]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/btree.c
Merge tag 'pstore-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / btree.c
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <trace/events/bcache.h>
36
37 /*
38 * Todo:
39 * register_bcache: Return errors out to userspace correctly
40 *
41 * Writeback: don't undirty key until after a cache flush
42 *
43 * Create an iterator for key pointers
44 *
45 * On btree write error, mark bucket such that it won't be freed from the cache
46 *
47 * Journalling:
48 * Check for bad keys in replay
49 * Propagate barriers
50 * Refcount journal entries in journal_replay
51 *
52 * Garbage collection:
53 * Finish incremental gc
54 * Gc should free old UUIDs, data for invalid UUIDs
55 *
56 * Provide a way to list backing device UUIDs we have data cached for, and
57 * probably how long it's been since we've seen them, and a way to invalidate
58 * dirty data for devices that will never be attached again
59 *
60 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61 * that based on that and how much dirty data we have we can keep writeback
62 * from being starved
63 *
64 * Add a tracepoint or somesuch to watch for writeback starvation
65 *
66 * When btree depth > 1 and splitting an interior node, we have to make sure
67 * alloc_bucket() cannot fail. This should be true but is not completely
68 * obvious.
69 *
70 * Plugging?
71 *
72 * If data write is less than hard sector size of ssd, round up offset in open
73 * bucket to the next whole sector
74 *
75 * Superblock needs to be fleshed out for multiple cache devices
76 *
77 * Add a sysfs tunable for the number of writeback IOs in flight
78 *
79 * Add a sysfs tunable for the number of open data buckets
80 *
81 * IO tracking: Can we track when one process is doing io on behalf of another?
82 * IO tracking: Don't use just an average, weigh more recent stuff higher
83 *
84 * Test module load/unload
85 */
86
87 #define MAX_NEED_GC 64
88 #define MAX_SAVE_PRIO 72
89
90 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
91
92 #define PTR_HASH(c, k) \
93 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
94
95 #define insert_lock(s, b) ((b)->level <= (s)->lock)
96
97 /*
98 * These macros are for recursing down the btree - they handle the details of
99 * locking and looking up nodes in the cache for you. They're best treated as
100 * mere syntax when reading code that uses them.
101 *
102 * op->lock determines whether we take a read or a write lock at a given depth.
103 * If you've got a read lock and find that you need a write lock (i.e. you're
104 * going to have to split), set op->lock and return -EINTR; btree_root() will
105 * call you again and you'll have the correct lock.
106 */
107
108 /**
109 * btree - recurse down the btree on a specified key
110 * @fn: function to call, which will be passed the child node
111 * @key: key to recurse on
112 * @b: parent btree node
113 * @op: pointer to struct btree_op
114 */
115 #define btree(fn, key, b, op, ...) \
116 ({ \
117 int _r, l = (b)->level - 1; \
118 bool _w = l <= (op)->lock; \
119 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
120 _w, b); \
121 if (!IS_ERR(_child)) { \
122 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
123 rw_unlock(_w, _child); \
124 } else \
125 _r = PTR_ERR(_child); \
126 _r; \
127 })
128
129 /**
130 * btree_root - call a function on the root of the btree
131 * @fn: function to call, which will be passed the child node
132 * @c: cache set
133 * @op: pointer to struct btree_op
134 */
135 #define btree_root(fn, c, op, ...) \
136 ({ \
137 int _r = -EINTR; \
138 do { \
139 struct btree *_b = (c)->root; \
140 bool _w = insert_lock(op, _b); \
141 rw_lock(_w, _b, _b->level); \
142 if (_b == (c)->root && \
143 _w == insert_lock(op, _b)) { \
144 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
145 } \
146 rw_unlock(_w, _b); \
147 bch_cannibalize_unlock(c); \
148 if (_r == -EINTR) \
149 schedule(); \
150 } while (_r == -EINTR); \
151 \
152 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
153 _r; \
154 })
155
156 static inline struct bset *write_block(struct btree *b)
157 {
158 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
159 }
160
161 static void bch_btree_init_next(struct btree *b)
162 {
163 /* If not a leaf node, always sort */
164 if (b->level && b->keys.nsets)
165 bch_btree_sort(&b->keys, &b->c->sort);
166 else
167 bch_btree_sort_lazy(&b->keys, &b->c->sort);
168
169 if (b->written < btree_blocks(b))
170 bch_bset_init_next(&b->keys, write_block(b),
171 bset_magic(&b->c->sb));
172
173 }
174
175 /* Btree key manipulation */
176
177 void bkey_put(struct cache_set *c, struct bkey *k)
178 {
179 unsigned i;
180
181 for (i = 0; i < KEY_PTRS(k); i++)
182 if (ptr_available(c, k, i))
183 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
184 }
185
186 /* Btree IO */
187
188 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
189 {
190 uint64_t crc = b->key.ptr[0];
191 void *data = (void *) i + 8, *end = bset_bkey_last(i);
192
193 crc = bch_crc64_update(crc, data, end - data);
194 return crc ^ 0xffffffffffffffffULL;
195 }
196
197 void bch_btree_node_read_done(struct btree *b)
198 {
199 const char *err = "bad btree header";
200 struct bset *i = btree_bset_first(b);
201 struct btree_iter *iter;
202
203 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
204 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
205 iter->used = 0;
206
207 #ifdef CONFIG_BCACHE_DEBUG
208 iter->b = &b->keys;
209 #endif
210
211 if (!i->seq)
212 goto err;
213
214 for (;
215 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
216 i = write_block(b)) {
217 err = "unsupported bset version";
218 if (i->version > BCACHE_BSET_VERSION)
219 goto err;
220
221 err = "bad btree header";
222 if (b->written + set_blocks(i, block_bytes(b->c)) >
223 btree_blocks(b))
224 goto err;
225
226 err = "bad magic";
227 if (i->magic != bset_magic(&b->c->sb))
228 goto err;
229
230 err = "bad checksum";
231 switch (i->version) {
232 case 0:
233 if (i->csum != csum_set(i))
234 goto err;
235 break;
236 case BCACHE_BSET_VERSION:
237 if (i->csum != btree_csum_set(b, i))
238 goto err;
239 break;
240 }
241
242 err = "empty set";
243 if (i != b->keys.set[0].data && !i->keys)
244 goto err;
245
246 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
247
248 b->written += set_blocks(i, block_bytes(b->c));
249 }
250
251 err = "corrupted btree";
252 for (i = write_block(b);
253 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
254 i = ((void *) i) + block_bytes(b->c))
255 if (i->seq == b->keys.set[0].data->seq)
256 goto err;
257
258 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
259
260 i = b->keys.set[0].data;
261 err = "short btree key";
262 if (b->keys.set[0].size &&
263 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
264 goto err;
265
266 if (b->written < btree_blocks(b))
267 bch_bset_init_next(&b->keys, write_block(b),
268 bset_magic(&b->c->sb));
269 out:
270 mempool_free(iter, b->c->fill_iter);
271 return;
272 err:
273 set_btree_node_io_error(b);
274 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
275 err, PTR_BUCKET_NR(b->c, &b->key, 0),
276 bset_block_offset(b, i), i->keys);
277 goto out;
278 }
279
280 static void btree_node_read_endio(struct bio *bio)
281 {
282 struct closure *cl = bio->bi_private;
283 closure_put(cl);
284 }
285
286 static void bch_btree_node_read(struct btree *b)
287 {
288 uint64_t start_time = local_clock();
289 struct closure cl;
290 struct bio *bio;
291
292 trace_bcache_btree_read(b);
293
294 closure_init_stack(&cl);
295
296 bio = bch_bbio_alloc(b->c);
297 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
298 bio->bi_end_io = btree_node_read_endio;
299 bio->bi_private = &cl;
300 bio_set_op_attrs(bio, REQ_OP_READ, REQ_META|READ_SYNC);
301
302 bch_bio_map(bio, b->keys.set[0].data);
303
304 bch_submit_bbio(bio, b->c, &b->key, 0);
305 closure_sync(&cl);
306
307 if (bio->bi_error)
308 set_btree_node_io_error(b);
309
310 bch_bbio_free(bio, b->c);
311
312 if (btree_node_io_error(b))
313 goto err;
314
315 bch_btree_node_read_done(b);
316 bch_time_stats_update(&b->c->btree_read_time, start_time);
317
318 return;
319 err:
320 bch_cache_set_error(b->c, "io error reading bucket %zu",
321 PTR_BUCKET_NR(b->c, &b->key, 0));
322 }
323
324 static void btree_complete_write(struct btree *b, struct btree_write *w)
325 {
326 if (w->prio_blocked &&
327 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
328 wake_up_allocators(b->c);
329
330 if (w->journal) {
331 atomic_dec_bug(w->journal);
332 __closure_wake_up(&b->c->journal.wait);
333 }
334
335 w->prio_blocked = 0;
336 w->journal = NULL;
337 }
338
339 static void btree_node_write_unlock(struct closure *cl)
340 {
341 struct btree *b = container_of(cl, struct btree, io);
342
343 up(&b->io_mutex);
344 }
345
346 static void __btree_node_write_done(struct closure *cl)
347 {
348 struct btree *b = container_of(cl, struct btree, io);
349 struct btree_write *w = btree_prev_write(b);
350
351 bch_bbio_free(b->bio, b->c);
352 b->bio = NULL;
353 btree_complete_write(b, w);
354
355 if (btree_node_dirty(b))
356 schedule_delayed_work(&b->work, 30 * HZ);
357
358 closure_return_with_destructor(cl, btree_node_write_unlock);
359 }
360
361 static void btree_node_write_done(struct closure *cl)
362 {
363 struct btree *b = container_of(cl, struct btree, io);
364 struct bio_vec *bv;
365 int n;
366
367 bio_for_each_segment_all(bv, b->bio, n)
368 __free_page(bv->bv_page);
369
370 __btree_node_write_done(cl);
371 }
372
373 static void btree_node_write_endio(struct bio *bio)
374 {
375 struct closure *cl = bio->bi_private;
376 struct btree *b = container_of(cl, struct btree, io);
377
378 if (bio->bi_error)
379 set_btree_node_io_error(b);
380
381 bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
382 closure_put(cl);
383 }
384
385 static void do_btree_node_write(struct btree *b)
386 {
387 struct closure *cl = &b->io;
388 struct bset *i = btree_bset_last(b);
389 BKEY_PADDED(key) k;
390
391 i->version = BCACHE_BSET_VERSION;
392 i->csum = btree_csum_set(b, i);
393
394 BUG_ON(b->bio);
395 b->bio = bch_bbio_alloc(b->c);
396
397 b->bio->bi_end_io = btree_node_write_endio;
398 b->bio->bi_private = cl;
399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
400 bio_set_op_attrs(b->bio, REQ_OP_WRITE, REQ_META|WRITE_SYNC|REQ_FUA);
401 bch_bio_map(b->bio, i);
402
403 /*
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
407 *
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
410 *
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
416 */
417
418 bkey_copy(&k.key, &b->key);
419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 bset_sector_offset(&b->keys, i));
421
422 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 int j;
424 struct bio_vec *bv;
425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426
427 bio_for_each_segment_all(bv, b->bio, j)
428 memcpy(page_address(bv->bv_page),
429 base + j * PAGE_SIZE, PAGE_SIZE);
430
431 bch_submit_bbio(b->bio, b->c, &k.key, 0);
432
433 continue_at(cl, btree_node_write_done, NULL);
434 } else {
435 b->bio->bi_vcnt = 0;
436 bch_bio_map(b->bio, i);
437
438 bch_submit_bbio(b->bio, b->c, &k.key, 0);
439
440 closure_sync(cl);
441 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
442 }
443 }
444
445 void __bch_btree_node_write(struct btree *b, struct closure *parent)
446 {
447 struct bset *i = btree_bset_last(b);
448
449 lockdep_assert_held(&b->write_lock);
450
451 trace_bcache_btree_write(b);
452
453 BUG_ON(current->bio_list);
454 BUG_ON(b->written >= btree_blocks(b));
455 BUG_ON(b->written && !i->keys);
456 BUG_ON(btree_bset_first(b)->seq != i->seq);
457 bch_check_keys(&b->keys, "writing");
458
459 cancel_delayed_work(&b->work);
460
461 /* If caller isn't waiting for write, parent refcount is cache set */
462 down(&b->io_mutex);
463 closure_init(&b->io, parent ?: &b->c->cl);
464
465 clear_bit(BTREE_NODE_dirty, &b->flags);
466 change_bit(BTREE_NODE_write_idx, &b->flags);
467
468 do_btree_node_write(b);
469
470 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
471 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
472
473 b->written += set_blocks(i, block_bytes(b->c));
474 }
475
476 void bch_btree_node_write(struct btree *b, struct closure *parent)
477 {
478 unsigned nsets = b->keys.nsets;
479
480 lockdep_assert_held(&b->lock);
481
482 __bch_btree_node_write(b, parent);
483
484 /*
485 * do verify if there was more than one set initially (i.e. we did a
486 * sort) and we sorted down to a single set:
487 */
488 if (nsets && !b->keys.nsets)
489 bch_btree_verify(b);
490
491 bch_btree_init_next(b);
492 }
493
494 static void bch_btree_node_write_sync(struct btree *b)
495 {
496 struct closure cl;
497
498 closure_init_stack(&cl);
499
500 mutex_lock(&b->write_lock);
501 bch_btree_node_write(b, &cl);
502 mutex_unlock(&b->write_lock);
503
504 closure_sync(&cl);
505 }
506
507 static void btree_node_write_work(struct work_struct *w)
508 {
509 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
510
511 mutex_lock(&b->write_lock);
512 if (btree_node_dirty(b))
513 __bch_btree_node_write(b, NULL);
514 mutex_unlock(&b->write_lock);
515 }
516
517 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
518 {
519 struct bset *i = btree_bset_last(b);
520 struct btree_write *w = btree_current_write(b);
521
522 lockdep_assert_held(&b->write_lock);
523
524 BUG_ON(!b->written);
525 BUG_ON(!i->keys);
526
527 if (!btree_node_dirty(b))
528 schedule_delayed_work(&b->work, 30 * HZ);
529
530 set_btree_node_dirty(b);
531
532 if (journal_ref) {
533 if (w->journal &&
534 journal_pin_cmp(b->c, w->journal, journal_ref)) {
535 atomic_dec_bug(w->journal);
536 w->journal = NULL;
537 }
538
539 if (!w->journal) {
540 w->journal = journal_ref;
541 atomic_inc(w->journal);
542 }
543 }
544
545 /* Force write if set is too big */
546 if (set_bytes(i) > PAGE_SIZE - 48 &&
547 !current->bio_list)
548 bch_btree_node_write(b, NULL);
549 }
550
551 /*
552 * Btree in memory cache - allocation/freeing
553 * mca -> memory cache
554 */
555
556 #define mca_reserve(c) (((c->root && c->root->level) \
557 ? c->root->level : 1) * 8 + 16)
558 #define mca_can_free(c) \
559 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
560
561 static void mca_data_free(struct btree *b)
562 {
563 BUG_ON(b->io_mutex.count != 1);
564
565 bch_btree_keys_free(&b->keys);
566
567 b->c->btree_cache_used--;
568 list_move(&b->list, &b->c->btree_cache_freed);
569 }
570
571 static void mca_bucket_free(struct btree *b)
572 {
573 BUG_ON(btree_node_dirty(b));
574
575 b->key.ptr[0] = 0;
576 hlist_del_init_rcu(&b->hash);
577 list_move(&b->list, &b->c->btree_cache_freeable);
578 }
579
580 static unsigned btree_order(struct bkey *k)
581 {
582 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
583 }
584
585 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
586 {
587 if (!bch_btree_keys_alloc(&b->keys,
588 max_t(unsigned,
589 ilog2(b->c->btree_pages),
590 btree_order(k)),
591 gfp)) {
592 b->c->btree_cache_used++;
593 list_move(&b->list, &b->c->btree_cache);
594 } else {
595 list_move(&b->list, &b->c->btree_cache_freed);
596 }
597 }
598
599 static struct btree *mca_bucket_alloc(struct cache_set *c,
600 struct bkey *k, gfp_t gfp)
601 {
602 struct btree *b = kzalloc(sizeof(struct btree), gfp);
603 if (!b)
604 return NULL;
605
606 init_rwsem(&b->lock);
607 lockdep_set_novalidate_class(&b->lock);
608 mutex_init(&b->write_lock);
609 lockdep_set_novalidate_class(&b->write_lock);
610 INIT_LIST_HEAD(&b->list);
611 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
612 b->c = c;
613 sema_init(&b->io_mutex, 1);
614
615 mca_data_alloc(b, k, gfp);
616 return b;
617 }
618
619 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
620 {
621 struct closure cl;
622
623 closure_init_stack(&cl);
624 lockdep_assert_held(&b->c->bucket_lock);
625
626 if (!down_write_trylock(&b->lock))
627 return -ENOMEM;
628
629 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
630
631 if (b->keys.page_order < min_order)
632 goto out_unlock;
633
634 if (!flush) {
635 if (btree_node_dirty(b))
636 goto out_unlock;
637
638 if (down_trylock(&b->io_mutex))
639 goto out_unlock;
640 up(&b->io_mutex);
641 }
642
643 mutex_lock(&b->write_lock);
644 if (btree_node_dirty(b))
645 __bch_btree_node_write(b, &cl);
646 mutex_unlock(&b->write_lock);
647
648 closure_sync(&cl);
649
650 /* wait for any in flight btree write */
651 down(&b->io_mutex);
652 up(&b->io_mutex);
653
654 return 0;
655 out_unlock:
656 rw_unlock(true, b);
657 return -ENOMEM;
658 }
659
660 static unsigned long bch_mca_scan(struct shrinker *shrink,
661 struct shrink_control *sc)
662 {
663 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
664 struct btree *b, *t;
665 unsigned long i, nr = sc->nr_to_scan;
666 unsigned long freed = 0;
667
668 if (c->shrinker_disabled)
669 return SHRINK_STOP;
670
671 if (c->btree_cache_alloc_lock)
672 return SHRINK_STOP;
673
674 /* Return -1 if we can't do anything right now */
675 if (sc->gfp_mask & __GFP_IO)
676 mutex_lock(&c->bucket_lock);
677 else if (!mutex_trylock(&c->bucket_lock))
678 return -1;
679
680 /*
681 * It's _really_ critical that we don't free too many btree nodes - we
682 * have to always leave ourselves a reserve. The reserve is how we
683 * guarantee that allocating memory for a new btree node can always
684 * succeed, so that inserting keys into the btree can always succeed and
685 * IO can always make forward progress:
686 */
687 nr /= c->btree_pages;
688 nr = min_t(unsigned long, nr, mca_can_free(c));
689
690 i = 0;
691 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
692 if (freed >= nr)
693 break;
694
695 if (++i > 3 &&
696 !mca_reap(b, 0, false)) {
697 mca_data_free(b);
698 rw_unlock(true, b);
699 freed++;
700 }
701 }
702
703 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
704 if (list_empty(&c->btree_cache))
705 goto out;
706
707 b = list_first_entry(&c->btree_cache, struct btree, list);
708 list_rotate_left(&c->btree_cache);
709
710 if (!b->accessed &&
711 !mca_reap(b, 0, false)) {
712 mca_bucket_free(b);
713 mca_data_free(b);
714 rw_unlock(true, b);
715 freed++;
716 } else
717 b->accessed = 0;
718 }
719 out:
720 mutex_unlock(&c->bucket_lock);
721 return freed;
722 }
723
724 static unsigned long bch_mca_count(struct shrinker *shrink,
725 struct shrink_control *sc)
726 {
727 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
728
729 if (c->shrinker_disabled)
730 return 0;
731
732 if (c->btree_cache_alloc_lock)
733 return 0;
734
735 return mca_can_free(c) * c->btree_pages;
736 }
737
738 void bch_btree_cache_free(struct cache_set *c)
739 {
740 struct btree *b;
741 struct closure cl;
742 closure_init_stack(&cl);
743
744 if (c->shrink.list.next)
745 unregister_shrinker(&c->shrink);
746
747 mutex_lock(&c->bucket_lock);
748
749 #ifdef CONFIG_BCACHE_DEBUG
750 if (c->verify_data)
751 list_move(&c->verify_data->list, &c->btree_cache);
752
753 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
754 #endif
755
756 list_splice(&c->btree_cache_freeable,
757 &c->btree_cache);
758
759 while (!list_empty(&c->btree_cache)) {
760 b = list_first_entry(&c->btree_cache, struct btree, list);
761
762 if (btree_node_dirty(b))
763 btree_complete_write(b, btree_current_write(b));
764 clear_bit(BTREE_NODE_dirty, &b->flags);
765
766 mca_data_free(b);
767 }
768
769 while (!list_empty(&c->btree_cache_freed)) {
770 b = list_first_entry(&c->btree_cache_freed,
771 struct btree, list);
772 list_del(&b->list);
773 cancel_delayed_work_sync(&b->work);
774 kfree(b);
775 }
776
777 mutex_unlock(&c->bucket_lock);
778 }
779
780 int bch_btree_cache_alloc(struct cache_set *c)
781 {
782 unsigned i;
783
784 for (i = 0; i < mca_reserve(c); i++)
785 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
786 return -ENOMEM;
787
788 list_splice_init(&c->btree_cache,
789 &c->btree_cache_freeable);
790
791 #ifdef CONFIG_BCACHE_DEBUG
792 mutex_init(&c->verify_lock);
793
794 c->verify_ondisk = (void *)
795 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
796
797 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
798
799 if (c->verify_data &&
800 c->verify_data->keys.set->data)
801 list_del_init(&c->verify_data->list);
802 else
803 c->verify_data = NULL;
804 #endif
805
806 c->shrink.count_objects = bch_mca_count;
807 c->shrink.scan_objects = bch_mca_scan;
808 c->shrink.seeks = 4;
809 c->shrink.batch = c->btree_pages * 2;
810 register_shrinker(&c->shrink);
811
812 return 0;
813 }
814
815 /* Btree in memory cache - hash table */
816
817 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
818 {
819 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
820 }
821
822 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
823 {
824 struct btree *b;
825
826 rcu_read_lock();
827 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
828 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
829 goto out;
830 b = NULL;
831 out:
832 rcu_read_unlock();
833 return b;
834 }
835
836 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
837 {
838 struct task_struct *old;
839
840 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
841 if (old && old != current) {
842 if (op)
843 prepare_to_wait(&c->btree_cache_wait, &op->wait,
844 TASK_UNINTERRUPTIBLE);
845 return -EINTR;
846 }
847
848 return 0;
849 }
850
851 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
852 struct bkey *k)
853 {
854 struct btree *b;
855
856 trace_bcache_btree_cache_cannibalize(c);
857
858 if (mca_cannibalize_lock(c, op))
859 return ERR_PTR(-EINTR);
860
861 list_for_each_entry_reverse(b, &c->btree_cache, list)
862 if (!mca_reap(b, btree_order(k), false))
863 return b;
864
865 list_for_each_entry_reverse(b, &c->btree_cache, list)
866 if (!mca_reap(b, btree_order(k), true))
867 return b;
868
869 WARN(1, "btree cache cannibalize failed\n");
870 return ERR_PTR(-ENOMEM);
871 }
872
873 /*
874 * We can only have one thread cannibalizing other cached btree nodes at a time,
875 * or we'll deadlock. We use an open coded mutex to ensure that, which a
876 * cannibalize_bucket() will take. This means every time we unlock the root of
877 * the btree, we need to release this lock if we have it held.
878 */
879 static void bch_cannibalize_unlock(struct cache_set *c)
880 {
881 if (c->btree_cache_alloc_lock == current) {
882 c->btree_cache_alloc_lock = NULL;
883 wake_up(&c->btree_cache_wait);
884 }
885 }
886
887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
888 struct bkey *k, int level)
889 {
890 struct btree *b;
891
892 BUG_ON(current->bio_list);
893
894 lockdep_assert_held(&c->bucket_lock);
895
896 if (mca_find(c, k))
897 return NULL;
898
899 /* btree_free() doesn't free memory; it sticks the node on the end of
900 * the list. Check if there's any freed nodes there:
901 */
902 list_for_each_entry(b, &c->btree_cache_freeable, list)
903 if (!mca_reap(b, btree_order(k), false))
904 goto out;
905
906 /* We never free struct btree itself, just the memory that holds the on
907 * disk node. Check the freed list before allocating a new one:
908 */
909 list_for_each_entry(b, &c->btree_cache_freed, list)
910 if (!mca_reap(b, 0, false)) {
911 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
912 if (!b->keys.set[0].data)
913 goto err;
914 else
915 goto out;
916 }
917
918 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
919 if (!b)
920 goto err;
921
922 BUG_ON(!down_write_trylock(&b->lock));
923 if (!b->keys.set->data)
924 goto err;
925 out:
926 BUG_ON(b->io_mutex.count != 1);
927
928 bkey_copy(&b->key, k);
929 list_move(&b->list, &c->btree_cache);
930 hlist_del_init_rcu(&b->hash);
931 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
932
933 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
934 b->parent = (void *) ~0UL;
935 b->flags = 0;
936 b->written = 0;
937 b->level = level;
938
939 if (!b->level)
940 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
941 &b->c->expensive_debug_checks);
942 else
943 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
944 &b->c->expensive_debug_checks);
945
946 return b;
947 err:
948 if (b)
949 rw_unlock(true, b);
950
951 b = mca_cannibalize(c, op, k);
952 if (!IS_ERR(b))
953 goto out;
954
955 return b;
956 }
957
958 /**
959 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
960 * in from disk if necessary.
961 *
962 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
963 *
964 * The btree node will have either a read or a write lock held, depending on
965 * level and op->lock.
966 */
967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
968 struct bkey *k, int level, bool write,
969 struct btree *parent)
970 {
971 int i = 0;
972 struct btree *b;
973
974 BUG_ON(level < 0);
975 retry:
976 b = mca_find(c, k);
977
978 if (!b) {
979 if (current->bio_list)
980 return ERR_PTR(-EAGAIN);
981
982 mutex_lock(&c->bucket_lock);
983 b = mca_alloc(c, op, k, level);
984 mutex_unlock(&c->bucket_lock);
985
986 if (!b)
987 goto retry;
988 if (IS_ERR(b))
989 return b;
990
991 bch_btree_node_read(b);
992
993 if (!write)
994 downgrade_write(&b->lock);
995 } else {
996 rw_lock(write, b, level);
997 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
998 rw_unlock(write, b);
999 goto retry;
1000 }
1001 BUG_ON(b->level != level);
1002 }
1003
1004 b->parent = parent;
1005 b->accessed = 1;
1006
1007 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1008 prefetch(b->keys.set[i].tree);
1009 prefetch(b->keys.set[i].data);
1010 }
1011
1012 for (; i <= b->keys.nsets; i++)
1013 prefetch(b->keys.set[i].data);
1014
1015 if (btree_node_io_error(b)) {
1016 rw_unlock(write, b);
1017 return ERR_PTR(-EIO);
1018 }
1019
1020 BUG_ON(!b->written);
1021
1022 return b;
1023 }
1024
1025 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1026 {
1027 struct btree *b;
1028
1029 mutex_lock(&parent->c->bucket_lock);
1030 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1031 mutex_unlock(&parent->c->bucket_lock);
1032
1033 if (!IS_ERR_OR_NULL(b)) {
1034 b->parent = parent;
1035 bch_btree_node_read(b);
1036 rw_unlock(true, b);
1037 }
1038 }
1039
1040 /* Btree alloc */
1041
1042 static void btree_node_free(struct btree *b)
1043 {
1044 trace_bcache_btree_node_free(b);
1045
1046 BUG_ON(b == b->c->root);
1047
1048 mutex_lock(&b->write_lock);
1049
1050 if (btree_node_dirty(b))
1051 btree_complete_write(b, btree_current_write(b));
1052 clear_bit(BTREE_NODE_dirty, &b->flags);
1053
1054 mutex_unlock(&b->write_lock);
1055
1056 cancel_delayed_work(&b->work);
1057
1058 mutex_lock(&b->c->bucket_lock);
1059 bch_bucket_free(b->c, &b->key);
1060 mca_bucket_free(b);
1061 mutex_unlock(&b->c->bucket_lock);
1062 }
1063
1064 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1065 int level, bool wait,
1066 struct btree *parent)
1067 {
1068 BKEY_PADDED(key) k;
1069 struct btree *b = ERR_PTR(-EAGAIN);
1070
1071 mutex_lock(&c->bucket_lock);
1072 retry:
1073 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1074 goto err;
1075
1076 bkey_put(c, &k.key);
1077 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1078
1079 b = mca_alloc(c, op, &k.key, level);
1080 if (IS_ERR(b))
1081 goto err_free;
1082
1083 if (!b) {
1084 cache_bug(c,
1085 "Tried to allocate bucket that was in btree cache");
1086 goto retry;
1087 }
1088
1089 b->accessed = 1;
1090 b->parent = parent;
1091 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1092
1093 mutex_unlock(&c->bucket_lock);
1094
1095 trace_bcache_btree_node_alloc(b);
1096 return b;
1097 err_free:
1098 bch_bucket_free(c, &k.key);
1099 err:
1100 mutex_unlock(&c->bucket_lock);
1101
1102 trace_bcache_btree_node_alloc_fail(c);
1103 return b;
1104 }
1105
1106 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1107 struct btree_op *op, int level,
1108 struct btree *parent)
1109 {
1110 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1111 }
1112
1113 static struct btree *btree_node_alloc_replacement(struct btree *b,
1114 struct btree_op *op)
1115 {
1116 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1117 if (!IS_ERR_OR_NULL(n)) {
1118 mutex_lock(&n->write_lock);
1119 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1120 bkey_copy_key(&n->key, &b->key);
1121 mutex_unlock(&n->write_lock);
1122 }
1123
1124 return n;
1125 }
1126
1127 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1128 {
1129 unsigned i;
1130
1131 mutex_lock(&b->c->bucket_lock);
1132
1133 atomic_inc(&b->c->prio_blocked);
1134
1135 bkey_copy(k, &b->key);
1136 bkey_copy_key(k, &ZERO_KEY);
1137
1138 for (i = 0; i < KEY_PTRS(k); i++)
1139 SET_PTR_GEN(k, i,
1140 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1141 PTR_BUCKET(b->c, &b->key, i)));
1142
1143 mutex_unlock(&b->c->bucket_lock);
1144 }
1145
1146 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1147 {
1148 struct cache_set *c = b->c;
1149 struct cache *ca;
1150 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1151
1152 mutex_lock(&c->bucket_lock);
1153
1154 for_each_cache(ca, c, i)
1155 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1156 if (op)
1157 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1158 TASK_UNINTERRUPTIBLE);
1159 mutex_unlock(&c->bucket_lock);
1160 return -EINTR;
1161 }
1162
1163 mutex_unlock(&c->bucket_lock);
1164
1165 return mca_cannibalize_lock(b->c, op);
1166 }
1167
1168 /* Garbage collection */
1169
1170 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1171 struct bkey *k)
1172 {
1173 uint8_t stale = 0;
1174 unsigned i;
1175 struct bucket *g;
1176
1177 /*
1178 * ptr_invalid() can't return true for the keys that mark btree nodes as
1179 * freed, but since ptr_bad() returns true we'll never actually use them
1180 * for anything and thus we don't want mark their pointers here
1181 */
1182 if (!bkey_cmp(k, &ZERO_KEY))
1183 return stale;
1184
1185 for (i = 0; i < KEY_PTRS(k); i++) {
1186 if (!ptr_available(c, k, i))
1187 continue;
1188
1189 g = PTR_BUCKET(c, k, i);
1190
1191 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1192 g->last_gc = PTR_GEN(k, i);
1193
1194 if (ptr_stale(c, k, i)) {
1195 stale = max(stale, ptr_stale(c, k, i));
1196 continue;
1197 }
1198
1199 cache_bug_on(GC_MARK(g) &&
1200 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1201 c, "inconsistent ptrs: mark = %llu, level = %i",
1202 GC_MARK(g), level);
1203
1204 if (level)
1205 SET_GC_MARK(g, GC_MARK_METADATA);
1206 else if (KEY_DIRTY(k))
1207 SET_GC_MARK(g, GC_MARK_DIRTY);
1208 else if (!GC_MARK(g))
1209 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1210
1211 /* guard against overflow */
1212 SET_GC_SECTORS_USED(g, min_t(unsigned,
1213 GC_SECTORS_USED(g) + KEY_SIZE(k),
1214 MAX_GC_SECTORS_USED));
1215
1216 BUG_ON(!GC_SECTORS_USED(g));
1217 }
1218
1219 return stale;
1220 }
1221
1222 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1223
1224 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1225 {
1226 unsigned i;
1227
1228 for (i = 0; i < KEY_PTRS(k); i++)
1229 if (ptr_available(c, k, i) &&
1230 !ptr_stale(c, k, i)) {
1231 struct bucket *b = PTR_BUCKET(c, k, i);
1232
1233 b->gen = PTR_GEN(k, i);
1234
1235 if (level && bkey_cmp(k, &ZERO_KEY))
1236 b->prio = BTREE_PRIO;
1237 else if (!level && b->prio == BTREE_PRIO)
1238 b->prio = INITIAL_PRIO;
1239 }
1240
1241 __bch_btree_mark_key(c, level, k);
1242 }
1243
1244 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1245 {
1246 uint8_t stale = 0;
1247 unsigned keys = 0, good_keys = 0;
1248 struct bkey *k;
1249 struct btree_iter iter;
1250 struct bset_tree *t;
1251
1252 gc->nodes++;
1253
1254 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1255 stale = max(stale, btree_mark_key(b, k));
1256 keys++;
1257
1258 if (bch_ptr_bad(&b->keys, k))
1259 continue;
1260
1261 gc->key_bytes += bkey_u64s(k);
1262 gc->nkeys++;
1263 good_keys++;
1264
1265 gc->data += KEY_SIZE(k);
1266 }
1267
1268 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1269 btree_bug_on(t->size &&
1270 bset_written(&b->keys, t) &&
1271 bkey_cmp(&b->key, &t->end) < 0,
1272 b, "found short btree key in gc");
1273
1274 if (b->c->gc_always_rewrite)
1275 return true;
1276
1277 if (stale > 10)
1278 return true;
1279
1280 if ((keys - good_keys) * 2 > keys)
1281 return true;
1282
1283 return false;
1284 }
1285
1286 #define GC_MERGE_NODES 4U
1287
1288 struct gc_merge_info {
1289 struct btree *b;
1290 unsigned keys;
1291 };
1292
1293 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1294 struct keylist *, atomic_t *, struct bkey *);
1295
1296 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1297 struct gc_stat *gc, struct gc_merge_info *r)
1298 {
1299 unsigned i, nodes = 0, keys = 0, blocks;
1300 struct btree *new_nodes[GC_MERGE_NODES];
1301 struct keylist keylist;
1302 struct closure cl;
1303 struct bkey *k;
1304
1305 bch_keylist_init(&keylist);
1306
1307 if (btree_check_reserve(b, NULL))
1308 return 0;
1309
1310 memset(new_nodes, 0, sizeof(new_nodes));
1311 closure_init_stack(&cl);
1312
1313 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1314 keys += r[nodes++].keys;
1315
1316 blocks = btree_default_blocks(b->c) * 2 / 3;
1317
1318 if (nodes < 2 ||
1319 __set_blocks(b->keys.set[0].data, keys,
1320 block_bytes(b->c)) > blocks * (nodes - 1))
1321 return 0;
1322
1323 for (i = 0; i < nodes; i++) {
1324 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1325 if (IS_ERR_OR_NULL(new_nodes[i]))
1326 goto out_nocoalesce;
1327 }
1328
1329 /*
1330 * We have to check the reserve here, after we've allocated our new
1331 * nodes, to make sure the insert below will succeed - we also check
1332 * before as an optimization to potentially avoid a bunch of expensive
1333 * allocs/sorts
1334 */
1335 if (btree_check_reserve(b, NULL))
1336 goto out_nocoalesce;
1337
1338 for (i = 0; i < nodes; i++)
1339 mutex_lock(&new_nodes[i]->write_lock);
1340
1341 for (i = nodes - 1; i > 0; --i) {
1342 struct bset *n1 = btree_bset_first(new_nodes[i]);
1343 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1344 struct bkey *k, *last = NULL;
1345
1346 keys = 0;
1347
1348 if (i > 1) {
1349 for (k = n2->start;
1350 k < bset_bkey_last(n2);
1351 k = bkey_next(k)) {
1352 if (__set_blocks(n1, n1->keys + keys +
1353 bkey_u64s(k),
1354 block_bytes(b->c)) > blocks)
1355 break;
1356
1357 last = k;
1358 keys += bkey_u64s(k);
1359 }
1360 } else {
1361 /*
1362 * Last node we're not getting rid of - we're getting
1363 * rid of the node at r[0]. Have to try and fit all of
1364 * the remaining keys into this node; we can't ensure
1365 * they will always fit due to rounding and variable
1366 * length keys (shouldn't be possible in practice,
1367 * though)
1368 */
1369 if (__set_blocks(n1, n1->keys + n2->keys,
1370 block_bytes(b->c)) >
1371 btree_blocks(new_nodes[i]))
1372 goto out_nocoalesce;
1373
1374 keys = n2->keys;
1375 /* Take the key of the node we're getting rid of */
1376 last = &r->b->key;
1377 }
1378
1379 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1380 btree_blocks(new_nodes[i]));
1381
1382 if (last)
1383 bkey_copy_key(&new_nodes[i]->key, last);
1384
1385 memcpy(bset_bkey_last(n1),
1386 n2->start,
1387 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1388
1389 n1->keys += keys;
1390 r[i].keys = n1->keys;
1391
1392 memmove(n2->start,
1393 bset_bkey_idx(n2, keys),
1394 (void *) bset_bkey_last(n2) -
1395 (void *) bset_bkey_idx(n2, keys));
1396
1397 n2->keys -= keys;
1398
1399 if (__bch_keylist_realloc(&keylist,
1400 bkey_u64s(&new_nodes[i]->key)))
1401 goto out_nocoalesce;
1402
1403 bch_btree_node_write(new_nodes[i], &cl);
1404 bch_keylist_add(&keylist, &new_nodes[i]->key);
1405 }
1406
1407 for (i = 0; i < nodes; i++)
1408 mutex_unlock(&new_nodes[i]->write_lock);
1409
1410 closure_sync(&cl);
1411
1412 /* We emptied out this node */
1413 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1414 btree_node_free(new_nodes[0]);
1415 rw_unlock(true, new_nodes[0]);
1416 new_nodes[0] = NULL;
1417
1418 for (i = 0; i < nodes; i++) {
1419 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1420 goto out_nocoalesce;
1421
1422 make_btree_freeing_key(r[i].b, keylist.top);
1423 bch_keylist_push(&keylist);
1424 }
1425
1426 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1427 BUG_ON(!bch_keylist_empty(&keylist));
1428
1429 for (i = 0; i < nodes; i++) {
1430 btree_node_free(r[i].b);
1431 rw_unlock(true, r[i].b);
1432
1433 r[i].b = new_nodes[i];
1434 }
1435
1436 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1437 r[nodes - 1].b = ERR_PTR(-EINTR);
1438
1439 trace_bcache_btree_gc_coalesce(nodes);
1440 gc->nodes--;
1441
1442 bch_keylist_free(&keylist);
1443
1444 /* Invalidated our iterator */
1445 return -EINTR;
1446
1447 out_nocoalesce:
1448 closure_sync(&cl);
1449 bch_keylist_free(&keylist);
1450
1451 while ((k = bch_keylist_pop(&keylist)))
1452 if (!bkey_cmp(k, &ZERO_KEY))
1453 atomic_dec(&b->c->prio_blocked);
1454
1455 for (i = 0; i < nodes; i++)
1456 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1457 btree_node_free(new_nodes[i]);
1458 rw_unlock(true, new_nodes[i]);
1459 }
1460 return 0;
1461 }
1462
1463 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1464 struct btree *replace)
1465 {
1466 struct keylist keys;
1467 struct btree *n;
1468
1469 if (btree_check_reserve(b, NULL))
1470 return 0;
1471
1472 n = btree_node_alloc_replacement(replace, NULL);
1473
1474 /* recheck reserve after allocating replacement node */
1475 if (btree_check_reserve(b, NULL)) {
1476 btree_node_free(n);
1477 rw_unlock(true, n);
1478 return 0;
1479 }
1480
1481 bch_btree_node_write_sync(n);
1482
1483 bch_keylist_init(&keys);
1484 bch_keylist_add(&keys, &n->key);
1485
1486 make_btree_freeing_key(replace, keys.top);
1487 bch_keylist_push(&keys);
1488
1489 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1490 BUG_ON(!bch_keylist_empty(&keys));
1491
1492 btree_node_free(replace);
1493 rw_unlock(true, n);
1494
1495 /* Invalidated our iterator */
1496 return -EINTR;
1497 }
1498
1499 static unsigned btree_gc_count_keys(struct btree *b)
1500 {
1501 struct bkey *k;
1502 struct btree_iter iter;
1503 unsigned ret = 0;
1504
1505 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1506 ret += bkey_u64s(k);
1507
1508 return ret;
1509 }
1510
1511 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1512 struct closure *writes, struct gc_stat *gc)
1513 {
1514 int ret = 0;
1515 bool should_rewrite;
1516 struct bkey *k;
1517 struct btree_iter iter;
1518 struct gc_merge_info r[GC_MERGE_NODES];
1519 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1520
1521 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1522
1523 for (i = r; i < r + ARRAY_SIZE(r); i++)
1524 i->b = ERR_PTR(-EINTR);
1525
1526 while (1) {
1527 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1528 if (k) {
1529 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1530 true, b);
1531 if (IS_ERR(r->b)) {
1532 ret = PTR_ERR(r->b);
1533 break;
1534 }
1535
1536 r->keys = btree_gc_count_keys(r->b);
1537
1538 ret = btree_gc_coalesce(b, op, gc, r);
1539 if (ret)
1540 break;
1541 }
1542
1543 if (!last->b)
1544 break;
1545
1546 if (!IS_ERR(last->b)) {
1547 should_rewrite = btree_gc_mark_node(last->b, gc);
1548 if (should_rewrite) {
1549 ret = btree_gc_rewrite_node(b, op, last->b);
1550 if (ret)
1551 break;
1552 }
1553
1554 if (last->b->level) {
1555 ret = btree_gc_recurse(last->b, op, writes, gc);
1556 if (ret)
1557 break;
1558 }
1559
1560 bkey_copy_key(&b->c->gc_done, &last->b->key);
1561
1562 /*
1563 * Must flush leaf nodes before gc ends, since replace
1564 * operations aren't journalled
1565 */
1566 mutex_lock(&last->b->write_lock);
1567 if (btree_node_dirty(last->b))
1568 bch_btree_node_write(last->b, writes);
1569 mutex_unlock(&last->b->write_lock);
1570 rw_unlock(true, last->b);
1571 }
1572
1573 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1574 r->b = NULL;
1575
1576 if (need_resched()) {
1577 ret = -EAGAIN;
1578 break;
1579 }
1580 }
1581
1582 for (i = r; i < r + ARRAY_SIZE(r); i++)
1583 if (!IS_ERR_OR_NULL(i->b)) {
1584 mutex_lock(&i->b->write_lock);
1585 if (btree_node_dirty(i->b))
1586 bch_btree_node_write(i->b, writes);
1587 mutex_unlock(&i->b->write_lock);
1588 rw_unlock(true, i->b);
1589 }
1590
1591 return ret;
1592 }
1593
1594 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1595 struct closure *writes, struct gc_stat *gc)
1596 {
1597 struct btree *n = NULL;
1598 int ret = 0;
1599 bool should_rewrite;
1600
1601 should_rewrite = btree_gc_mark_node(b, gc);
1602 if (should_rewrite) {
1603 n = btree_node_alloc_replacement(b, NULL);
1604
1605 if (!IS_ERR_OR_NULL(n)) {
1606 bch_btree_node_write_sync(n);
1607
1608 bch_btree_set_root(n);
1609 btree_node_free(b);
1610 rw_unlock(true, n);
1611
1612 return -EINTR;
1613 }
1614 }
1615
1616 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1617
1618 if (b->level) {
1619 ret = btree_gc_recurse(b, op, writes, gc);
1620 if (ret)
1621 return ret;
1622 }
1623
1624 bkey_copy_key(&b->c->gc_done, &b->key);
1625
1626 return ret;
1627 }
1628
1629 static void btree_gc_start(struct cache_set *c)
1630 {
1631 struct cache *ca;
1632 struct bucket *b;
1633 unsigned i;
1634
1635 if (!c->gc_mark_valid)
1636 return;
1637
1638 mutex_lock(&c->bucket_lock);
1639
1640 c->gc_mark_valid = 0;
1641 c->gc_done = ZERO_KEY;
1642
1643 for_each_cache(ca, c, i)
1644 for_each_bucket(b, ca) {
1645 b->last_gc = b->gen;
1646 if (!atomic_read(&b->pin)) {
1647 SET_GC_MARK(b, 0);
1648 SET_GC_SECTORS_USED(b, 0);
1649 }
1650 }
1651
1652 mutex_unlock(&c->bucket_lock);
1653 }
1654
1655 static size_t bch_btree_gc_finish(struct cache_set *c)
1656 {
1657 size_t available = 0;
1658 struct bucket *b;
1659 struct cache *ca;
1660 unsigned i;
1661
1662 mutex_lock(&c->bucket_lock);
1663
1664 set_gc_sectors(c);
1665 c->gc_mark_valid = 1;
1666 c->need_gc = 0;
1667
1668 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1669 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1670 GC_MARK_METADATA);
1671
1672 /* don't reclaim buckets to which writeback keys point */
1673 rcu_read_lock();
1674 for (i = 0; i < c->nr_uuids; i++) {
1675 struct bcache_device *d = c->devices[i];
1676 struct cached_dev *dc;
1677 struct keybuf_key *w, *n;
1678 unsigned j;
1679
1680 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1681 continue;
1682 dc = container_of(d, struct cached_dev, disk);
1683
1684 spin_lock(&dc->writeback_keys.lock);
1685 rbtree_postorder_for_each_entry_safe(w, n,
1686 &dc->writeback_keys.keys, node)
1687 for (j = 0; j < KEY_PTRS(&w->key); j++)
1688 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1689 GC_MARK_DIRTY);
1690 spin_unlock(&dc->writeback_keys.lock);
1691 }
1692 rcu_read_unlock();
1693
1694 for_each_cache(ca, c, i) {
1695 uint64_t *i;
1696
1697 ca->invalidate_needs_gc = 0;
1698
1699 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1700 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1701
1702 for (i = ca->prio_buckets;
1703 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1704 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1705
1706 for_each_bucket(b, ca) {
1707 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1708
1709 if (atomic_read(&b->pin))
1710 continue;
1711
1712 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1713
1714 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1715 available++;
1716 }
1717 }
1718
1719 mutex_unlock(&c->bucket_lock);
1720 return available;
1721 }
1722
1723 static void bch_btree_gc(struct cache_set *c)
1724 {
1725 int ret;
1726 unsigned long available;
1727 struct gc_stat stats;
1728 struct closure writes;
1729 struct btree_op op;
1730 uint64_t start_time = local_clock();
1731
1732 trace_bcache_gc_start(c);
1733
1734 memset(&stats, 0, sizeof(struct gc_stat));
1735 closure_init_stack(&writes);
1736 bch_btree_op_init(&op, SHRT_MAX);
1737
1738 btree_gc_start(c);
1739
1740 do {
1741 ret = btree_root(gc_root, c, &op, &writes, &stats);
1742 closure_sync(&writes);
1743 cond_resched();
1744
1745 if (ret && ret != -EAGAIN)
1746 pr_warn("gc failed!");
1747 } while (ret);
1748
1749 available = bch_btree_gc_finish(c);
1750 wake_up_allocators(c);
1751
1752 bch_time_stats_update(&c->btree_gc_time, start_time);
1753
1754 stats.key_bytes *= sizeof(uint64_t);
1755 stats.data <<= 9;
1756 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1757 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1758
1759 trace_bcache_gc_end(c);
1760
1761 bch_moving_gc(c);
1762 }
1763
1764 static int bch_gc_thread(void *arg)
1765 {
1766 struct cache_set *c = arg;
1767 struct cache *ca;
1768 unsigned i;
1769
1770 while (1) {
1771 again:
1772 bch_btree_gc(c);
1773
1774 set_current_state(TASK_INTERRUPTIBLE);
1775 if (kthread_should_stop())
1776 break;
1777
1778 mutex_lock(&c->bucket_lock);
1779
1780 for_each_cache(ca, c, i)
1781 if (ca->invalidate_needs_gc) {
1782 mutex_unlock(&c->bucket_lock);
1783 set_current_state(TASK_RUNNING);
1784 goto again;
1785 }
1786
1787 mutex_unlock(&c->bucket_lock);
1788
1789 schedule();
1790 }
1791
1792 return 0;
1793 }
1794
1795 int bch_gc_thread_start(struct cache_set *c)
1796 {
1797 c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1798 if (IS_ERR(c->gc_thread))
1799 return PTR_ERR(c->gc_thread);
1800
1801 set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1802 return 0;
1803 }
1804
1805 /* Initial partial gc */
1806
1807 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1808 {
1809 int ret = 0;
1810 struct bkey *k, *p = NULL;
1811 struct btree_iter iter;
1812
1813 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1814 bch_initial_mark_key(b->c, b->level, k);
1815
1816 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1817
1818 if (b->level) {
1819 bch_btree_iter_init(&b->keys, &iter, NULL);
1820
1821 do {
1822 k = bch_btree_iter_next_filter(&iter, &b->keys,
1823 bch_ptr_bad);
1824 if (k)
1825 btree_node_prefetch(b, k);
1826
1827 if (p)
1828 ret = btree(check_recurse, p, b, op);
1829
1830 p = k;
1831 } while (p && !ret);
1832 }
1833
1834 return ret;
1835 }
1836
1837 int bch_btree_check(struct cache_set *c)
1838 {
1839 struct btree_op op;
1840
1841 bch_btree_op_init(&op, SHRT_MAX);
1842
1843 return btree_root(check_recurse, c, &op);
1844 }
1845
1846 void bch_initial_gc_finish(struct cache_set *c)
1847 {
1848 struct cache *ca;
1849 struct bucket *b;
1850 unsigned i;
1851
1852 bch_btree_gc_finish(c);
1853
1854 mutex_lock(&c->bucket_lock);
1855
1856 /*
1857 * We need to put some unused buckets directly on the prio freelist in
1858 * order to get the allocator thread started - it needs freed buckets in
1859 * order to rewrite the prios and gens, and it needs to rewrite prios
1860 * and gens in order to free buckets.
1861 *
1862 * This is only safe for buckets that have no live data in them, which
1863 * there should always be some of.
1864 */
1865 for_each_cache(ca, c, i) {
1866 for_each_bucket(b, ca) {
1867 if (fifo_full(&ca->free[RESERVE_PRIO]))
1868 break;
1869
1870 if (bch_can_invalidate_bucket(ca, b) &&
1871 !GC_MARK(b)) {
1872 __bch_invalidate_one_bucket(ca, b);
1873 fifo_push(&ca->free[RESERVE_PRIO],
1874 b - ca->buckets);
1875 }
1876 }
1877 }
1878
1879 mutex_unlock(&c->bucket_lock);
1880 }
1881
1882 /* Btree insertion */
1883
1884 static bool btree_insert_key(struct btree *b, struct bkey *k,
1885 struct bkey *replace_key)
1886 {
1887 unsigned status;
1888
1889 BUG_ON(bkey_cmp(k, &b->key) > 0);
1890
1891 status = bch_btree_insert_key(&b->keys, k, replace_key);
1892 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1893 bch_check_keys(&b->keys, "%u for %s", status,
1894 replace_key ? "replace" : "insert");
1895
1896 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1897 status);
1898 return true;
1899 } else
1900 return false;
1901 }
1902
1903 static size_t insert_u64s_remaining(struct btree *b)
1904 {
1905 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1906
1907 /*
1908 * Might land in the middle of an existing extent and have to split it
1909 */
1910 if (b->keys.ops->is_extents)
1911 ret -= KEY_MAX_U64S;
1912
1913 return max(ret, 0L);
1914 }
1915
1916 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1917 struct keylist *insert_keys,
1918 struct bkey *replace_key)
1919 {
1920 bool ret = false;
1921 int oldsize = bch_count_data(&b->keys);
1922
1923 while (!bch_keylist_empty(insert_keys)) {
1924 struct bkey *k = insert_keys->keys;
1925
1926 if (bkey_u64s(k) > insert_u64s_remaining(b))
1927 break;
1928
1929 if (bkey_cmp(k, &b->key) <= 0) {
1930 if (!b->level)
1931 bkey_put(b->c, k);
1932
1933 ret |= btree_insert_key(b, k, replace_key);
1934 bch_keylist_pop_front(insert_keys);
1935 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1936 BKEY_PADDED(key) temp;
1937 bkey_copy(&temp.key, insert_keys->keys);
1938
1939 bch_cut_back(&b->key, &temp.key);
1940 bch_cut_front(&b->key, insert_keys->keys);
1941
1942 ret |= btree_insert_key(b, &temp.key, replace_key);
1943 break;
1944 } else {
1945 break;
1946 }
1947 }
1948
1949 if (!ret)
1950 op->insert_collision = true;
1951
1952 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1953
1954 BUG_ON(bch_count_data(&b->keys) < oldsize);
1955 return ret;
1956 }
1957
1958 static int btree_split(struct btree *b, struct btree_op *op,
1959 struct keylist *insert_keys,
1960 struct bkey *replace_key)
1961 {
1962 bool split;
1963 struct btree *n1, *n2 = NULL, *n3 = NULL;
1964 uint64_t start_time = local_clock();
1965 struct closure cl;
1966 struct keylist parent_keys;
1967
1968 closure_init_stack(&cl);
1969 bch_keylist_init(&parent_keys);
1970
1971 if (btree_check_reserve(b, op)) {
1972 if (!b->level)
1973 return -EINTR;
1974 else
1975 WARN(1, "insufficient reserve for split\n");
1976 }
1977
1978 n1 = btree_node_alloc_replacement(b, op);
1979 if (IS_ERR(n1))
1980 goto err;
1981
1982 split = set_blocks(btree_bset_first(n1),
1983 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1984
1985 if (split) {
1986 unsigned keys = 0;
1987
1988 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1989
1990 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1991 if (IS_ERR(n2))
1992 goto err_free1;
1993
1994 if (!b->parent) {
1995 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1996 if (IS_ERR(n3))
1997 goto err_free2;
1998 }
1999
2000 mutex_lock(&n1->write_lock);
2001 mutex_lock(&n2->write_lock);
2002
2003 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2004
2005 /*
2006 * Has to be a linear search because we don't have an auxiliary
2007 * search tree yet
2008 */
2009
2010 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2011 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2012 keys));
2013
2014 bkey_copy_key(&n1->key,
2015 bset_bkey_idx(btree_bset_first(n1), keys));
2016 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2017
2018 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2019 btree_bset_first(n1)->keys = keys;
2020
2021 memcpy(btree_bset_first(n2)->start,
2022 bset_bkey_last(btree_bset_first(n1)),
2023 btree_bset_first(n2)->keys * sizeof(uint64_t));
2024
2025 bkey_copy_key(&n2->key, &b->key);
2026
2027 bch_keylist_add(&parent_keys, &n2->key);
2028 bch_btree_node_write(n2, &cl);
2029 mutex_unlock(&n2->write_lock);
2030 rw_unlock(true, n2);
2031 } else {
2032 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2033
2034 mutex_lock(&n1->write_lock);
2035 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2036 }
2037
2038 bch_keylist_add(&parent_keys, &n1->key);
2039 bch_btree_node_write(n1, &cl);
2040 mutex_unlock(&n1->write_lock);
2041
2042 if (n3) {
2043 /* Depth increases, make a new root */
2044 mutex_lock(&n3->write_lock);
2045 bkey_copy_key(&n3->key, &MAX_KEY);
2046 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2047 bch_btree_node_write(n3, &cl);
2048 mutex_unlock(&n3->write_lock);
2049
2050 closure_sync(&cl);
2051 bch_btree_set_root(n3);
2052 rw_unlock(true, n3);
2053 } else if (!b->parent) {
2054 /* Root filled up but didn't need to be split */
2055 closure_sync(&cl);
2056 bch_btree_set_root(n1);
2057 } else {
2058 /* Split a non root node */
2059 closure_sync(&cl);
2060 make_btree_freeing_key(b, parent_keys.top);
2061 bch_keylist_push(&parent_keys);
2062
2063 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2064 BUG_ON(!bch_keylist_empty(&parent_keys));
2065 }
2066
2067 btree_node_free(b);
2068 rw_unlock(true, n1);
2069
2070 bch_time_stats_update(&b->c->btree_split_time, start_time);
2071
2072 return 0;
2073 err_free2:
2074 bkey_put(b->c, &n2->key);
2075 btree_node_free(n2);
2076 rw_unlock(true, n2);
2077 err_free1:
2078 bkey_put(b->c, &n1->key);
2079 btree_node_free(n1);
2080 rw_unlock(true, n1);
2081 err:
2082 WARN(1, "bcache: btree split failed (level %u)", b->level);
2083
2084 if (n3 == ERR_PTR(-EAGAIN) ||
2085 n2 == ERR_PTR(-EAGAIN) ||
2086 n1 == ERR_PTR(-EAGAIN))
2087 return -EAGAIN;
2088
2089 return -ENOMEM;
2090 }
2091
2092 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2093 struct keylist *insert_keys,
2094 atomic_t *journal_ref,
2095 struct bkey *replace_key)
2096 {
2097 struct closure cl;
2098
2099 BUG_ON(b->level && replace_key);
2100
2101 closure_init_stack(&cl);
2102
2103 mutex_lock(&b->write_lock);
2104
2105 if (write_block(b) != btree_bset_last(b) &&
2106 b->keys.last_set_unwritten)
2107 bch_btree_init_next(b); /* just wrote a set */
2108
2109 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2110 mutex_unlock(&b->write_lock);
2111 goto split;
2112 }
2113
2114 BUG_ON(write_block(b) != btree_bset_last(b));
2115
2116 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2117 if (!b->level)
2118 bch_btree_leaf_dirty(b, journal_ref);
2119 else
2120 bch_btree_node_write(b, &cl);
2121 }
2122
2123 mutex_unlock(&b->write_lock);
2124
2125 /* wait for btree node write if necessary, after unlock */
2126 closure_sync(&cl);
2127
2128 return 0;
2129 split:
2130 if (current->bio_list) {
2131 op->lock = b->c->root->level + 1;
2132 return -EAGAIN;
2133 } else if (op->lock <= b->c->root->level) {
2134 op->lock = b->c->root->level + 1;
2135 return -EINTR;
2136 } else {
2137 /* Invalidated all iterators */
2138 int ret = btree_split(b, op, insert_keys, replace_key);
2139
2140 if (bch_keylist_empty(insert_keys))
2141 return 0;
2142 else if (!ret)
2143 return -EINTR;
2144 return ret;
2145 }
2146 }
2147
2148 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2149 struct bkey *check_key)
2150 {
2151 int ret = -EINTR;
2152 uint64_t btree_ptr = b->key.ptr[0];
2153 unsigned long seq = b->seq;
2154 struct keylist insert;
2155 bool upgrade = op->lock == -1;
2156
2157 bch_keylist_init(&insert);
2158
2159 if (upgrade) {
2160 rw_unlock(false, b);
2161 rw_lock(true, b, b->level);
2162
2163 if (b->key.ptr[0] != btree_ptr ||
2164 b->seq != seq + 1) {
2165 op->lock = b->level;
2166 goto out;
2167 }
2168 }
2169
2170 SET_KEY_PTRS(check_key, 1);
2171 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2172
2173 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2174
2175 bch_keylist_add(&insert, check_key);
2176
2177 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2178
2179 BUG_ON(!ret && !bch_keylist_empty(&insert));
2180 out:
2181 if (upgrade)
2182 downgrade_write(&b->lock);
2183 return ret;
2184 }
2185
2186 struct btree_insert_op {
2187 struct btree_op op;
2188 struct keylist *keys;
2189 atomic_t *journal_ref;
2190 struct bkey *replace_key;
2191 };
2192
2193 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2194 {
2195 struct btree_insert_op *op = container_of(b_op,
2196 struct btree_insert_op, op);
2197
2198 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2199 op->journal_ref, op->replace_key);
2200 if (ret && !bch_keylist_empty(op->keys))
2201 return ret;
2202 else
2203 return MAP_DONE;
2204 }
2205
2206 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2207 atomic_t *journal_ref, struct bkey *replace_key)
2208 {
2209 struct btree_insert_op op;
2210 int ret = 0;
2211
2212 BUG_ON(current->bio_list);
2213 BUG_ON(bch_keylist_empty(keys));
2214
2215 bch_btree_op_init(&op.op, 0);
2216 op.keys = keys;
2217 op.journal_ref = journal_ref;
2218 op.replace_key = replace_key;
2219
2220 while (!ret && !bch_keylist_empty(keys)) {
2221 op.op.lock = 0;
2222 ret = bch_btree_map_leaf_nodes(&op.op, c,
2223 &START_KEY(keys->keys),
2224 btree_insert_fn);
2225 }
2226
2227 if (ret) {
2228 struct bkey *k;
2229
2230 pr_err("error %i", ret);
2231
2232 while ((k = bch_keylist_pop(keys)))
2233 bkey_put(c, k);
2234 } else if (op.op.insert_collision)
2235 ret = -ESRCH;
2236
2237 return ret;
2238 }
2239
2240 void bch_btree_set_root(struct btree *b)
2241 {
2242 unsigned i;
2243 struct closure cl;
2244
2245 closure_init_stack(&cl);
2246
2247 trace_bcache_btree_set_root(b);
2248
2249 BUG_ON(!b->written);
2250
2251 for (i = 0; i < KEY_PTRS(&b->key); i++)
2252 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2253
2254 mutex_lock(&b->c->bucket_lock);
2255 list_del_init(&b->list);
2256 mutex_unlock(&b->c->bucket_lock);
2257
2258 b->c->root = b;
2259
2260 bch_journal_meta(b->c, &cl);
2261 closure_sync(&cl);
2262 }
2263
2264 /* Map across nodes or keys */
2265
2266 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2267 struct bkey *from,
2268 btree_map_nodes_fn *fn, int flags)
2269 {
2270 int ret = MAP_CONTINUE;
2271
2272 if (b->level) {
2273 struct bkey *k;
2274 struct btree_iter iter;
2275
2276 bch_btree_iter_init(&b->keys, &iter, from);
2277
2278 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2279 bch_ptr_bad))) {
2280 ret = btree(map_nodes_recurse, k, b,
2281 op, from, fn, flags);
2282 from = NULL;
2283
2284 if (ret != MAP_CONTINUE)
2285 return ret;
2286 }
2287 }
2288
2289 if (!b->level || flags == MAP_ALL_NODES)
2290 ret = fn(op, b);
2291
2292 return ret;
2293 }
2294
2295 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2296 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2297 {
2298 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2299 }
2300
2301 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2302 struct bkey *from, btree_map_keys_fn *fn,
2303 int flags)
2304 {
2305 int ret = MAP_CONTINUE;
2306 struct bkey *k;
2307 struct btree_iter iter;
2308
2309 bch_btree_iter_init(&b->keys, &iter, from);
2310
2311 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2312 ret = !b->level
2313 ? fn(op, b, k)
2314 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2315 from = NULL;
2316
2317 if (ret != MAP_CONTINUE)
2318 return ret;
2319 }
2320
2321 if (!b->level && (flags & MAP_END_KEY))
2322 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2323 KEY_OFFSET(&b->key), 0));
2324
2325 return ret;
2326 }
2327
2328 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2329 struct bkey *from, btree_map_keys_fn *fn, int flags)
2330 {
2331 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2332 }
2333
2334 /* Keybuf code */
2335
2336 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2337 {
2338 /* Overlapping keys compare equal */
2339 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2340 return -1;
2341 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2342 return 1;
2343 return 0;
2344 }
2345
2346 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2347 struct keybuf_key *r)
2348 {
2349 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2350 }
2351
2352 struct refill {
2353 struct btree_op op;
2354 unsigned nr_found;
2355 struct keybuf *buf;
2356 struct bkey *end;
2357 keybuf_pred_fn *pred;
2358 };
2359
2360 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2361 struct bkey *k)
2362 {
2363 struct refill *refill = container_of(op, struct refill, op);
2364 struct keybuf *buf = refill->buf;
2365 int ret = MAP_CONTINUE;
2366
2367 if (bkey_cmp(k, refill->end) >= 0) {
2368 ret = MAP_DONE;
2369 goto out;
2370 }
2371
2372 if (!KEY_SIZE(k)) /* end key */
2373 goto out;
2374
2375 if (refill->pred(buf, k)) {
2376 struct keybuf_key *w;
2377
2378 spin_lock(&buf->lock);
2379
2380 w = array_alloc(&buf->freelist);
2381 if (!w) {
2382 spin_unlock(&buf->lock);
2383 return MAP_DONE;
2384 }
2385
2386 w->private = NULL;
2387 bkey_copy(&w->key, k);
2388
2389 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2390 array_free(&buf->freelist, w);
2391 else
2392 refill->nr_found++;
2393
2394 if (array_freelist_empty(&buf->freelist))
2395 ret = MAP_DONE;
2396
2397 spin_unlock(&buf->lock);
2398 }
2399 out:
2400 buf->last_scanned = *k;
2401 return ret;
2402 }
2403
2404 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2405 struct bkey *end, keybuf_pred_fn *pred)
2406 {
2407 struct bkey start = buf->last_scanned;
2408 struct refill refill;
2409
2410 cond_resched();
2411
2412 bch_btree_op_init(&refill.op, -1);
2413 refill.nr_found = 0;
2414 refill.buf = buf;
2415 refill.end = end;
2416 refill.pred = pred;
2417
2418 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2419 refill_keybuf_fn, MAP_END_KEY);
2420
2421 trace_bcache_keyscan(refill.nr_found,
2422 KEY_INODE(&start), KEY_OFFSET(&start),
2423 KEY_INODE(&buf->last_scanned),
2424 KEY_OFFSET(&buf->last_scanned));
2425
2426 spin_lock(&buf->lock);
2427
2428 if (!RB_EMPTY_ROOT(&buf->keys)) {
2429 struct keybuf_key *w;
2430 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2431 buf->start = START_KEY(&w->key);
2432
2433 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2434 buf->end = w->key;
2435 } else {
2436 buf->start = MAX_KEY;
2437 buf->end = MAX_KEY;
2438 }
2439
2440 spin_unlock(&buf->lock);
2441 }
2442
2443 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2444 {
2445 rb_erase(&w->node, &buf->keys);
2446 array_free(&buf->freelist, w);
2447 }
2448
2449 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2450 {
2451 spin_lock(&buf->lock);
2452 __bch_keybuf_del(buf, w);
2453 spin_unlock(&buf->lock);
2454 }
2455
2456 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2457 struct bkey *end)
2458 {
2459 bool ret = false;
2460 struct keybuf_key *p, *w, s;
2461 s.key = *start;
2462
2463 if (bkey_cmp(end, &buf->start) <= 0 ||
2464 bkey_cmp(start, &buf->end) >= 0)
2465 return false;
2466
2467 spin_lock(&buf->lock);
2468 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2469
2470 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2471 p = w;
2472 w = RB_NEXT(w, node);
2473
2474 if (p->private)
2475 ret = true;
2476 else
2477 __bch_keybuf_del(buf, p);
2478 }
2479
2480 spin_unlock(&buf->lock);
2481 return ret;
2482 }
2483
2484 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2485 {
2486 struct keybuf_key *w;
2487 spin_lock(&buf->lock);
2488
2489 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2490
2491 while (w && w->private)
2492 w = RB_NEXT(w, node);
2493
2494 if (w)
2495 w->private = ERR_PTR(-EINTR);
2496
2497 spin_unlock(&buf->lock);
2498 return w;
2499 }
2500
2501 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2502 struct keybuf *buf,
2503 struct bkey *end,
2504 keybuf_pred_fn *pred)
2505 {
2506 struct keybuf_key *ret;
2507
2508 while (1) {
2509 ret = bch_keybuf_next(buf);
2510 if (ret)
2511 break;
2512
2513 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2514 pr_debug("scan finished");
2515 break;
2516 }
2517
2518 bch_refill_keybuf(c, buf, end, pred);
2519 }
2520
2521 return ret;
2522 }
2523
2524 void bch_keybuf_init(struct keybuf *buf)
2525 {
2526 buf->last_scanned = MAX_KEY;
2527 buf->keys = RB_ROOT;
2528
2529 spin_lock_init(&buf->lock);
2530 array_allocator_init(&buf->freelist);
2531 }