]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/bcache/btree.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / drivers / md / bcache / btree.c
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <linux/sched/clock.h>
36 #include <linux/rculist.h>
37
38 #include <trace/events/bcache.h>
39
40 /*
41 * Todo:
42 * register_bcache: Return errors out to userspace correctly
43 *
44 * Writeback: don't undirty key until after a cache flush
45 *
46 * Create an iterator for key pointers
47 *
48 * On btree write error, mark bucket such that it won't be freed from the cache
49 *
50 * Journalling:
51 * Check for bad keys in replay
52 * Propagate barriers
53 * Refcount journal entries in journal_replay
54 *
55 * Garbage collection:
56 * Finish incremental gc
57 * Gc should free old UUIDs, data for invalid UUIDs
58 *
59 * Provide a way to list backing device UUIDs we have data cached for, and
60 * probably how long it's been since we've seen them, and a way to invalidate
61 * dirty data for devices that will never be attached again
62 *
63 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
64 * that based on that and how much dirty data we have we can keep writeback
65 * from being starved
66 *
67 * Add a tracepoint or somesuch to watch for writeback starvation
68 *
69 * When btree depth > 1 and splitting an interior node, we have to make sure
70 * alloc_bucket() cannot fail. This should be true but is not completely
71 * obvious.
72 *
73 * Plugging?
74 *
75 * If data write is less than hard sector size of ssd, round up offset in open
76 * bucket to the next whole sector
77 *
78 * Superblock needs to be fleshed out for multiple cache devices
79 *
80 * Add a sysfs tunable for the number of writeback IOs in flight
81 *
82 * Add a sysfs tunable for the number of open data buckets
83 *
84 * IO tracking: Can we track when one process is doing io on behalf of another?
85 * IO tracking: Don't use just an average, weigh more recent stuff higher
86 *
87 * Test module load/unload
88 */
89
90 #define MAX_NEED_GC 64
91 #define MAX_SAVE_PRIO 72
92
93 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
94
95 #define PTR_HASH(c, k) \
96 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
97
98 #define insert_lock(s, b) ((b)->level <= (s)->lock)
99
100 /*
101 * These macros are for recursing down the btree - they handle the details of
102 * locking and looking up nodes in the cache for you. They're best treated as
103 * mere syntax when reading code that uses them.
104 *
105 * op->lock determines whether we take a read or a write lock at a given depth.
106 * If you've got a read lock and find that you need a write lock (i.e. you're
107 * going to have to split), set op->lock and return -EINTR; btree_root() will
108 * call you again and you'll have the correct lock.
109 */
110
111 /**
112 * btree - recurse down the btree on a specified key
113 * @fn: function to call, which will be passed the child node
114 * @key: key to recurse on
115 * @b: parent btree node
116 * @op: pointer to struct btree_op
117 */
118 #define btree(fn, key, b, op, ...) \
119 ({ \
120 int _r, l = (b)->level - 1; \
121 bool _w = l <= (op)->lock; \
122 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
123 _w, b); \
124 if (!IS_ERR(_child)) { \
125 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
126 rw_unlock(_w, _child); \
127 } else \
128 _r = PTR_ERR(_child); \
129 _r; \
130 })
131
132 /**
133 * btree_root - call a function on the root of the btree
134 * @fn: function to call, which will be passed the child node
135 * @c: cache set
136 * @op: pointer to struct btree_op
137 */
138 #define btree_root(fn, c, op, ...) \
139 ({ \
140 int _r = -EINTR; \
141 do { \
142 struct btree *_b = (c)->root; \
143 bool _w = insert_lock(op, _b); \
144 rw_lock(_w, _b, _b->level); \
145 if (_b == (c)->root && \
146 _w == insert_lock(op, _b)) { \
147 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
148 } \
149 rw_unlock(_w, _b); \
150 bch_cannibalize_unlock(c); \
151 if (_r == -EINTR) \
152 schedule(); \
153 } while (_r == -EINTR); \
154 \
155 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
156 _r; \
157 })
158
159 static inline struct bset *write_block(struct btree *b)
160 {
161 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
162 }
163
164 static void bch_btree_init_next(struct btree *b)
165 {
166 /* If not a leaf node, always sort */
167 if (b->level && b->keys.nsets)
168 bch_btree_sort(&b->keys, &b->c->sort);
169 else
170 bch_btree_sort_lazy(&b->keys, &b->c->sort);
171
172 if (b->written < btree_blocks(b))
173 bch_bset_init_next(&b->keys, write_block(b),
174 bset_magic(&b->c->sb));
175
176 }
177
178 /* Btree key manipulation */
179
180 void bkey_put(struct cache_set *c, struct bkey *k)
181 {
182 unsigned i;
183
184 for (i = 0; i < KEY_PTRS(k); i++)
185 if (ptr_available(c, k, i))
186 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
187 }
188
189 /* Btree IO */
190
191 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
192 {
193 uint64_t crc = b->key.ptr[0];
194 void *data = (void *) i + 8, *end = bset_bkey_last(i);
195
196 crc = bch_crc64_update(crc, data, end - data);
197 return crc ^ 0xffffffffffffffffULL;
198 }
199
200 void bch_btree_node_read_done(struct btree *b)
201 {
202 const char *err = "bad btree header";
203 struct bset *i = btree_bset_first(b);
204 struct btree_iter *iter;
205
206 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
207 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
208 iter->used = 0;
209
210 #ifdef CONFIG_BCACHE_DEBUG
211 iter->b = &b->keys;
212 #endif
213
214 if (!i->seq)
215 goto err;
216
217 for (;
218 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
219 i = write_block(b)) {
220 err = "unsupported bset version";
221 if (i->version > BCACHE_BSET_VERSION)
222 goto err;
223
224 err = "bad btree header";
225 if (b->written + set_blocks(i, block_bytes(b->c)) >
226 btree_blocks(b))
227 goto err;
228
229 err = "bad magic";
230 if (i->magic != bset_magic(&b->c->sb))
231 goto err;
232
233 err = "bad checksum";
234 switch (i->version) {
235 case 0:
236 if (i->csum != csum_set(i))
237 goto err;
238 break;
239 case BCACHE_BSET_VERSION:
240 if (i->csum != btree_csum_set(b, i))
241 goto err;
242 break;
243 }
244
245 err = "empty set";
246 if (i != b->keys.set[0].data && !i->keys)
247 goto err;
248
249 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
250
251 b->written += set_blocks(i, block_bytes(b->c));
252 }
253
254 err = "corrupted btree";
255 for (i = write_block(b);
256 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
257 i = ((void *) i) + block_bytes(b->c))
258 if (i->seq == b->keys.set[0].data->seq)
259 goto err;
260
261 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
262
263 i = b->keys.set[0].data;
264 err = "short btree key";
265 if (b->keys.set[0].size &&
266 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
267 goto err;
268
269 if (b->written < btree_blocks(b))
270 bch_bset_init_next(&b->keys, write_block(b),
271 bset_magic(&b->c->sb));
272 out:
273 mempool_free(iter, b->c->fill_iter);
274 return;
275 err:
276 set_btree_node_io_error(b);
277 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
278 err, PTR_BUCKET_NR(b->c, &b->key, 0),
279 bset_block_offset(b, i), i->keys);
280 goto out;
281 }
282
283 static void btree_node_read_endio(struct bio *bio)
284 {
285 struct closure *cl = bio->bi_private;
286 closure_put(cl);
287 }
288
289 static void bch_btree_node_read(struct btree *b)
290 {
291 uint64_t start_time = local_clock();
292 struct closure cl;
293 struct bio *bio;
294
295 trace_bcache_btree_read(b);
296
297 closure_init_stack(&cl);
298
299 bio = bch_bbio_alloc(b->c);
300 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
301 bio->bi_end_io = btree_node_read_endio;
302 bio->bi_private = &cl;
303 bio->bi_opf = REQ_OP_READ | REQ_META;
304
305 bch_bio_map(bio, b->keys.set[0].data);
306
307 bch_submit_bbio(bio, b->c, &b->key, 0);
308 closure_sync(&cl);
309
310 if (bio->bi_status)
311 set_btree_node_io_error(b);
312
313 bch_bbio_free(bio, b->c);
314
315 if (btree_node_io_error(b))
316 goto err;
317
318 bch_btree_node_read_done(b);
319 bch_time_stats_update(&b->c->btree_read_time, start_time);
320
321 return;
322 err:
323 bch_cache_set_error(b->c, "io error reading bucket %zu",
324 PTR_BUCKET_NR(b->c, &b->key, 0));
325 }
326
327 static void btree_complete_write(struct btree *b, struct btree_write *w)
328 {
329 if (w->prio_blocked &&
330 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
331 wake_up_allocators(b->c);
332
333 if (w->journal) {
334 atomic_dec_bug(w->journal);
335 __closure_wake_up(&b->c->journal.wait);
336 }
337
338 w->prio_blocked = 0;
339 w->journal = NULL;
340 }
341
342 static void btree_node_write_unlock(struct closure *cl)
343 {
344 struct btree *b = container_of(cl, struct btree, io);
345
346 up(&b->io_mutex);
347 }
348
349 static void __btree_node_write_done(struct closure *cl)
350 {
351 struct btree *b = container_of(cl, struct btree, io);
352 struct btree_write *w = btree_prev_write(b);
353
354 bch_bbio_free(b->bio, b->c);
355 b->bio = NULL;
356 btree_complete_write(b, w);
357
358 if (btree_node_dirty(b))
359 schedule_delayed_work(&b->work, 30 * HZ);
360
361 closure_return_with_destructor(cl, btree_node_write_unlock);
362 }
363
364 static void btree_node_write_done(struct closure *cl)
365 {
366 struct btree *b = container_of(cl, struct btree, io);
367
368 bio_free_pages(b->bio);
369 __btree_node_write_done(cl);
370 }
371
372 static void btree_node_write_endio(struct bio *bio)
373 {
374 struct closure *cl = bio->bi_private;
375 struct btree *b = container_of(cl, struct btree, io);
376
377 if (bio->bi_status)
378 set_btree_node_io_error(b);
379
380 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
381 closure_put(cl);
382 }
383
384 static void do_btree_node_write(struct btree *b)
385 {
386 struct closure *cl = &b->io;
387 struct bset *i = btree_bset_last(b);
388 BKEY_PADDED(key) k;
389
390 i->version = BCACHE_BSET_VERSION;
391 i->csum = btree_csum_set(b, i);
392
393 BUG_ON(b->bio);
394 b->bio = bch_bbio_alloc(b->c);
395
396 b->bio->bi_end_io = btree_node_write_endio;
397 b->bio->bi_private = cl;
398 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
399 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
400 bch_bio_map(b->bio, i);
401
402 /*
403 * If we're appending to a leaf node, we don't technically need FUA -
404 * this write just needs to be persisted before the next journal write,
405 * which will be marked FLUSH|FUA.
406 *
407 * Similarly if we're writing a new btree root - the pointer is going to
408 * be in the next journal entry.
409 *
410 * But if we're writing a new btree node (that isn't a root) or
411 * appending to a non leaf btree node, we need either FUA or a flush
412 * when we write the parent with the new pointer. FUA is cheaper than a
413 * flush, and writes appending to leaf nodes aren't blocking anything so
414 * just make all btree node writes FUA to keep things sane.
415 */
416
417 bkey_copy(&k.key, &b->key);
418 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
419 bset_sector_offset(&b->keys, i));
420
421 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
422 int j;
423 struct bio_vec *bv;
424 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
425
426 bio_for_each_segment_all(bv, b->bio, j)
427 memcpy(page_address(bv->bv_page),
428 base + j * PAGE_SIZE, PAGE_SIZE);
429
430 bch_submit_bbio(b->bio, b->c, &k.key, 0);
431
432 continue_at(cl, btree_node_write_done, NULL);
433 } else {
434 b->bio->bi_vcnt = 0;
435 bch_bio_map(b->bio, i);
436
437 bch_submit_bbio(b->bio, b->c, &k.key, 0);
438
439 closure_sync(cl);
440 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
441 }
442 }
443
444 void __bch_btree_node_write(struct btree *b, struct closure *parent)
445 {
446 struct bset *i = btree_bset_last(b);
447
448 lockdep_assert_held(&b->write_lock);
449
450 trace_bcache_btree_write(b);
451
452 BUG_ON(current->bio_list);
453 BUG_ON(b->written >= btree_blocks(b));
454 BUG_ON(b->written && !i->keys);
455 BUG_ON(btree_bset_first(b)->seq != i->seq);
456 bch_check_keys(&b->keys, "writing");
457
458 cancel_delayed_work(&b->work);
459
460 /* If caller isn't waiting for write, parent refcount is cache set */
461 down(&b->io_mutex);
462 closure_init(&b->io, parent ?: &b->c->cl);
463
464 clear_bit(BTREE_NODE_dirty, &b->flags);
465 change_bit(BTREE_NODE_write_idx, &b->flags);
466
467 do_btree_node_write(b);
468
469 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
470 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
471
472 b->written += set_blocks(i, block_bytes(b->c));
473 }
474
475 void bch_btree_node_write(struct btree *b, struct closure *parent)
476 {
477 unsigned nsets = b->keys.nsets;
478
479 lockdep_assert_held(&b->lock);
480
481 __bch_btree_node_write(b, parent);
482
483 /*
484 * do verify if there was more than one set initially (i.e. we did a
485 * sort) and we sorted down to a single set:
486 */
487 if (nsets && !b->keys.nsets)
488 bch_btree_verify(b);
489
490 bch_btree_init_next(b);
491 }
492
493 static void bch_btree_node_write_sync(struct btree *b)
494 {
495 struct closure cl;
496
497 closure_init_stack(&cl);
498
499 mutex_lock(&b->write_lock);
500 bch_btree_node_write(b, &cl);
501 mutex_unlock(&b->write_lock);
502
503 closure_sync(&cl);
504 }
505
506 static void btree_node_write_work(struct work_struct *w)
507 {
508 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
509
510 mutex_lock(&b->write_lock);
511 if (btree_node_dirty(b))
512 __bch_btree_node_write(b, NULL);
513 mutex_unlock(&b->write_lock);
514 }
515
516 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
517 {
518 struct bset *i = btree_bset_last(b);
519 struct btree_write *w = btree_current_write(b);
520
521 lockdep_assert_held(&b->write_lock);
522
523 BUG_ON(!b->written);
524 BUG_ON(!i->keys);
525
526 if (!btree_node_dirty(b))
527 schedule_delayed_work(&b->work, 30 * HZ);
528
529 set_btree_node_dirty(b);
530
531 if (journal_ref) {
532 if (w->journal &&
533 journal_pin_cmp(b->c, w->journal, journal_ref)) {
534 atomic_dec_bug(w->journal);
535 w->journal = NULL;
536 }
537
538 if (!w->journal) {
539 w->journal = journal_ref;
540 atomic_inc(w->journal);
541 }
542 }
543
544 /* Force write if set is too big */
545 if (set_bytes(i) > PAGE_SIZE - 48 &&
546 !current->bio_list)
547 bch_btree_node_write(b, NULL);
548 }
549
550 /*
551 * Btree in memory cache - allocation/freeing
552 * mca -> memory cache
553 */
554
555 #define mca_reserve(c) (((c->root && c->root->level) \
556 ? c->root->level : 1) * 8 + 16)
557 #define mca_can_free(c) \
558 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
559
560 static void mca_data_free(struct btree *b)
561 {
562 BUG_ON(b->io_mutex.count != 1);
563
564 bch_btree_keys_free(&b->keys);
565
566 b->c->btree_cache_used--;
567 list_move(&b->list, &b->c->btree_cache_freed);
568 }
569
570 static void mca_bucket_free(struct btree *b)
571 {
572 BUG_ON(btree_node_dirty(b));
573
574 b->key.ptr[0] = 0;
575 hlist_del_init_rcu(&b->hash);
576 list_move(&b->list, &b->c->btree_cache_freeable);
577 }
578
579 static unsigned btree_order(struct bkey *k)
580 {
581 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
582 }
583
584 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
585 {
586 if (!bch_btree_keys_alloc(&b->keys,
587 max_t(unsigned,
588 ilog2(b->c->btree_pages),
589 btree_order(k)),
590 gfp)) {
591 b->c->btree_cache_used++;
592 list_move(&b->list, &b->c->btree_cache);
593 } else {
594 list_move(&b->list, &b->c->btree_cache_freed);
595 }
596 }
597
598 static struct btree *mca_bucket_alloc(struct cache_set *c,
599 struct bkey *k, gfp_t gfp)
600 {
601 struct btree *b = kzalloc(sizeof(struct btree), gfp);
602 if (!b)
603 return NULL;
604
605 init_rwsem(&b->lock);
606 lockdep_set_novalidate_class(&b->lock);
607 mutex_init(&b->write_lock);
608 lockdep_set_novalidate_class(&b->write_lock);
609 INIT_LIST_HEAD(&b->list);
610 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
611 b->c = c;
612 sema_init(&b->io_mutex, 1);
613
614 mca_data_alloc(b, k, gfp);
615 return b;
616 }
617
618 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
619 {
620 struct closure cl;
621
622 closure_init_stack(&cl);
623 lockdep_assert_held(&b->c->bucket_lock);
624
625 if (!down_write_trylock(&b->lock))
626 return -ENOMEM;
627
628 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
629
630 if (b->keys.page_order < min_order)
631 goto out_unlock;
632
633 if (!flush) {
634 if (btree_node_dirty(b))
635 goto out_unlock;
636
637 if (down_trylock(&b->io_mutex))
638 goto out_unlock;
639 up(&b->io_mutex);
640 }
641
642 mutex_lock(&b->write_lock);
643 if (btree_node_dirty(b))
644 __bch_btree_node_write(b, &cl);
645 mutex_unlock(&b->write_lock);
646
647 closure_sync(&cl);
648
649 /* wait for any in flight btree write */
650 down(&b->io_mutex);
651 up(&b->io_mutex);
652
653 return 0;
654 out_unlock:
655 rw_unlock(true, b);
656 return -ENOMEM;
657 }
658
659 static unsigned long bch_mca_scan(struct shrinker *shrink,
660 struct shrink_control *sc)
661 {
662 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
663 struct btree *b, *t;
664 unsigned long i, nr = sc->nr_to_scan;
665 unsigned long freed = 0;
666
667 if (c->shrinker_disabled)
668 return SHRINK_STOP;
669
670 if (c->btree_cache_alloc_lock)
671 return SHRINK_STOP;
672
673 /* Return -1 if we can't do anything right now */
674 if (sc->gfp_mask & __GFP_IO)
675 mutex_lock(&c->bucket_lock);
676 else if (!mutex_trylock(&c->bucket_lock))
677 return -1;
678
679 /*
680 * It's _really_ critical that we don't free too many btree nodes - we
681 * have to always leave ourselves a reserve. The reserve is how we
682 * guarantee that allocating memory for a new btree node can always
683 * succeed, so that inserting keys into the btree can always succeed and
684 * IO can always make forward progress:
685 */
686 nr /= c->btree_pages;
687 nr = min_t(unsigned long, nr, mca_can_free(c));
688
689 i = 0;
690 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
691 if (freed >= nr)
692 break;
693
694 if (++i > 3 &&
695 !mca_reap(b, 0, false)) {
696 mca_data_free(b);
697 rw_unlock(true, b);
698 freed++;
699 }
700 }
701
702 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
703 if (list_empty(&c->btree_cache))
704 goto out;
705
706 b = list_first_entry(&c->btree_cache, struct btree, list);
707 list_rotate_left(&c->btree_cache);
708
709 if (!b->accessed &&
710 !mca_reap(b, 0, false)) {
711 mca_bucket_free(b);
712 mca_data_free(b);
713 rw_unlock(true, b);
714 freed++;
715 } else
716 b->accessed = 0;
717 }
718 out:
719 mutex_unlock(&c->bucket_lock);
720 return freed;
721 }
722
723 static unsigned long bch_mca_count(struct shrinker *shrink,
724 struct shrink_control *sc)
725 {
726 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
727
728 if (c->shrinker_disabled)
729 return 0;
730
731 if (c->btree_cache_alloc_lock)
732 return 0;
733
734 return mca_can_free(c) * c->btree_pages;
735 }
736
737 void bch_btree_cache_free(struct cache_set *c)
738 {
739 struct btree *b;
740 struct closure cl;
741 closure_init_stack(&cl);
742
743 if (c->shrink.list.next)
744 unregister_shrinker(&c->shrink);
745
746 mutex_lock(&c->bucket_lock);
747
748 #ifdef CONFIG_BCACHE_DEBUG
749 if (c->verify_data)
750 list_move(&c->verify_data->list, &c->btree_cache);
751
752 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
753 #endif
754
755 list_splice(&c->btree_cache_freeable,
756 &c->btree_cache);
757
758 while (!list_empty(&c->btree_cache)) {
759 b = list_first_entry(&c->btree_cache, struct btree, list);
760
761 if (btree_node_dirty(b))
762 btree_complete_write(b, btree_current_write(b));
763 clear_bit(BTREE_NODE_dirty, &b->flags);
764
765 mca_data_free(b);
766 }
767
768 while (!list_empty(&c->btree_cache_freed)) {
769 b = list_first_entry(&c->btree_cache_freed,
770 struct btree, list);
771 list_del(&b->list);
772 cancel_delayed_work_sync(&b->work);
773 kfree(b);
774 }
775
776 mutex_unlock(&c->bucket_lock);
777 }
778
779 int bch_btree_cache_alloc(struct cache_set *c)
780 {
781 unsigned i;
782
783 for (i = 0; i < mca_reserve(c); i++)
784 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
785 return -ENOMEM;
786
787 list_splice_init(&c->btree_cache,
788 &c->btree_cache_freeable);
789
790 #ifdef CONFIG_BCACHE_DEBUG
791 mutex_init(&c->verify_lock);
792
793 c->verify_ondisk = (void *)
794 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
795
796 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
797
798 if (c->verify_data &&
799 c->verify_data->keys.set->data)
800 list_del_init(&c->verify_data->list);
801 else
802 c->verify_data = NULL;
803 #endif
804
805 c->shrink.count_objects = bch_mca_count;
806 c->shrink.scan_objects = bch_mca_scan;
807 c->shrink.seeks = 4;
808 c->shrink.batch = c->btree_pages * 2;
809 register_shrinker(&c->shrink);
810
811 return 0;
812 }
813
814 /* Btree in memory cache - hash table */
815
816 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
817 {
818 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
819 }
820
821 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
822 {
823 struct btree *b;
824
825 rcu_read_lock();
826 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
827 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
828 goto out;
829 b = NULL;
830 out:
831 rcu_read_unlock();
832 return b;
833 }
834
835 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
836 {
837 struct task_struct *old;
838
839 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
840 if (old && old != current) {
841 if (op)
842 prepare_to_wait(&c->btree_cache_wait, &op->wait,
843 TASK_UNINTERRUPTIBLE);
844 return -EINTR;
845 }
846
847 return 0;
848 }
849
850 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
851 struct bkey *k)
852 {
853 struct btree *b;
854
855 trace_bcache_btree_cache_cannibalize(c);
856
857 if (mca_cannibalize_lock(c, op))
858 return ERR_PTR(-EINTR);
859
860 list_for_each_entry_reverse(b, &c->btree_cache, list)
861 if (!mca_reap(b, btree_order(k), false))
862 return b;
863
864 list_for_each_entry_reverse(b, &c->btree_cache, list)
865 if (!mca_reap(b, btree_order(k), true))
866 return b;
867
868 WARN(1, "btree cache cannibalize failed\n");
869 return ERR_PTR(-ENOMEM);
870 }
871
872 /*
873 * We can only have one thread cannibalizing other cached btree nodes at a time,
874 * or we'll deadlock. We use an open coded mutex to ensure that, which a
875 * cannibalize_bucket() will take. This means every time we unlock the root of
876 * the btree, we need to release this lock if we have it held.
877 */
878 static void bch_cannibalize_unlock(struct cache_set *c)
879 {
880 if (c->btree_cache_alloc_lock == current) {
881 c->btree_cache_alloc_lock = NULL;
882 wake_up(&c->btree_cache_wait);
883 }
884 }
885
886 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
887 struct bkey *k, int level)
888 {
889 struct btree *b;
890
891 BUG_ON(current->bio_list);
892
893 lockdep_assert_held(&c->bucket_lock);
894
895 if (mca_find(c, k))
896 return NULL;
897
898 /* btree_free() doesn't free memory; it sticks the node on the end of
899 * the list. Check if there's any freed nodes there:
900 */
901 list_for_each_entry(b, &c->btree_cache_freeable, list)
902 if (!mca_reap(b, btree_order(k), false))
903 goto out;
904
905 /* We never free struct btree itself, just the memory that holds the on
906 * disk node. Check the freed list before allocating a new one:
907 */
908 list_for_each_entry(b, &c->btree_cache_freed, list)
909 if (!mca_reap(b, 0, false)) {
910 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
911 if (!b->keys.set[0].data)
912 goto err;
913 else
914 goto out;
915 }
916
917 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
918 if (!b)
919 goto err;
920
921 BUG_ON(!down_write_trylock(&b->lock));
922 if (!b->keys.set->data)
923 goto err;
924 out:
925 BUG_ON(b->io_mutex.count != 1);
926
927 bkey_copy(&b->key, k);
928 list_move(&b->list, &c->btree_cache);
929 hlist_del_init_rcu(&b->hash);
930 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
931
932 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
933 b->parent = (void *) ~0UL;
934 b->flags = 0;
935 b->written = 0;
936 b->level = level;
937
938 if (!b->level)
939 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
940 &b->c->expensive_debug_checks);
941 else
942 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
943 &b->c->expensive_debug_checks);
944
945 return b;
946 err:
947 if (b)
948 rw_unlock(true, b);
949
950 b = mca_cannibalize(c, op, k);
951 if (!IS_ERR(b))
952 goto out;
953
954 return b;
955 }
956
957 /**
958 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
959 * in from disk if necessary.
960 *
961 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
962 *
963 * The btree node will have either a read or a write lock held, depending on
964 * level and op->lock.
965 */
966 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
967 struct bkey *k, int level, bool write,
968 struct btree *parent)
969 {
970 int i = 0;
971 struct btree *b;
972
973 BUG_ON(level < 0);
974 retry:
975 b = mca_find(c, k);
976
977 if (!b) {
978 if (current->bio_list)
979 return ERR_PTR(-EAGAIN);
980
981 mutex_lock(&c->bucket_lock);
982 b = mca_alloc(c, op, k, level);
983 mutex_unlock(&c->bucket_lock);
984
985 if (!b)
986 goto retry;
987 if (IS_ERR(b))
988 return b;
989
990 bch_btree_node_read(b);
991
992 if (!write)
993 downgrade_write(&b->lock);
994 } else {
995 rw_lock(write, b, level);
996 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
997 rw_unlock(write, b);
998 goto retry;
999 }
1000 BUG_ON(b->level != level);
1001 }
1002
1003 b->parent = parent;
1004 b->accessed = 1;
1005
1006 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1007 prefetch(b->keys.set[i].tree);
1008 prefetch(b->keys.set[i].data);
1009 }
1010
1011 for (; i <= b->keys.nsets; i++)
1012 prefetch(b->keys.set[i].data);
1013
1014 if (btree_node_io_error(b)) {
1015 rw_unlock(write, b);
1016 return ERR_PTR(-EIO);
1017 }
1018
1019 BUG_ON(!b->written);
1020
1021 return b;
1022 }
1023
1024 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1025 {
1026 struct btree *b;
1027
1028 mutex_lock(&parent->c->bucket_lock);
1029 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1030 mutex_unlock(&parent->c->bucket_lock);
1031
1032 if (!IS_ERR_OR_NULL(b)) {
1033 b->parent = parent;
1034 bch_btree_node_read(b);
1035 rw_unlock(true, b);
1036 }
1037 }
1038
1039 /* Btree alloc */
1040
1041 static void btree_node_free(struct btree *b)
1042 {
1043 trace_bcache_btree_node_free(b);
1044
1045 BUG_ON(b == b->c->root);
1046
1047 mutex_lock(&b->write_lock);
1048
1049 if (btree_node_dirty(b))
1050 btree_complete_write(b, btree_current_write(b));
1051 clear_bit(BTREE_NODE_dirty, &b->flags);
1052
1053 mutex_unlock(&b->write_lock);
1054
1055 cancel_delayed_work(&b->work);
1056
1057 mutex_lock(&b->c->bucket_lock);
1058 bch_bucket_free(b->c, &b->key);
1059 mca_bucket_free(b);
1060 mutex_unlock(&b->c->bucket_lock);
1061 }
1062
1063 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1064 int level, bool wait,
1065 struct btree *parent)
1066 {
1067 BKEY_PADDED(key) k;
1068 struct btree *b = ERR_PTR(-EAGAIN);
1069
1070 mutex_lock(&c->bucket_lock);
1071 retry:
1072 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1073 goto err;
1074
1075 bkey_put(c, &k.key);
1076 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1077
1078 b = mca_alloc(c, op, &k.key, level);
1079 if (IS_ERR(b))
1080 goto err_free;
1081
1082 if (!b) {
1083 cache_bug(c,
1084 "Tried to allocate bucket that was in btree cache");
1085 goto retry;
1086 }
1087
1088 b->accessed = 1;
1089 b->parent = parent;
1090 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1091
1092 mutex_unlock(&c->bucket_lock);
1093
1094 trace_bcache_btree_node_alloc(b);
1095 return b;
1096 err_free:
1097 bch_bucket_free(c, &k.key);
1098 err:
1099 mutex_unlock(&c->bucket_lock);
1100
1101 trace_bcache_btree_node_alloc_fail(c);
1102 return b;
1103 }
1104
1105 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1106 struct btree_op *op, int level,
1107 struct btree *parent)
1108 {
1109 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1110 }
1111
1112 static struct btree *btree_node_alloc_replacement(struct btree *b,
1113 struct btree_op *op)
1114 {
1115 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1116 if (!IS_ERR_OR_NULL(n)) {
1117 mutex_lock(&n->write_lock);
1118 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1119 bkey_copy_key(&n->key, &b->key);
1120 mutex_unlock(&n->write_lock);
1121 }
1122
1123 return n;
1124 }
1125
1126 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1127 {
1128 unsigned i;
1129
1130 mutex_lock(&b->c->bucket_lock);
1131
1132 atomic_inc(&b->c->prio_blocked);
1133
1134 bkey_copy(k, &b->key);
1135 bkey_copy_key(k, &ZERO_KEY);
1136
1137 for (i = 0; i < KEY_PTRS(k); i++)
1138 SET_PTR_GEN(k, i,
1139 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1140 PTR_BUCKET(b->c, &b->key, i)));
1141
1142 mutex_unlock(&b->c->bucket_lock);
1143 }
1144
1145 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1146 {
1147 struct cache_set *c = b->c;
1148 struct cache *ca;
1149 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1150
1151 mutex_lock(&c->bucket_lock);
1152
1153 for_each_cache(ca, c, i)
1154 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1155 if (op)
1156 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1157 TASK_UNINTERRUPTIBLE);
1158 mutex_unlock(&c->bucket_lock);
1159 return -EINTR;
1160 }
1161
1162 mutex_unlock(&c->bucket_lock);
1163
1164 return mca_cannibalize_lock(b->c, op);
1165 }
1166
1167 /* Garbage collection */
1168
1169 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1170 struct bkey *k)
1171 {
1172 uint8_t stale = 0;
1173 unsigned i;
1174 struct bucket *g;
1175
1176 /*
1177 * ptr_invalid() can't return true for the keys that mark btree nodes as
1178 * freed, but since ptr_bad() returns true we'll never actually use them
1179 * for anything and thus we don't want mark their pointers here
1180 */
1181 if (!bkey_cmp(k, &ZERO_KEY))
1182 return stale;
1183
1184 for (i = 0; i < KEY_PTRS(k); i++) {
1185 if (!ptr_available(c, k, i))
1186 continue;
1187
1188 g = PTR_BUCKET(c, k, i);
1189
1190 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1191 g->last_gc = PTR_GEN(k, i);
1192
1193 if (ptr_stale(c, k, i)) {
1194 stale = max(stale, ptr_stale(c, k, i));
1195 continue;
1196 }
1197
1198 cache_bug_on(GC_MARK(g) &&
1199 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1200 c, "inconsistent ptrs: mark = %llu, level = %i",
1201 GC_MARK(g), level);
1202
1203 if (level)
1204 SET_GC_MARK(g, GC_MARK_METADATA);
1205 else if (KEY_DIRTY(k))
1206 SET_GC_MARK(g, GC_MARK_DIRTY);
1207 else if (!GC_MARK(g))
1208 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1209
1210 /* guard against overflow */
1211 SET_GC_SECTORS_USED(g, min_t(unsigned,
1212 GC_SECTORS_USED(g) + KEY_SIZE(k),
1213 MAX_GC_SECTORS_USED));
1214
1215 BUG_ON(!GC_SECTORS_USED(g));
1216 }
1217
1218 return stale;
1219 }
1220
1221 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1222
1223 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1224 {
1225 unsigned i;
1226
1227 for (i = 0; i < KEY_PTRS(k); i++)
1228 if (ptr_available(c, k, i) &&
1229 !ptr_stale(c, k, i)) {
1230 struct bucket *b = PTR_BUCKET(c, k, i);
1231
1232 b->gen = PTR_GEN(k, i);
1233
1234 if (level && bkey_cmp(k, &ZERO_KEY))
1235 b->prio = BTREE_PRIO;
1236 else if (!level && b->prio == BTREE_PRIO)
1237 b->prio = INITIAL_PRIO;
1238 }
1239
1240 __bch_btree_mark_key(c, level, k);
1241 }
1242
1243 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1244 {
1245 uint8_t stale = 0;
1246 unsigned keys = 0, good_keys = 0;
1247 struct bkey *k;
1248 struct btree_iter iter;
1249 struct bset_tree *t;
1250
1251 gc->nodes++;
1252
1253 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1254 stale = max(stale, btree_mark_key(b, k));
1255 keys++;
1256
1257 if (bch_ptr_bad(&b->keys, k))
1258 continue;
1259
1260 gc->key_bytes += bkey_u64s(k);
1261 gc->nkeys++;
1262 good_keys++;
1263
1264 gc->data += KEY_SIZE(k);
1265 }
1266
1267 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1268 btree_bug_on(t->size &&
1269 bset_written(&b->keys, t) &&
1270 bkey_cmp(&b->key, &t->end) < 0,
1271 b, "found short btree key in gc");
1272
1273 if (b->c->gc_always_rewrite)
1274 return true;
1275
1276 if (stale > 10)
1277 return true;
1278
1279 if ((keys - good_keys) * 2 > keys)
1280 return true;
1281
1282 return false;
1283 }
1284
1285 #define GC_MERGE_NODES 4U
1286
1287 struct gc_merge_info {
1288 struct btree *b;
1289 unsigned keys;
1290 };
1291
1292 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1293 struct keylist *, atomic_t *, struct bkey *);
1294
1295 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1296 struct gc_stat *gc, struct gc_merge_info *r)
1297 {
1298 unsigned i, nodes = 0, keys = 0, blocks;
1299 struct btree *new_nodes[GC_MERGE_NODES];
1300 struct keylist keylist;
1301 struct closure cl;
1302 struct bkey *k;
1303
1304 bch_keylist_init(&keylist);
1305
1306 if (btree_check_reserve(b, NULL))
1307 return 0;
1308
1309 memset(new_nodes, 0, sizeof(new_nodes));
1310 closure_init_stack(&cl);
1311
1312 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1313 keys += r[nodes++].keys;
1314
1315 blocks = btree_default_blocks(b->c) * 2 / 3;
1316
1317 if (nodes < 2 ||
1318 __set_blocks(b->keys.set[0].data, keys,
1319 block_bytes(b->c)) > blocks * (nodes - 1))
1320 return 0;
1321
1322 for (i = 0; i < nodes; i++) {
1323 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1324 if (IS_ERR_OR_NULL(new_nodes[i]))
1325 goto out_nocoalesce;
1326 }
1327
1328 /*
1329 * We have to check the reserve here, after we've allocated our new
1330 * nodes, to make sure the insert below will succeed - we also check
1331 * before as an optimization to potentially avoid a bunch of expensive
1332 * allocs/sorts
1333 */
1334 if (btree_check_reserve(b, NULL))
1335 goto out_nocoalesce;
1336
1337 for (i = 0; i < nodes; i++)
1338 mutex_lock(&new_nodes[i]->write_lock);
1339
1340 for (i = nodes - 1; i > 0; --i) {
1341 struct bset *n1 = btree_bset_first(new_nodes[i]);
1342 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1343 struct bkey *k, *last = NULL;
1344
1345 keys = 0;
1346
1347 if (i > 1) {
1348 for (k = n2->start;
1349 k < bset_bkey_last(n2);
1350 k = bkey_next(k)) {
1351 if (__set_blocks(n1, n1->keys + keys +
1352 bkey_u64s(k),
1353 block_bytes(b->c)) > blocks)
1354 break;
1355
1356 last = k;
1357 keys += bkey_u64s(k);
1358 }
1359 } else {
1360 /*
1361 * Last node we're not getting rid of - we're getting
1362 * rid of the node at r[0]. Have to try and fit all of
1363 * the remaining keys into this node; we can't ensure
1364 * they will always fit due to rounding and variable
1365 * length keys (shouldn't be possible in practice,
1366 * though)
1367 */
1368 if (__set_blocks(n1, n1->keys + n2->keys,
1369 block_bytes(b->c)) >
1370 btree_blocks(new_nodes[i]))
1371 goto out_nocoalesce;
1372
1373 keys = n2->keys;
1374 /* Take the key of the node we're getting rid of */
1375 last = &r->b->key;
1376 }
1377
1378 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1379 btree_blocks(new_nodes[i]));
1380
1381 if (last)
1382 bkey_copy_key(&new_nodes[i]->key, last);
1383
1384 memcpy(bset_bkey_last(n1),
1385 n2->start,
1386 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1387
1388 n1->keys += keys;
1389 r[i].keys = n1->keys;
1390
1391 memmove(n2->start,
1392 bset_bkey_idx(n2, keys),
1393 (void *) bset_bkey_last(n2) -
1394 (void *) bset_bkey_idx(n2, keys));
1395
1396 n2->keys -= keys;
1397
1398 if (__bch_keylist_realloc(&keylist,
1399 bkey_u64s(&new_nodes[i]->key)))
1400 goto out_nocoalesce;
1401
1402 bch_btree_node_write(new_nodes[i], &cl);
1403 bch_keylist_add(&keylist, &new_nodes[i]->key);
1404 }
1405
1406 for (i = 0; i < nodes; i++)
1407 mutex_unlock(&new_nodes[i]->write_lock);
1408
1409 closure_sync(&cl);
1410
1411 /* We emptied out this node */
1412 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1413 btree_node_free(new_nodes[0]);
1414 rw_unlock(true, new_nodes[0]);
1415 new_nodes[0] = NULL;
1416
1417 for (i = 0; i < nodes; i++) {
1418 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1419 goto out_nocoalesce;
1420
1421 make_btree_freeing_key(r[i].b, keylist.top);
1422 bch_keylist_push(&keylist);
1423 }
1424
1425 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1426 BUG_ON(!bch_keylist_empty(&keylist));
1427
1428 for (i = 0; i < nodes; i++) {
1429 btree_node_free(r[i].b);
1430 rw_unlock(true, r[i].b);
1431
1432 r[i].b = new_nodes[i];
1433 }
1434
1435 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1436 r[nodes - 1].b = ERR_PTR(-EINTR);
1437
1438 trace_bcache_btree_gc_coalesce(nodes);
1439 gc->nodes--;
1440
1441 bch_keylist_free(&keylist);
1442
1443 /* Invalidated our iterator */
1444 return -EINTR;
1445
1446 out_nocoalesce:
1447 closure_sync(&cl);
1448 bch_keylist_free(&keylist);
1449
1450 while ((k = bch_keylist_pop(&keylist)))
1451 if (!bkey_cmp(k, &ZERO_KEY))
1452 atomic_dec(&b->c->prio_blocked);
1453
1454 for (i = 0; i < nodes; i++)
1455 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1456 btree_node_free(new_nodes[i]);
1457 rw_unlock(true, new_nodes[i]);
1458 }
1459 return 0;
1460 }
1461
1462 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1463 struct btree *replace)
1464 {
1465 struct keylist keys;
1466 struct btree *n;
1467
1468 if (btree_check_reserve(b, NULL))
1469 return 0;
1470
1471 n = btree_node_alloc_replacement(replace, NULL);
1472
1473 /* recheck reserve after allocating replacement node */
1474 if (btree_check_reserve(b, NULL)) {
1475 btree_node_free(n);
1476 rw_unlock(true, n);
1477 return 0;
1478 }
1479
1480 bch_btree_node_write_sync(n);
1481
1482 bch_keylist_init(&keys);
1483 bch_keylist_add(&keys, &n->key);
1484
1485 make_btree_freeing_key(replace, keys.top);
1486 bch_keylist_push(&keys);
1487
1488 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1489 BUG_ON(!bch_keylist_empty(&keys));
1490
1491 btree_node_free(replace);
1492 rw_unlock(true, n);
1493
1494 /* Invalidated our iterator */
1495 return -EINTR;
1496 }
1497
1498 static unsigned btree_gc_count_keys(struct btree *b)
1499 {
1500 struct bkey *k;
1501 struct btree_iter iter;
1502 unsigned ret = 0;
1503
1504 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1505 ret += bkey_u64s(k);
1506
1507 return ret;
1508 }
1509
1510 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1511 struct closure *writes, struct gc_stat *gc)
1512 {
1513 int ret = 0;
1514 bool should_rewrite;
1515 struct bkey *k;
1516 struct btree_iter iter;
1517 struct gc_merge_info r[GC_MERGE_NODES];
1518 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1519
1520 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1521
1522 for (i = r; i < r + ARRAY_SIZE(r); i++)
1523 i->b = ERR_PTR(-EINTR);
1524
1525 while (1) {
1526 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1527 if (k) {
1528 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1529 true, b);
1530 if (IS_ERR(r->b)) {
1531 ret = PTR_ERR(r->b);
1532 break;
1533 }
1534
1535 r->keys = btree_gc_count_keys(r->b);
1536
1537 ret = btree_gc_coalesce(b, op, gc, r);
1538 if (ret)
1539 break;
1540 }
1541
1542 if (!last->b)
1543 break;
1544
1545 if (!IS_ERR(last->b)) {
1546 should_rewrite = btree_gc_mark_node(last->b, gc);
1547 if (should_rewrite) {
1548 ret = btree_gc_rewrite_node(b, op, last->b);
1549 if (ret)
1550 break;
1551 }
1552
1553 if (last->b->level) {
1554 ret = btree_gc_recurse(last->b, op, writes, gc);
1555 if (ret)
1556 break;
1557 }
1558
1559 bkey_copy_key(&b->c->gc_done, &last->b->key);
1560
1561 /*
1562 * Must flush leaf nodes before gc ends, since replace
1563 * operations aren't journalled
1564 */
1565 mutex_lock(&last->b->write_lock);
1566 if (btree_node_dirty(last->b))
1567 bch_btree_node_write(last->b, writes);
1568 mutex_unlock(&last->b->write_lock);
1569 rw_unlock(true, last->b);
1570 }
1571
1572 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1573 r->b = NULL;
1574
1575 if (need_resched()) {
1576 ret = -EAGAIN;
1577 break;
1578 }
1579 }
1580
1581 for (i = r; i < r + ARRAY_SIZE(r); i++)
1582 if (!IS_ERR_OR_NULL(i->b)) {
1583 mutex_lock(&i->b->write_lock);
1584 if (btree_node_dirty(i->b))
1585 bch_btree_node_write(i->b, writes);
1586 mutex_unlock(&i->b->write_lock);
1587 rw_unlock(true, i->b);
1588 }
1589
1590 return ret;
1591 }
1592
1593 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1594 struct closure *writes, struct gc_stat *gc)
1595 {
1596 struct btree *n = NULL;
1597 int ret = 0;
1598 bool should_rewrite;
1599
1600 should_rewrite = btree_gc_mark_node(b, gc);
1601 if (should_rewrite) {
1602 n = btree_node_alloc_replacement(b, NULL);
1603
1604 if (!IS_ERR_OR_NULL(n)) {
1605 bch_btree_node_write_sync(n);
1606
1607 bch_btree_set_root(n);
1608 btree_node_free(b);
1609 rw_unlock(true, n);
1610
1611 return -EINTR;
1612 }
1613 }
1614
1615 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1616
1617 if (b->level) {
1618 ret = btree_gc_recurse(b, op, writes, gc);
1619 if (ret)
1620 return ret;
1621 }
1622
1623 bkey_copy_key(&b->c->gc_done, &b->key);
1624
1625 return ret;
1626 }
1627
1628 static void btree_gc_start(struct cache_set *c)
1629 {
1630 struct cache *ca;
1631 struct bucket *b;
1632 unsigned i;
1633
1634 if (!c->gc_mark_valid)
1635 return;
1636
1637 mutex_lock(&c->bucket_lock);
1638
1639 c->gc_mark_valid = 0;
1640 c->gc_done = ZERO_KEY;
1641
1642 for_each_cache(ca, c, i)
1643 for_each_bucket(b, ca) {
1644 b->last_gc = b->gen;
1645 if (!atomic_read(&b->pin)) {
1646 SET_GC_MARK(b, 0);
1647 SET_GC_SECTORS_USED(b, 0);
1648 }
1649 }
1650
1651 mutex_unlock(&c->bucket_lock);
1652 }
1653
1654 static size_t bch_btree_gc_finish(struct cache_set *c)
1655 {
1656 size_t available = 0;
1657 struct bucket *b;
1658 struct cache *ca;
1659 unsigned i;
1660
1661 mutex_lock(&c->bucket_lock);
1662
1663 set_gc_sectors(c);
1664 c->gc_mark_valid = 1;
1665 c->need_gc = 0;
1666
1667 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1668 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1669 GC_MARK_METADATA);
1670
1671 /* don't reclaim buckets to which writeback keys point */
1672 rcu_read_lock();
1673 for (i = 0; i < c->nr_uuids; i++) {
1674 struct bcache_device *d = c->devices[i];
1675 struct cached_dev *dc;
1676 struct keybuf_key *w, *n;
1677 unsigned j;
1678
1679 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1680 continue;
1681 dc = container_of(d, struct cached_dev, disk);
1682
1683 spin_lock(&dc->writeback_keys.lock);
1684 rbtree_postorder_for_each_entry_safe(w, n,
1685 &dc->writeback_keys.keys, node)
1686 for (j = 0; j < KEY_PTRS(&w->key); j++)
1687 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1688 GC_MARK_DIRTY);
1689 spin_unlock(&dc->writeback_keys.lock);
1690 }
1691 rcu_read_unlock();
1692
1693 for_each_cache(ca, c, i) {
1694 uint64_t *i;
1695
1696 ca->invalidate_needs_gc = 0;
1697
1698 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1699 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1700
1701 for (i = ca->prio_buckets;
1702 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1703 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1704
1705 for_each_bucket(b, ca) {
1706 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1707
1708 if (atomic_read(&b->pin))
1709 continue;
1710
1711 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1712
1713 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1714 available++;
1715 }
1716 }
1717
1718 mutex_unlock(&c->bucket_lock);
1719 return available;
1720 }
1721
1722 static void bch_btree_gc(struct cache_set *c)
1723 {
1724 int ret;
1725 unsigned long available;
1726 struct gc_stat stats;
1727 struct closure writes;
1728 struct btree_op op;
1729 uint64_t start_time = local_clock();
1730
1731 trace_bcache_gc_start(c);
1732
1733 memset(&stats, 0, sizeof(struct gc_stat));
1734 closure_init_stack(&writes);
1735 bch_btree_op_init(&op, SHRT_MAX);
1736
1737 btree_gc_start(c);
1738
1739 do {
1740 ret = btree_root(gc_root, c, &op, &writes, &stats);
1741 closure_sync(&writes);
1742 cond_resched();
1743
1744 if (ret && ret != -EAGAIN)
1745 pr_warn("gc failed!");
1746 } while (ret);
1747
1748 available = bch_btree_gc_finish(c);
1749 wake_up_allocators(c);
1750
1751 bch_time_stats_update(&c->btree_gc_time, start_time);
1752
1753 stats.key_bytes *= sizeof(uint64_t);
1754 stats.data <<= 9;
1755 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1756 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1757
1758 trace_bcache_gc_end(c);
1759
1760 bch_moving_gc(c);
1761 }
1762
1763 static bool gc_should_run(struct cache_set *c)
1764 {
1765 struct cache *ca;
1766 unsigned i;
1767
1768 for_each_cache(ca, c, i)
1769 if (ca->invalidate_needs_gc)
1770 return true;
1771
1772 if (atomic_read(&c->sectors_to_gc) < 0)
1773 return true;
1774
1775 return false;
1776 }
1777
1778 static int bch_gc_thread(void *arg)
1779 {
1780 struct cache_set *c = arg;
1781
1782 while (1) {
1783 wait_event_interruptible(c->gc_wait,
1784 kthread_should_stop() || gc_should_run(c));
1785
1786 if (kthread_should_stop())
1787 break;
1788
1789 set_gc_sectors(c);
1790 bch_btree_gc(c);
1791 }
1792
1793 return 0;
1794 }
1795
1796 int bch_gc_thread_start(struct cache_set *c)
1797 {
1798 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1799 if (IS_ERR(c->gc_thread))
1800 return PTR_ERR(c->gc_thread);
1801
1802 return 0;
1803 }
1804
1805 /* Initial partial gc */
1806
1807 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1808 {
1809 int ret = 0;
1810 struct bkey *k, *p = NULL;
1811 struct btree_iter iter;
1812
1813 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1814 bch_initial_mark_key(b->c, b->level, k);
1815
1816 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1817
1818 if (b->level) {
1819 bch_btree_iter_init(&b->keys, &iter, NULL);
1820
1821 do {
1822 k = bch_btree_iter_next_filter(&iter, &b->keys,
1823 bch_ptr_bad);
1824 if (k)
1825 btree_node_prefetch(b, k);
1826
1827 if (p)
1828 ret = btree(check_recurse, p, b, op);
1829
1830 p = k;
1831 } while (p && !ret);
1832 }
1833
1834 return ret;
1835 }
1836
1837 int bch_btree_check(struct cache_set *c)
1838 {
1839 struct btree_op op;
1840
1841 bch_btree_op_init(&op, SHRT_MAX);
1842
1843 return btree_root(check_recurse, c, &op);
1844 }
1845
1846 void bch_initial_gc_finish(struct cache_set *c)
1847 {
1848 struct cache *ca;
1849 struct bucket *b;
1850 unsigned i;
1851
1852 bch_btree_gc_finish(c);
1853
1854 mutex_lock(&c->bucket_lock);
1855
1856 /*
1857 * We need to put some unused buckets directly on the prio freelist in
1858 * order to get the allocator thread started - it needs freed buckets in
1859 * order to rewrite the prios and gens, and it needs to rewrite prios
1860 * and gens in order to free buckets.
1861 *
1862 * This is only safe for buckets that have no live data in them, which
1863 * there should always be some of.
1864 */
1865 for_each_cache(ca, c, i) {
1866 for_each_bucket(b, ca) {
1867 if (fifo_full(&ca->free[RESERVE_PRIO]))
1868 break;
1869
1870 if (bch_can_invalidate_bucket(ca, b) &&
1871 !GC_MARK(b)) {
1872 __bch_invalidate_one_bucket(ca, b);
1873 fifo_push(&ca->free[RESERVE_PRIO],
1874 b - ca->buckets);
1875 }
1876 }
1877 }
1878
1879 mutex_unlock(&c->bucket_lock);
1880 }
1881
1882 /* Btree insertion */
1883
1884 static bool btree_insert_key(struct btree *b, struct bkey *k,
1885 struct bkey *replace_key)
1886 {
1887 unsigned status;
1888
1889 BUG_ON(bkey_cmp(k, &b->key) > 0);
1890
1891 status = bch_btree_insert_key(&b->keys, k, replace_key);
1892 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1893 bch_check_keys(&b->keys, "%u for %s", status,
1894 replace_key ? "replace" : "insert");
1895
1896 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1897 status);
1898 return true;
1899 } else
1900 return false;
1901 }
1902
1903 static size_t insert_u64s_remaining(struct btree *b)
1904 {
1905 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1906
1907 /*
1908 * Might land in the middle of an existing extent and have to split it
1909 */
1910 if (b->keys.ops->is_extents)
1911 ret -= KEY_MAX_U64S;
1912
1913 return max(ret, 0L);
1914 }
1915
1916 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1917 struct keylist *insert_keys,
1918 struct bkey *replace_key)
1919 {
1920 bool ret = false;
1921 int oldsize = bch_count_data(&b->keys);
1922
1923 while (!bch_keylist_empty(insert_keys)) {
1924 struct bkey *k = insert_keys->keys;
1925
1926 if (bkey_u64s(k) > insert_u64s_remaining(b))
1927 break;
1928
1929 if (bkey_cmp(k, &b->key) <= 0) {
1930 if (!b->level)
1931 bkey_put(b->c, k);
1932
1933 ret |= btree_insert_key(b, k, replace_key);
1934 bch_keylist_pop_front(insert_keys);
1935 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1936 BKEY_PADDED(key) temp;
1937 bkey_copy(&temp.key, insert_keys->keys);
1938
1939 bch_cut_back(&b->key, &temp.key);
1940 bch_cut_front(&b->key, insert_keys->keys);
1941
1942 ret |= btree_insert_key(b, &temp.key, replace_key);
1943 break;
1944 } else {
1945 break;
1946 }
1947 }
1948
1949 if (!ret)
1950 op->insert_collision = true;
1951
1952 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1953
1954 BUG_ON(bch_count_data(&b->keys) < oldsize);
1955 return ret;
1956 }
1957
1958 static int btree_split(struct btree *b, struct btree_op *op,
1959 struct keylist *insert_keys,
1960 struct bkey *replace_key)
1961 {
1962 bool split;
1963 struct btree *n1, *n2 = NULL, *n3 = NULL;
1964 uint64_t start_time = local_clock();
1965 struct closure cl;
1966 struct keylist parent_keys;
1967
1968 closure_init_stack(&cl);
1969 bch_keylist_init(&parent_keys);
1970
1971 if (btree_check_reserve(b, op)) {
1972 if (!b->level)
1973 return -EINTR;
1974 else
1975 WARN(1, "insufficient reserve for split\n");
1976 }
1977
1978 n1 = btree_node_alloc_replacement(b, op);
1979 if (IS_ERR(n1))
1980 goto err;
1981
1982 split = set_blocks(btree_bset_first(n1),
1983 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1984
1985 if (split) {
1986 unsigned keys = 0;
1987
1988 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1989
1990 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1991 if (IS_ERR(n2))
1992 goto err_free1;
1993
1994 if (!b->parent) {
1995 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1996 if (IS_ERR(n3))
1997 goto err_free2;
1998 }
1999
2000 mutex_lock(&n1->write_lock);
2001 mutex_lock(&n2->write_lock);
2002
2003 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2004
2005 /*
2006 * Has to be a linear search because we don't have an auxiliary
2007 * search tree yet
2008 */
2009
2010 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2011 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2012 keys));
2013
2014 bkey_copy_key(&n1->key,
2015 bset_bkey_idx(btree_bset_first(n1), keys));
2016 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2017
2018 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2019 btree_bset_first(n1)->keys = keys;
2020
2021 memcpy(btree_bset_first(n2)->start,
2022 bset_bkey_last(btree_bset_first(n1)),
2023 btree_bset_first(n2)->keys * sizeof(uint64_t));
2024
2025 bkey_copy_key(&n2->key, &b->key);
2026
2027 bch_keylist_add(&parent_keys, &n2->key);
2028 bch_btree_node_write(n2, &cl);
2029 mutex_unlock(&n2->write_lock);
2030 rw_unlock(true, n2);
2031 } else {
2032 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2033
2034 mutex_lock(&n1->write_lock);
2035 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2036 }
2037
2038 bch_keylist_add(&parent_keys, &n1->key);
2039 bch_btree_node_write(n1, &cl);
2040 mutex_unlock(&n1->write_lock);
2041
2042 if (n3) {
2043 /* Depth increases, make a new root */
2044 mutex_lock(&n3->write_lock);
2045 bkey_copy_key(&n3->key, &MAX_KEY);
2046 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2047 bch_btree_node_write(n3, &cl);
2048 mutex_unlock(&n3->write_lock);
2049
2050 closure_sync(&cl);
2051 bch_btree_set_root(n3);
2052 rw_unlock(true, n3);
2053 } else if (!b->parent) {
2054 /* Root filled up but didn't need to be split */
2055 closure_sync(&cl);
2056 bch_btree_set_root(n1);
2057 } else {
2058 /* Split a non root node */
2059 closure_sync(&cl);
2060 make_btree_freeing_key(b, parent_keys.top);
2061 bch_keylist_push(&parent_keys);
2062
2063 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2064 BUG_ON(!bch_keylist_empty(&parent_keys));
2065 }
2066
2067 btree_node_free(b);
2068 rw_unlock(true, n1);
2069
2070 bch_time_stats_update(&b->c->btree_split_time, start_time);
2071
2072 return 0;
2073 err_free2:
2074 bkey_put(b->c, &n2->key);
2075 btree_node_free(n2);
2076 rw_unlock(true, n2);
2077 err_free1:
2078 bkey_put(b->c, &n1->key);
2079 btree_node_free(n1);
2080 rw_unlock(true, n1);
2081 err:
2082 WARN(1, "bcache: btree split failed (level %u)", b->level);
2083
2084 if (n3 == ERR_PTR(-EAGAIN) ||
2085 n2 == ERR_PTR(-EAGAIN) ||
2086 n1 == ERR_PTR(-EAGAIN))
2087 return -EAGAIN;
2088
2089 return -ENOMEM;
2090 }
2091
2092 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2093 struct keylist *insert_keys,
2094 atomic_t *journal_ref,
2095 struct bkey *replace_key)
2096 {
2097 struct closure cl;
2098
2099 BUG_ON(b->level && replace_key);
2100
2101 closure_init_stack(&cl);
2102
2103 mutex_lock(&b->write_lock);
2104
2105 if (write_block(b) != btree_bset_last(b) &&
2106 b->keys.last_set_unwritten)
2107 bch_btree_init_next(b); /* just wrote a set */
2108
2109 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2110 mutex_unlock(&b->write_lock);
2111 goto split;
2112 }
2113
2114 BUG_ON(write_block(b) != btree_bset_last(b));
2115
2116 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2117 if (!b->level)
2118 bch_btree_leaf_dirty(b, journal_ref);
2119 else
2120 bch_btree_node_write(b, &cl);
2121 }
2122
2123 mutex_unlock(&b->write_lock);
2124
2125 /* wait for btree node write if necessary, after unlock */
2126 closure_sync(&cl);
2127
2128 return 0;
2129 split:
2130 if (current->bio_list) {
2131 op->lock = b->c->root->level + 1;
2132 return -EAGAIN;
2133 } else if (op->lock <= b->c->root->level) {
2134 op->lock = b->c->root->level + 1;
2135 return -EINTR;
2136 } else {
2137 /* Invalidated all iterators */
2138 int ret = btree_split(b, op, insert_keys, replace_key);
2139
2140 if (bch_keylist_empty(insert_keys))
2141 return 0;
2142 else if (!ret)
2143 return -EINTR;
2144 return ret;
2145 }
2146 }
2147
2148 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2149 struct bkey *check_key)
2150 {
2151 int ret = -EINTR;
2152 uint64_t btree_ptr = b->key.ptr[0];
2153 unsigned long seq = b->seq;
2154 struct keylist insert;
2155 bool upgrade = op->lock == -1;
2156
2157 bch_keylist_init(&insert);
2158
2159 if (upgrade) {
2160 rw_unlock(false, b);
2161 rw_lock(true, b, b->level);
2162
2163 if (b->key.ptr[0] != btree_ptr ||
2164 b->seq != seq + 1) {
2165 op->lock = b->level;
2166 goto out;
2167 }
2168 }
2169
2170 SET_KEY_PTRS(check_key, 1);
2171 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2172
2173 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2174
2175 bch_keylist_add(&insert, check_key);
2176
2177 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2178
2179 BUG_ON(!ret && !bch_keylist_empty(&insert));
2180 out:
2181 if (upgrade)
2182 downgrade_write(&b->lock);
2183 return ret;
2184 }
2185
2186 struct btree_insert_op {
2187 struct btree_op op;
2188 struct keylist *keys;
2189 atomic_t *journal_ref;
2190 struct bkey *replace_key;
2191 };
2192
2193 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2194 {
2195 struct btree_insert_op *op = container_of(b_op,
2196 struct btree_insert_op, op);
2197
2198 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2199 op->journal_ref, op->replace_key);
2200 if (ret && !bch_keylist_empty(op->keys))
2201 return ret;
2202 else
2203 return MAP_DONE;
2204 }
2205
2206 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2207 atomic_t *journal_ref, struct bkey *replace_key)
2208 {
2209 struct btree_insert_op op;
2210 int ret = 0;
2211
2212 BUG_ON(current->bio_list);
2213 BUG_ON(bch_keylist_empty(keys));
2214
2215 bch_btree_op_init(&op.op, 0);
2216 op.keys = keys;
2217 op.journal_ref = journal_ref;
2218 op.replace_key = replace_key;
2219
2220 while (!ret && !bch_keylist_empty(keys)) {
2221 op.op.lock = 0;
2222 ret = bch_btree_map_leaf_nodes(&op.op, c,
2223 &START_KEY(keys->keys),
2224 btree_insert_fn);
2225 }
2226
2227 if (ret) {
2228 struct bkey *k;
2229
2230 pr_err("error %i", ret);
2231
2232 while ((k = bch_keylist_pop(keys)))
2233 bkey_put(c, k);
2234 } else if (op.op.insert_collision)
2235 ret = -ESRCH;
2236
2237 return ret;
2238 }
2239
2240 void bch_btree_set_root(struct btree *b)
2241 {
2242 unsigned i;
2243 struct closure cl;
2244
2245 closure_init_stack(&cl);
2246
2247 trace_bcache_btree_set_root(b);
2248
2249 BUG_ON(!b->written);
2250
2251 for (i = 0; i < KEY_PTRS(&b->key); i++)
2252 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2253
2254 mutex_lock(&b->c->bucket_lock);
2255 list_del_init(&b->list);
2256 mutex_unlock(&b->c->bucket_lock);
2257
2258 b->c->root = b;
2259
2260 bch_journal_meta(b->c, &cl);
2261 closure_sync(&cl);
2262 }
2263
2264 /* Map across nodes or keys */
2265
2266 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2267 struct bkey *from,
2268 btree_map_nodes_fn *fn, int flags)
2269 {
2270 int ret = MAP_CONTINUE;
2271
2272 if (b->level) {
2273 struct bkey *k;
2274 struct btree_iter iter;
2275
2276 bch_btree_iter_init(&b->keys, &iter, from);
2277
2278 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2279 bch_ptr_bad))) {
2280 ret = btree(map_nodes_recurse, k, b,
2281 op, from, fn, flags);
2282 from = NULL;
2283
2284 if (ret != MAP_CONTINUE)
2285 return ret;
2286 }
2287 }
2288
2289 if (!b->level || flags == MAP_ALL_NODES)
2290 ret = fn(op, b);
2291
2292 return ret;
2293 }
2294
2295 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2296 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2297 {
2298 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2299 }
2300
2301 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2302 struct bkey *from, btree_map_keys_fn *fn,
2303 int flags)
2304 {
2305 int ret = MAP_CONTINUE;
2306 struct bkey *k;
2307 struct btree_iter iter;
2308
2309 bch_btree_iter_init(&b->keys, &iter, from);
2310
2311 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2312 ret = !b->level
2313 ? fn(op, b, k)
2314 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2315 from = NULL;
2316
2317 if (ret != MAP_CONTINUE)
2318 return ret;
2319 }
2320
2321 if (!b->level && (flags & MAP_END_KEY))
2322 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2323 KEY_OFFSET(&b->key), 0));
2324
2325 return ret;
2326 }
2327
2328 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2329 struct bkey *from, btree_map_keys_fn *fn, int flags)
2330 {
2331 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2332 }
2333
2334 /* Keybuf code */
2335
2336 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2337 {
2338 /* Overlapping keys compare equal */
2339 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2340 return -1;
2341 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2342 return 1;
2343 return 0;
2344 }
2345
2346 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2347 struct keybuf_key *r)
2348 {
2349 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2350 }
2351
2352 struct refill {
2353 struct btree_op op;
2354 unsigned nr_found;
2355 struct keybuf *buf;
2356 struct bkey *end;
2357 keybuf_pred_fn *pred;
2358 };
2359
2360 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2361 struct bkey *k)
2362 {
2363 struct refill *refill = container_of(op, struct refill, op);
2364 struct keybuf *buf = refill->buf;
2365 int ret = MAP_CONTINUE;
2366
2367 if (bkey_cmp(k, refill->end) >= 0) {
2368 ret = MAP_DONE;
2369 goto out;
2370 }
2371
2372 if (!KEY_SIZE(k)) /* end key */
2373 goto out;
2374
2375 if (refill->pred(buf, k)) {
2376 struct keybuf_key *w;
2377
2378 spin_lock(&buf->lock);
2379
2380 w = array_alloc(&buf->freelist);
2381 if (!w) {
2382 spin_unlock(&buf->lock);
2383 return MAP_DONE;
2384 }
2385
2386 w->private = NULL;
2387 bkey_copy(&w->key, k);
2388
2389 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2390 array_free(&buf->freelist, w);
2391 else
2392 refill->nr_found++;
2393
2394 if (array_freelist_empty(&buf->freelist))
2395 ret = MAP_DONE;
2396
2397 spin_unlock(&buf->lock);
2398 }
2399 out:
2400 buf->last_scanned = *k;
2401 return ret;
2402 }
2403
2404 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2405 struct bkey *end, keybuf_pred_fn *pred)
2406 {
2407 struct bkey start = buf->last_scanned;
2408 struct refill refill;
2409
2410 cond_resched();
2411
2412 bch_btree_op_init(&refill.op, -1);
2413 refill.nr_found = 0;
2414 refill.buf = buf;
2415 refill.end = end;
2416 refill.pred = pred;
2417
2418 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2419 refill_keybuf_fn, MAP_END_KEY);
2420
2421 trace_bcache_keyscan(refill.nr_found,
2422 KEY_INODE(&start), KEY_OFFSET(&start),
2423 KEY_INODE(&buf->last_scanned),
2424 KEY_OFFSET(&buf->last_scanned));
2425
2426 spin_lock(&buf->lock);
2427
2428 if (!RB_EMPTY_ROOT(&buf->keys)) {
2429 struct keybuf_key *w;
2430 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2431 buf->start = START_KEY(&w->key);
2432
2433 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2434 buf->end = w->key;
2435 } else {
2436 buf->start = MAX_KEY;
2437 buf->end = MAX_KEY;
2438 }
2439
2440 spin_unlock(&buf->lock);
2441 }
2442
2443 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2444 {
2445 rb_erase(&w->node, &buf->keys);
2446 array_free(&buf->freelist, w);
2447 }
2448
2449 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2450 {
2451 spin_lock(&buf->lock);
2452 __bch_keybuf_del(buf, w);
2453 spin_unlock(&buf->lock);
2454 }
2455
2456 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2457 struct bkey *end)
2458 {
2459 bool ret = false;
2460 struct keybuf_key *p, *w, s;
2461 s.key = *start;
2462
2463 if (bkey_cmp(end, &buf->start) <= 0 ||
2464 bkey_cmp(start, &buf->end) >= 0)
2465 return false;
2466
2467 spin_lock(&buf->lock);
2468 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2469
2470 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2471 p = w;
2472 w = RB_NEXT(w, node);
2473
2474 if (p->private)
2475 ret = true;
2476 else
2477 __bch_keybuf_del(buf, p);
2478 }
2479
2480 spin_unlock(&buf->lock);
2481 return ret;
2482 }
2483
2484 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2485 {
2486 struct keybuf_key *w;
2487 spin_lock(&buf->lock);
2488
2489 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2490
2491 while (w && w->private)
2492 w = RB_NEXT(w, node);
2493
2494 if (w)
2495 w->private = ERR_PTR(-EINTR);
2496
2497 spin_unlock(&buf->lock);
2498 return w;
2499 }
2500
2501 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2502 struct keybuf *buf,
2503 struct bkey *end,
2504 keybuf_pred_fn *pred)
2505 {
2506 struct keybuf_key *ret;
2507
2508 while (1) {
2509 ret = bch_keybuf_next(buf);
2510 if (ret)
2511 break;
2512
2513 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2514 pr_debug("scan finished");
2515 break;
2516 }
2517
2518 bch_refill_keybuf(c, buf, end, pred);
2519 }
2520
2521 return ret;
2522 }
2523
2524 void bch_keybuf_init(struct keybuf *buf)
2525 {
2526 buf->last_scanned = MAX_KEY;
2527 buf->keys = RB_ROOT;
2528
2529 spin_lock_init(&buf->lock);
2530 array_allocator_init(&buf->freelist);
2531 }