]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/bcache/btree.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/bcache.txt.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93
94 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
95
96 #define PTR_HASH(c, k) \
97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
98
99 #define insert_lock(s, b) ((b)->level <= (s)->lock)
100
101 /*
102 * These macros are for recursing down the btree - they handle the details of
103 * locking and looking up nodes in the cache for you. They're best treated as
104 * mere syntax when reading code that uses them.
105 *
106 * op->lock determines whether we take a read or a write lock at a given depth.
107 * If you've got a read lock and find that you need a write lock (i.e. you're
108 * going to have to split), set op->lock and return -EINTR; btree_root() will
109 * call you again and you'll have the correct lock.
110 */
111
112 /**
113 * btree - recurse down the btree on a specified key
114 * @fn: function to call, which will be passed the child node
115 * @key: key to recurse on
116 * @b: parent btree node
117 * @op: pointer to struct btree_op
118 */
119 #define btree(fn, key, b, op, ...) \
120 ({ \
121 int _r, l = (b)->level - 1; \
122 bool _w = l <= (op)->lock; \
123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
124 _w, b); \
125 if (!IS_ERR(_child)) { \
126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
127 rw_unlock(_w, _child); \
128 } else \
129 _r = PTR_ERR(_child); \
130 _r; \
131 })
132
133 /**
134 * btree_root - call a function on the root of the btree
135 * @fn: function to call, which will be passed the child node
136 * @c: cache set
137 * @op: pointer to struct btree_op
138 */
139 #define btree_root(fn, c, op, ...) \
140 ({ \
141 int _r = -EINTR; \
142 do { \
143 struct btree *_b = (c)->root; \
144 bool _w = insert_lock(op, _b); \
145 rw_lock(_w, _b, _b->level); \
146 if (_b == (c)->root && \
147 _w == insert_lock(op, _b)) { \
148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
149 } \
150 rw_unlock(_w, _b); \
151 bch_cannibalize_unlock(c); \
152 if (_r == -EINTR) \
153 schedule(); \
154 } while (_r == -EINTR); \
155 \
156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
157 _r; \
158 })
159
160 static inline struct bset *write_block(struct btree *b)
161 {
162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
163 }
164
165 static void bch_btree_init_next(struct btree *b)
166 {
167 /* If not a leaf node, always sort */
168 if (b->level && b->keys.nsets)
169 bch_btree_sort(&b->keys, &b->c->sort);
170 else
171 bch_btree_sort_lazy(&b->keys, &b->c->sort);
172
173 if (b->written < btree_blocks(b))
174 bch_bset_init_next(&b->keys, write_block(b),
175 bset_magic(&b->c->sb));
176
177 }
178
179 /* Btree key manipulation */
180
181 void bkey_put(struct cache_set *c, struct bkey *k)
182 {
183 unsigned i;
184
185 for (i = 0; i < KEY_PTRS(k); i++)
186 if (ptr_available(c, k, i))
187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
188 }
189
190 /* Btree IO */
191
192 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
193 {
194 uint64_t crc = b->key.ptr[0];
195 void *data = (void *) i + 8, *end = bset_bkey_last(i);
196
197 crc = bch_crc64_update(crc, data, end - data);
198 return crc ^ 0xffffffffffffffffULL;
199 }
200
201 void bch_btree_node_read_done(struct btree *b)
202 {
203 const char *err = "bad btree header";
204 struct bset *i = btree_bset_first(b);
205 struct btree_iter *iter;
206
207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
209 iter->used = 0;
210
211 #ifdef CONFIG_BCACHE_DEBUG
212 iter->b = &b->keys;
213 #endif
214
215 if (!i->seq)
216 goto err;
217
218 for (;
219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
220 i = write_block(b)) {
221 err = "unsupported bset version";
222 if (i->version > BCACHE_BSET_VERSION)
223 goto err;
224
225 err = "bad btree header";
226 if (b->written + set_blocks(i, block_bytes(b->c)) >
227 btree_blocks(b))
228 goto err;
229
230 err = "bad magic";
231 if (i->magic != bset_magic(&b->c->sb))
232 goto err;
233
234 err = "bad checksum";
235 switch (i->version) {
236 case 0:
237 if (i->csum != csum_set(i))
238 goto err;
239 break;
240 case BCACHE_BSET_VERSION:
241 if (i->csum != btree_csum_set(b, i))
242 goto err;
243 break;
244 }
245
246 err = "empty set";
247 if (i != b->keys.set[0].data && !i->keys)
248 goto err;
249
250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
251
252 b->written += set_blocks(i, block_bytes(b->c));
253 }
254
255 err = "corrupted btree";
256 for (i = write_block(b);
257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
258 i = ((void *) i) + block_bytes(b->c))
259 if (i->seq == b->keys.set[0].data->seq)
260 goto err;
261
262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
263
264 i = b->keys.set[0].data;
265 err = "short btree key";
266 if (b->keys.set[0].size &&
267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
268 goto err;
269
270 if (b->written < btree_blocks(b))
271 bch_bset_init_next(&b->keys, write_block(b),
272 bset_magic(&b->c->sb));
273 out:
274 mempool_free(iter, b->c->fill_iter);
275 return;
276 err:
277 set_btree_node_io_error(b);
278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
279 err, PTR_BUCKET_NR(b->c, &b->key, 0),
280 bset_block_offset(b, i), i->keys);
281 goto out;
282 }
283
284 static void btree_node_read_endio(struct bio *bio)
285 {
286 struct closure *cl = bio->bi_private;
287 closure_put(cl);
288 }
289
290 static void bch_btree_node_read(struct btree *b)
291 {
292 uint64_t start_time = local_clock();
293 struct closure cl;
294 struct bio *bio;
295
296 trace_bcache_btree_read(b);
297
298 closure_init_stack(&cl);
299
300 bio = bch_bbio_alloc(b->c);
301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
302 bio->bi_end_io = btree_node_read_endio;
303 bio->bi_private = &cl;
304 bio->bi_opf = REQ_OP_READ | REQ_META;
305
306 bch_bio_map(bio, b->keys.set[0].data);
307
308 bch_submit_bbio(bio, b->c, &b->key, 0);
309 closure_sync(&cl);
310
311 if (bio->bi_status)
312 set_btree_node_io_error(b);
313
314 bch_bbio_free(bio, b->c);
315
316 if (btree_node_io_error(b))
317 goto err;
318
319 bch_btree_node_read_done(b);
320 bch_time_stats_update(&b->c->btree_read_time, start_time);
321
322 return;
323 err:
324 bch_cache_set_error(b->c, "io error reading bucket %zu",
325 PTR_BUCKET_NR(b->c, &b->key, 0));
326 }
327
328 static void btree_complete_write(struct btree *b, struct btree_write *w)
329 {
330 if (w->prio_blocked &&
331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332 wake_up_allocators(b->c);
333
334 if (w->journal) {
335 atomic_dec_bug(w->journal);
336 __closure_wake_up(&b->c->journal.wait);
337 }
338
339 w->prio_blocked = 0;
340 w->journal = NULL;
341 }
342
343 static void btree_node_write_unlock(struct closure *cl)
344 {
345 struct btree *b = container_of(cl, struct btree, io);
346
347 up(&b->io_mutex);
348 }
349
350 static void __btree_node_write_done(struct closure *cl)
351 {
352 struct btree *b = container_of(cl, struct btree, io);
353 struct btree_write *w = btree_prev_write(b);
354
355 bch_bbio_free(b->bio, b->c);
356 b->bio = NULL;
357 btree_complete_write(b, w);
358
359 if (btree_node_dirty(b))
360 schedule_delayed_work(&b->work, 30 * HZ);
361
362 closure_return_with_destructor(cl, btree_node_write_unlock);
363 }
364
365 static void btree_node_write_done(struct closure *cl)
366 {
367 struct btree *b = container_of(cl, struct btree, io);
368
369 bio_free_pages(b->bio);
370 __btree_node_write_done(cl);
371 }
372
373 static void btree_node_write_endio(struct bio *bio)
374 {
375 struct closure *cl = bio->bi_private;
376 struct btree *b = container_of(cl, struct btree, io);
377
378 if (bio->bi_status)
379 set_btree_node_io_error(b);
380
381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
382 closure_put(cl);
383 }
384
385 static void do_btree_node_write(struct btree *b)
386 {
387 struct closure *cl = &b->io;
388 struct bset *i = btree_bset_last(b);
389 BKEY_PADDED(key) k;
390
391 i->version = BCACHE_BSET_VERSION;
392 i->csum = btree_csum_set(b, i);
393
394 BUG_ON(b->bio);
395 b->bio = bch_bbio_alloc(b->c);
396
397 b->bio->bi_end_io = btree_node_write_endio;
398 b->bio->bi_private = cl;
399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
401 bch_bio_map(b->bio, i);
402
403 /*
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
407 *
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
410 *
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
416 */
417
418 bkey_copy(&k.key, &b->key);
419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 bset_sector_offset(&b->keys, i));
421
422 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 int j;
424 struct bio_vec *bv;
425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426
427 bio_for_each_segment_all(bv, b->bio, j)
428 memcpy(page_address(bv->bv_page),
429 base + j * PAGE_SIZE, PAGE_SIZE);
430
431 bch_submit_bbio(b->bio, b->c, &k.key, 0);
432
433 continue_at(cl, btree_node_write_done, NULL);
434 } else {
435 b->bio->bi_vcnt = 0;
436 bch_bio_map(b->bio, i);
437
438 bch_submit_bbio(b->bio, b->c, &k.key, 0);
439
440 closure_sync(cl);
441 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
442 }
443 }
444
445 void __bch_btree_node_write(struct btree *b, struct closure *parent)
446 {
447 struct bset *i = btree_bset_last(b);
448
449 lockdep_assert_held(&b->write_lock);
450
451 trace_bcache_btree_write(b);
452
453 BUG_ON(current->bio_list);
454 BUG_ON(b->written >= btree_blocks(b));
455 BUG_ON(b->written && !i->keys);
456 BUG_ON(btree_bset_first(b)->seq != i->seq);
457 bch_check_keys(&b->keys, "writing");
458
459 cancel_delayed_work(&b->work);
460
461 /* If caller isn't waiting for write, parent refcount is cache set */
462 down(&b->io_mutex);
463 closure_init(&b->io, parent ?: &b->c->cl);
464
465 clear_bit(BTREE_NODE_dirty, &b->flags);
466 change_bit(BTREE_NODE_write_idx, &b->flags);
467
468 do_btree_node_write(b);
469
470 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
471 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
472
473 b->written += set_blocks(i, block_bytes(b->c));
474 }
475
476 void bch_btree_node_write(struct btree *b, struct closure *parent)
477 {
478 unsigned nsets = b->keys.nsets;
479
480 lockdep_assert_held(&b->lock);
481
482 __bch_btree_node_write(b, parent);
483
484 /*
485 * do verify if there was more than one set initially (i.e. we did a
486 * sort) and we sorted down to a single set:
487 */
488 if (nsets && !b->keys.nsets)
489 bch_btree_verify(b);
490
491 bch_btree_init_next(b);
492 }
493
494 static void bch_btree_node_write_sync(struct btree *b)
495 {
496 struct closure cl;
497
498 closure_init_stack(&cl);
499
500 mutex_lock(&b->write_lock);
501 bch_btree_node_write(b, &cl);
502 mutex_unlock(&b->write_lock);
503
504 closure_sync(&cl);
505 }
506
507 static void btree_node_write_work(struct work_struct *w)
508 {
509 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
510
511 mutex_lock(&b->write_lock);
512 if (btree_node_dirty(b))
513 __bch_btree_node_write(b, NULL);
514 mutex_unlock(&b->write_lock);
515 }
516
517 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
518 {
519 struct bset *i = btree_bset_last(b);
520 struct btree_write *w = btree_current_write(b);
521
522 lockdep_assert_held(&b->write_lock);
523
524 BUG_ON(!b->written);
525 BUG_ON(!i->keys);
526
527 if (!btree_node_dirty(b))
528 schedule_delayed_work(&b->work, 30 * HZ);
529
530 set_btree_node_dirty(b);
531
532 if (journal_ref) {
533 if (w->journal &&
534 journal_pin_cmp(b->c, w->journal, journal_ref)) {
535 atomic_dec_bug(w->journal);
536 w->journal = NULL;
537 }
538
539 if (!w->journal) {
540 w->journal = journal_ref;
541 atomic_inc(w->journal);
542 }
543 }
544
545 /* Force write if set is too big */
546 if (set_bytes(i) > PAGE_SIZE - 48 &&
547 !current->bio_list)
548 bch_btree_node_write(b, NULL);
549 }
550
551 /*
552 * Btree in memory cache - allocation/freeing
553 * mca -> memory cache
554 */
555
556 #define mca_reserve(c) (((c->root && c->root->level) \
557 ? c->root->level : 1) * 8 + 16)
558 #define mca_can_free(c) \
559 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
560
561 static void mca_data_free(struct btree *b)
562 {
563 BUG_ON(b->io_mutex.count != 1);
564
565 bch_btree_keys_free(&b->keys);
566
567 b->c->btree_cache_used--;
568 list_move(&b->list, &b->c->btree_cache_freed);
569 }
570
571 static void mca_bucket_free(struct btree *b)
572 {
573 BUG_ON(btree_node_dirty(b));
574
575 b->key.ptr[0] = 0;
576 hlist_del_init_rcu(&b->hash);
577 list_move(&b->list, &b->c->btree_cache_freeable);
578 }
579
580 static unsigned btree_order(struct bkey *k)
581 {
582 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
583 }
584
585 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
586 {
587 if (!bch_btree_keys_alloc(&b->keys,
588 max_t(unsigned,
589 ilog2(b->c->btree_pages),
590 btree_order(k)),
591 gfp)) {
592 b->c->btree_cache_used++;
593 list_move(&b->list, &b->c->btree_cache);
594 } else {
595 list_move(&b->list, &b->c->btree_cache_freed);
596 }
597 }
598
599 static struct btree *mca_bucket_alloc(struct cache_set *c,
600 struct bkey *k, gfp_t gfp)
601 {
602 struct btree *b = kzalloc(sizeof(struct btree), gfp);
603 if (!b)
604 return NULL;
605
606 init_rwsem(&b->lock);
607 lockdep_set_novalidate_class(&b->lock);
608 mutex_init(&b->write_lock);
609 lockdep_set_novalidate_class(&b->write_lock);
610 INIT_LIST_HEAD(&b->list);
611 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
612 b->c = c;
613 sema_init(&b->io_mutex, 1);
614
615 mca_data_alloc(b, k, gfp);
616 return b;
617 }
618
619 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
620 {
621 struct closure cl;
622
623 closure_init_stack(&cl);
624 lockdep_assert_held(&b->c->bucket_lock);
625
626 if (!down_write_trylock(&b->lock))
627 return -ENOMEM;
628
629 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
630
631 if (b->keys.page_order < min_order)
632 goto out_unlock;
633
634 if (!flush) {
635 if (btree_node_dirty(b))
636 goto out_unlock;
637
638 if (down_trylock(&b->io_mutex))
639 goto out_unlock;
640 up(&b->io_mutex);
641 }
642
643 mutex_lock(&b->write_lock);
644 if (btree_node_dirty(b))
645 __bch_btree_node_write(b, &cl);
646 mutex_unlock(&b->write_lock);
647
648 closure_sync(&cl);
649
650 /* wait for any in flight btree write */
651 down(&b->io_mutex);
652 up(&b->io_mutex);
653
654 return 0;
655 out_unlock:
656 rw_unlock(true, b);
657 return -ENOMEM;
658 }
659
660 static unsigned long bch_mca_scan(struct shrinker *shrink,
661 struct shrink_control *sc)
662 {
663 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
664 struct btree *b, *t;
665 unsigned long i, nr = sc->nr_to_scan;
666 unsigned long freed = 0;
667
668 if (c->shrinker_disabled)
669 return SHRINK_STOP;
670
671 if (c->btree_cache_alloc_lock)
672 return SHRINK_STOP;
673
674 /* Return -1 if we can't do anything right now */
675 if (sc->gfp_mask & __GFP_IO)
676 mutex_lock(&c->bucket_lock);
677 else if (!mutex_trylock(&c->bucket_lock))
678 return -1;
679
680 /*
681 * It's _really_ critical that we don't free too many btree nodes - we
682 * have to always leave ourselves a reserve. The reserve is how we
683 * guarantee that allocating memory for a new btree node can always
684 * succeed, so that inserting keys into the btree can always succeed and
685 * IO can always make forward progress:
686 */
687 nr /= c->btree_pages;
688 nr = min_t(unsigned long, nr, mca_can_free(c));
689
690 i = 0;
691 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
692 if (freed >= nr)
693 break;
694
695 if (++i > 3 &&
696 !mca_reap(b, 0, false)) {
697 mca_data_free(b);
698 rw_unlock(true, b);
699 freed++;
700 }
701 }
702
703 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
704 if (list_empty(&c->btree_cache))
705 goto out;
706
707 b = list_first_entry(&c->btree_cache, struct btree, list);
708 list_rotate_left(&c->btree_cache);
709
710 if (!b->accessed &&
711 !mca_reap(b, 0, false)) {
712 mca_bucket_free(b);
713 mca_data_free(b);
714 rw_unlock(true, b);
715 freed++;
716 } else
717 b->accessed = 0;
718 }
719 out:
720 mutex_unlock(&c->bucket_lock);
721 return freed;
722 }
723
724 static unsigned long bch_mca_count(struct shrinker *shrink,
725 struct shrink_control *sc)
726 {
727 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
728
729 if (c->shrinker_disabled)
730 return 0;
731
732 if (c->btree_cache_alloc_lock)
733 return 0;
734
735 return mca_can_free(c) * c->btree_pages;
736 }
737
738 void bch_btree_cache_free(struct cache_set *c)
739 {
740 struct btree *b;
741 struct closure cl;
742 closure_init_stack(&cl);
743
744 if (c->shrink.list.next)
745 unregister_shrinker(&c->shrink);
746
747 mutex_lock(&c->bucket_lock);
748
749 #ifdef CONFIG_BCACHE_DEBUG
750 if (c->verify_data)
751 list_move(&c->verify_data->list, &c->btree_cache);
752
753 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
754 #endif
755
756 list_splice(&c->btree_cache_freeable,
757 &c->btree_cache);
758
759 while (!list_empty(&c->btree_cache)) {
760 b = list_first_entry(&c->btree_cache, struct btree, list);
761
762 if (btree_node_dirty(b))
763 btree_complete_write(b, btree_current_write(b));
764 clear_bit(BTREE_NODE_dirty, &b->flags);
765
766 mca_data_free(b);
767 }
768
769 while (!list_empty(&c->btree_cache_freed)) {
770 b = list_first_entry(&c->btree_cache_freed,
771 struct btree, list);
772 list_del(&b->list);
773 cancel_delayed_work_sync(&b->work);
774 kfree(b);
775 }
776
777 mutex_unlock(&c->bucket_lock);
778 }
779
780 int bch_btree_cache_alloc(struct cache_set *c)
781 {
782 unsigned i;
783
784 for (i = 0; i < mca_reserve(c); i++)
785 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
786 return -ENOMEM;
787
788 list_splice_init(&c->btree_cache,
789 &c->btree_cache_freeable);
790
791 #ifdef CONFIG_BCACHE_DEBUG
792 mutex_init(&c->verify_lock);
793
794 c->verify_ondisk = (void *)
795 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
796
797 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
798
799 if (c->verify_data &&
800 c->verify_data->keys.set->data)
801 list_del_init(&c->verify_data->list);
802 else
803 c->verify_data = NULL;
804 #endif
805
806 c->shrink.count_objects = bch_mca_count;
807 c->shrink.scan_objects = bch_mca_scan;
808 c->shrink.seeks = 4;
809 c->shrink.batch = c->btree_pages * 2;
810 register_shrinker(&c->shrink);
811
812 return 0;
813 }
814
815 /* Btree in memory cache - hash table */
816
817 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
818 {
819 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
820 }
821
822 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
823 {
824 struct btree *b;
825
826 rcu_read_lock();
827 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
828 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
829 goto out;
830 b = NULL;
831 out:
832 rcu_read_unlock();
833 return b;
834 }
835
836 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
837 {
838 struct task_struct *old;
839
840 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
841 if (old && old != current) {
842 if (op)
843 prepare_to_wait(&c->btree_cache_wait, &op->wait,
844 TASK_UNINTERRUPTIBLE);
845 return -EINTR;
846 }
847
848 return 0;
849 }
850
851 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
852 struct bkey *k)
853 {
854 struct btree *b;
855
856 trace_bcache_btree_cache_cannibalize(c);
857
858 if (mca_cannibalize_lock(c, op))
859 return ERR_PTR(-EINTR);
860
861 list_for_each_entry_reverse(b, &c->btree_cache, list)
862 if (!mca_reap(b, btree_order(k), false))
863 return b;
864
865 list_for_each_entry_reverse(b, &c->btree_cache, list)
866 if (!mca_reap(b, btree_order(k), true))
867 return b;
868
869 WARN(1, "btree cache cannibalize failed\n");
870 return ERR_PTR(-ENOMEM);
871 }
872
873 /*
874 * We can only have one thread cannibalizing other cached btree nodes at a time,
875 * or we'll deadlock. We use an open coded mutex to ensure that, which a
876 * cannibalize_bucket() will take. This means every time we unlock the root of
877 * the btree, we need to release this lock if we have it held.
878 */
879 static void bch_cannibalize_unlock(struct cache_set *c)
880 {
881 if (c->btree_cache_alloc_lock == current) {
882 c->btree_cache_alloc_lock = NULL;
883 wake_up(&c->btree_cache_wait);
884 }
885 }
886
887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
888 struct bkey *k, int level)
889 {
890 struct btree *b;
891
892 BUG_ON(current->bio_list);
893
894 lockdep_assert_held(&c->bucket_lock);
895
896 if (mca_find(c, k))
897 return NULL;
898
899 /* btree_free() doesn't free memory; it sticks the node on the end of
900 * the list. Check if there's any freed nodes there:
901 */
902 list_for_each_entry(b, &c->btree_cache_freeable, list)
903 if (!mca_reap(b, btree_order(k), false))
904 goto out;
905
906 /* We never free struct btree itself, just the memory that holds the on
907 * disk node. Check the freed list before allocating a new one:
908 */
909 list_for_each_entry(b, &c->btree_cache_freed, list)
910 if (!mca_reap(b, 0, false)) {
911 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
912 if (!b->keys.set[0].data)
913 goto err;
914 else
915 goto out;
916 }
917
918 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
919 if (!b)
920 goto err;
921
922 BUG_ON(!down_write_trylock(&b->lock));
923 if (!b->keys.set->data)
924 goto err;
925 out:
926 BUG_ON(b->io_mutex.count != 1);
927
928 bkey_copy(&b->key, k);
929 list_move(&b->list, &c->btree_cache);
930 hlist_del_init_rcu(&b->hash);
931 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
932
933 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
934 b->parent = (void *) ~0UL;
935 b->flags = 0;
936 b->written = 0;
937 b->level = level;
938
939 if (!b->level)
940 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
941 &b->c->expensive_debug_checks);
942 else
943 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
944 &b->c->expensive_debug_checks);
945
946 return b;
947 err:
948 if (b)
949 rw_unlock(true, b);
950
951 b = mca_cannibalize(c, op, k);
952 if (!IS_ERR(b))
953 goto out;
954
955 return b;
956 }
957
958 /**
959 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
960 * in from disk if necessary.
961 *
962 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
963 *
964 * The btree node will have either a read or a write lock held, depending on
965 * level and op->lock.
966 */
967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
968 struct bkey *k, int level, bool write,
969 struct btree *parent)
970 {
971 int i = 0;
972 struct btree *b;
973
974 BUG_ON(level < 0);
975 retry:
976 b = mca_find(c, k);
977
978 if (!b) {
979 if (current->bio_list)
980 return ERR_PTR(-EAGAIN);
981
982 mutex_lock(&c->bucket_lock);
983 b = mca_alloc(c, op, k, level);
984 mutex_unlock(&c->bucket_lock);
985
986 if (!b)
987 goto retry;
988 if (IS_ERR(b))
989 return b;
990
991 bch_btree_node_read(b);
992
993 if (!write)
994 downgrade_write(&b->lock);
995 } else {
996 rw_lock(write, b, level);
997 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
998 rw_unlock(write, b);
999 goto retry;
1000 }
1001 BUG_ON(b->level != level);
1002 }
1003
1004 b->parent = parent;
1005 b->accessed = 1;
1006
1007 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1008 prefetch(b->keys.set[i].tree);
1009 prefetch(b->keys.set[i].data);
1010 }
1011
1012 for (; i <= b->keys.nsets; i++)
1013 prefetch(b->keys.set[i].data);
1014
1015 if (btree_node_io_error(b)) {
1016 rw_unlock(write, b);
1017 return ERR_PTR(-EIO);
1018 }
1019
1020 BUG_ON(!b->written);
1021
1022 return b;
1023 }
1024
1025 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1026 {
1027 struct btree *b;
1028
1029 mutex_lock(&parent->c->bucket_lock);
1030 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1031 mutex_unlock(&parent->c->bucket_lock);
1032
1033 if (!IS_ERR_OR_NULL(b)) {
1034 b->parent = parent;
1035 bch_btree_node_read(b);
1036 rw_unlock(true, b);
1037 }
1038 }
1039
1040 /* Btree alloc */
1041
1042 static void btree_node_free(struct btree *b)
1043 {
1044 trace_bcache_btree_node_free(b);
1045
1046 BUG_ON(b == b->c->root);
1047
1048 mutex_lock(&b->write_lock);
1049
1050 if (btree_node_dirty(b))
1051 btree_complete_write(b, btree_current_write(b));
1052 clear_bit(BTREE_NODE_dirty, &b->flags);
1053
1054 mutex_unlock(&b->write_lock);
1055
1056 cancel_delayed_work(&b->work);
1057
1058 mutex_lock(&b->c->bucket_lock);
1059 bch_bucket_free(b->c, &b->key);
1060 mca_bucket_free(b);
1061 mutex_unlock(&b->c->bucket_lock);
1062 }
1063
1064 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1065 int level, bool wait,
1066 struct btree *parent)
1067 {
1068 BKEY_PADDED(key) k;
1069 struct btree *b = ERR_PTR(-EAGAIN);
1070
1071 mutex_lock(&c->bucket_lock);
1072 retry:
1073 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1074 goto err;
1075
1076 bkey_put(c, &k.key);
1077 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1078
1079 b = mca_alloc(c, op, &k.key, level);
1080 if (IS_ERR(b))
1081 goto err_free;
1082
1083 if (!b) {
1084 cache_bug(c,
1085 "Tried to allocate bucket that was in btree cache");
1086 goto retry;
1087 }
1088
1089 b->accessed = 1;
1090 b->parent = parent;
1091 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1092
1093 mutex_unlock(&c->bucket_lock);
1094
1095 trace_bcache_btree_node_alloc(b);
1096 return b;
1097 err_free:
1098 bch_bucket_free(c, &k.key);
1099 err:
1100 mutex_unlock(&c->bucket_lock);
1101
1102 trace_bcache_btree_node_alloc_fail(c);
1103 return b;
1104 }
1105
1106 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1107 struct btree_op *op, int level,
1108 struct btree *parent)
1109 {
1110 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1111 }
1112
1113 static struct btree *btree_node_alloc_replacement(struct btree *b,
1114 struct btree_op *op)
1115 {
1116 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1117 if (!IS_ERR_OR_NULL(n)) {
1118 mutex_lock(&n->write_lock);
1119 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1120 bkey_copy_key(&n->key, &b->key);
1121 mutex_unlock(&n->write_lock);
1122 }
1123
1124 return n;
1125 }
1126
1127 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1128 {
1129 unsigned i;
1130
1131 mutex_lock(&b->c->bucket_lock);
1132
1133 atomic_inc(&b->c->prio_blocked);
1134
1135 bkey_copy(k, &b->key);
1136 bkey_copy_key(k, &ZERO_KEY);
1137
1138 for (i = 0; i < KEY_PTRS(k); i++)
1139 SET_PTR_GEN(k, i,
1140 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1141 PTR_BUCKET(b->c, &b->key, i)));
1142
1143 mutex_unlock(&b->c->bucket_lock);
1144 }
1145
1146 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1147 {
1148 struct cache_set *c = b->c;
1149 struct cache *ca;
1150 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1151
1152 mutex_lock(&c->bucket_lock);
1153
1154 for_each_cache(ca, c, i)
1155 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1156 if (op)
1157 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1158 TASK_UNINTERRUPTIBLE);
1159 mutex_unlock(&c->bucket_lock);
1160 return -EINTR;
1161 }
1162
1163 mutex_unlock(&c->bucket_lock);
1164
1165 return mca_cannibalize_lock(b->c, op);
1166 }
1167
1168 /* Garbage collection */
1169
1170 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1171 struct bkey *k)
1172 {
1173 uint8_t stale = 0;
1174 unsigned i;
1175 struct bucket *g;
1176
1177 /*
1178 * ptr_invalid() can't return true for the keys that mark btree nodes as
1179 * freed, but since ptr_bad() returns true we'll never actually use them
1180 * for anything and thus we don't want mark their pointers here
1181 */
1182 if (!bkey_cmp(k, &ZERO_KEY))
1183 return stale;
1184
1185 for (i = 0; i < KEY_PTRS(k); i++) {
1186 if (!ptr_available(c, k, i))
1187 continue;
1188
1189 g = PTR_BUCKET(c, k, i);
1190
1191 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1192 g->last_gc = PTR_GEN(k, i);
1193
1194 if (ptr_stale(c, k, i)) {
1195 stale = max(stale, ptr_stale(c, k, i));
1196 continue;
1197 }
1198
1199 cache_bug_on(GC_MARK(g) &&
1200 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1201 c, "inconsistent ptrs: mark = %llu, level = %i",
1202 GC_MARK(g), level);
1203
1204 if (level)
1205 SET_GC_MARK(g, GC_MARK_METADATA);
1206 else if (KEY_DIRTY(k))
1207 SET_GC_MARK(g, GC_MARK_DIRTY);
1208 else if (!GC_MARK(g))
1209 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1210
1211 /* guard against overflow */
1212 SET_GC_SECTORS_USED(g, min_t(unsigned,
1213 GC_SECTORS_USED(g) + KEY_SIZE(k),
1214 MAX_GC_SECTORS_USED));
1215
1216 BUG_ON(!GC_SECTORS_USED(g));
1217 }
1218
1219 return stale;
1220 }
1221
1222 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1223
1224 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1225 {
1226 unsigned i;
1227
1228 for (i = 0; i < KEY_PTRS(k); i++)
1229 if (ptr_available(c, k, i) &&
1230 !ptr_stale(c, k, i)) {
1231 struct bucket *b = PTR_BUCKET(c, k, i);
1232
1233 b->gen = PTR_GEN(k, i);
1234
1235 if (level && bkey_cmp(k, &ZERO_KEY))
1236 b->prio = BTREE_PRIO;
1237 else if (!level && b->prio == BTREE_PRIO)
1238 b->prio = INITIAL_PRIO;
1239 }
1240
1241 __bch_btree_mark_key(c, level, k);
1242 }
1243
1244 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1245 {
1246 uint8_t stale = 0;
1247 unsigned keys = 0, good_keys = 0;
1248 struct bkey *k;
1249 struct btree_iter iter;
1250 struct bset_tree *t;
1251
1252 gc->nodes++;
1253
1254 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1255 stale = max(stale, btree_mark_key(b, k));
1256 keys++;
1257
1258 if (bch_ptr_bad(&b->keys, k))
1259 continue;
1260
1261 gc->key_bytes += bkey_u64s(k);
1262 gc->nkeys++;
1263 good_keys++;
1264
1265 gc->data += KEY_SIZE(k);
1266 }
1267
1268 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1269 btree_bug_on(t->size &&
1270 bset_written(&b->keys, t) &&
1271 bkey_cmp(&b->key, &t->end) < 0,
1272 b, "found short btree key in gc");
1273
1274 if (b->c->gc_always_rewrite)
1275 return true;
1276
1277 if (stale > 10)
1278 return true;
1279
1280 if ((keys - good_keys) * 2 > keys)
1281 return true;
1282
1283 return false;
1284 }
1285
1286 #define GC_MERGE_NODES 4U
1287
1288 struct gc_merge_info {
1289 struct btree *b;
1290 unsigned keys;
1291 };
1292
1293 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1294 struct keylist *, atomic_t *, struct bkey *);
1295
1296 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1297 struct gc_stat *gc, struct gc_merge_info *r)
1298 {
1299 unsigned i, nodes = 0, keys = 0, blocks;
1300 struct btree *new_nodes[GC_MERGE_NODES];
1301 struct keylist keylist;
1302 struct closure cl;
1303 struct bkey *k;
1304
1305 bch_keylist_init(&keylist);
1306
1307 if (btree_check_reserve(b, NULL))
1308 return 0;
1309
1310 memset(new_nodes, 0, sizeof(new_nodes));
1311 closure_init_stack(&cl);
1312
1313 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1314 keys += r[nodes++].keys;
1315
1316 blocks = btree_default_blocks(b->c) * 2 / 3;
1317
1318 if (nodes < 2 ||
1319 __set_blocks(b->keys.set[0].data, keys,
1320 block_bytes(b->c)) > blocks * (nodes - 1))
1321 return 0;
1322
1323 for (i = 0; i < nodes; i++) {
1324 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1325 if (IS_ERR_OR_NULL(new_nodes[i]))
1326 goto out_nocoalesce;
1327 }
1328
1329 /*
1330 * We have to check the reserve here, after we've allocated our new
1331 * nodes, to make sure the insert below will succeed - we also check
1332 * before as an optimization to potentially avoid a bunch of expensive
1333 * allocs/sorts
1334 */
1335 if (btree_check_reserve(b, NULL))
1336 goto out_nocoalesce;
1337
1338 for (i = 0; i < nodes; i++)
1339 mutex_lock(&new_nodes[i]->write_lock);
1340
1341 for (i = nodes - 1; i > 0; --i) {
1342 struct bset *n1 = btree_bset_first(new_nodes[i]);
1343 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1344 struct bkey *k, *last = NULL;
1345
1346 keys = 0;
1347
1348 if (i > 1) {
1349 for (k = n2->start;
1350 k < bset_bkey_last(n2);
1351 k = bkey_next(k)) {
1352 if (__set_blocks(n1, n1->keys + keys +
1353 bkey_u64s(k),
1354 block_bytes(b->c)) > blocks)
1355 break;
1356
1357 last = k;
1358 keys += bkey_u64s(k);
1359 }
1360 } else {
1361 /*
1362 * Last node we're not getting rid of - we're getting
1363 * rid of the node at r[0]. Have to try and fit all of
1364 * the remaining keys into this node; we can't ensure
1365 * they will always fit due to rounding and variable
1366 * length keys (shouldn't be possible in practice,
1367 * though)
1368 */
1369 if (__set_blocks(n1, n1->keys + n2->keys,
1370 block_bytes(b->c)) >
1371 btree_blocks(new_nodes[i]))
1372 goto out_nocoalesce;
1373
1374 keys = n2->keys;
1375 /* Take the key of the node we're getting rid of */
1376 last = &r->b->key;
1377 }
1378
1379 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1380 btree_blocks(new_nodes[i]));
1381
1382 if (last)
1383 bkey_copy_key(&new_nodes[i]->key, last);
1384
1385 memcpy(bset_bkey_last(n1),
1386 n2->start,
1387 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1388
1389 n1->keys += keys;
1390 r[i].keys = n1->keys;
1391
1392 memmove(n2->start,
1393 bset_bkey_idx(n2, keys),
1394 (void *) bset_bkey_last(n2) -
1395 (void *) bset_bkey_idx(n2, keys));
1396
1397 n2->keys -= keys;
1398
1399 if (__bch_keylist_realloc(&keylist,
1400 bkey_u64s(&new_nodes[i]->key)))
1401 goto out_nocoalesce;
1402
1403 bch_btree_node_write(new_nodes[i], &cl);
1404 bch_keylist_add(&keylist, &new_nodes[i]->key);
1405 }
1406
1407 for (i = 0; i < nodes; i++)
1408 mutex_unlock(&new_nodes[i]->write_lock);
1409
1410 closure_sync(&cl);
1411
1412 /* We emptied out this node */
1413 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1414 btree_node_free(new_nodes[0]);
1415 rw_unlock(true, new_nodes[0]);
1416 new_nodes[0] = NULL;
1417
1418 for (i = 0; i < nodes; i++) {
1419 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1420 goto out_nocoalesce;
1421
1422 make_btree_freeing_key(r[i].b, keylist.top);
1423 bch_keylist_push(&keylist);
1424 }
1425
1426 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1427 BUG_ON(!bch_keylist_empty(&keylist));
1428
1429 for (i = 0; i < nodes; i++) {
1430 btree_node_free(r[i].b);
1431 rw_unlock(true, r[i].b);
1432
1433 r[i].b = new_nodes[i];
1434 }
1435
1436 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1437 r[nodes - 1].b = ERR_PTR(-EINTR);
1438
1439 trace_bcache_btree_gc_coalesce(nodes);
1440 gc->nodes--;
1441
1442 bch_keylist_free(&keylist);
1443
1444 /* Invalidated our iterator */
1445 return -EINTR;
1446
1447 out_nocoalesce:
1448 closure_sync(&cl);
1449 bch_keylist_free(&keylist);
1450
1451 while ((k = bch_keylist_pop(&keylist)))
1452 if (!bkey_cmp(k, &ZERO_KEY))
1453 atomic_dec(&b->c->prio_blocked);
1454
1455 for (i = 0; i < nodes; i++)
1456 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1457 btree_node_free(new_nodes[i]);
1458 rw_unlock(true, new_nodes[i]);
1459 }
1460 return 0;
1461 }
1462
1463 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1464 struct btree *replace)
1465 {
1466 struct keylist keys;
1467 struct btree *n;
1468
1469 if (btree_check_reserve(b, NULL))
1470 return 0;
1471
1472 n = btree_node_alloc_replacement(replace, NULL);
1473
1474 /* recheck reserve after allocating replacement node */
1475 if (btree_check_reserve(b, NULL)) {
1476 btree_node_free(n);
1477 rw_unlock(true, n);
1478 return 0;
1479 }
1480
1481 bch_btree_node_write_sync(n);
1482
1483 bch_keylist_init(&keys);
1484 bch_keylist_add(&keys, &n->key);
1485
1486 make_btree_freeing_key(replace, keys.top);
1487 bch_keylist_push(&keys);
1488
1489 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1490 BUG_ON(!bch_keylist_empty(&keys));
1491
1492 btree_node_free(replace);
1493 rw_unlock(true, n);
1494
1495 /* Invalidated our iterator */
1496 return -EINTR;
1497 }
1498
1499 static unsigned btree_gc_count_keys(struct btree *b)
1500 {
1501 struct bkey *k;
1502 struct btree_iter iter;
1503 unsigned ret = 0;
1504
1505 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1506 ret += bkey_u64s(k);
1507
1508 return ret;
1509 }
1510
1511 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1512 struct closure *writes, struct gc_stat *gc)
1513 {
1514 int ret = 0;
1515 bool should_rewrite;
1516 struct bkey *k;
1517 struct btree_iter iter;
1518 struct gc_merge_info r[GC_MERGE_NODES];
1519 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1520
1521 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1522
1523 for (i = r; i < r + ARRAY_SIZE(r); i++)
1524 i->b = ERR_PTR(-EINTR);
1525
1526 while (1) {
1527 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1528 if (k) {
1529 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1530 true, b);
1531 if (IS_ERR(r->b)) {
1532 ret = PTR_ERR(r->b);
1533 break;
1534 }
1535
1536 r->keys = btree_gc_count_keys(r->b);
1537
1538 ret = btree_gc_coalesce(b, op, gc, r);
1539 if (ret)
1540 break;
1541 }
1542
1543 if (!last->b)
1544 break;
1545
1546 if (!IS_ERR(last->b)) {
1547 should_rewrite = btree_gc_mark_node(last->b, gc);
1548 if (should_rewrite) {
1549 ret = btree_gc_rewrite_node(b, op, last->b);
1550 if (ret)
1551 break;
1552 }
1553
1554 if (last->b->level) {
1555 ret = btree_gc_recurse(last->b, op, writes, gc);
1556 if (ret)
1557 break;
1558 }
1559
1560 bkey_copy_key(&b->c->gc_done, &last->b->key);
1561
1562 /*
1563 * Must flush leaf nodes before gc ends, since replace
1564 * operations aren't journalled
1565 */
1566 mutex_lock(&last->b->write_lock);
1567 if (btree_node_dirty(last->b))
1568 bch_btree_node_write(last->b, writes);
1569 mutex_unlock(&last->b->write_lock);
1570 rw_unlock(true, last->b);
1571 }
1572
1573 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1574 r->b = NULL;
1575
1576 if (need_resched()) {
1577 ret = -EAGAIN;
1578 break;
1579 }
1580 }
1581
1582 for (i = r; i < r + ARRAY_SIZE(r); i++)
1583 if (!IS_ERR_OR_NULL(i->b)) {
1584 mutex_lock(&i->b->write_lock);
1585 if (btree_node_dirty(i->b))
1586 bch_btree_node_write(i->b, writes);
1587 mutex_unlock(&i->b->write_lock);
1588 rw_unlock(true, i->b);
1589 }
1590
1591 return ret;
1592 }
1593
1594 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1595 struct closure *writes, struct gc_stat *gc)
1596 {
1597 struct btree *n = NULL;
1598 int ret = 0;
1599 bool should_rewrite;
1600
1601 should_rewrite = btree_gc_mark_node(b, gc);
1602 if (should_rewrite) {
1603 n = btree_node_alloc_replacement(b, NULL);
1604
1605 if (!IS_ERR_OR_NULL(n)) {
1606 bch_btree_node_write_sync(n);
1607
1608 bch_btree_set_root(n);
1609 btree_node_free(b);
1610 rw_unlock(true, n);
1611
1612 return -EINTR;
1613 }
1614 }
1615
1616 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1617
1618 if (b->level) {
1619 ret = btree_gc_recurse(b, op, writes, gc);
1620 if (ret)
1621 return ret;
1622 }
1623
1624 bkey_copy_key(&b->c->gc_done, &b->key);
1625
1626 return ret;
1627 }
1628
1629 static void btree_gc_start(struct cache_set *c)
1630 {
1631 struct cache *ca;
1632 struct bucket *b;
1633 unsigned i;
1634
1635 if (!c->gc_mark_valid)
1636 return;
1637
1638 mutex_lock(&c->bucket_lock);
1639
1640 c->gc_mark_valid = 0;
1641 c->gc_done = ZERO_KEY;
1642
1643 for_each_cache(ca, c, i)
1644 for_each_bucket(b, ca) {
1645 b->last_gc = b->gen;
1646 if (!atomic_read(&b->pin)) {
1647 SET_GC_MARK(b, 0);
1648 SET_GC_SECTORS_USED(b, 0);
1649 }
1650 }
1651
1652 mutex_unlock(&c->bucket_lock);
1653 }
1654
1655 static size_t bch_btree_gc_finish(struct cache_set *c)
1656 {
1657 size_t available = 0;
1658 struct bucket *b;
1659 struct cache *ca;
1660 unsigned i;
1661
1662 mutex_lock(&c->bucket_lock);
1663
1664 set_gc_sectors(c);
1665 c->gc_mark_valid = 1;
1666 c->need_gc = 0;
1667
1668 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1669 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1670 GC_MARK_METADATA);
1671
1672 /* don't reclaim buckets to which writeback keys point */
1673 rcu_read_lock();
1674 for (i = 0; i < c->nr_uuids; i++) {
1675 struct bcache_device *d = c->devices[i];
1676 struct cached_dev *dc;
1677 struct keybuf_key *w, *n;
1678 unsigned j;
1679
1680 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1681 continue;
1682 dc = container_of(d, struct cached_dev, disk);
1683
1684 spin_lock(&dc->writeback_keys.lock);
1685 rbtree_postorder_for_each_entry_safe(w, n,
1686 &dc->writeback_keys.keys, node)
1687 for (j = 0; j < KEY_PTRS(&w->key); j++)
1688 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1689 GC_MARK_DIRTY);
1690 spin_unlock(&dc->writeback_keys.lock);
1691 }
1692 rcu_read_unlock();
1693
1694 for_each_cache(ca, c, i) {
1695 uint64_t *i;
1696
1697 ca->invalidate_needs_gc = 0;
1698
1699 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1700 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1701
1702 for (i = ca->prio_buckets;
1703 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1704 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1705
1706 for_each_bucket(b, ca) {
1707 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1708
1709 if (atomic_read(&b->pin))
1710 continue;
1711
1712 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1713
1714 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1715 available++;
1716 }
1717 }
1718
1719 mutex_unlock(&c->bucket_lock);
1720 return available;
1721 }
1722
1723 static void bch_btree_gc(struct cache_set *c)
1724 {
1725 int ret;
1726 unsigned long available;
1727 struct gc_stat stats;
1728 struct closure writes;
1729 struct btree_op op;
1730 uint64_t start_time = local_clock();
1731
1732 trace_bcache_gc_start(c);
1733
1734 memset(&stats, 0, sizeof(struct gc_stat));
1735 closure_init_stack(&writes);
1736 bch_btree_op_init(&op, SHRT_MAX);
1737
1738 btree_gc_start(c);
1739
1740 do {
1741 ret = btree_root(gc_root, c, &op, &writes, &stats);
1742 closure_sync(&writes);
1743 cond_resched();
1744
1745 if (ret && ret != -EAGAIN)
1746 pr_warn("gc failed!");
1747 } while (ret);
1748
1749 available = bch_btree_gc_finish(c);
1750 wake_up_allocators(c);
1751
1752 bch_time_stats_update(&c->btree_gc_time, start_time);
1753
1754 stats.key_bytes *= sizeof(uint64_t);
1755 stats.data <<= 9;
1756 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1757 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1758
1759 trace_bcache_gc_end(c);
1760
1761 bch_moving_gc(c);
1762 }
1763
1764 static bool gc_should_run(struct cache_set *c)
1765 {
1766 struct cache *ca;
1767 unsigned i;
1768
1769 for_each_cache(ca, c, i)
1770 if (ca->invalidate_needs_gc)
1771 return true;
1772
1773 if (atomic_read(&c->sectors_to_gc) < 0)
1774 return true;
1775
1776 return false;
1777 }
1778
1779 static int bch_gc_thread(void *arg)
1780 {
1781 struct cache_set *c = arg;
1782
1783 while (1) {
1784 wait_event_interruptible(c->gc_wait,
1785 kthread_should_stop() || gc_should_run(c));
1786
1787 if (kthread_should_stop())
1788 break;
1789
1790 set_gc_sectors(c);
1791 bch_btree_gc(c);
1792 }
1793
1794 return 0;
1795 }
1796
1797 int bch_gc_thread_start(struct cache_set *c)
1798 {
1799 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1800 if (IS_ERR(c->gc_thread))
1801 return PTR_ERR(c->gc_thread);
1802
1803 return 0;
1804 }
1805
1806 /* Initial partial gc */
1807
1808 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1809 {
1810 int ret = 0;
1811 struct bkey *k, *p = NULL;
1812 struct btree_iter iter;
1813
1814 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1815 bch_initial_mark_key(b->c, b->level, k);
1816
1817 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1818
1819 if (b->level) {
1820 bch_btree_iter_init(&b->keys, &iter, NULL);
1821
1822 do {
1823 k = bch_btree_iter_next_filter(&iter, &b->keys,
1824 bch_ptr_bad);
1825 if (k)
1826 btree_node_prefetch(b, k);
1827
1828 if (p)
1829 ret = btree(check_recurse, p, b, op);
1830
1831 p = k;
1832 } while (p && !ret);
1833 }
1834
1835 return ret;
1836 }
1837
1838 int bch_btree_check(struct cache_set *c)
1839 {
1840 struct btree_op op;
1841
1842 bch_btree_op_init(&op, SHRT_MAX);
1843
1844 return btree_root(check_recurse, c, &op);
1845 }
1846
1847 void bch_initial_gc_finish(struct cache_set *c)
1848 {
1849 struct cache *ca;
1850 struct bucket *b;
1851 unsigned i;
1852
1853 bch_btree_gc_finish(c);
1854
1855 mutex_lock(&c->bucket_lock);
1856
1857 /*
1858 * We need to put some unused buckets directly on the prio freelist in
1859 * order to get the allocator thread started - it needs freed buckets in
1860 * order to rewrite the prios and gens, and it needs to rewrite prios
1861 * and gens in order to free buckets.
1862 *
1863 * This is only safe for buckets that have no live data in them, which
1864 * there should always be some of.
1865 */
1866 for_each_cache(ca, c, i) {
1867 for_each_bucket(b, ca) {
1868 if (fifo_full(&ca->free[RESERVE_PRIO]))
1869 break;
1870
1871 if (bch_can_invalidate_bucket(ca, b) &&
1872 !GC_MARK(b)) {
1873 __bch_invalidate_one_bucket(ca, b);
1874 fifo_push(&ca->free[RESERVE_PRIO],
1875 b - ca->buckets);
1876 }
1877 }
1878 }
1879
1880 mutex_unlock(&c->bucket_lock);
1881 }
1882
1883 /* Btree insertion */
1884
1885 static bool btree_insert_key(struct btree *b, struct bkey *k,
1886 struct bkey *replace_key)
1887 {
1888 unsigned status;
1889
1890 BUG_ON(bkey_cmp(k, &b->key) > 0);
1891
1892 status = bch_btree_insert_key(&b->keys, k, replace_key);
1893 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1894 bch_check_keys(&b->keys, "%u for %s", status,
1895 replace_key ? "replace" : "insert");
1896
1897 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1898 status);
1899 return true;
1900 } else
1901 return false;
1902 }
1903
1904 static size_t insert_u64s_remaining(struct btree *b)
1905 {
1906 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1907
1908 /*
1909 * Might land in the middle of an existing extent and have to split it
1910 */
1911 if (b->keys.ops->is_extents)
1912 ret -= KEY_MAX_U64S;
1913
1914 return max(ret, 0L);
1915 }
1916
1917 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1918 struct keylist *insert_keys,
1919 struct bkey *replace_key)
1920 {
1921 bool ret = false;
1922 int oldsize = bch_count_data(&b->keys);
1923
1924 while (!bch_keylist_empty(insert_keys)) {
1925 struct bkey *k = insert_keys->keys;
1926
1927 if (bkey_u64s(k) > insert_u64s_remaining(b))
1928 break;
1929
1930 if (bkey_cmp(k, &b->key) <= 0) {
1931 if (!b->level)
1932 bkey_put(b->c, k);
1933
1934 ret |= btree_insert_key(b, k, replace_key);
1935 bch_keylist_pop_front(insert_keys);
1936 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1937 BKEY_PADDED(key) temp;
1938 bkey_copy(&temp.key, insert_keys->keys);
1939
1940 bch_cut_back(&b->key, &temp.key);
1941 bch_cut_front(&b->key, insert_keys->keys);
1942
1943 ret |= btree_insert_key(b, &temp.key, replace_key);
1944 break;
1945 } else {
1946 break;
1947 }
1948 }
1949
1950 if (!ret)
1951 op->insert_collision = true;
1952
1953 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1954
1955 BUG_ON(bch_count_data(&b->keys) < oldsize);
1956 return ret;
1957 }
1958
1959 static int btree_split(struct btree *b, struct btree_op *op,
1960 struct keylist *insert_keys,
1961 struct bkey *replace_key)
1962 {
1963 bool split;
1964 struct btree *n1, *n2 = NULL, *n3 = NULL;
1965 uint64_t start_time = local_clock();
1966 struct closure cl;
1967 struct keylist parent_keys;
1968
1969 closure_init_stack(&cl);
1970 bch_keylist_init(&parent_keys);
1971
1972 if (btree_check_reserve(b, op)) {
1973 if (!b->level)
1974 return -EINTR;
1975 else
1976 WARN(1, "insufficient reserve for split\n");
1977 }
1978
1979 n1 = btree_node_alloc_replacement(b, op);
1980 if (IS_ERR(n1))
1981 goto err;
1982
1983 split = set_blocks(btree_bset_first(n1),
1984 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1985
1986 if (split) {
1987 unsigned keys = 0;
1988
1989 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1990
1991 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1992 if (IS_ERR(n2))
1993 goto err_free1;
1994
1995 if (!b->parent) {
1996 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1997 if (IS_ERR(n3))
1998 goto err_free2;
1999 }
2000
2001 mutex_lock(&n1->write_lock);
2002 mutex_lock(&n2->write_lock);
2003
2004 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2005
2006 /*
2007 * Has to be a linear search because we don't have an auxiliary
2008 * search tree yet
2009 */
2010
2011 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2012 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2013 keys));
2014
2015 bkey_copy_key(&n1->key,
2016 bset_bkey_idx(btree_bset_first(n1), keys));
2017 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2018
2019 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2020 btree_bset_first(n1)->keys = keys;
2021
2022 memcpy(btree_bset_first(n2)->start,
2023 bset_bkey_last(btree_bset_first(n1)),
2024 btree_bset_first(n2)->keys * sizeof(uint64_t));
2025
2026 bkey_copy_key(&n2->key, &b->key);
2027
2028 bch_keylist_add(&parent_keys, &n2->key);
2029 bch_btree_node_write(n2, &cl);
2030 mutex_unlock(&n2->write_lock);
2031 rw_unlock(true, n2);
2032 } else {
2033 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2034
2035 mutex_lock(&n1->write_lock);
2036 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2037 }
2038
2039 bch_keylist_add(&parent_keys, &n1->key);
2040 bch_btree_node_write(n1, &cl);
2041 mutex_unlock(&n1->write_lock);
2042
2043 if (n3) {
2044 /* Depth increases, make a new root */
2045 mutex_lock(&n3->write_lock);
2046 bkey_copy_key(&n3->key, &MAX_KEY);
2047 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2048 bch_btree_node_write(n3, &cl);
2049 mutex_unlock(&n3->write_lock);
2050
2051 closure_sync(&cl);
2052 bch_btree_set_root(n3);
2053 rw_unlock(true, n3);
2054 } else if (!b->parent) {
2055 /* Root filled up but didn't need to be split */
2056 closure_sync(&cl);
2057 bch_btree_set_root(n1);
2058 } else {
2059 /* Split a non root node */
2060 closure_sync(&cl);
2061 make_btree_freeing_key(b, parent_keys.top);
2062 bch_keylist_push(&parent_keys);
2063
2064 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2065 BUG_ON(!bch_keylist_empty(&parent_keys));
2066 }
2067
2068 btree_node_free(b);
2069 rw_unlock(true, n1);
2070
2071 bch_time_stats_update(&b->c->btree_split_time, start_time);
2072
2073 return 0;
2074 err_free2:
2075 bkey_put(b->c, &n2->key);
2076 btree_node_free(n2);
2077 rw_unlock(true, n2);
2078 err_free1:
2079 bkey_put(b->c, &n1->key);
2080 btree_node_free(n1);
2081 rw_unlock(true, n1);
2082 err:
2083 WARN(1, "bcache: btree split failed (level %u)", b->level);
2084
2085 if (n3 == ERR_PTR(-EAGAIN) ||
2086 n2 == ERR_PTR(-EAGAIN) ||
2087 n1 == ERR_PTR(-EAGAIN))
2088 return -EAGAIN;
2089
2090 return -ENOMEM;
2091 }
2092
2093 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2094 struct keylist *insert_keys,
2095 atomic_t *journal_ref,
2096 struct bkey *replace_key)
2097 {
2098 struct closure cl;
2099
2100 BUG_ON(b->level && replace_key);
2101
2102 closure_init_stack(&cl);
2103
2104 mutex_lock(&b->write_lock);
2105
2106 if (write_block(b) != btree_bset_last(b) &&
2107 b->keys.last_set_unwritten)
2108 bch_btree_init_next(b); /* just wrote a set */
2109
2110 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2111 mutex_unlock(&b->write_lock);
2112 goto split;
2113 }
2114
2115 BUG_ON(write_block(b) != btree_bset_last(b));
2116
2117 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2118 if (!b->level)
2119 bch_btree_leaf_dirty(b, journal_ref);
2120 else
2121 bch_btree_node_write(b, &cl);
2122 }
2123
2124 mutex_unlock(&b->write_lock);
2125
2126 /* wait for btree node write if necessary, after unlock */
2127 closure_sync(&cl);
2128
2129 return 0;
2130 split:
2131 if (current->bio_list) {
2132 op->lock = b->c->root->level + 1;
2133 return -EAGAIN;
2134 } else if (op->lock <= b->c->root->level) {
2135 op->lock = b->c->root->level + 1;
2136 return -EINTR;
2137 } else {
2138 /* Invalidated all iterators */
2139 int ret = btree_split(b, op, insert_keys, replace_key);
2140
2141 if (bch_keylist_empty(insert_keys))
2142 return 0;
2143 else if (!ret)
2144 return -EINTR;
2145 return ret;
2146 }
2147 }
2148
2149 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2150 struct bkey *check_key)
2151 {
2152 int ret = -EINTR;
2153 uint64_t btree_ptr = b->key.ptr[0];
2154 unsigned long seq = b->seq;
2155 struct keylist insert;
2156 bool upgrade = op->lock == -1;
2157
2158 bch_keylist_init(&insert);
2159
2160 if (upgrade) {
2161 rw_unlock(false, b);
2162 rw_lock(true, b, b->level);
2163
2164 if (b->key.ptr[0] != btree_ptr ||
2165 b->seq != seq + 1) {
2166 op->lock = b->level;
2167 goto out;
2168 }
2169 }
2170
2171 SET_KEY_PTRS(check_key, 1);
2172 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2173
2174 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2175
2176 bch_keylist_add(&insert, check_key);
2177
2178 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2179
2180 BUG_ON(!ret && !bch_keylist_empty(&insert));
2181 out:
2182 if (upgrade)
2183 downgrade_write(&b->lock);
2184 return ret;
2185 }
2186
2187 struct btree_insert_op {
2188 struct btree_op op;
2189 struct keylist *keys;
2190 atomic_t *journal_ref;
2191 struct bkey *replace_key;
2192 };
2193
2194 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2195 {
2196 struct btree_insert_op *op = container_of(b_op,
2197 struct btree_insert_op, op);
2198
2199 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2200 op->journal_ref, op->replace_key);
2201 if (ret && !bch_keylist_empty(op->keys))
2202 return ret;
2203 else
2204 return MAP_DONE;
2205 }
2206
2207 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2208 atomic_t *journal_ref, struct bkey *replace_key)
2209 {
2210 struct btree_insert_op op;
2211 int ret = 0;
2212
2213 BUG_ON(current->bio_list);
2214 BUG_ON(bch_keylist_empty(keys));
2215
2216 bch_btree_op_init(&op.op, 0);
2217 op.keys = keys;
2218 op.journal_ref = journal_ref;
2219 op.replace_key = replace_key;
2220
2221 while (!ret && !bch_keylist_empty(keys)) {
2222 op.op.lock = 0;
2223 ret = bch_btree_map_leaf_nodes(&op.op, c,
2224 &START_KEY(keys->keys),
2225 btree_insert_fn);
2226 }
2227
2228 if (ret) {
2229 struct bkey *k;
2230
2231 pr_err("error %i", ret);
2232
2233 while ((k = bch_keylist_pop(keys)))
2234 bkey_put(c, k);
2235 } else if (op.op.insert_collision)
2236 ret = -ESRCH;
2237
2238 return ret;
2239 }
2240
2241 void bch_btree_set_root(struct btree *b)
2242 {
2243 unsigned i;
2244 struct closure cl;
2245
2246 closure_init_stack(&cl);
2247
2248 trace_bcache_btree_set_root(b);
2249
2250 BUG_ON(!b->written);
2251
2252 for (i = 0; i < KEY_PTRS(&b->key); i++)
2253 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2254
2255 mutex_lock(&b->c->bucket_lock);
2256 list_del_init(&b->list);
2257 mutex_unlock(&b->c->bucket_lock);
2258
2259 b->c->root = b;
2260
2261 bch_journal_meta(b->c, &cl);
2262 closure_sync(&cl);
2263 }
2264
2265 /* Map across nodes or keys */
2266
2267 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2268 struct bkey *from,
2269 btree_map_nodes_fn *fn, int flags)
2270 {
2271 int ret = MAP_CONTINUE;
2272
2273 if (b->level) {
2274 struct bkey *k;
2275 struct btree_iter iter;
2276
2277 bch_btree_iter_init(&b->keys, &iter, from);
2278
2279 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2280 bch_ptr_bad))) {
2281 ret = btree(map_nodes_recurse, k, b,
2282 op, from, fn, flags);
2283 from = NULL;
2284
2285 if (ret != MAP_CONTINUE)
2286 return ret;
2287 }
2288 }
2289
2290 if (!b->level || flags == MAP_ALL_NODES)
2291 ret = fn(op, b);
2292
2293 return ret;
2294 }
2295
2296 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2297 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2298 {
2299 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2300 }
2301
2302 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2303 struct bkey *from, btree_map_keys_fn *fn,
2304 int flags)
2305 {
2306 int ret = MAP_CONTINUE;
2307 struct bkey *k;
2308 struct btree_iter iter;
2309
2310 bch_btree_iter_init(&b->keys, &iter, from);
2311
2312 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2313 ret = !b->level
2314 ? fn(op, b, k)
2315 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2316 from = NULL;
2317
2318 if (ret != MAP_CONTINUE)
2319 return ret;
2320 }
2321
2322 if (!b->level && (flags & MAP_END_KEY))
2323 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2324 KEY_OFFSET(&b->key), 0));
2325
2326 return ret;
2327 }
2328
2329 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2330 struct bkey *from, btree_map_keys_fn *fn, int flags)
2331 {
2332 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2333 }
2334
2335 /* Keybuf code */
2336
2337 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2338 {
2339 /* Overlapping keys compare equal */
2340 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2341 return -1;
2342 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2343 return 1;
2344 return 0;
2345 }
2346
2347 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2348 struct keybuf_key *r)
2349 {
2350 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2351 }
2352
2353 struct refill {
2354 struct btree_op op;
2355 unsigned nr_found;
2356 struct keybuf *buf;
2357 struct bkey *end;
2358 keybuf_pred_fn *pred;
2359 };
2360
2361 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2362 struct bkey *k)
2363 {
2364 struct refill *refill = container_of(op, struct refill, op);
2365 struct keybuf *buf = refill->buf;
2366 int ret = MAP_CONTINUE;
2367
2368 if (bkey_cmp(k, refill->end) >= 0) {
2369 ret = MAP_DONE;
2370 goto out;
2371 }
2372
2373 if (!KEY_SIZE(k)) /* end key */
2374 goto out;
2375
2376 if (refill->pred(buf, k)) {
2377 struct keybuf_key *w;
2378
2379 spin_lock(&buf->lock);
2380
2381 w = array_alloc(&buf->freelist);
2382 if (!w) {
2383 spin_unlock(&buf->lock);
2384 return MAP_DONE;
2385 }
2386
2387 w->private = NULL;
2388 bkey_copy(&w->key, k);
2389
2390 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2391 array_free(&buf->freelist, w);
2392 else
2393 refill->nr_found++;
2394
2395 if (array_freelist_empty(&buf->freelist))
2396 ret = MAP_DONE;
2397
2398 spin_unlock(&buf->lock);
2399 }
2400 out:
2401 buf->last_scanned = *k;
2402 return ret;
2403 }
2404
2405 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2406 struct bkey *end, keybuf_pred_fn *pred)
2407 {
2408 struct bkey start = buf->last_scanned;
2409 struct refill refill;
2410
2411 cond_resched();
2412
2413 bch_btree_op_init(&refill.op, -1);
2414 refill.nr_found = 0;
2415 refill.buf = buf;
2416 refill.end = end;
2417 refill.pred = pred;
2418
2419 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2420 refill_keybuf_fn, MAP_END_KEY);
2421
2422 trace_bcache_keyscan(refill.nr_found,
2423 KEY_INODE(&start), KEY_OFFSET(&start),
2424 KEY_INODE(&buf->last_scanned),
2425 KEY_OFFSET(&buf->last_scanned));
2426
2427 spin_lock(&buf->lock);
2428
2429 if (!RB_EMPTY_ROOT(&buf->keys)) {
2430 struct keybuf_key *w;
2431 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2432 buf->start = START_KEY(&w->key);
2433
2434 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2435 buf->end = w->key;
2436 } else {
2437 buf->start = MAX_KEY;
2438 buf->end = MAX_KEY;
2439 }
2440
2441 spin_unlock(&buf->lock);
2442 }
2443
2444 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2445 {
2446 rb_erase(&w->node, &buf->keys);
2447 array_free(&buf->freelist, w);
2448 }
2449
2450 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2451 {
2452 spin_lock(&buf->lock);
2453 __bch_keybuf_del(buf, w);
2454 spin_unlock(&buf->lock);
2455 }
2456
2457 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2458 struct bkey *end)
2459 {
2460 bool ret = false;
2461 struct keybuf_key *p, *w, s;
2462 s.key = *start;
2463
2464 if (bkey_cmp(end, &buf->start) <= 0 ||
2465 bkey_cmp(start, &buf->end) >= 0)
2466 return false;
2467
2468 spin_lock(&buf->lock);
2469 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2470
2471 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2472 p = w;
2473 w = RB_NEXT(w, node);
2474
2475 if (p->private)
2476 ret = true;
2477 else
2478 __bch_keybuf_del(buf, p);
2479 }
2480
2481 spin_unlock(&buf->lock);
2482 return ret;
2483 }
2484
2485 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2486 {
2487 struct keybuf_key *w;
2488 spin_lock(&buf->lock);
2489
2490 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2491
2492 while (w && w->private)
2493 w = RB_NEXT(w, node);
2494
2495 if (w)
2496 w->private = ERR_PTR(-EINTR);
2497
2498 spin_unlock(&buf->lock);
2499 return w;
2500 }
2501
2502 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2503 struct keybuf *buf,
2504 struct bkey *end,
2505 keybuf_pred_fn *pred)
2506 {
2507 struct keybuf_key *ret;
2508
2509 while (1) {
2510 ret = bch_keybuf_next(buf);
2511 if (ret)
2512 break;
2513
2514 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2515 pr_debug("scan finished");
2516 break;
2517 }
2518
2519 bch_refill_keybuf(c, buf, end, pred);
2520 }
2521
2522 return ret;
2523 }
2524
2525 void bch_keybuf_init(struct keybuf *buf)
2526 {
2527 buf->last_scanned = MAX_KEY;
2528 buf->keys = RB_ROOT;
2529
2530 spin_lock_init(&buf->lock);
2531 array_allocator_init(&buf->freelist);
2532 }