]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/bset.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / bset.c
1 /*
2 * Code for working with individual keys, and sorted sets of keys with in a
3 * btree node
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
9
10 #include "util.h"
11 #include "bset.h"
12
13 #include <linux/console.h>
14 #include <linux/sched/clock.h>
15 #include <linux/random.h>
16 #include <linux/prefetch.h>
17
18 #ifdef CONFIG_BCACHE_DEBUG
19
20 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set)
21 {
22 struct bkey *k, *next;
23
24 for (k = i->start; k < bset_bkey_last(i); k = next) {
25 next = bkey_next(k);
26
27 printk(KERN_ERR "block %u key %u/%u: ", set,
28 (unsigned) ((u64 *) k - i->d), i->keys);
29
30 if (b->ops->key_dump)
31 b->ops->key_dump(b, k);
32 else
33 printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
34
35 if (next < bset_bkey_last(i) &&
36 bkey_cmp(k, b->ops->is_extents ?
37 &START_KEY(next) : next) > 0)
38 printk(KERN_ERR "Key skipped backwards\n");
39 }
40 }
41
42 void bch_dump_bucket(struct btree_keys *b)
43 {
44 unsigned i;
45
46 console_lock();
47 for (i = 0; i <= b->nsets; i++)
48 bch_dump_bset(b, b->set[i].data,
49 bset_sector_offset(b, b->set[i].data));
50 console_unlock();
51 }
52
53 int __bch_count_data(struct btree_keys *b)
54 {
55 unsigned ret = 0;
56 struct btree_iter iter;
57 struct bkey *k;
58
59 if (b->ops->is_extents)
60 for_each_key(b, k, &iter)
61 ret += KEY_SIZE(k);
62 return ret;
63 }
64
65 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
66 {
67 va_list args;
68 struct bkey *k, *p = NULL;
69 struct btree_iter iter;
70 const char *err;
71
72 for_each_key(b, k, &iter) {
73 if (b->ops->is_extents) {
74 err = "Keys out of order";
75 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
76 goto bug;
77
78 if (bch_ptr_invalid(b, k))
79 continue;
80
81 err = "Overlapping keys";
82 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
83 goto bug;
84 } else {
85 if (bch_ptr_bad(b, k))
86 continue;
87
88 err = "Duplicate keys";
89 if (p && !bkey_cmp(p, k))
90 goto bug;
91 }
92 p = k;
93 }
94 #if 0
95 err = "Key larger than btree node key";
96 if (p && bkey_cmp(p, &b->key) > 0)
97 goto bug;
98 #endif
99 return;
100 bug:
101 bch_dump_bucket(b);
102
103 va_start(args, fmt);
104 vprintk(fmt, args);
105 va_end(args);
106
107 panic("bch_check_keys error: %s:\n", err);
108 }
109
110 static void bch_btree_iter_next_check(struct btree_iter *iter)
111 {
112 struct bkey *k = iter->data->k, *next = bkey_next(k);
113
114 if (next < iter->data->end &&
115 bkey_cmp(k, iter->b->ops->is_extents ?
116 &START_KEY(next) : next) > 0) {
117 bch_dump_bucket(iter->b);
118 panic("Key skipped backwards\n");
119 }
120 }
121
122 #else
123
124 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
125
126 #endif
127
128 /* Keylists */
129
130 int __bch_keylist_realloc(struct keylist *l, unsigned u64s)
131 {
132 size_t oldsize = bch_keylist_nkeys(l);
133 size_t newsize = oldsize + u64s;
134 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
135 uint64_t *new_keys;
136
137 newsize = roundup_pow_of_two(newsize);
138
139 if (newsize <= KEYLIST_INLINE ||
140 roundup_pow_of_two(oldsize) == newsize)
141 return 0;
142
143 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
144
145 if (!new_keys)
146 return -ENOMEM;
147
148 if (!old_keys)
149 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
150
151 l->keys_p = new_keys;
152 l->top_p = new_keys + oldsize;
153
154 return 0;
155 }
156
157 struct bkey *bch_keylist_pop(struct keylist *l)
158 {
159 struct bkey *k = l->keys;
160
161 if (k == l->top)
162 return NULL;
163
164 while (bkey_next(k) != l->top)
165 k = bkey_next(k);
166
167 return l->top = k;
168 }
169
170 void bch_keylist_pop_front(struct keylist *l)
171 {
172 l->top_p -= bkey_u64s(l->keys);
173
174 memmove(l->keys,
175 bkey_next(l->keys),
176 bch_keylist_bytes(l));
177 }
178
179 /* Key/pointer manipulation */
180
181 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
182 unsigned i)
183 {
184 BUG_ON(i > KEY_PTRS(src));
185
186 /* Only copy the header, key, and one pointer. */
187 memcpy(dest, src, 2 * sizeof(uint64_t));
188 dest->ptr[0] = src->ptr[i];
189 SET_KEY_PTRS(dest, 1);
190 /* We didn't copy the checksum so clear that bit. */
191 SET_KEY_CSUM(dest, 0);
192 }
193
194 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
195 {
196 unsigned i, len = 0;
197
198 if (bkey_cmp(where, &START_KEY(k)) <= 0)
199 return false;
200
201 if (bkey_cmp(where, k) < 0)
202 len = KEY_OFFSET(k) - KEY_OFFSET(where);
203 else
204 bkey_copy_key(k, where);
205
206 for (i = 0; i < KEY_PTRS(k); i++)
207 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
208
209 BUG_ON(len > KEY_SIZE(k));
210 SET_KEY_SIZE(k, len);
211 return true;
212 }
213
214 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
215 {
216 unsigned len = 0;
217
218 if (bkey_cmp(where, k) >= 0)
219 return false;
220
221 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
222
223 if (bkey_cmp(where, &START_KEY(k)) > 0)
224 len = KEY_OFFSET(where) - KEY_START(k);
225
226 bkey_copy_key(k, where);
227
228 BUG_ON(len > KEY_SIZE(k));
229 SET_KEY_SIZE(k, len);
230 return true;
231 }
232
233 /* Auxiliary search trees */
234
235 /* 32 bits total: */
236 #define BKEY_MID_BITS 3
237 #define BKEY_EXPONENT_BITS 7
238 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
239 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
240
241 struct bkey_float {
242 unsigned exponent:BKEY_EXPONENT_BITS;
243 unsigned m:BKEY_MID_BITS;
244 unsigned mantissa:BKEY_MANTISSA_BITS;
245 } __packed;
246
247 /*
248 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
249 * it used to be 64, but I realized the lookup code would touch slightly less
250 * memory if it was 128.
251 *
252 * It definites the number of bytes (in struct bset) per struct bkey_float in
253 * the auxiliar search tree - when we're done searching the bset_float tree we
254 * have this many bytes left that we do a linear search over.
255 *
256 * Since (after level 5) every level of the bset_tree is on a new cacheline,
257 * we're touching one fewer cacheline in the bset tree in exchange for one more
258 * cacheline in the linear search - but the linear search might stop before it
259 * gets to the second cacheline.
260 */
261
262 #define BSET_CACHELINE 128
263
264 /* Space required for the btree node keys */
265 static inline size_t btree_keys_bytes(struct btree_keys *b)
266 {
267 return PAGE_SIZE << b->page_order;
268 }
269
270 static inline size_t btree_keys_cachelines(struct btree_keys *b)
271 {
272 return btree_keys_bytes(b) / BSET_CACHELINE;
273 }
274
275 /* Space required for the auxiliary search trees */
276 static inline size_t bset_tree_bytes(struct btree_keys *b)
277 {
278 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
279 }
280
281 /* Space required for the prev pointers */
282 static inline size_t bset_prev_bytes(struct btree_keys *b)
283 {
284 return btree_keys_cachelines(b) * sizeof(uint8_t);
285 }
286
287 /* Memory allocation */
288
289 void bch_btree_keys_free(struct btree_keys *b)
290 {
291 struct bset_tree *t = b->set;
292
293 if (bset_prev_bytes(b) < PAGE_SIZE)
294 kfree(t->prev);
295 else
296 free_pages((unsigned long) t->prev,
297 get_order(bset_prev_bytes(b)));
298
299 if (bset_tree_bytes(b) < PAGE_SIZE)
300 kfree(t->tree);
301 else
302 free_pages((unsigned long) t->tree,
303 get_order(bset_tree_bytes(b)));
304
305 free_pages((unsigned long) t->data, b->page_order);
306
307 t->prev = NULL;
308 t->tree = NULL;
309 t->data = NULL;
310 }
311 EXPORT_SYMBOL(bch_btree_keys_free);
312
313 int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp)
314 {
315 struct bset_tree *t = b->set;
316
317 BUG_ON(t->data);
318
319 b->page_order = page_order;
320
321 t->data = (void *) __get_free_pages(gfp, b->page_order);
322 if (!t->data)
323 goto err;
324
325 t->tree = bset_tree_bytes(b) < PAGE_SIZE
326 ? kmalloc(bset_tree_bytes(b), gfp)
327 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
328 if (!t->tree)
329 goto err;
330
331 t->prev = bset_prev_bytes(b) < PAGE_SIZE
332 ? kmalloc(bset_prev_bytes(b), gfp)
333 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
334 if (!t->prev)
335 goto err;
336
337 return 0;
338 err:
339 bch_btree_keys_free(b);
340 return -ENOMEM;
341 }
342 EXPORT_SYMBOL(bch_btree_keys_alloc);
343
344 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
345 bool *expensive_debug_checks)
346 {
347 unsigned i;
348
349 b->ops = ops;
350 b->expensive_debug_checks = expensive_debug_checks;
351 b->nsets = 0;
352 b->last_set_unwritten = 0;
353
354 /* XXX: shouldn't be needed */
355 for (i = 0; i < MAX_BSETS; i++)
356 b->set[i].size = 0;
357 /*
358 * Second loop starts at 1 because b->keys[0]->data is the memory we
359 * allocated
360 */
361 for (i = 1; i < MAX_BSETS; i++)
362 b->set[i].data = NULL;
363 }
364 EXPORT_SYMBOL(bch_btree_keys_init);
365
366 /* Binary tree stuff for auxiliary search trees */
367
368 static unsigned inorder_next(unsigned j, unsigned size)
369 {
370 if (j * 2 + 1 < size) {
371 j = j * 2 + 1;
372
373 while (j * 2 < size)
374 j *= 2;
375 } else
376 j >>= ffz(j) + 1;
377
378 return j;
379 }
380
381 static unsigned inorder_prev(unsigned j, unsigned size)
382 {
383 if (j * 2 < size) {
384 j = j * 2;
385
386 while (j * 2 + 1 < size)
387 j = j * 2 + 1;
388 } else
389 j >>= ffs(j);
390
391 return j;
392 }
393
394 /* I have no idea why this code works... and I'm the one who wrote it
395 *
396 * However, I do know what it does:
397 * Given a binary tree constructed in an array (i.e. how you normally implement
398 * a heap), it converts a node in the tree - referenced by array index - to the
399 * index it would have if you did an inorder traversal.
400 *
401 * Also tested for every j, size up to size somewhere around 6 million.
402 *
403 * The binary tree starts at array index 1, not 0
404 * extra is a function of size:
405 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
406 */
407 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
408 {
409 unsigned b = fls(j);
410 unsigned shift = fls(size - 1) - b;
411
412 j ^= 1U << (b - 1);
413 j <<= 1;
414 j |= 1;
415 j <<= shift;
416
417 if (j > extra)
418 j -= (j - extra) >> 1;
419
420 return j;
421 }
422
423 static unsigned to_inorder(unsigned j, struct bset_tree *t)
424 {
425 return __to_inorder(j, t->size, t->extra);
426 }
427
428 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
429 {
430 unsigned shift;
431
432 if (j > extra)
433 j += j - extra;
434
435 shift = ffs(j);
436
437 j >>= shift;
438 j |= roundup_pow_of_two(size) >> shift;
439
440 return j;
441 }
442
443 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
444 {
445 return __inorder_to_tree(j, t->size, t->extra);
446 }
447
448 #if 0
449 void inorder_test(void)
450 {
451 unsigned long done = 0;
452 ktime_t start = ktime_get();
453
454 for (unsigned size = 2;
455 size < 65536000;
456 size++) {
457 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
458 unsigned i = 1, j = rounddown_pow_of_two(size - 1);
459
460 if (!(size % 4096))
461 printk(KERN_NOTICE "loop %u, %llu per us\n", size,
462 done / ktime_us_delta(ktime_get(), start));
463
464 while (1) {
465 if (__inorder_to_tree(i, size, extra) != j)
466 panic("size %10u j %10u i %10u", size, j, i);
467
468 if (__to_inorder(j, size, extra) != i)
469 panic("size %10u j %10u i %10u", size, j, i);
470
471 if (j == rounddown_pow_of_two(size) - 1)
472 break;
473
474 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
475
476 j = inorder_next(j, size);
477 i++;
478 }
479
480 done += size - 1;
481 }
482 }
483 #endif
484
485 /*
486 * Cacheline/offset <-> bkey pointer arithmetic:
487 *
488 * t->tree is a binary search tree in an array; each node corresponds to a key
489 * in one cacheline in t->set (BSET_CACHELINE bytes).
490 *
491 * This means we don't have to store the full index of the key that a node in
492 * the binary tree points to; to_inorder() gives us the cacheline, and then
493 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
494 *
495 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
496 * make this work.
497 *
498 * To construct the bfloat for an arbitrary key we need to know what the key
499 * immediately preceding it is: we have to check if the two keys differ in the
500 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
501 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
502 */
503
504 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
505 unsigned offset)
506 {
507 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
508 }
509
510 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
511 {
512 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
513 }
514
515 static unsigned bkey_to_cacheline_offset(struct bset_tree *t,
516 unsigned cacheline,
517 struct bkey *k)
518 {
519 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
520 }
521
522 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
523 {
524 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
525 }
526
527 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
528 {
529 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
530 }
531
532 /*
533 * For the write set - the one we're currently inserting keys into - we don't
534 * maintain a full search tree, we just keep a simple lookup table in t->prev.
535 */
536 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
537 {
538 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
539 }
540
541 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
542 {
543 low >>= shift;
544 low |= (high << 1) << (63U - shift);
545 return low;
546 }
547
548 static inline unsigned bfloat_mantissa(const struct bkey *k,
549 struct bkey_float *f)
550 {
551 const uint64_t *p = &k->low - (f->exponent >> 6);
552 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
553 }
554
555 static void make_bfloat(struct bset_tree *t, unsigned j)
556 {
557 struct bkey_float *f = &t->tree[j];
558 struct bkey *m = tree_to_bkey(t, j);
559 struct bkey *p = tree_to_prev_bkey(t, j);
560
561 struct bkey *l = is_power_of_2(j)
562 ? t->data->start
563 : tree_to_prev_bkey(t, j >> ffs(j));
564
565 struct bkey *r = is_power_of_2(j + 1)
566 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
567 : tree_to_bkey(t, j >> (ffz(j) + 1));
568
569 BUG_ON(m < l || m > r);
570 BUG_ON(bkey_next(p) != m);
571
572 if (KEY_INODE(l) != KEY_INODE(r))
573 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
574 else
575 f->exponent = fls64(r->low ^ l->low);
576
577 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
578
579 /*
580 * Setting f->exponent = 127 flags this node as failed, and causes the
581 * lookup code to fall back to comparing against the original key.
582 */
583
584 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
585 f->mantissa = bfloat_mantissa(m, f) - 1;
586 else
587 f->exponent = 127;
588 }
589
590 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
591 {
592 if (t != b->set) {
593 unsigned j = roundup(t[-1].size,
594 64 / sizeof(struct bkey_float));
595
596 t->tree = t[-1].tree + j;
597 t->prev = t[-1].prev + j;
598 }
599
600 while (t < b->set + MAX_BSETS)
601 t++->size = 0;
602 }
603
604 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
605 {
606 struct bset_tree *t = bset_tree_last(b);
607
608 BUG_ON(b->last_set_unwritten);
609 b->last_set_unwritten = 1;
610
611 bset_alloc_tree(b, t);
612
613 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
614 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
615 t->size = 1;
616 }
617 }
618
619 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
620 {
621 if (i != b->set->data) {
622 b->set[++b->nsets].data = i;
623 i->seq = b->set->data->seq;
624 } else
625 get_random_bytes(&i->seq, sizeof(uint64_t));
626
627 i->magic = magic;
628 i->version = 0;
629 i->keys = 0;
630
631 bch_bset_build_unwritten_tree(b);
632 }
633 EXPORT_SYMBOL(bch_bset_init_next);
634
635 void bch_bset_build_written_tree(struct btree_keys *b)
636 {
637 struct bset_tree *t = bset_tree_last(b);
638 struct bkey *prev = NULL, *k = t->data->start;
639 unsigned j, cacheline = 1;
640
641 b->last_set_unwritten = 0;
642
643 bset_alloc_tree(b, t);
644
645 t->size = min_t(unsigned,
646 bkey_to_cacheline(t, bset_bkey_last(t->data)),
647 b->set->tree + btree_keys_cachelines(b) - t->tree);
648
649 if (t->size < 2) {
650 t->size = 0;
651 return;
652 }
653
654 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
655
656 /* First we figure out where the first key in each cacheline is */
657 for (j = inorder_next(0, t->size);
658 j;
659 j = inorder_next(j, t->size)) {
660 while (bkey_to_cacheline(t, k) < cacheline)
661 prev = k, k = bkey_next(k);
662
663 t->prev[j] = bkey_u64s(prev);
664 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
665 }
666
667 while (bkey_next(k) != bset_bkey_last(t->data))
668 k = bkey_next(k);
669
670 t->end = *k;
671
672 /* Then we build the tree */
673 for (j = inorder_next(0, t->size);
674 j;
675 j = inorder_next(j, t->size))
676 make_bfloat(t, j);
677 }
678 EXPORT_SYMBOL(bch_bset_build_written_tree);
679
680 /* Insert */
681
682 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
683 {
684 struct bset_tree *t;
685 unsigned inorder, j = 1;
686
687 for (t = b->set; t <= bset_tree_last(b); t++)
688 if (k < bset_bkey_last(t->data))
689 goto found_set;
690
691 BUG();
692 found_set:
693 if (!t->size || !bset_written(b, t))
694 return;
695
696 inorder = bkey_to_cacheline(t, k);
697
698 if (k == t->data->start)
699 goto fix_left;
700
701 if (bkey_next(k) == bset_bkey_last(t->data)) {
702 t->end = *k;
703 goto fix_right;
704 }
705
706 j = inorder_to_tree(inorder, t);
707
708 if (j &&
709 j < t->size &&
710 k == tree_to_bkey(t, j))
711 fix_left: do {
712 make_bfloat(t, j);
713 j = j * 2;
714 } while (j < t->size);
715
716 j = inorder_to_tree(inorder + 1, t);
717
718 if (j &&
719 j < t->size &&
720 k == tree_to_prev_bkey(t, j))
721 fix_right: do {
722 make_bfloat(t, j);
723 j = j * 2 + 1;
724 } while (j < t->size);
725 }
726 EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
727
728 static void bch_bset_fix_lookup_table(struct btree_keys *b,
729 struct bset_tree *t,
730 struct bkey *k)
731 {
732 unsigned shift = bkey_u64s(k);
733 unsigned j = bkey_to_cacheline(t, k);
734
735 /* We're getting called from btree_split() or btree_gc, just bail out */
736 if (!t->size)
737 return;
738
739 /* k is the key we just inserted; we need to find the entry in the
740 * lookup table for the first key that is strictly greater than k:
741 * it's either k's cacheline or the next one
742 */
743 while (j < t->size &&
744 table_to_bkey(t, j) <= k)
745 j++;
746
747 /* Adjust all the lookup table entries, and find a new key for any that
748 * have gotten too big
749 */
750 for (; j < t->size; j++) {
751 t->prev[j] += shift;
752
753 if (t->prev[j] > 7) {
754 k = table_to_bkey(t, j - 1);
755
756 while (k < cacheline_to_bkey(t, j, 0))
757 k = bkey_next(k);
758
759 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
760 }
761 }
762
763 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
764 return;
765
766 /* Possibly add a new entry to the end of the lookup table */
767
768 for (k = table_to_bkey(t, t->size - 1);
769 k != bset_bkey_last(t->data);
770 k = bkey_next(k))
771 if (t->size == bkey_to_cacheline(t, k)) {
772 t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k);
773 t->size++;
774 }
775 }
776
777 /*
778 * Tries to merge l and r: l should be lower than r
779 * Returns true if we were able to merge. If we did merge, l will be the merged
780 * key, r will be untouched.
781 */
782 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
783 {
784 if (!b->ops->key_merge)
785 return false;
786
787 /*
788 * Generic header checks
789 * Assumes left and right are in order
790 * Left and right must be exactly aligned
791 */
792 if (!bch_bkey_equal_header(l, r) ||
793 bkey_cmp(l, &START_KEY(r)))
794 return false;
795
796 return b->ops->key_merge(b, l, r);
797 }
798 EXPORT_SYMBOL(bch_bkey_try_merge);
799
800 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
801 struct bkey *insert)
802 {
803 struct bset_tree *t = bset_tree_last(b);
804
805 BUG_ON(!b->last_set_unwritten);
806 BUG_ON(bset_byte_offset(b, t->data) +
807 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
808 PAGE_SIZE << b->page_order);
809
810 memmove((uint64_t *) where + bkey_u64s(insert),
811 where,
812 (void *) bset_bkey_last(t->data) - (void *) where);
813
814 t->data->keys += bkey_u64s(insert);
815 bkey_copy(where, insert);
816 bch_bset_fix_lookup_table(b, t, where);
817 }
818 EXPORT_SYMBOL(bch_bset_insert);
819
820 unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
821 struct bkey *replace_key)
822 {
823 unsigned status = BTREE_INSERT_STATUS_NO_INSERT;
824 struct bset *i = bset_tree_last(b)->data;
825 struct bkey *m, *prev = NULL;
826 struct btree_iter iter;
827
828 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
829
830 m = bch_btree_iter_init(b, &iter, b->ops->is_extents
831 ? PRECEDING_KEY(&START_KEY(k))
832 : PRECEDING_KEY(k));
833
834 if (b->ops->insert_fixup(b, k, &iter, replace_key))
835 return status;
836
837 status = BTREE_INSERT_STATUS_INSERT;
838
839 while (m != bset_bkey_last(i) &&
840 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
841 prev = m, m = bkey_next(m);
842
843 /* prev is in the tree, if we merge we're done */
844 status = BTREE_INSERT_STATUS_BACK_MERGE;
845 if (prev &&
846 bch_bkey_try_merge(b, prev, k))
847 goto merged;
848 #if 0
849 status = BTREE_INSERT_STATUS_OVERWROTE;
850 if (m != bset_bkey_last(i) &&
851 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
852 goto copy;
853 #endif
854 status = BTREE_INSERT_STATUS_FRONT_MERGE;
855 if (m != bset_bkey_last(i) &&
856 bch_bkey_try_merge(b, k, m))
857 goto copy;
858
859 bch_bset_insert(b, m, k);
860 copy: bkey_copy(m, k);
861 merged:
862 return status;
863 }
864 EXPORT_SYMBOL(bch_btree_insert_key);
865
866 /* Lookup */
867
868 struct bset_search_iter {
869 struct bkey *l, *r;
870 };
871
872 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
873 const struct bkey *search)
874 {
875 unsigned li = 0, ri = t->size;
876
877 while (li + 1 != ri) {
878 unsigned m = (li + ri) >> 1;
879
880 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
881 ri = m;
882 else
883 li = m;
884 }
885
886 return (struct bset_search_iter) {
887 table_to_bkey(t, li),
888 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
889 };
890 }
891
892 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
893 const struct bkey *search)
894 {
895 struct bkey *l, *r;
896 struct bkey_float *f;
897 unsigned inorder, j, n = 1;
898
899 do {
900 unsigned p = n << 4;
901 p &= ((int) (p - t->size)) >> 31;
902
903 prefetch(&t->tree[p]);
904
905 j = n;
906 f = &t->tree[j];
907
908 /*
909 * n = (f->mantissa > bfloat_mantissa())
910 * ? j * 2
911 * : j * 2 + 1;
912 *
913 * We need to subtract 1 from f->mantissa for the sign bit trick
914 * to work - that's done in make_bfloat()
915 */
916 if (likely(f->exponent != 127))
917 n = j * 2 + (((unsigned)
918 (f->mantissa -
919 bfloat_mantissa(search, f))) >> 31);
920 else
921 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
922 ? j * 2
923 : j * 2 + 1;
924 } while (n < t->size);
925
926 inorder = to_inorder(j, t);
927
928 /*
929 * n would have been the node we recursed to - the low bit tells us if
930 * we recursed left or recursed right.
931 */
932 if (n & 1) {
933 l = cacheline_to_bkey(t, inorder, f->m);
934
935 if (++inorder != t->size) {
936 f = &t->tree[inorder_next(j, t->size)];
937 r = cacheline_to_bkey(t, inorder, f->m);
938 } else
939 r = bset_bkey_last(t->data);
940 } else {
941 r = cacheline_to_bkey(t, inorder, f->m);
942
943 if (--inorder) {
944 f = &t->tree[inorder_prev(j, t->size)];
945 l = cacheline_to_bkey(t, inorder, f->m);
946 } else
947 l = t->data->start;
948 }
949
950 return (struct bset_search_iter) {l, r};
951 }
952
953 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
954 const struct bkey *search)
955 {
956 struct bset_search_iter i;
957
958 /*
959 * First, we search for a cacheline, then lastly we do a linear search
960 * within that cacheline.
961 *
962 * To search for the cacheline, there's three different possibilities:
963 * * The set is too small to have a search tree, so we just do a linear
964 * search over the whole set.
965 * * The set is the one we're currently inserting into; keeping a full
966 * auxiliary search tree up to date would be too expensive, so we
967 * use a much simpler lookup table to do a binary search -
968 * bset_search_write_set().
969 * * Or we use the auxiliary search tree we constructed earlier -
970 * bset_search_tree()
971 */
972
973 if (unlikely(!t->size)) {
974 i.l = t->data->start;
975 i.r = bset_bkey_last(t->data);
976 } else if (bset_written(b, t)) {
977 /*
978 * Each node in the auxiliary search tree covers a certain range
979 * of bits, and keys above and below the set it covers might
980 * differ outside those bits - so we have to special case the
981 * start and end - handle that here:
982 */
983
984 if (unlikely(bkey_cmp(search, &t->end) >= 0))
985 return bset_bkey_last(t->data);
986
987 if (unlikely(bkey_cmp(search, t->data->start) < 0))
988 return t->data->start;
989
990 i = bset_search_tree(t, search);
991 } else {
992 BUG_ON(!b->nsets &&
993 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
994
995 i = bset_search_write_set(t, search);
996 }
997
998 if (btree_keys_expensive_checks(b)) {
999 BUG_ON(bset_written(b, t) &&
1000 i.l != t->data->start &&
1001 bkey_cmp(tree_to_prev_bkey(t,
1002 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1003 search) > 0);
1004
1005 BUG_ON(i.r != bset_bkey_last(t->data) &&
1006 bkey_cmp(i.r, search) <= 0);
1007 }
1008
1009 while (likely(i.l != i.r) &&
1010 bkey_cmp(i.l, search) <= 0)
1011 i.l = bkey_next(i.l);
1012
1013 return i.l;
1014 }
1015 EXPORT_SYMBOL(__bch_bset_search);
1016
1017 /* Btree iterator */
1018
1019 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1020 struct btree_iter_set);
1021
1022 static inline bool btree_iter_cmp(struct btree_iter_set l,
1023 struct btree_iter_set r)
1024 {
1025 return bkey_cmp(l.k, r.k) > 0;
1026 }
1027
1028 static inline bool btree_iter_end(struct btree_iter *iter)
1029 {
1030 return !iter->used;
1031 }
1032
1033 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1034 struct bkey *end)
1035 {
1036 if (k != end)
1037 BUG_ON(!heap_add(iter,
1038 ((struct btree_iter_set) { k, end }),
1039 btree_iter_cmp));
1040 }
1041
1042 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1043 struct btree_iter *iter,
1044 struct bkey *search,
1045 struct bset_tree *start)
1046 {
1047 struct bkey *ret = NULL;
1048 iter->size = ARRAY_SIZE(iter->data);
1049 iter->used = 0;
1050
1051 #ifdef CONFIG_BCACHE_DEBUG
1052 iter->b = b;
1053 #endif
1054
1055 for (; start <= bset_tree_last(b); start++) {
1056 ret = bch_bset_search(b, start, search);
1057 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1058 }
1059
1060 return ret;
1061 }
1062
1063 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1064 struct btree_iter *iter,
1065 struct bkey *search)
1066 {
1067 return __bch_btree_iter_init(b, iter, search, b->set);
1068 }
1069 EXPORT_SYMBOL(bch_btree_iter_init);
1070
1071 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1072 btree_iter_cmp_fn *cmp)
1073 {
1074 struct btree_iter_set unused;
1075 struct bkey *ret = NULL;
1076
1077 if (!btree_iter_end(iter)) {
1078 bch_btree_iter_next_check(iter);
1079
1080 ret = iter->data->k;
1081 iter->data->k = bkey_next(iter->data->k);
1082
1083 if (iter->data->k > iter->data->end) {
1084 WARN_ONCE(1, "bset was corrupt!\n");
1085 iter->data->k = iter->data->end;
1086 }
1087
1088 if (iter->data->k == iter->data->end)
1089 heap_pop(iter, unused, cmp);
1090 else
1091 heap_sift(iter, 0, cmp);
1092 }
1093
1094 return ret;
1095 }
1096
1097 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1098 {
1099 return __bch_btree_iter_next(iter, btree_iter_cmp);
1100
1101 }
1102 EXPORT_SYMBOL(bch_btree_iter_next);
1103
1104 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1105 struct btree_keys *b, ptr_filter_fn fn)
1106 {
1107 struct bkey *ret;
1108
1109 do {
1110 ret = bch_btree_iter_next(iter);
1111 } while (ret && fn(b, ret));
1112
1113 return ret;
1114 }
1115
1116 /* Mergesort */
1117
1118 void bch_bset_sort_state_free(struct bset_sort_state *state)
1119 {
1120 if (state->pool)
1121 mempool_destroy(state->pool);
1122 }
1123
1124 int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order)
1125 {
1126 spin_lock_init(&state->time.lock);
1127
1128 state->page_order = page_order;
1129 state->crit_factor = int_sqrt(1 << page_order);
1130
1131 state->pool = mempool_create_page_pool(1, page_order);
1132 if (!state->pool)
1133 return -ENOMEM;
1134
1135 return 0;
1136 }
1137 EXPORT_SYMBOL(bch_bset_sort_state_init);
1138
1139 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1140 struct btree_iter *iter,
1141 bool fixup, bool remove_stale)
1142 {
1143 int i;
1144 struct bkey *k, *last = NULL;
1145 BKEY_PADDED(k) tmp;
1146 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1147 ? bch_ptr_bad
1148 : bch_ptr_invalid;
1149
1150 /* Heapify the iterator, using our comparison function */
1151 for (i = iter->used / 2 - 1; i >= 0; --i)
1152 heap_sift(iter, i, b->ops->sort_cmp);
1153
1154 while (!btree_iter_end(iter)) {
1155 if (b->ops->sort_fixup && fixup)
1156 k = b->ops->sort_fixup(iter, &tmp.k);
1157 else
1158 k = NULL;
1159
1160 if (!k)
1161 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1162
1163 if (bad(b, k))
1164 continue;
1165
1166 if (!last) {
1167 last = out->start;
1168 bkey_copy(last, k);
1169 } else if (!bch_bkey_try_merge(b, last, k)) {
1170 last = bkey_next(last);
1171 bkey_copy(last, k);
1172 }
1173 }
1174
1175 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1176
1177 pr_debug("sorted %i keys", out->keys);
1178 }
1179
1180 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1181 unsigned start, unsigned order, bool fixup,
1182 struct bset_sort_state *state)
1183 {
1184 uint64_t start_time;
1185 bool used_mempool = false;
1186 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1187 order);
1188 if (!out) {
1189 struct page *outp;
1190
1191 BUG_ON(order > state->page_order);
1192
1193 outp = mempool_alloc(state->pool, GFP_NOIO);
1194 out = page_address(outp);
1195 used_mempool = true;
1196 order = state->page_order;
1197 }
1198
1199 start_time = local_clock();
1200
1201 btree_mergesort(b, out, iter, fixup, false);
1202 b->nsets = start;
1203
1204 if (!start && order == b->page_order) {
1205 /*
1206 * Our temporary buffer is the same size as the btree node's
1207 * buffer, we can just swap buffers instead of doing a big
1208 * memcpy()
1209 */
1210
1211 out->magic = b->set->data->magic;
1212 out->seq = b->set->data->seq;
1213 out->version = b->set->data->version;
1214 swap(out, b->set->data);
1215 } else {
1216 b->set[start].data->keys = out->keys;
1217 memcpy(b->set[start].data->start, out->start,
1218 (void *) bset_bkey_last(out) - (void *) out->start);
1219 }
1220
1221 if (used_mempool)
1222 mempool_free(virt_to_page(out), state->pool);
1223 else
1224 free_pages((unsigned long) out, order);
1225
1226 bch_bset_build_written_tree(b);
1227
1228 if (!start)
1229 bch_time_stats_update(&state->time, start_time);
1230 }
1231
1232 void bch_btree_sort_partial(struct btree_keys *b, unsigned start,
1233 struct bset_sort_state *state)
1234 {
1235 size_t order = b->page_order, keys = 0;
1236 struct btree_iter iter;
1237 int oldsize = bch_count_data(b);
1238
1239 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1240
1241 if (start) {
1242 unsigned i;
1243
1244 for (i = start; i <= b->nsets; i++)
1245 keys += b->set[i].data->keys;
1246
1247 order = get_order(__set_bytes(b->set->data, keys));
1248 }
1249
1250 __btree_sort(b, &iter, start, order, false, state);
1251
1252 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1253 }
1254 EXPORT_SYMBOL(bch_btree_sort_partial);
1255
1256 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1257 struct btree_iter *iter,
1258 struct bset_sort_state *state)
1259 {
1260 __btree_sort(b, iter, 0, b->page_order, true, state);
1261 }
1262
1263 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1264 struct bset_sort_state *state)
1265 {
1266 uint64_t start_time = local_clock();
1267
1268 struct btree_iter iter;
1269 bch_btree_iter_init(b, &iter, NULL);
1270
1271 btree_mergesort(b, new->set->data, &iter, false, true);
1272
1273 bch_time_stats_update(&state->time, start_time);
1274
1275 new->set->size = 0; // XXX: why?
1276 }
1277
1278 #define SORT_CRIT (4096 / sizeof(uint64_t))
1279
1280 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1281 {
1282 unsigned crit = SORT_CRIT;
1283 int i;
1284
1285 /* Don't sort if nothing to do */
1286 if (!b->nsets)
1287 goto out;
1288
1289 for (i = b->nsets - 1; i >= 0; --i) {
1290 crit *= state->crit_factor;
1291
1292 if (b->set[i].data->keys < crit) {
1293 bch_btree_sort_partial(b, i, state);
1294 return;
1295 }
1296 }
1297
1298 /* Sort if we'd overflow */
1299 if (b->nsets + 1 == MAX_BSETS) {
1300 bch_btree_sort(b, state);
1301 return;
1302 }
1303
1304 out:
1305 bch_bset_build_written_tree(b);
1306 }
1307 EXPORT_SYMBOL(bch_btree_sort_lazy);
1308
1309 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1310 {
1311 unsigned i;
1312
1313 for (i = 0; i <= b->nsets; i++) {
1314 struct bset_tree *t = &b->set[i];
1315 size_t bytes = t->data->keys * sizeof(uint64_t);
1316 size_t j;
1317
1318 if (bset_written(b, t)) {
1319 stats->sets_written++;
1320 stats->bytes_written += bytes;
1321
1322 stats->floats += t->size - 1;
1323
1324 for (j = 1; j < t->size; j++)
1325 if (t->tree[j].exponent == 127)
1326 stats->failed++;
1327 } else {
1328 stats->sets_unwritten++;
1329 stats->bytes_unwritten += bytes;
1330 }
1331 }
1332 }