffff) << RING_BD_ALIGN_ORDER)
105
106 /* Register RING_CMPL_START_ADDR fields */
107 #define CMPL_START_ADDR_VALUE(pa) \
108 ((u32)((((u64)(pa)) >> RING_CMPL_ALIGN_ORDER) & 0x07ffffff))
109
110 /* Register RING_CONTROL fields */
111 #define CONTROL_MASK_DISABLE_CONTROL 12
112 #define CONTROL_FLUSH_SHIFT 5
113 #define CONTROL_ACTIVE_SHIFT 4
114 #define CONTROL_RATE_ADAPT_MASK 0xf
115 #define CONTROL_RATE_DYNAMIC 0x0
116 #define CONTROL_RATE_FAST 0x8
117 #define CONTROL_RATE_MEDIUM 0x9
118 #define CONTROL_RATE_SLOW 0xa
119 #define CONTROL_RATE_IDLE 0xb
120
121 /* Register RING_FLUSH_DONE fields */
122 #define FLUSH_DONE_MASK 0x1
123
124 /* Register RING_MSI_CONTROL fields */
125 #define MSI_TIMER_VAL_SHIFT 16
126 #define MSI_TIMER_VAL_MASK 0xffff
127 #define MSI_ENABLE_SHIFT 15
128 #define MSI_ENABLE_MASK 0x1
129 #define MSI_COUNT_SHIFT 0
130 #define MSI_COUNT_MASK 0x3ff
131
132 /* Register RING_BD_READ_PTR_DDR_CONTROL fields */
133 #define BD_READ_PTR_DDR_TIMER_VAL_SHIFT 16
134 #define BD_READ_PTR_DDR_TIMER_VAL_MASK 0xffff
135 #define BD_READ_PTR_DDR_ENABLE_SHIFT 15
136 #define BD_READ_PTR_DDR_ENABLE_MASK 0x1
137
138 /* ====== FlexRM ring descriptor defines ===== */
139
140 /* Completion descriptor format */
141 #define CMPL_OPAQUE_SHIFT 0
142 #define CMPL_OPAQUE_MASK 0xffff
143 #define CMPL_ENGINE_STATUS_SHIFT 16
144 #define CMPL_ENGINE_STATUS_MASK 0xffff
145 #define CMPL_DME_STATUS_SHIFT 32
146 #define CMPL_DME_STATUS_MASK 0xffff
147 #define CMPL_RM_STATUS_SHIFT 48
148 #define CMPL_RM_STATUS_MASK 0xffff
149
150 /* Completion DME status code */
151 #define DME_STATUS_MEM_COR_ERR BIT(0)
152 #define DME_STATUS_MEM_UCOR_ERR BIT(1)
153 #define DME_STATUS_FIFO_UNDERFLOW BIT(2)
154 #define DME_STATUS_FIFO_OVERFLOW BIT(3)
155 #define DME_STATUS_RRESP_ERR BIT(4)
156 #define DME_STATUS_BRESP_ERR BIT(5)
157 #define DME_STATUS_ERROR_MASK (DME_STATUS_MEM_COR_ERR | \
158 DME_STATUS_MEM_UCOR_ERR | \
159 DME_STATUS_FIFO_UNDERFLOW | \
160 DME_STATUS_FIFO_OVERFLOW | \
161 DME_STATUS_RRESP_ERR | \
162 DME_STATUS_BRESP_ERR)
163
164 /* Completion RM status code */
165 #define RM_STATUS_CODE_SHIFT 0
166 #define RM_STATUS_CODE_MASK 0x3ff
167 #define RM_STATUS_CODE_GOOD 0x0
168 #define RM_STATUS_CODE_AE_TIMEOUT 0x3ff
169
170 /* General descriptor format */
171 #define DESC_TYPE_SHIFT 60
172 #define DESC_TYPE_MASK 0xf
173 #define DESC_PAYLOAD_SHIFT 0
174 #define DESC_PAYLOAD_MASK 0x0fffffffffffffff
175
176 /* Null descriptor format */
177 #define NULL_TYPE 0
178 #define NULL_TOGGLE_SHIFT 58
179 #define NULL_TOGGLE_MASK 0x1
180
181 /* Header descriptor format */
182 #define HEADER_TYPE 1
183 #define HEADER_TOGGLE_SHIFT 58
184 #define HEADER_TOGGLE_MASK 0x1
185 #define HEADER_ENDPKT_SHIFT 57
186 #define HEADER_ENDPKT_MASK 0x1
187 #define HEADER_STARTPKT_SHIFT 56
188 #define HEADER_STARTPKT_MASK 0x1
189 #define HEADER_BDCOUNT_SHIFT 36
190 #define HEADER_BDCOUNT_MASK 0x1f
191 #define HEADER_BDCOUNT_MAX HEADER_BDCOUNT_MASK
192 #define HEADER_FLAGS_SHIFT 16
193 #define HEADER_FLAGS_MASK 0xffff
194 #define HEADER_OPAQUE_SHIFT 0
195 #define HEADER_OPAQUE_MASK 0xffff
196
197 /* Source (SRC) descriptor format */
198 #define SRC_TYPE 2
199 #define SRC_LENGTH_SHIFT 44
200 #define SRC_LENGTH_MASK 0xffff
201 #define SRC_ADDR_SHIFT 0
202 #define SRC_ADDR_MASK 0x00000fffffffffff
203
204 /* Destination (DST) descriptor format */
205 #define DST_TYPE 3
206 #define DST_LENGTH_SHIFT 44
207 #define DST_LENGTH_MASK 0xffff
208 #define DST_ADDR_SHIFT 0
209 #define DST_ADDR_MASK 0x00000fffffffffff
210
211 /* Immediate (IMM) descriptor format */
212 #define IMM_TYPE 4
213 #define IMM_DATA_SHIFT 0
214 #define IMM_DATA_MASK 0x0fffffffffffffff
215
216 /* Next pointer (NPTR) descriptor format */
217 #define NPTR_TYPE 5
218 #define NPTR_TOGGLE_SHIFT 58
219 #define NPTR_TOGGLE_MASK 0x1
220 #define NPTR_ADDR_SHIFT 0
221 #define NPTR_ADDR_MASK 0x00000fffffffffff
222
223 /* Mega source (MSRC) descriptor format */
224 #define MSRC_TYPE 6
225 #define MSRC_LENGTH_SHIFT 44
226 #define MSRC_LENGTH_MASK 0xffff
227 #define MSRC_ADDR_SHIFT 0
228 #define MSRC_ADDR_MASK 0x00000fffffffffff
229
230 /* Mega destination (MDST) descriptor format */
231 #define MDST_TYPE 7
232 #define MDST_LENGTH_SHIFT 44
233 #define MDST_LENGTH_MASK 0xffff
234 #define MDST_ADDR_SHIFT 0
235 #define MDST_ADDR_MASK 0x00000fffffffffff
236
237 /* Source with tlast (SRCT) descriptor format */
238 #define SRCT_TYPE 8
239 #define SRCT_LENGTH_SHIFT 44
240 #define SRCT_LENGTH_MASK 0xffff
241 #define SRCT_ADDR_SHIFT 0
242 #define SRCT_ADDR_MASK 0x00000fffffffffff
243
244 /* Destination with tlast (DSTT) descriptor format */
245 #define DSTT_TYPE 9
246 #define DSTT_LENGTH_SHIFT 44
247 #define DSTT_LENGTH_MASK 0xffff
248 #define DSTT_ADDR_SHIFT 0
249 #define DSTT_ADDR_MASK 0x00000fffffffffff
250
251 /* Immediate with tlast (IMMT) descriptor format */
252 #define IMMT_TYPE 10
253 #define IMMT_DATA_SHIFT 0
254 #define IMMT_DATA_MASK 0x0fffffffffffffff
255
256 /* Descriptor helper macros */
257 #define DESC_DEC(_d, _s, _m) (((_d) >> (_s)) & (_m))
258 #define DESC_ENC(_d, _v, _s, _m) \
259 do { \
260 (_d) &= ~((u64)(_m) << (_s)); \
261 (_d) |= (((u64)(_v) & (_m)) << (_s)); \
262 } while (0)
263
264 /* ====== FlexRM data structures ===== */
265
266 struct flexrm_ring {
267 /* Unprotected members */
268 int num;
269 struct flexrm_mbox *mbox;
270 void __iomem *regs;
271 bool irq_requested;
272 unsigned int irq;
273 cpumask_t irq_aff_hint;
274 unsigned int msi_timer_val;
275 unsigned int msi_count_threshold;
276 struct brcm_message *requests[RING_MAX_REQ_COUNT];
277 void *bd_base;
278 dma_addr_t bd_dma_base;
279 u32 bd_write_offset;
280 void *cmpl_base;
281 dma_addr_t cmpl_dma_base;
282 /* Atomic stats */
283 atomic_t msg_send_count;
284 atomic_t msg_cmpl_count;
285 /* Protected members */
286 spinlock_t lock;
287 DECLARE_BITMAP(requests_bmap, RING_MAX_REQ_COUNT);
288 u32 cmpl_read_offset;
289 };
290
291 struct flexrm_mbox {
292 struct device *dev;
293 void __iomem *regs;
294 u32 num_rings;
295 struct flexrm_ring *rings;
296 struct dma_pool *bd_pool;
297 struct dma_pool *cmpl_pool;
298 struct dentry *root;
299 struct mbox_controller controller;
300 };
301
302 /* ====== FlexRM ring descriptor helper routines ===== */
303
304 static u64 flexrm_read_desc(void *desc_ptr)
305 {
306 return le64_to_cpu(*((u64 *)desc_ptr));
307 }
308
309 static void flexrm_write_desc(void *desc_ptr, u64 desc)
310 {
311 *((u64 *)desc_ptr) = cpu_to_le64(desc);
312 }
313
314 static u32 flexrm_cmpl_desc_to_reqid(u64 cmpl_desc)
315 {
316 return (u32)(cmpl_desc & CMPL_OPAQUE_MASK);
317 }
318
319 static int flexrm_cmpl_desc_to_error(u64 cmpl_desc)
320 {
321 u32 status;
322
323 status = DESC_DEC(cmpl_desc, CMPL_DME_STATUS_SHIFT,
324 CMPL_DME_STATUS_MASK);
325 if (status & DME_STATUS_ERROR_MASK)
326 return -EIO;
327
328 status = DESC_DEC(cmpl_desc, CMPL_RM_STATUS_SHIFT,
329 CMPL_RM_STATUS_MASK);
330 status &= RM_STATUS_CODE_MASK;
331 if (status == RM_STATUS_CODE_AE_TIMEOUT)
332 return -ETIMEDOUT;
333
334 return 0;
335 }
336
337 static bool flexrm_is_next_table_desc(void *desc_ptr)
338 {
339 u64 desc = flexrm_read_desc(desc_ptr);
340 u32 type = DESC_DEC(desc, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
341
342 return (type == NPTR_TYPE) ? true : false;
343 }
344
345 static u64 flexrm_next_table_desc(u32 toggle, dma_addr_t next_addr)
346 {
347 u64 desc = 0;
348
349 DESC_ENC(desc, NPTR_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
350 DESC_ENC(desc, toggle, NPTR_TOGGLE_SHIFT, NPTR_TOGGLE_MASK);
351 DESC_ENC(desc, next_addr, NPTR_ADDR_SHIFT, NPTR_ADDR_MASK);
352
353 return desc;
354 }
355
356 static u64 flexrm_null_desc(u32 toggle)
357 {
358 u64 desc = 0;
359
360 DESC_ENC(desc, NULL_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
361 DESC_ENC(desc, toggle, NULL_TOGGLE_SHIFT, NULL_TOGGLE_MASK);
362
363 return desc;
364 }
365
366 static u32 flexrm_estimate_header_desc_count(u32 nhcnt)
367 {
368 u32 hcnt = nhcnt / HEADER_BDCOUNT_MAX;
369
370 if (!(nhcnt % HEADER_BDCOUNT_MAX))
371 hcnt += 1;
372
373 return hcnt;
374 }
375
376 static void flexrm_flip_header_toggle(void *desc_ptr)
377 {
378 u64 desc = flexrm_read_desc(desc_ptr);
379
380 if (desc & ((u64)0x1 << HEADER_TOGGLE_SHIFT))
381 desc &= ~((u64)0x1 << HEADER_TOGGLE_SHIFT);
382 else
383 desc |= ((u64)0x1 << HEADER_TOGGLE_SHIFT);
384
385 flexrm_write_desc(desc_ptr, desc);
386 }
387
388 static u64 flexrm_header_desc(u32 toggle, u32 startpkt, u32 endpkt,
389 u32 bdcount, u32 flags, u32 opaque)
390 {
391 u64 desc = 0;
392
393 DESC_ENC(desc, HEADER_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
394 DESC_ENC(desc, toggle, HEADER_TOGGLE_SHIFT, HEADER_TOGGLE_MASK);
395 DESC_ENC(desc, startpkt, HEADER_STARTPKT_SHIFT, HEADER_STARTPKT_MASK);
396 DESC_ENC(desc, endpkt, HEADER_ENDPKT_SHIFT, HEADER_ENDPKT_MASK);
397 DESC_ENC(desc, bdcount, HEADER_BDCOUNT_SHIFT, HEADER_BDCOUNT_MASK);
398 DESC_ENC(desc, flags, HEADER_FLAGS_SHIFT, HEADER_FLAGS_MASK);
399 DESC_ENC(desc, opaque, HEADER_OPAQUE_SHIFT, HEADER_OPAQUE_MASK);
400
401 return desc;
402 }
403
404 static void flexrm_enqueue_desc(u32 nhpos, u32 nhcnt, u32 reqid,
405 u64 desc, void **desc_ptr, u32 *toggle,
406 void *start_desc, void *end_desc)
407 {
408 u64 d;
409 u32 nhavail, _toggle, _startpkt, _endpkt, _bdcount;
410
411 /* Sanity check */
412 if (nhcnt <= nhpos)
413 return;
414
415 /*
416 * Each request or packet start with a HEADER descriptor followed
417 * by one or more non-HEADER descriptors (SRC, SRCT, MSRC, DST,
418 * DSTT, MDST, IMM, and IMMT). The number of non-HEADER descriptors
419 * following a HEADER descriptor is represented by BDCOUNT field
420 * of HEADER descriptor. The max value of BDCOUNT field is 31 which
421 * means we can only have 31 non-HEADER descriptors following one
422 * HEADER descriptor.
423 *
424 * In general use, number of non-HEADER descriptors can easily go
425 * beyond 31. To tackle this situation, we have packet (or request)
426 * extenstion bits (STARTPKT and ENDPKT) in the HEADER descriptor.
427 *
428 * To use packet extension, the first HEADER descriptor of request
429 * (or packet) will have STARTPKT=1 and ENDPKT=0. The intermediate
430 * HEADER descriptors will have STARTPKT=0 and ENDPKT=0. The last
431 * HEADER descriptor will have STARTPKT=0 and ENDPKT=1. Also, the
432 * TOGGLE bit of the first HEADER will be set to invalid state to
433 * ensure that FlexRM does not start fetching descriptors till all
434 * descriptors are enqueued. The user of this function will flip
435 * the TOGGLE bit of first HEADER after all descriptors are
436 * enqueued.
437 */
438
439 if ((nhpos % HEADER_BDCOUNT_MAX == 0) && (nhcnt - nhpos)) {
440 /* Prepare the header descriptor */
441 nhavail = (nhcnt - nhpos);
442 _toggle = (nhpos == 0) ? !(*toggle) : (*toggle);
443 _startpkt = (nhpos == 0) ? 0x1 : 0x0;
444 _endpkt = (nhavail <= HEADER_BDCOUNT_MAX) ? 0x1 : 0x0;
445 _bdcount = (nhavail <= HEADER_BDCOUNT_MAX) ?
446 nhavail : HEADER_BDCOUNT_MAX;
447 if (nhavail <= HEADER_BDCOUNT_MAX)
448 _bdcount = nhavail;
449 else
450 _bdcount = HEADER_BDCOUNT_MAX;
451 d = flexrm_header_desc(_toggle, _startpkt, _endpkt,
452 _bdcount, 0x0, reqid);
453
454 /* Write header descriptor */
455 flexrm_write_desc(*desc_ptr, d);
456
457 /* Point to next descriptor */
458 *desc_ptr += sizeof(desc);
459 if (*desc_ptr == end_desc)
460 *desc_ptr = start_desc;
461
462 /* Skip next pointer descriptors */
463 while (flexrm_is_next_table_desc(*desc_ptr)) {
464 *toggle = (*toggle) ? 0 : 1;
465 *desc_ptr += sizeof(desc);
466 if (*desc_ptr == end_desc)
467 *desc_ptr = start_desc;
468 }
469 }
470
471 /* Write desired descriptor */
472 flexrm_write_desc(*desc_ptr, desc);
473
474 /* Point to next descriptor */
475 *desc_ptr += sizeof(desc);
476 if (*desc_ptr == end_desc)
477 *desc_ptr = start_desc;
478
479 /* Skip next pointer descriptors */
480 while (flexrm_is_next_table_desc(*desc_ptr)) {
481 *toggle = (*toggle) ? 0 : 1;
482 *desc_ptr += sizeof(desc);
483 if (*desc_ptr == end_desc)
484 *desc_ptr = start_desc;
485 }
486 }
487
488 static u64 flexrm_src_desc(dma_addr_t addr, unsigned int length)
489 {
490 u64 desc = 0;
491
492 DESC_ENC(desc, SRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
493 DESC_ENC(desc, length, SRC_LENGTH_SHIFT, SRC_LENGTH_MASK);
494 DESC_ENC(desc, addr, SRC_ADDR_SHIFT, SRC_ADDR_MASK);
495
496 return desc;
497 }
498
499 static u64 flexrm_msrc_desc(dma_addr_t addr, unsigned int length_div_16)
500 {
501 u64 desc = 0;
502
503 DESC_ENC(desc, MSRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
504 DESC_ENC(desc, length_div_16, MSRC_LENGTH_SHIFT, MSRC_LENGTH_MASK);
505 DESC_ENC(desc, addr, MSRC_ADDR_SHIFT, MSRC_ADDR_MASK);
506
507 return desc;
508 }
509
510 static u64 flexrm_dst_desc(dma_addr_t addr, unsigned int length)
511 {
512 u64 desc = 0;
513
514 DESC_ENC(desc, DST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
515 DESC_ENC(desc, length, DST_LENGTH_SHIFT, DST_LENGTH_MASK);
516 DESC_ENC(desc, addr, DST_ADDR_SHIFT, DST_ADDR_MASK);
517
518 return desc;
519 }
520
521 static u64 flexrm_mdst_desc(dma_addr_t addr, unsigned int length_div_16)
522 {
523 u64 desc = 0;
524
525 DESC_ENC(desc, MDST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
526 DESC_ENC(desc, length_div_16, MDST_LENGTH_SHIFT, MDST_LENGTH_MASK);
527 DESC_ENC(desc, addr, MDST_ADDR_SHIFT, MDST_ADDR_MASK);
528
529 return desc;
530 }
531
532 static u64 flexrm_imm_desc(u64 data)
533 {
534 u64 desc = 0;
535
536 DESC_ENC(desc, IMM_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
537 DESC_ENC(desc, data, IMM_DATA_SHIFT, IMM_DATA_MASK);
538
539 return desc;
540 }
541
542 static u64 flexrm_srct_desc(dma_addr_t addr, unsigned int length)
543 {
544 u64 desc = 0;
545
546 DESC_ENC(desc, SRCT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
547 DESC_ENC(desc, length, SRCT_LENGTH_SHIFT, SRCT_LENGTH_MASK);
548 DESC_ENC(desc, addr, SRCT_ADDR_SHIFT, SRCT_ADDR_MASK);
549
550 return desc;
551 }
552
553 static u64 flexrm_dstt_desc(dma_addr_t addr, unsigned int length)
554 {
555 u64 desc = 0;
556
557 DESC_ENC(desc, DSTT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
558 DESC_ENC(desc, length, DSTT_LENGTH_SHIFT, DSTT_LENGTH_MASK);
559 DESC_ENC(desc, addr, DSTT_ADDR_SHIFT, DSTT_ADDR_MASK);
560
561 return desc;
562 }
563
564 static u64 flexrm_immt_desc(u64 data)
565 {
566 u64 desc = 0;
567
568 DESC_ENC(desc, IMMT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
569 DESC_ENC(desc, data, IMMT_DATA_SHIFT, IMMT_DATA_MASK);
570
571 return desc;
572 }
573
574 static bool flexrm_spu_sanity_check(struct brcm_message *msg)
575 {
576 struct scatterlist *sg;
577
578 if (!msg->spu.src || !msg->spu.dst)
579 return false;
580 for (sg = msg->spu.src; sg; sg = sg_next(sg)) {
581 if (sg->length & 0xf) {
582 if (sg->length > SRC_LENGTH_MASK)
583 return false;
584 } else {
585 if (sg->length > (MSRC_LENGTH_MASK * 16))
586 return false;
587 }
588 }
589 for (sg = msg->spu.dst; sg; sg = sg_next(sg)) {
590 if (sg->length & 0xf) {
591 if (sg->length > DST_LENGTH_MASK)
592 return false;
593 } else {
594 if (sg->length > (MDST_LENGTH_MASK * 16))
595 return false;
596 }
597 }
598
599 return true;
600 }
601
602 static u32 flexrm_spu_estimate_nonheader_desc_count(struct brcm_message *msg)
603 {
604 u32 cnt = 0;
605 unsigned int dst_target = 0;
606 struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
607
608 while (src_sg || dst_sg) {
609 if (src_sg) {
610 cnt++;
611 dst_target = src_sg->length;
612 src_sg = sg_next(src_sg);
613 } else
614 dst_target = UINT_MAX;
615
616 while (dst_target && dst_sg) {
617 cnt++;
618 if (dst_sg->length < dst_target)
619 dst_target -= dst_sg->length;
620 else
621 dst_target = 0;
622 dst_sg = sg_next(dst_sg);
623 }
624 }
625
626 return cnt;
627 }
628
629 static int flexrm_spu_dma_map(struct device *dev, struct brcm_message *msg)
630 {
631 int rc;
632
633 rc = dma_map_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
634 DMA_TO_DEVICE);
635 if (rc < 0)
636 return rc;
637
638 rc = dma_map_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
639 DMA_FROM_DEVICE);
640 if (rc < 0) {
641 dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
642 DMA_TO_DEVICE);
643 return rc;
644 }
645
646 return 0;
647 }
648
649 static void flexrm_spu_dma_unmap(struct device *dev, struct brcm_message *msg)
650 {
651 dma_unmap_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
652 DMA_FROM_DEVICE);
653 dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
654 DMA_TO_DEVICE);
655 }
656
657 static void *flexrm_spu_write_descs(struct brcm_message *msg, u32 nhcnt,
658 u32 reqid, void *desc_ptr, u32 toggle,
659 void *start_desc, void *end_desc)
660 {
661 u64 d;
662 u32 nhpos = 0;
663 void *orig_desc_ptr = desc_ptr;
664 unsigned int dst_target = 0;
665 struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
666
667 while (src_sg || dst_sg) {
668 if (src_sg) {
669 if (sg_dma_len(src_sg) & 0xf)
670 d = flexrm_src_desc(sg_dma_address(src_sg),
671 sg_dma_len(src_sg));
672 else
673 d = flexrm_msrc_desc(sg_dma_address(src_sg),
674 sg_dma_len(src_sg)/16);
675 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
676 d, &desc_ptr, &toggle,
677 start_desc, end_desc);
678 nhpos++;
679 dst_target = sg_dma_len(src_sg);
680 src_sg = sg_next(src_sg);
681 } else
682 dst_target = UINT_MAX;
683
684 while (dst_target && dst_sg) {
685 if (sg_dma_len(dst_sg) & 0xf)
686 d = flexrm_dst_desc(sg_dma_address(dst_sg),
687 sg_dma_len(dst_sg));
688 else
689 d = flexrm_mdst_desc(sg_dma_address(dst_sg),
690 sg_dma_len(dst_sg)/16);
691 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
692 d, &desc_ptr, &toggle,
693 start_desc, end_desc);
694 nhpos++;
695 if (sg_dma_len(dst_sg) < dst_target)
696 dst_target -= sg_dma_len(dst_sg);
697 else
698 dst_target = 0;
699 dst_sg = sg_next(dst_sg);
700 }
701 }
702
703 /* Null descriptor with invalid toggle bit */
704 flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
705
706 /* Ensure that descriptors have been written to memory */
707 wmb();
708
709 /* Flip toggle bit in header */
710 flexrm_flip_header_toggle(orig_desc_ptr);
711
712 return desc_ptr;
713 }
714
715 static bool flexrm_sba_sanity_check(struct brcm_message *msg)
716 {
717 u32 i;
718
719 if (!msg->sba.cmds || !msg->sba.cmds_count)
720 return false;
721
722 for (i = 0; i < msg->sba.cmds_count; i++) {
723 if (((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
724 (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C)) &&
725 (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT))
726 return false;
727 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) &&
728 (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
729 return false;
730 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C) &&
731 (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
732 return false;
733 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP) &&
734 (msg->sba.cmds[i].resp_len > DSTT_LENGTH_MASK))
735 return false;
736 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT) &&
737 (msg->sba.cmds[i].data_len > DSTT_LENGTH_MASK))
738 return false;
739 }
740
741 return true;
742 }
743
744 static u32 flexrm_sba_estimate_nonheader_desc_count(struct brcm_message *msg)
745 {
746 u32 i, cnt;
747
748 cnt = 0;
749 for (i = 0; i < msg->sba.cmds_count; i++) {
750 cnt++;
751
752 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
753 (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C))
754 cnt++;
755
756 if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP)
757 cnt++;
758
759 if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT)
760 cnt++;
761 }
762
763 return cnt;
764 }
765
766 static void *flexrm_sba_write_descs(struct brcm_message *msg, u32 nhcnt,
767 u32 reqid, void *desc_ptr, u32 toggle,
768 void *start_desc, void *end_desc)
769 {
770 u64 d;
771 u32 i, nhpos = 0;
772 struct brcm_sba_command *c;
773 void *orig_desc_ptr = desc_ptr;
774
775 /* Convert SBA commands into descriptors */
776 for (i = 0; i < msg->sba.cmds_count; i++) {
777 c = &msg->sba.cmds[i];
778
779 if ((c->flags & BRCM_SBA_CMD_HAS_RESP) &&
780 (c->flags & BRCM_SBA_CMD_HAS_OUTPUT)) {
781 /* Destination response descriptor */
782 d = flexrm_dst_desc(c->resp, c->resp_len);
783 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
784 d, &desc_ptr, &toggle,
785 start_desc, end_desc);
786 nhpos++;
787 } else if (c->flags & BRCM_SBA_CMD_HAS_RESP) {
788 /* Destination response with tlast descriptor */
789 d = flexrm_dstt_desc(c->resp, c->resp_len);
790 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
791 d, &desc_ptr, &toggle,
792 start_desc, end_desc);
793 nhpos++;
794 }
795
796 if (c->flags & BRCM_SBA_CMD_HAS_OUTPUT) {
797 /* Destination with tlast descriptor */
798 d = flexrm_dstt_desc(c->data, c->data_len);
799 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
800 d, &desc_ptr, &toggle,
801 start_desc, end_desc);
802 nhpos++;
803 }
804
805 if (c->flags & BRCM_SBA_CMD_TYPE_B) {
806 /* Command as immediate descriptor */
807 d = flexrm_imm_desc(c->cmd);
808 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
809 d, &desc_ptr, &toggle,
810 start_desc, end_desc);
811 nhpos++;
812 } else {
813 /* Command as immediate descriptor with tlast */
814 d = flexrm_immt_desc(c->cmd);
815 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
816 d, &desc_ptr, &toggle,
817 start_desc, end_desc);
818 nhpos++;
819 }
820
821 if ((c->flags & BRCM_SBA_CMD_TYPE_B) ||
822 (c->flags & BRCM_SBA_CMD_TYPE_C)) {
823 /* Source with tlast descriptor */
824 d = flexrm_srct_desc(c->data, c->data_len);
825 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
826 d, &desc_ptr, &toggle,
827 start_desc, end_desc);
828 nhpos++;
829 }
830 }
831
832 /* Null descriptor with invalid toggle bit */
833 flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
834
835 /* Ensure that descriptors have been written to memory */
836 wmb();
837
838 /* Flip toggle bit in header */
839 flexrm_flip_header_toggle(orig_desc_ptr);
840
841 return desc_ptr;
842 }
843
844 static bool flexrm_sanity_check(struct brcm_message *msg)
845 {
846 if (!msg)
847 return false;
848
849 switch (msg->type) {
850 case BRCM_MESSAGE_SPU:
851 return flexrm_spu_sanity_check(msg);
852 case BRCM_MESSAGE_SBA:
853 return flexrm_sba_sanity_check(msg);
854 default:
855 return false;
856 };
857 }
858
859 static u32 flexrm_estimate_nonheader_desc_count(struct brcm_message *msg)
860 {
861 if (!msg)
862 return 0;
863
864 switch (msg->type) {
865 case BRCM_MESSAGE_SPU:
866 return flexrm_spu_estimate_nonheader_desc_count(msg);
867 case BRCM_MESSAGE_SBA:
868 return flexrm_sba_estimate_nonheader_desc_count(msg);
869 default:
870 return 0;
871 };
872 }
873
874 static int flexrm_dma_map(struct device *dev, struct brcm_message *msg)
875 {
876 if (!dev || !msg)
877 return -EINVAL;
878
879 switch (msg->type) {
880 case BRCM_MESSAGE_SPU:
881 return flexrm_spu_dma_map(dev, msg);
882 default:
883 break;
884 }
885
886 return 0;
887 }
888
889 static void flexrm_dma_unmap(struct device *dev, struct brcm_message *msg)
890 {
891 if (!dev || !msg)
892 return;
893
894 switch (msg->type) {
895 case BRCM_MESSAGE_SPU:
896 flexrm_spu_dma_unmap(dev, msg);
897 break;
898 default:
899 break;
900 }
901 }
902
903 static void *flexrm_write_descs(struct brcm_message *msg, u32 nhcnt,
904 u32 reqid, void *desc_ptr, u32 toggle,
905 void *start_desc, void *end_desc)
906 {
907 if (!msg || !desc_ptr || !start_desc || !end_desc)
908 return ERR_PTR(-ENOTSUPP);
909
910 if ((desc_ptr < start_desc) || (end_desc <= desc_ptr))
911 return ERR_PTR(-ERANGE);
912
913 switch (msg->type) {
914 case BRCM_MESSAGE_SPU:
915 return flexrm_spu_write_descs(msg, nhcnt, reqid,
916 desc_ptr, toggle,
917 start_desc, end_desc);
918 case BRCM_MESSAGE_SBA:
919 return flexrm_sba_write_descs(msg, nhcnt, reqid,
920 desc_ptr, toggle,
921 start_desc, end_desc);
922 default:
923 return ERR_PTR(-ENOTSUPP);
924 };
925 }
926
927 /* ====== FlexRM driver helper routines ===== */
928
929 static void flexrm_write_config_in_seqfile(struct flexrm_mbox *mbox,
930 struct seq_file *file)
931 {
932 int i;
933 const char *state;
934 struct flexrm_ring *ring;
935
936 seq_printf(file, "%-5s %-9s %-18s %-10s %-18s %-10s\n",
937 "Ring#", "State", "BD_Addr", "BD_Size",
938 "Cmpl_Addr", "Cmpl_Size");
939
940 for (i = 0; i < mbox->num_rings; i++) {
941 ring = &mbox->rings[i];
942 if (readl(ring->regs + RING_CONTROL) &
943 BIT(CONTROL_ACTIVE_SHIFT))
944 state = "active";
945 else
946 state = "inactive";
947 seq_printf(file,
948 "%-5d %-9s 0x%016llx 0x%08x 0x%016llx 0x%08x\n",
949 ring->num, state,
950 (unsigned long long)ring->bd_dma_base,
951 (u32)RING_BD_SIZE,
952 (unsigned long long)ring->cmpl_dma_base,
953 (u32)RING_CMPL_SIZE);
954 }
955 }
956
957 static void flexrm_write_stats_in_seqfile(struct flexrm_mbox *mbox,
958 struct seq_file *file)
959 {
960 int i;
961 u32 val, bd_read_offset;
962 struct flexrm_ring *ring;
963
964 seq_printf(file, "%-5s %-10s %-10s %-10s %-11s %-11s\n",
965 "Ring#", "BD_Read", "BD_Write",
966 "Cmpl_Read", "Submitted", "Completed");
967
968 for (i = 0; i < mbox->num_rings; i++) {
969 ring = &mbox->rings[i];
970 bd_read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
971 val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
972 bd_read_offset *= RING_DESC_SIZE;
973 bd_read_offset += (u32)(BD_START_ADDR_DECODE(val) -
974 ring->bd_dma_base);
975 seq_printf(file, "%-5d 0x%08x 0x%08x 0x%08x %-11d %-11d\n",
976 ring->num,
977 (u32)bd_read_offset,
978 (u32)ring->bd_write_offset,
979 (u32)ring->cmpl_read_offset,
980 (u32)atomic_read(&ring->msg_send_count),
981 (u32)atomic_read(&ring->msg_cmpl_count));
982 }
983 }
984
985 static int flexrm_new_request(struct flexrm_ring *ring,
986 struct brcm_message *batch_msg,
987 struct brcm_message *msg)
988 {
989 void *next;
990 unsigned long flags;
991 u32 val, count, nhcnt;
992 u32 read_offset, write_offset;
993 bool exit_cleanup = false;
994 int ret = 0, reqid;
995
996 /* Do sanity check on message */
997 if (!flexrm_sanity_check(msg))
998 return -EIO;
999 msg->error = 0;
1000
1001 /* If no requests possible then save data pointer and goto done. */
1002 spin_lock_irqsave(&ring->lock, flags);
1003 reqid = bitmap_find_free_region(ring->requests_bmap,
1004 RING_MAX_REQ_COUNT, 0);
1005 spin_unlock_irqrestore(&ring->lock, flags);
1006 if (reqid < 0)
1007 return -ENOSPC;
1008 ring->requests[reqid] = msg;
1009
1010 /* Do DMA mappings for the message */
1011 ret = flexrm_dma_map(ring->mbox->dev, msg);
1012 if (ret < 0) {
1013 ring->requests[reqid] = NULL;
1014 spin_lock_irqsave(&ring->lock, flags);
1015 bitmap_release_region(ring->requests_bmap, reqid, 0);
1016 spin_unlock_irqrestore(&ring->lock, flags);
1017 return ret;
1018 }
1019
1020 /* Determine current HW BD read offset */
1021 read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
1022 val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
1023 read_offset *= RING_DESC_SIZE;
1024 read_offset += (u32)(BD_START_ADDR_DECODE(val) - ring->bd_dma_base);
1025
1026 /*
1027 * Number required descriptors = number of non-header descriptors +
1028 * number of header descriptors +
1029 * 1x null descriptor
1030 */
1031 nhcnt = flexrm_estimate_nonheader_desc_count(msg);
1032 count = flexrm_estimate_header_desc_count(nhcnt) + nhcnt + 1;
1033
1034 /* Check for available descriptor space. */
1035 write_offset = ring->bd_write_offset;
1036 while (count) {
1037 if (!flexrm_is_next_table_desc(ring->bd_base + write_offset))
1038 count--;
1039 write_offset += RING_DESC_SIZE;
1040 if (write_offset == RING_BD_SIZE)
1041 write_offset = 0x0;
1042 if (write_offset == read_offset)
1043 break;
1044 }
1045 if (count) {
1046 ret = -ENOSPC;
1047 exit_cleanup = true;
1048 goto exit;
1049 }
1050
1051 /* Write descriptors to ring */
1052 next = flexrm_write_descs(msg, nhcnt, reqid,
1053 ring->bd_base + ring->bd_write_offset,
1054 RING_BD_TOGGLE_VALID(ring->bd_write_offset),
1055 ring->bd_base, ring->bd_base + RING_BD_SIZE);
1056 if (IS_ERR(next)) {
1057 ret = PTR_ERR(next);
1058 exit_cleanup = true;
1059 goto exit;
1060 }
1061
1062 /* Save ring BD write offset */
1063 ring->bd_write_offset = (unsigned long)(next - ring->bd_base);
1064
1065 /* Increment number of messages sent */
1066 atomic_inc_return(&ring->msg_send_count);
1067
1068 exit:
1069 /* Update error status in message */
1070 msg->error = ret;
1071
1072 /* Cleanup if we failed */
1073 if (exit_cleanup) {
1074 flexrm_dma_unmap(ring->mbox->dev, msg);
1075 ring->requests[reqid] = NULL;
1076 spin_lock_irqsave(&ring->lock, flags);
1077 bitmap_release_region(ring->requests_bmap, reqid, 0);
1078 spin_unlock_irqrestore(&ring->lock, flags);
1079 }
1080
1081 return ret;
1082 }
1083
1084 static int flexrm_process_completions(struct flexrm_ring *ring)
1085 {
1086 u64 desc;
1087 int err, count = 0;
1088 unsigned long flags;
1089 struct brcm_message *msg = NULL;
1090 u32 reqid, cmpl_read_offset, cmpl_write_offset;
1091 struct mbox_chan *chan = &ring->mbox->controller.chans[ring->num];
1092
1093 spin_lock_irqsave(&ring->lock, flags);
1094
1095 /*
1096 * Get current completion read and write offset
1097 *
1098 * Note: We should read completion write pointer atleast once
1099 * after we get a MSI interrupt because HW maintains internal
1100 * MSI status which will allow next MSI interrupt only after
1101 * completion write pointer is read.
1102 */
1103 cmpl_write_offset = readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
1104 cmpl_write_offset *= RING_DESC_SIZE;
1105 cmpl_read_offset = ring->cmpl_read_offset;
1106 ring->cmpl_read_offset = cmpl_write_offset;
1107
1108 spin_unlock_irqrestore(&ring->lock, flags);
1109
1110 /* For each completed request notify mailbox clients */
1111 reqid = 0;
1112 while (cmpl_read_offset != cmpl_write_offset) {
1113 /* Dequeue next completion descriptor */
1114 desc = *((u64 *)(ring->cmpl_base + cmpl_read_offset));
1115
1116 /* Next read offset */
1117 cmpl_read_offset += RING_DESC_SIZE;
1118 if (cmpl_read_offset == RING_CMPL_SIZE)
1119 cmpl_read_offset = 0;
1120
1121 /* Decode error from completion descriptor */
1122 err = flexrm_cmpl_desc_to_error(desc);
1123 if (err < 0) {
1124 dev_warn(ring->mbox->dev,
1125 "ring%d got completion desc=0x%lx with error %d\n",
1126 ring->num, (unsigned long)desc, err);
1127 }
1128
1129 /* Determine request id from completion descriptor */
1130 reqid = flexrm_cmpl_desc_to_reqid(desc);
1131
1132 /* Determine message pointer based on reqid */
1133 msg = ring->requests[reqid];
1134 if (!msg) {
1135 dev_warn(ring->mbox->dev,
1136 "ring%d null msg pointer for completion desc=0x%lx\n",
1137 ring->num, (unsigned long)desc);
1138 continue;
1139 }
1140
1141 /* Release reqid for recycling */
1142 ring->requests[reqid] = NULL;
1143 spin_lock_irqsave(&ring->lock, flags);
1144 bitmap_release_region(ring->requests_bmap, reqid, 0);
1145 spin_unlock_irqrestore(&ring->lock, flags);
1146
1147 /* Unmap DMA mappings */
1148 flexrm_dma_unmap(ring->mbox->dev, msg);
1149
1150 /* Give-back message to mailbox client */
1151 msg->error = err;
1152 mbox_chan_received_data(chan, msg);
1153
1154 /* Increment number of completions processed */
1155 atomic_inc_return(&ring->msg_cmpl_count);
1156 count++;
1157 }
1158
1159 return count;
1160 }
1161
1162 /* ====== FlexRM Debugfs callbacks ====== */
1163
1164 static int flexrm_debugfs_conf_show(struct seq_file *file, void *offset)
1165 {
1166 struct flexrm_mbox *mbox = dev_get_drvdata(file->private);
1167
1168 /* Write config in file */
1169 flexrm_write_config_in_seqfile(mbox, file);
1170
1171 return 0;
1172 }
1173
1174 static int flexrm_debugfs_stats_show(struct seq_file *file, void *offset)
1175 {
1176 struct flexrm_mbox *mbox = dev_get_drvdata(file->private);
1177
1178 /* Write stats in file */
1179 flexrm_write_stats_in_seqfile(mbox, file);
1180
1181 return 0;
1182 }
1183
1184 /* ====== FlexRM interrupt handler ===== */
1185
1186 static irqreturn_t flexrm_irq_event(int irq, void *dev_id)
1187 {
1188 /* We only have MSI for completions so just wakeup IRQ thread */
1189 /* Ring related errors will be informed via completion descriptors */
1190
1191 return IRQ_WAKE_THREAD;
1192 }
1193
1194 static irqreturn_t flexrm_irq_thread(int irq, void *dev_id)
1195 {
1196 flexrm_process_completions(dev_id);
1197
1198 return IRQ_HANDLED;
1199 }
1200
1201 /* ====== FlexRM mailbox callbacks ===== */
1202
1203 static int flexrm_send_data(struct mbox_chan *chan, void *data)
1204 {
1205 int i, rc;
1206 struct flexrm_ring *ring = chan->con_priv;
1207 struct brcm_message *msg = data;
1208
1209 if (msg->type == BRCM_MESSAGE_BATCH) {
1210 for (i = msg->batch.msgs_queued;
1211 i < msg->batch.msgs_count; i++) {
1212 rc = flexrm_new_request(ring, msg,
1213 &msg->batch.msgs[i]);
1214 if (rc) {
1215 msg->error = rc;
1216 return rc;
1217 }
1218 msg->batch.msgs_queued++;
1219 }
1220 return 0;
1221 }
1222
1223 return flexrm_new_request(ring, NULL, data);
1224 }
1225
1226 static bool flexrm_peek_data(struct mbox_chan *chan)
1227 {
1228 int cnt = flexrm_process_completions(chan->con_priv);
1229
1230 return (cnt > 0) ? true : false;
1231 }
1232
1233 static int flexrm_startup(struct mbox_chan *chan)
1234 {
1235 u64 d;
1236 u32 val, off;
1237 int ret = 0;
1238 dma_addr_t next_addr;
1239 struct flexrm_ring *ring = chan->con_priv;
1240
1241 /* Allocate BD memory */
1242 ring->bd_base = dma_pool_alloc(ring->mbox->bd_pool,
1243 GFP_KERNEL, &ring->bd_dma_base);
1244 if (!ring->bd_base) {
1245 dev_err(ring->mbox->dev,
1246 "can't allocate BD memory for ring%d\n",
1247 ring->num);
1248 ret = -ENOMEM;
1249 goto fail;
1250 }
1251
1252 /* Configure next table pointer entries in BD memory */
1253 for (off = 0; off < RING_BD_SIZE; off += RING_DESC_SIZE) {
1254 next_addr = off + RING_DESC_SIZE;
1255 if (next_addr == RING_BD_SIZE)
1256 next_addr = 0;
1257 next_addr += ring->bd_dma_base;
1258 if (RING_BD_ALIGN_CHECK(next_addr))
1259 d = flexrm_next_table_desc(RING_BD_TOGGLE_VALID(off),
1260 next_addr);
1261 else
1262 d = flexrm_null_desc(RING_BD_TOGGLE_INVALID(off));
1263 flexrm_write_desc(ring->bd_base + off, d);
1264 }
1265
1266 /* Allocate completion memory */
1267 ring->cmpl_base = dma_pool_zalloc(ring->mbox->cmpl_pool,
1268 GFP_KERNEL, &ring->cmpl_dma_base);
1269 if (!ring->cmpl_base) {
1270 dev_err(ring->mbox->dev,
1271 "can't allocate completion memory for ring%d\n",
1272 ring->num);
1273 ret = -ENOMEM;
1274 goto fail_free_bd_memory;
1275 }
1276
1277 /* Request IRQ */
1278 if (ring->irq == UINT_MAX) {
1279 dev_err(ring->mbox->dev,
1280 "ring%d IRQ not available\n", ring->num);
1281 ret = -ENODEV;
1282 goto fail_free_cmpl_memory;
1283 }
1284 ret = request_threaded_irq(ring->irq,
1285 flexrm_irq_event,
1286 flexrm_irq_thread,
1287 0, dev_name(ring->mbox->dev), ring);
1288 if (ret) {
1289 dev_err(ring->mbox->dev,
1290 "failed to request ring%d IRQ\n", ring->num);
1291 goto fail_free_cmpl_memory;
1292 }
1293 ring->irq_requested = true;
1294
1295 /* Set IRQ affinity hint */
1296 ring->irq_aff_hint = CPU_MASK_NONE;
1297 val = ring->mbox->num_rings;
1298 val = (num_online_cpus() < val) ? val / num_online_cpus() : 1;
1299 cpumask_set_cpu((ring->num / val) % num_online_cpus(),
1300 &ring->irq_aff_hint);
1301 ret = irq_set_affinity_hint(ring->irq, &ring->irq_aff_hint);
1302 if (ret) {
1303 dev_err(ring->mbox->dev,
1304 "failed to set IRQ affinity hint for ring%d\n",
1305 ring->num);
1306 goto fail_free_irq;
1307 }
1308
1309 /* Disable/inactivate ring */
1310 writel_relaxed(0x0, ring->regs + RING_CONTROL);
1311
1312 /* Program BD start address */
1313 val = BD_START_ADDR_VALUE(ring->bd_dma_base);
1314 writel_relaxed(val, ring->regs + RING_BD_START_ADDR);
1315
1316 /* BD write pointer will be same as HW write pointer */
1317 ring->bd_write_offset =
1318 readl_relaxed(ring->regs + RING_BD_WRITE_PTR);
1319 ring->bd_write_offset *= RING_DESC_SIZE;
1320
1321 /* Program completion start address */
1322 val = CMPL_START_ADDR_VALUE(ring->cmpl_dma_base);
1323 writel_relaxed(val, ring->regs + RING_CMPL_START_ADDR);
1324
1325 /* Completion read pointer will be same as HW write pointer */
1326 ring->cmpl_read_offset =
1327 readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
1328 ring->cmpl_read_offset *= RING_DESC_SIZE;
1329
1330 /* Read ring Tx, Rx, and Outstanding counts to clear */
1331 readl_relaxed(ring->regs + RING_NUM_REQ_RECV_LS);
1332 readl_relaxed(ring->regs + RING_NUM_REQ_RECV_MS);
1333 readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_LS);
1334 readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_MS);
1335 readl_relaxed(ring->regs + RING_NUM_REQ_OUTSTAND);
1336
1337 /* Configure RING_MSI_CONTROL */
1338 val = 0;
1339 val |= (ring->msi_timer_val << MSI_TIMER_VAL_SHIFT);
1340 val |= BIT(MSI_ENABLE_SHIFT);
1341 val |= (ring->msi_count_threshold & MSI_COUNT_MASK) << MSI_COUNT_SHIFT;
1342 writel_relaxed(val, ring->regs + RING_MSI_CONTROL);
1343
1344 /* Enable/activate ring */
1345 val = BIT(CONTROL_ACTIVE_SHIFT);
1346 writel_relaxed(val, ring->regs + RING_CONTROL);
1347
1348 /* Reset stats to zero */
1349 atomic_set(&ring->msg_send_count, 0);
1350 atomic_set(&ring->msg_cmpl_count, 0);
1351
1352 return 0;
1353
1354 fail_free_irq:
1355 free_irq(ring->irq, ring);
1356 ring->irq_requested = false;
1357 fail_free_cmpl_memory:
1358 dma_pool_free(ring->mbox->cmpl_pool,
1359 ring->cmpl_base, ring->cmpl_dma_base);
1360 ring->cmpl_base = NULL;
1361 fail_free_bd_memory:
1362 dma_pool_free(ring->mbox->bd_pool,
1363 ring->bd_base, ring->bd_dma_base);
1364 ring->bd_base = NULL;
1365 fail:
1366 return ret;
1367 }
1368
1369 static void flexrm_shutdown(struct mbox_chan *chan)
1370 {
1371 u32 reqid;
1372 unsigned int timeout;
1373 struct brcm_message *msg;
1374 struct flexrm_ring *ring = chan->con_priv;
1375
1376 /* Disable/inactivate ring */
1377 writel_relaxed(0x0, ring->regs + RING_CONTROL);
1378
1379 /* Set ring flush state */
1380 timeout = 1000; /* timeout of 1s */
1381 writel_relaxed(BIT(CONTROL_FLUSH_SHIFT),
1382 ring->regs + RING_CONTROL);
1383 do {
1384 if (readl_relaxed(ring->regs + RING_FLUSH_DONE) &
1385 FLUSH_DONE_MASK)
1386 break;
1387 mdelay(1);
1388 } while (--timeout);
1389 if (!timeout)
1390 dev_err(ring->mbox->dev,
1391 "setting ring%d flush state timedout\n", ring->num);
1392
1393 /* Clear ring flush state */
1394 timeout = 1000; /* timeout of 1s */
1395 writel_relaxed(0x0, ring->regs + RING_CONTROL);
1396 do {
1397 if (!(readl_relaxed(ring->regs + RING_FLUSH_DONE) &
1398 FLUSH_DONE_MASK))
1399 break;
1400 mdelay(1);
1401 } while (--timeout);
1402 if (!timeout)
1403 dev_err(ring->mbox->dev,
1404 "clearing ring%d flush state timedout\n", ring->num);
1405
1406 /* Abort all in-flight requests */
1407 for (reqid = 0; reqid < RING_MAX_REQ_COUNT; reqid++) {
1408 msg = ring->requests[reqid];
1409 if (!msg)
1410 continue;
1411
1412 /* Release reqid for recycling */
1413 ring->requests[reqid] = NULL;
1414
1415 /* Unmap DMA mappings */
1416 flexrm_dma_unmap(ring->mbox->dev, msg);
1417
1418 /* Give-back message to mailbox client */
1419 msg->error = -EIO;
1420 mbox_chan_received_data(chan, msg);
1421 }
1422
1423 /* Clear requests bitmap */
1424 bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT);
1425
1426 /* Release IRQ */
1427 if (ring->irq_requested) {
1428 irq_set_affinity_hint(ring->irq, NULL);
1429 free_irq(ring->irq, ring);
1430 ring->irq_requested = false;
1431 }
1432
1433 /* Free-up completion descriptor ring */
1434 if (ring->cmpl_base) {
1435 dma_pool_free(ring->mbox->cmpl_pool,
1436 ring->cmpl_base, ring->cmpl_dma_base);
1437 ring->cmpl_base = NULL;
1438 }
1439
1440 /* Free-up BD descriptor ring */
1441 if (ring->bd_base) {
1442 dma_pool_free(ring->mbox->bd_pool,
1443 ring->bd_base, ring->bd_dma_base);
1444 ring->bd_base = NULL;
1445 }
1446 }
1447
1448 static const struct mbox_chan_ops flexrm_mbox_chan_ops = {
1449 .send_data = flexrm_send_data,
1450 .startup = flexrm_startup,
1451 .shutdown = flexrm_shutdown,
1452 .peek_data = flexrm_peek_data,
1453 };
1454
1455 static struct mbox_chan *flexrm_mbox_of_xlate(struct mbox_controller *cntlr,
1456 const struct of_phandle_args *pa)
1457 {
1458 struct mbox_chan *chan;
1459 struct flexrm_ring *ring;
1460
1461 if (pa->args_count < 3)
1462 return ERR_PTR(-EINVAL);
1463
1464 if (pa->args[0] >= cntlr->num_chans)
1465 return ERR_PTR(-ENOENT);
1466
1467 if (pa->args[1] > MSI_COUNT_MASK)
1468 return ERR_PTR(-EINVAL);
1469
1470 if (pa->args[2] > MSI_TIMER_VAL_MASK)
1471 return ERR_PTR(-EINVAL);
1472
1473 chan = &cntlr->chans[pa->args[0]];
1474 ring = chan->con_priv;
1475 ring->msi_count_threshold = pa->args[1];
1476 ring->msi_timer_val = pa->args[2];
1477
1478 return chan;
1479 }
1480
1481 /* ====== FlexRM platform driver ===== */
1482
1483 static void flexrm_mbox_msi_write(struct msi_desc *desc, struct msi_msg *msg)
1484 {
1485 struct device *dev = msi_desc_to_dev(desc);
1486 struct flexrm_mbox *mbox = dev_get_drvdata(dev);
1487 struct flexrm_ring *ring = &mbox->rings[desc->platform.msi_index];
1488
1489 /* Configure per-Ring MSI registers */
1490 writel_relaxed(msg->address_lo, ring->regs + RING_MSI_ADDR_LS);
1491 writel_relaxed(msg->address_hi, ring->regs + RING_MSI_ADDR_MS);
1492 writel_relaxed(msg->data, ring->regs + RING_MSI_DATA_VALUE);
1493 }
1494
1495 static int flexrm_mbox_probe(struct platform_device *pdev)
1496 {
1497 int index, ret = 0;
1498 void __iomem *regs;
1499 void __iomem *regs_end;
1500 struct msi_desc *desc;
1501 struct resource *iomem;
1502 struct flexrm_ring *ring;
1503 struct flexrm_mbox *mbox;
1504 struct device *dev = &pdev->dev;
1505
1506 /* Allocate driver mailbox struct */
1507 mbox = devm_kzalloc(dev, sizeof(*mbox), GFP_KERNEL);
1508 if (!mbox) {
1509 ret = -ENOMEM;
1510 goto fail;
1511 }
1512 mbox->dev = dev;
1513 platform_set_drvdata(pdev, mbox);
1514
1515 /* Get resource for registers */
1516 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1517 if (!iomem || (resource_size(iomem) < RING_REGS_SIZE)) {
1518 ret = -ENODEV;
1519 goto fail;
1520 }
1521
1522 /* Map registers of all rings */
1523 mbox->regs = devm_ioremap_resource(&pdev->dev, iomem);
1524 if (IS_ERR(mbox->regs)) {
1525 ret = PTR_ERR(mbox->regs);
1526 dev_err(&pdev->dev, "Failed to remap mailbox regs: %d\n", ret);
1527 goto fail;
1528 }
1529 regs_end = mbox->regs + resource_size(iomem);
1530
1531 /* Scan and count available rings */
1532 mbox->num_rings = 0;
1533 for (regs = mbox->regs; regs < regs_end; regs += RING_REGS_SIZE) {
1534 if (readl_relaxed(regs + RING_VER) == RING_VER_MAGIC)
1535 mbox->num_rings++;
1536 }
1537 if (!mbox->num_rings) {
1538 ret = -ENODEV;
1539 goto fail;
1540 }
1541
1542 /* Allocate driver ring structs */
1543 ring = devm_kcalloc(dev, mbox->num_rings, sizeof(*ring), GFP_KERNEL);
1544 if (!ring) {
1545 ret = -ENOMEM;
1546 goto fail;
1547 }
1548 mbox->rings = ring;
1549
1550 /* Initialize members of driver ring structs */
1551 regs = mbox->regs;
1552 for (index = 0; index < mbox->num_rings; index++) {
1553 ring = &mbox->rings[index];
1554 ring->num = index;
1555 ring->mbox = mbox;
1556 while ((regs < regs_end) &&
1557 (readl_relaxed(regs + RING_VER) != RING_VER_MAGIC))
1558 regs += RING_REGS_SIZE;
1559 if (regs_end <= regs) {
1560 ret = -ENODEV;
1561 goto fail;
1562 }
1563 ring->regs = regs;
1564 regs += RING_REGS_SIZE;
1565 ring->irq = UINT_MAX;
1566 ring->irq_requested = false;
1567 ring->msi_timer_val = MSI_TIMER_VAL_MASK;
1568 ring->msi_count_threshold = 0x1;
1569 memset(ring->requests, 0, sizeof(ring->requests));
1570 ring->bd_base = NULL;
1571 ring->bd_dma_base = 0;
1572 ring->cmpl_base = NULL;
1573 ring->cmpl_dma_base = 0;
1574 atomic_set(&ring->msg_send_count, 0);
1575 atomic_set(&ring->msg_cmpl_count, 0);
1576 spin_lock_init(&ring->lock);
1577 bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT);
1578 ring->cmpl_read_offset = 0;
1579 }
1580
1581 /* FlexRM is capable of 40-bit physical addresses only */
1582 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
1583 if (ret) {
1584 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1585 if (ret)
1586 goto fail;
1587 }
1588
1589 /* Create DMA pool for ring BD memory */
1590 mbox->bd_pool = dma_pool_create("bd", dev, RING_BD_SIZE,
1591 1 << RING_BD_ALIGN_ORDER, 0);
1592 if (!mbox->bd_pool) {
1593 ret = -ENOMEM;
1594 goto fail;
1595 }
1596
1597 /* Create DMA pool for ring completion memory */
1598 mbox->cmpl_pool = dma_pool_create("cmpl", dev, RING_CMPL_SIZE,
1599 1 << RING_CMPL_ALIGN_ORDER, 0);
1600 if (!mbox->cmpl_pool) {
1601 ret = -ENOMEM;
1602 goto fail_destroy_bd_pool;
1603 }
1604
1605 /* Allocate platform MSIs for each ring */
1606 ret = platform_msi_domain_alloc_irqs(dev, mbox->num_rings,
1607 flexrm_mbox_msi_write);
1608 if (ret)
1609 goto fail_destroy_cmpl_pool;
1610
1611 /* Save alloced IRQ numbers for each ring */
1612 for_each_msi_entry(desc, dev) {
1613 ring = &mbox->rings[desc->platform.msi_index];
1614 ring->irq = desc->irq;
1615 }
1616
1617 /* Check availability of debugfs */
1618 if (!debugfs_initialized())
1619 goto skip_debugfs;
1620
1621 /* Create debugfs root entry */
1622 mbox->root = debugfs_create_dir(dev_name(mbox->dev), NULL);
1623
1624 /* Create debugfs config entry */
1625 debugfs_create_devm_seqfile(mbox->dev, "config", mbox->root,
1626 flexrm_debugfs_conf_show);
1627
1628 /* Create debugfs stats entry */
1629 debugfs_create_devm_seqfile(mbox->dev, "stats", mbox->root,
1630 flexrm_debugfs_stats_show);
1631
1632 skip_debugfs:
1633
1634 /* Initialize mailbox controller */
1635 mbox->controller.txdone_irq = false;
1636 mbox->controller.txdone_poll = false;
1637 mbox->controller.ops = &flexrm_mbox_chan_ops;
1638 mbox->controller.dev = dev;
1639 mbox->controller.num_chans = mbox->num_rings;
1640 mbox->controller.of_xlate = flexrm_mbox_of_xlate;
1641 mbox->controller.chans = devm_kcalloc(dev, mbox->num_rings,
1642 sizeof(*mbox->controller.chans), GFP_KERNEL);
1643 if (!mbox->controller.chans) {
1644 ret = -ENOMEM;
1645 goto fail_free_debugfs_root;
1646 }
1647 for (index = 0; index < mbox->num_rings; index++)
1648 mbox->controller.chans[index].con_priv = &mbox->rings[index];
1649
1650 /* Register mailbox controller */
1651 ret = devm_mbox_controller_register(dev, &mbox->controller);
1652 if (ret)
1653 goto fail_free_debugfs_root;
1654
1655 dev_info(dev, "registered flexrm mailbox with %d channels\n",
1656 mbox->controller.num_chans);
1657
1658 return 0;
1659
1660 fail_free_debugfs_root:
1661 debugfs_remove_recursive(mbox->root);
1662 platform_msi_domain_free_irqs(dev);
1663 fail_destroy_cmpl_pool:
1664 dma_pool_destroy(mbox->cmpl_pool);
1665 fail_destroy_bd_pool:
1666 dma_pool_destroy(mbox->bd_pool);
1667 fail:
1668 return ret;
1669 }
1670
1671 static int flexrm_mbox_remove(struct platform_device *pdev)
1672 {
1673 struct device *dev = &pdev->dev;
1674 struct flexrm_mbox *mbox = platform_get_drvdata(pdev);
1675
1676 debugfs_remove_recursive(mbox->root);
1677
1678 platform_msi_domain_free_irqs(dev);
1679
1680 dma_pool_destroy(mbox->cmpl_pool);
1681 dma_pool_destroy(mbox->bd_pool);
1682
1683 return 0;
1684 }
1685
1686 static const struct of_device_id flexrm_mbox_of_match[] = {
1687 { .compatible = "brcm,iproc-flexrm-mbox", },
1688 {},
1689 };
1690 MODULE_DEVICE_TABLE(of, flexrm_mbox_of_match);
1691
1692 static struct platform_driver flexrm_mbox_driver = {
1693 .driver = {
1694 .name = "brcm-flexrm-mbox",
1695 .of_match_table = flexrm_mbox_of_match,
1696 },
1697 .probe = flexrm_mbox_probe,
1698 .remove = flexrm_mbox_remove,
1699 };
1700 module_platform_driver(flexrm_mbox_driver);
1701
1702 MODULE_AUTHOR("Anup Patel <anup.patel@broadcom.com>");
1703 MODULE_DESCRIPTION("Broadcom FlexRM mailbox driver");
1704 MODULE_LICENSE("GPL v2");