]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/bcache/alloc.c
bcache: add CACHE_SET_IO_DISABLE to struct cache_set flags
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / alloc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Primary bucket allocation code
4 *
5 * Copyright 2012 Google, Inc.
6 *
7 * Allocation in bcache is done in terms of buckets:
8 *
9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10 * btree pointers - they must match for the pointer to be considered valid.
11 *
12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13 * bucket simply by incrementing its gen.
14 *
15 * The gens (along with the priorities; it's really the gens are important but
16 * the code is named as if it's the priorities) are written in an arbitrary list
17 * of buckets on disk, with a pointer to them in the journal header.
18 *
19 * When we invalidate a bucket, we have to write its new gen to disk and wait
20 * for that write to complete before we use it - otherwise after a crash we
21 * could have pointers that appeared to be good but pointed to data that had
22 * been overwritten.
23 *
24 * Since the gens and priorities are all stored contiguously on disk, we can
25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26 * call prio_write(), and when prio_write() finishes we pull buckets off the
27 * free_inc list and optionally discard them.
28 *
29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
30 * priorities and gens were being written before we could allocate. c->free is a
31 * smaller freelist, and buckets on that list are always ready to be used.
32 *
33 * If we've got discards enabled, that happens when a bucket moves from the
34 * free_inc list to the free list.
35 *
36 * There is another freelist, because sometimes we have buckets that we know
37 * have nothing pointing into them - these we can reuse without waiting for
38 * priorities to be rewritten. These come from freed btree nodes and buckets
39 * that garbage collection discovered no longer had valid keys pointing into
40 * them (because they were overwritten). That's the unused list - buckets on the
41 * unused list move to the free list, optionally being discarded in the process.
42 *
43 * It's also important to ensure that gens don't wrap around - with respect to
44 * either the oldest gen in the btree or the gen on disk. This is quite
45 * difficult to do in practice, but we explicitly guard against it anyways - if
46 * a bucket is in danger of wrapping around we simply skip invalidating it that
47 * time around, and we garbage collect or rewrite the priorities sooner than we
48 * would have otherwise.
49 *
50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
51 *
52 * bch_bucket_alloc_set() allocates one or more buckets from different caches
53 * out of a cache set.
54 *
55 * free_some_buckets() drives all the processes described above. It's called
56 * from bch_bucket_alloc() and a few other places that need to make sure free
57 * buckets are ready.
58 *
59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60 * invalidated, and then invalidate them and stick them on the free_inc list -
61 * in either lru or fifo order.
62 */
63
64 #include "bcache.h"
65 #include "btree.h"
66
67 #include <linux/blkdev.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71
72 #define MAX_OPEN_BUCKETS 128
73
74 /* Bucket heap / gen */
75
76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
77 {
78 uint8_t ret = ++b->gen;
79
80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
82
83 return ret;
84 }
85
86 void bch_rescale_priorities(struct cache_set *c, int sectors)
87 {
88 struct cache *ca;
89 struct bucket *b;
90 unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
91 unsigned i;
92 int r;
93
94 atomic_sub(sectors, &c->rescale);
95
96 do {
97 r = atomic_read(&c->rescale);
98
99 if (r >= 0)
100 return;
101 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
102
103 mutex_lock(&c->bucket_lock);
104
105 c->min_prio = USHRT_MAX;
106
107 for_each_cache(ca, c, i)
108 for_each_bucket(b, ca)
109 if (b->prio &&
110 b->prio != BTREE_PRIO &&
111 !atomic_read(&b->pin)) {
112 b->prio--;
113 c->min_prio = min(c->min_prio, b->prio);
114 }
115
116 mutex_unlock(&c->bucket_lock);
117 }
118
119 /*
120 * Background allocation thread: scans for buckets to be invalidated,
121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
122 * then optionally issues discard commands to the newly free buckets, then puts
123 * them on the various freelists.
124 */
125
126 static inline bool can_inc_bucket_gen(struct bucket *b)
127 {
128 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
129 }
130
131 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
132 {
133 BUG_ON(!ca->set->gc_mark_valid);
134
135 return (!GC_MARK(b) ||
136 GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
137 !atomic_read(&b->pin) &&
138 can_inc_bucket_gen(b);
139 }
140
141 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
142 {
143 lockdep_assert_held(&ca->set->bucket_lock);
144 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
145
146 if (GC_SECTORS_USED(b))
147 trace_bcache_invalidate(ca, b - ca->buckets);
148
149 bch_inc_gen(ca, b);
150 b->prio = INITIAL_PRIO;
151 atomic_inc(&b->pin);
152 }
153
154 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
155 {
156 __bch_invalidate_one_bucket(ca, b);
157
158 fifo_push(&ca->free_inc, b - ca->buckets);
159 }
160
161 /*
162 * Determines what order we're going to reuse buckets, smallest bucket_prio()
163 * first: we also take into account the number of sectors of live data in that
164 * bucket, and in order for that multiply to make sense we have to scale bucket
165 *
166 * Thus, we scale the bucket priorities so that the bucket with the smallest
167 * prio is worth 1/8th of what INITIAL_PRIO is worth.
168 */
169
170 #define bucket_prio(b) \
171 ({ \
172 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
173 \
174 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
175 })
176
177 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
178 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
179
180 static void invalidate_buckets_lru(struct cache *ca)
181 {
182 struct bucket *b;
183 ssize_t i;
184
185 ca->heap.used = 0;
186
187 for_each_bucket(b, ca) {
188 if (!bch_can_invalidate_bucket(ca, b))
189 continue;
190
191 if (!heap_full(&ca->heap))
192 heap_add(&ca->heap, b, bucket_max_cmp);
193 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
194 ca->heap.data[0] = b;
195 heap_sift(&ca->heap, 0, bucket_max_cmp);
196 }
197 }
198
199 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
200 heap_sift(&ca->heap, i, bucket_min_cmp);
201
202 while (!fifo_full(&ca->free_inc)) {
203 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
204 /*
205 * We don't want to be calling invalidate_buckets()
206 * multiple times when it can't do anything
207 */
208 ca->invalidate_needs_gc = 1;
209 wake_up_gc(ca->set);
210 return;
211 }
212
213 bch_invalidate_one_bucket(ca, b);
214 }
215 }
216
217 static void invalidate_buckets_fifo(struct cache *ca)
218 {
219 struct bucket *b;
220 size_t checked = 0;
221
222 while (!fifo_full(&ca->free_inc)) {
223 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
224 ca->fifo_last_bucket >= ca->sb.nbuckets)
225 ca->fifo_last_bucket = ca->sb.first_bucket;
226
227 b = ca->buckets + ca->fifo_last_bucket++;
228
229 if (bch_can_invalidate_bucket(ca, b))
230 bch_invalidate_one_bucket(ca, b);
231
232 if (++checked >= ca->sb.nbuckets) {
233 ca->invalidate_needs_gc = 1;
234 wake_up_gc(ca->set);
235 return;
236 }
237 }
238 }
239
240 static void invalidate_buckets_random(struct cache *ca)
241 {
242 struct bucket *b;
243 size_t checked = 0;
244
245 while (!fifo_full(&ca->free_inc)) {
246 size_t n;
247 get_random_bytes(&n, sizeof(n));
248
249 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
250 n += ca->sb.first_bucket;
251
252 b = ca->buckets + n;
253
254 if (bch_can_invalidate_bucket(ca, b))
255 bch_invalidate_one_bucket(ca, b);
256
257 if (++checked >= ca->sb.nbuckets / 2) {
258 ca->invalidate_needs_gc = 1;
259 wake_up_gc(ca->set);
260 return;
261 }
262 }
263 }
264
265 static void invalidate_buckets(struct cache *ca)
266 {
267 BUG_ON(ca->invalidate_needs_gc);
268
269 switch (CACHE_REPLACEMENT(&ca->sb)) {
270 case CACHE_REPLACEMENT_LRU:
271 invalidate_buckets_lru(ca);
272 break;
273 case CACHE_REPLACEMENT_FIFO:
274 invalidate_buckets_fifo(ca);
275 break;
276 case CACHE_REPLACEMENT_RANDOM:
277 invalidate_buckets_random(ca);
278 break;
279 }
280 }
281
282 #define allocator_wait(ca, cond) \
283 do { \
284 while (1) { \
285 set_current_state(TASK_INTERRUPTIBLE); \
286 if (cond) \
287 break; \
288 \
289 mutex_unlock(&(ca)->set->bucket_lock); \
290 if (kthread_should_stop() || \
291 test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \
292 set_current_state(TASK_RUNNING); \
293 return 0; \
294 } \
295 \
296 schedule(); \
297 mutex_lock(&(ca)->set->bucket_lock); \
298 } \
299 __set_current_state(TASK_RUNNING); \
300 } while (0)
301
302 static int bch_allocator_push(struct cache *ca, long bucket)
303 {
304 unsigned i;
305
306 /* Prios/gens are actually the most important reserve */
307 if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
308 return true;
309
310 for (i = 0; i < RESERVE_NR; i++)
311 if (fifo_push(&ca->free[i], bucket))
312 return true;
313
314 return false;
315 }
316
317 static int bch_allocator_thread(void *arg)
318 {
319 struct cache *ca = arg;
320
321 mutex_lock(&ca->set->bucket_lock);
322
323 while (1) {
324 /*
325 * First, we pull buckets off of the unused and free_inc lists,
326 * possibly issue discards to them, then we add the bucket to
327 * the free list:
328 */
329 while (!fifo_empty(&ca->free_inc)) {
330 long bucket;
331
332 fifo_pop(&ca->free_inc, bucket);
333
334 if (ca->discard) {
335 mutex_unlock(&ca->set->bucket_lock);
336 blkdev_issue_discard(ca->bdev,
337 bucket_to_sector(ca->set, bucket),
338 ca->sb.bucket_size, GFP_KERNEL, 0);
339 mutex_lock(&ca->set->bucket_lock);
340 }
341
342 allocator_wait(ca, bch_allocator_push(ca, bucket));
343 wake_up(&ca->set->btree_cache_wait);
344 wake_up(&ca->set->bucket_wait);
345 }
346
347 /*
348 * We've run out of free buckets, we need to find some buckets
349 * we can invalidate. First, invalidate them in memory and add
350 * them to the free_inc list:
351 */
352
353 retry_invalidate:
354 allocator_wait(ca, ca->set->gc_mark_valid &&
355 !ca->invalidate_needs_gc);
356 invalidate_buckets(ca);
357
358 /*
359 * Now, we write their new gens to disk so we can start writing
360 * new stuff to them:
361 */
362 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
363 if (CACHE_SYNC(&ca->set->sb)) {
364 /*
365 * This could deadlock if an allocation with a btree
366 * node locked ever blocked - having the btree node
367 * locked would block garbage collection, but here we're
368 * waiting on garbage collection before we invalidate
369 * and free anything.
370 *
371 * But this should be safe since the btree code always
372 * uses btree_check_reserve() before allocating now, and
373 * if it fails it blocks without btree nodes locked.
374 */
375 if (!fifo_full(&ca->free_inc))
376 goto retry_invalidate;
377
378 bch_prio_write(ca);
379 }
380 }
381 }
382
383 /* Allocation */
384
385 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
386 {
387 DEFINE_WAIT(w);
388 struct bucket *b;
389 long r;
390
391 /* fastpath */
392 if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
393 fifo_pop(&ca->free[reserve], r))
394 goto out;
395
396 if (!wait) {
397 trace_bcache_alloc_fail(ca, reserve);
398 return -1;
399 }
400
401 do {
402 prepare_to_wait(&ca->set->bucket_wait, &w,
403 TASK_UNINTERRUPTIBLE);
404
405 mutex_unlock(&ca->set->bucket_lock);
406 schedule();
407 mutex_lock(&ca->set->bucket_lock);
408 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
409 !fifo_pop(&ca->free[reserve], r));
410
411 finish_wait(&ca->set->bucket_wait, &w);
412 out:
413 if (ca->alloc_thread)
414 wake_up_process(ca->alloc_thread);
415
416 trace_bcache_alloc(ca, reserve);
417
418 if (expensive_debug_checks(ca->set)) {
419 size_t iter;
420 long i;
421 unsigned j;
422
423 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
424 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
425
426 for (j = 0; j < RESERVE_NR; j++)
427 fifo_for_each(i, &ca->free[j], iter)
428 BUG_ON(i == r);
429 fifo_for_each(i, &ca->free_inc, iter)
430 BUG_ON(i == r);
431 }
432
433 b = ca->buckets + r;
434
435 BUG_ON(atomic_read(&b->pin) != 1);
436
437 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
438
439 if (reserve <= RESERVE_PRIO) {
440 SET_GC_MARK(b, GC_MARK_METADATA);
441 SET_GC_MOVE(b, 0);
442 b->prio = BTREE_PRIO;
443 } else {
444 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
445 SET_GC_MOVE(b, 0);
446 b->prio = INITIAL_PRIO;
447 }
448
449 if (ca->set->avail_nbuckets > 0) {
450 ca->set->avail_nbuckets--;
451 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
452 }
453
454 return r;
455 }
456
457 void __bch_bucket_free(struct cache *ca, struct bucket *b)
458 {
459 SET_GC_MARK(b, 0);
460 SET_GC_SECTORS_USED(b, 0);
461
462 if (ca->set->avail_nbuckets < ca->set->nbuckets) {
463 ca->set->avail_nbuckets++;
464 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
465 }
466 }
467
468 void bch_bucket_free(struct cache_set *c, struct bkey *k)
469 {
470 unsigned i;
471
472 for (i = 0; i < KEY_PTRS(k); i++)
473 __bch_bucket_free(PTR_CACHE(c, k, i),
474 PTR_BUCKET(c, k, i));
475 }
476
477 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
478 struct bkey *k, int n, bool wait)
479 {
480 int i;
481
482 lockdep_assert_held(&c->bucket_lock);
483 BUG_ON(!n || n > c->caches_loaded || n > 8);
484
485 bkey_init(k);
486
487 /* sort by free space/prio of oldest data in caches */
488
489 for (i = 0; i < n; i++) {
490 struct cache *ca = c->cache_by_alloc[i];
491 long b = bch_bucket_alloc(ca, reserve, wait);
492
493 if (b == -1)
494 goto err;
495
496 k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
497 bucket_to_sector(c, b),
498 ca->sb.nr_this_dev);
499
500 SET_KEY_PTRS(k, i + 1);
501 }
502
503 return 0;
504 err:
505 bch_bucket_free(c, k);
506 bkey_put(c, k);
507 return -1;
508 }
509
510 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
511 struct bkey *k, int n, bool wait)
512 {
513 int ret;
514 mutex_lock(&c->bucket_lock);
515 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
516 mutex_unlock(&c->bucket_lock);
517 return ret;
518 }
519
520 /* Sector allocator */
521
522 struct open_bucket {
523 struct list_head list;
524 unsigned last_write_point;
525 unsigned sectors_free;
526 BKEY_PADDED(key);
527 };
528
529 /*
530 * We keep multiple buckets open for writes, and try to segregate different
531 * write streams for better cache utilization: first we try to segregate flash
532 * only volume write streams from cached devices, secondly we look for a bucket
533 * where the last write to it was sequential with the current write, and
534 * failing that we look for a bucket that was last used by the same task.
535 *
536 * The ideas is if you've got multiple tasks pulling data into the cache at the
537 * same time, you'll get better cache utilization if you try to segregate their
538 * data and preserve locality.
539 *
540 * For example, dirty sectors of flash only volume is not reclaimable, if their
541 * dirty sectors mixed with dirty sectors of cached device, such buckets will
542 * be marked as dirty and won't be reclaimed, though the dirty data of cached
543 * device have been written back to backend device.
544 *
545 * And say you've starting Firefox at the same time you're copying a
546 * bunch of files. Firefox will likely end up being fairly hot and stay in the
547 * cache awhile, but the data you copied might not be; if you wrote all that
548 * data to the same buckets it'd get invalidated at the same time.
549 *
550 * Both of those tasks will be doing fairly random IO so we can't rely on
551 * detecting sequential IO to segregate their data, but going off of the task
552 * should be a sane heuristic.
553 */
554 static struct open_bucket *pick_data_bucket(struct cache_set *c,
555 const struct bkey *search,
556 unsigned write_point,
557 struct bkey *alloc)
558 {
559 struct open_bucket *ret, *ret_task = NULL;
560
561 list_for_each_entry_reverse(ret, &c->data_buckets, list)
562 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
563 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
564 continue;
565 else if (!bkey_cmp(&ret->key, search))
566 goto found;
567 else if (ret->last_write_point == write_point)
568 ret_task = ret;
569
570 ret = ret_task ?: list_first_entry(&c->data_buckets,
571 struct open_bucket, list);
572 found:
573 if (!ret->sectors_free && KEY_PTRS(alloc)) {
574 ret->sectors_free = c->sb.bucket_size;
575 bkey_copy(&ret->key, alloc);
576 bkey_init(alloc);
577 }
578
579 if (!ret->sectors_free)
580 ret = NULL;
581
582 return ret;
583 }
584
585 /*
586 * Allocates some space in the cache to write to, and k to point to the newly
587 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
588 * end of the newly allocated space).
589 *
590 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
591 * sectors were actually allocated.
592 *
593 * If s->writeback is true, will not fail.
594 */
595 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
596 unsigned write_point, unsigned write_prio, bool wait)
597 {
598 struct open_bucket *b;
599 BKEY_PADDED(key) alloc;
600 unsigned i;
601
602 /*
603 * We might have to allocate a new bucket, which we can't do with a
604 * spinlock held. So if we have to allocate, we drop the lock, allocate
605 * and then retry. KEY_PTRS() indicates whether alloc points to
606 * allocated bucket(s).
607 */
608
609 bkey_init(&alloc.key);
610 spin_lock(&c->data_bucket_lock);
611
612 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
613 unsigned watermark = write_prio
614 ? RESERVE_MOVINGGC
615 : RESERVE_NONE;
616
617 spin_unlock(&c->data_bucket_lock);
618
619 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
620 return false;
621
622 spin_lock(&c->data_bucket_lock);
623 }
624
625 /*
626 * If we had to allocate, we might race and not need to allocate the
627 * second time we call pick_data_bucket(). If we allocated a bucket but
628 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
629 */
630 if (KEY_PTRS(&alloc.key))
631 bkey_put(c, &alloc.key);
632
633 for (i = 0; i < KEY_PTRS(&b->key); i++)
634 EBUG_ON(ptr_stale(c, &b->key, i));
635
636 /* Set up the pointer to the space we're allocating: */
637
638 for (i = 0; i < KEY_PTRS(&b->key); i++)
639 k->ptr[i] = b->key.ptr[i];
640
641 sectors = min(sectors, b->sectors_free);
642
643 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
644 SET_KEY_SIZE(k, sectors);
645 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
646
647 /*
648 * Move b to the end of the lru, and keep track of what this bucket was
649 * last used for:
650 */
651 list_move_tail(&b->list, &c->data_buckets);
652 bkey_copy_key(&b->key, k);
653 b->last_write_point = write_point;
654
655 b->sectors_free -= sectors;
656
657 for (i = 0; i < KEY_PTRS(&b->key); i++) {
658 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
659
660 atomic_long_add(sectors,
661 &PTR_CACHE(c, &b->key, i)->sectors_written);
662 }
663
664 if (b->sectors_free < c->sb.block_size)
665 b->sectors_free = 0;
666
667 /*
668 * k takes refcounts on the buckets it points to until it's inserted
669 * into the btree, but if we're done with this bucket we just transfer
670 * get_data_bucket()'s refcount.
671 */
672 if (b->sectors_free)
673 for (i = 0; i < KEY_PTRS(&b->key); i++)
674 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
675
676 spin_unlock(&c->data_bucket_lock);
677 return true;
678 }
679
680 /* Init */
681
682 void bch_open_buckets_free(struct cache_set *c)
683 {
684 struct open_bucket *b;
685
686 while (!list_empty(&c->data_buckets)) {
687 b = list_first_entry(&c->data_buckets,
688 struct open_bucket, list);
689 list_del(&b->list);
690 kfree(b);
691 }
692 }
693
694 int bch_open_buckets_alloc(struct cache_set *c)
695 {
696 int i;
697
698 spin_lock_init(&c->data_bucket_lock);
699
700 for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
701 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
702 if (!b)
703 return -ENOMEM;
704
705 list_add(&b->list, &c->data_buckets);
706 }
707
708 return 0;
709 }
710
711 int bch_cache_allocator_start(struct cache *ca)
712 {
713 struct task_struct *k = kthread_run(bch_allocator_thread,
714 ca, "bcache_allocator");
715 if (IS_ERR(k))
716 return PTR_ERR(k);
717
718 ca->alloc_thread = k;
719 return 0;
720 }