]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/btree.c
e538d45fa65a9c45ec502cebc7e0634d36a6a5d2
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / btree.c
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
37
38 /*
39 * Todo:
40 * register_bcache: Return errors out to userspace correctly
41 *
42 * Writeback: don't undirty key until after a cache flush
43 *
44 * Create an iterator for key pointers
45 *
46 * On btree write error, mark bucket such that it won't be freed from the cache
47 *
48 * Journalling:
49 * Check for bad keys in replay
50 * Propagate barriers
51 * Refcount journal entries in journal_replay
52 *
53 * Garbage collection:
54 * Finish incremental gc
55 * Gc should free old UUIDs, data for invalid UUIDs
56 *
57 * Provide a way to list backing device UUIDs we have data cached for, and
58 * probably how long it's been since we've seen them, and a way to invalidate
59 * dirty data for devices that will never be attached again
60 *
61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62 * that based on that and how much dirty data we have we can keep writeback
63 * from being starved
64 *
65 * Add a tracepoint or somesuch to watch for writeback starvation
66 *
67 * When btree depth > 1 and splitting an interior node, we have to make sure
68 * alloc_bucket() cannot fail. This should be true but is not completely
69 * obvious.
70 *
71 * Plugging?
72 *
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
75 *
76 * Superblock needs to be fleshed out for multiple cache devices
77 *
78 * Add a sysfs tunable for the number of writeback IOs in flight
79 *
80 * Add a sysfs tunable for the number of open data buckets
81 *
82 * IO tracking: Can we track when one process is doing io on behalf of another?
83 * IO tracking: Don't use just an average, weigh more recent stuff higher
84 *
85 * Test module load/unload
86 */
87
88 #define MAX_NEED_GC 64
89 #define MAX_SAVE_PRIO 72
90
91 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
92
93 #define PTR_HASH(c, k) \
94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
95
96 #define insert_lock(s, b) ((b)->level <= (s)->lock)
97
98 /*
99 * These macros are for recursing down the btree - they handle the details of
100 * locking and looking up nodes in the cache for you. They're best treated as
101 * mere syntax when reading code that uses them.
102 *
103 * op->lock determines whether we take a read or a write lock at a given depth.
104 * If you've got a read lock and find that you need a write lock (i.e. you're
105 * going to have to split), set op->lock and return -EINTR; btree_root() will
106 * call you again and you'll have the correct lock.
107 */
108
109 /**
110 * btree - recurse down the btree on a specified key
111 * @fn: function to call, which will be passed the child node
112 * @key: key to recurse on
113 * @b: parent btree node
114 * @op: pointer to struct btree_op
115 */
116 #define btree(fn, key, b, op, ...) \
117 ({ \
118 int _r, l = (b)->level - 1; \
119 bool _w = l <= (op)->lock; \
120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, _w);\
121 if (!IS_ERR(_child)) { \
122 _child->parent = (b); \
123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
124 rw_unlock(_w, _child); \
125 } else \
126 _r = PTR_ERR(_child); \
127 _r; \
128 })
129
130 /**
131 * btree_root - call a function on the root of the btree
132 * @fn: function to call, which will be passed the child node
133 * @c: cache set
134 * @op: pointer to struct btree_op
135 */
136 #define btree_root(fn, c, op, ...) \
137 ({ \
138 int _r = -EINTR; \
139 do { \
140 struct btree *_b = (c)->root; \
141 bool _w = insert_lock(op, _b); \
142 rw_lock(_w, _b, _b->level); \
143 if (_b == (c)->root && \
144 _w == insert_lock(op, _b)) { \
145 _b->parent = NULL; \
146 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
147 } \
148 rw_unlock(_w, _b); \
149 bch_cannibalize_unlock(c); \
150 if (_r == -EINTR) \
151 schedule(); \
152 } while (_r == -EINTR); \
153 \
154 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
155 _r; \
156 })
157
158 static inline struct bset *write_block(struct btree *b)
159 {
160 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
161 }
162
163 static void bch_btree_init_next(struct btree *b)
164 {
165 /* If not a leaf node, always sort */
166 if (b->level && b->keys.nsets)
167 bch_btree_sort(&b->keys, &b->c->sort);
168 else
169 bch_btree_sort_lazy(&b->keys, &b->c->sort);
170
171 if (b->written < btree_blocks(b))
172 bch_bset_init_next(&b->keys, write_block(b),
173 bset_magic(&b->c->sb));
174
175 }
176
177 /* Btree key manipulation */
178
179 void bkey_put(struct cache_set *c, struct bkey *k)
180 {
181 unsigned i;
182
183 for (i = 0; i < KEY_PTRS(k); i++)
184 if (ptr_available(c, k, i))
185 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
186 }
187
188 /* Btree IO */
189
190 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
191 {
192 uint64_t crc = b->key.ptr[0];
193 void *data = (void *) i + 8, *end = bset_bkey_last(i);
194
195 crc = bch_crc64_update(crc, data, end - data);
196 return crc ^ 0xffffffffffffffffULL;
197 }
198
199 void bch_btree_node_read_done(struct btree *b)
200 {
201 const char *err = "bad btree header";
202 struct bset *i = btree_bset_first(b);
203 struct btree_iter *iter;
204
205 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
206 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
207 iter->used = 0;
208
209 #ifdef CONFIG_BCACHE_DEBUG
210 iter->b = &b->keys;
211 #endif
212
213 if (!i->seq)
214 goto err;
215
216 for (;
217 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
218 i = write_block(b)) {
219 err = "unsupported bset version";
220 if (i->version > BCACHE_BSET_VERSION)
221 goto err;
222
223 err = "bad btree header";
224 if (b->written + set_blocks(i, block_bytes(b->c)) >
225 btree_blocks(b))
226 goto err;
227
228 err = "bad magic";
229 if (i->magic != bset_magic(&b->c->sb))
230 goto err;
231
232 err = "bad checksum";
233 switch (i->version) {
234 case 0:
235 if (i->csum != csum_set(i))
236 goto err;
237 break;
238 case BCACHE_BSET_VERSION:
239 if (i->csum != btree_csum_set(b, i))
240 goto err;
241 break;
242 }
243
244 err = "empty set";
245 if (i != b->keys.set[0].data && !i->keys)
246 goto err;
247
248 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
249
250 b->written += set_blocks(i, block_bytes(b->c));
251 }
252
253 err = "corrupted btree";
254 for (i = write_block(b);
255 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
256 i = ((void *) i) + block_bytes(b->c))
257 if (i->seq == b->keys.set[0].data->seq)
258 goto err;
259
260 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
261
262 i = b->keys.set[0].data;
263 err = "short btree key";
264 if (b->keys.set[0].size &&
265 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
266 goto err;
267
268 if (b->written < btree_blocks(b))
269 bch_bset_init_next(&b->keys, write_block(b),
270 bset_magic(&b->c->sb));
271 out:
272 mempool_free(iter, b->c->fill_iter);
273 return;
274 err:
275 set_btree_node_io_error(b);
276 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
277 err, PTR_BUCKET_NR(b->c, &b->key, 0),
278 bset_block_offset(b, i), i->keys);
279 goto out;
280 }
281
282 static void btree_node_read_endio(struct bio *bio, int error)
283 {
284 struct closure *cl = bio->bi_private;
285 closure_put(cl);
286 }
287
288 static void bch_btree_node_read(struct btree *b)
289 {
290 uint64_t start_time = local_clock();
291 struct closure cl;
292 struct bio *bio;
293
294 trace_bcache_btree_read(b);
295
296 closure_init_stack(&cl);
297
298 bio = bch_bbio_alloc(b->c);
299 bio->bi_rw = REQ_META|READ_SYNC;
300 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
301 bio->bi_end_io = btree_node_read_endio;
302 bio->bi_private = &cl;
303
304 bch_bio_map(bio, b->keys.set[0].data);
305
306 bch_submit_bbio(bio, b->c, &b->key, 0);
307 closure_sync(&cl);
308
309 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
310 set_btree_node_io_error(b);
311
312 bch_bbio_free(bio, b->c);
313
314 if (btree_node_io_error(b))
315 goto err;
316
317 bch_btree_node_read_done(b);
318 bch_time_stats_update(&b->c->btree_read_time, start_time);
319
320 return;
321 err:
322 bch_cache_set_error(b->c, "io error reading bucket %zu",
323 PTR_BUCKET_NR(b->c, &b->key, 0));
324 }
325
326 static void btree_complete_write(struct btree *b, struct btree_write *w)
327 {
328 if (w->prio_blocked &&
329 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
330 wake_up_allocators(b->c);
331
332 if (w->journal) {
333 atomic_dec_bug(w->journal);
334 __closure_wake_up(&b->c->journal.wait);
335 }
336
337 w->prio_blocked = 0;
338 w->journal = NULL;
339 }
340
341 static void btree_node_write_unlock(struct closure *cl)
342 {
343 struct btree *b = container_of(cl, struct btree, io);
344
345 up(&b->io_mutex);
346 }
347
348 static void __btree_node_write_done(struct closure *cl)
349 {
350 struct btree *b = container_of(cl, struct btree, io);
351 struct btree_write *w = btree_prev_write(b);
352
353 bch_bbio_free(b->bio, b->c);
354 b->bio = NULL;
355 btree_complete_write(b, w);
356
357 if (btree_node_dirty(b))
358 schedule_delayed_work(&b->work, 30 * HZ);
359
360 closure_return_with_destructor(cl, btree_node_write_unlock);
361 }
362
363 static void btree_node_write_done(struct closure *cl)
364 {
365 struct btree *b = container_of(cl, struct btree, io);
366 struct bio_vec *bv;
367 int n;
368
369 bio_for_each_segment_all(bv, b->bio, n)
370 __free_page(bv->bv_page);
371
372 __btree_node_write_done(cl);
373 }
374
375 static void btree_node_write_endio(struct bio *bio, int error)
376 {
377 struct closure *cl = bio->bi_private;
378 struct btree *b = container_of(cl, struct btree, io);
379
380 if (error)
381 set_btree_node_io_error(b);
382
383 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
384 closure_put(cl);
385 }
386
387 static void do_btree_node_write(struct btree *b)
388 {
389 struct closure *cl = &b->io;
390 struct bset *i = btree_bset_last(b);
391 BKEY_PADDED(key) k;
392
393 i->version = BCACHE_BSET_VERSION;
394 i->csum = btree_csum_set(b, i);
395
396 BUG_ON(b->bio);
397 b->bio = bch_bbio_alloc(b->c);
398
399 b->bio->bi_end_io = btree_node_write_endio;
400 b->bio->bi_private = cl;
401 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
402 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
403 bch_bio_map(b->bio, i);
404
405 /*
406 * If we're appending to a leaf node, we don't technically need FUA -
407 * this write just needs to be persisted before the next journal write,
408 * which will be marked FLUSH|FUA.
409 *
410 * Similarly if we're writing a new btree root - the pointer is going to
411 * be in the next journal entry.
412 *
413 * But if we're writing a new btree node (that isn't a root) or
414 * appending to a non leaf btree node, we need either FUA or a flush
415 * when we write the parent with the new pointer. FUA is cheaper than a
416 * flush, and writes appending to leaf nodes aren't blocking anything so
417 * just make all btree node writes FUA to keep things sane.
418 */
419
420 bkey_copy(&k.key, &b->key);
421 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
422 bset_sector_offset(&b->keys, i));
423
424 if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
425 int j;
426 struct bio_vec *bv;
427 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
428
429 bio_for_each_segment_all(bv, b->bio, j)
430 memcpy(page_address(bv->bv_page),
431 base + j * PAGE_SIZE, PAGE_SIZE);
432
433 bch_submit_bbio(b->bio, b->c, &k.key, 0);
434
435 continue_at(cl, btree_node_write_done, NULL);
436 } else {
437 b->bio->bi_vcnt = 0;
438 bch_bio_map(b->bio, i);
439
440 bch_submit_bbio(b->bio, b->c, &k.key, 0);
441
442 closure_sync(cl);
443 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
444 }
445 }
446
447 void __bch_btree_node_write(struct btree *b, struct closure *parent)
448 {
449 struct bset *i = btree_bset_last(b);
450
451 lockdep_assert_held(&b->write_lock);
452
453 trace_bcache_btree_write(b);
454
455 BUG_ON(current->bio_list);
456 BUG_ON(b->written >= btree_blocks(b));
457 BUG_ON(b->written && !i->keys);
458 BUG_ON(btree_bset_first(b)->seq != i->seq);
459 bch_check_keys(&b->keys, "writing");
460
461 cancel_delayed_work(&b->work);
462
463 /* If caller isn't waiting for write, parent refcount is cache set */
464 down(&b->io_mutex);
465 closure_init(&b->io, parent ?: &b->c->cl);
466
467 clear_bit(BTREE_NODE_dirty, &b->flags);
468 change_bit(BTREE_NODE_write_idx, &b->flags);
469
470 do_btree_node_write(b);
471
472 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
473 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
474
475 b->written += set_blocks(i, block_bytes(b->c));
476 }
477
478 void bch_btree_node_write(struct btree *b, struct closure *parent)
479 {
480 unsigned nsets = b->keys.nsets;
481
482 lockdep_assert_held(&b->lock);
483
484 __bch_btree_node_write(b, parent);
485
486 /*
487 * do verify if there was more than one set initially (i.e. we did a
488 * sort) and we sorted down to a single set:
489 */
490 if (nsets && !b->keys.nsets)
491 bch_btree_verify(b);
492
493 bch_btree_init_next(b);
494 }
495
496 static void bch_btree_node_write_sync(struct btree *b)
497 {
498 struct closure cl;
499
500 closure_init_stack(&cl);
501
502 mutex_lock(&b->write_lock);
503 bch_btree_node_write(b, &cl);
504 mutex_unlock(&b->write_lock);
505
506 closure_sync(&cl);
507 }
508
509 static void btree_node_write_work(struct work_struct *w)
510 {
511 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
512
513 mutex_lock(&b->write_lock);
514 if (btree_node_dirty(b))
515 __bch_btree_node_write(b, NULL);
516 mutex_unlock(&b->write_lock);
517 }
518
519 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
520 {
521 struct bset *i = btree_bset_last(b);
522 struct btree_write *w = btree_current_write(b);
523
524 lockdep_assert_held(&b->write_lock);
525
526 BUG_ON(!b->written);
527 BUG_ON(!i->keys);
528
529 if (!btree_node_dirty(b))
530 schedule_delayed_work(&b->work, 30 * HZ);
531
532 set_btree_node_dirty(b);
533
534 if (journal_ref) {
535 if (w->journal &&
536 journal_pin_cmp(b->c, w->journal, journal_ref)) {
537 atomic_dec_bug(w->journal);
538 w->journal = NULL;
539 }
540
541 if (!w->journal) {
542 w->journal = journal_ref;
543 atomic_inc(w->journal);
544 }
545 }
546
547 /* Force write if set is too big */
548 if (set_bytes(i) > PAGE_SIZE - 48 &&
549 !current->bio_list)
550 bch_btree_node_write(b, NULL);
551 }
552
553 /*
554 * Btree in memory cache - allocation/freeing
555 * mca -> memory cache
556 */
557
558 #define mca_reserve(c) (((c->root && c->root->level) \
559 ? c->root->level : 1) * 8 + 16)
560 #define mca_can_free(c) \
561 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
562
563 static void mca_data_free(struct btree *b)
564 {
565 BUG_ON(b->io_mutex.count != 1);
566
567 bch_btree_keys_free(&b->keys);
568
569 b->c->btree_cache_used--;
570 list_move(&b->list, &b->c->btree_cache_freed);
571 }
572
573 static void mca_bucket_free(struct btree *b)
574 {
575 BUG_ON(btree_node_dirty(b));
576
577 b->key.ptr[0] = 0;
578 hlist_del_init_rcu(&b->hash);
579 list_move(&b->list, &b->c->btree_cache_freeable);
580 }
581
582 static unsigned btree_order(struct bkey *k)
583 {
584 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
585 }
586
587 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
588 {
589 if (!bch_btree_keys_alloc(&b->keys,
590 max_t(unsigned,
591 ilog2(b->c->btree_pages),
592 btree_order(k)),
593 gfp)) {
594 b->c->btree_cache_used++;
595 list_move(&b->list, &b->c->btree_cache);
596 } else {
597 list_move(&b->list, &b->c->btree_cache_freed);
598 }
599 }
600
601 static struct btree *mca_bucket_alloc(struct cache_set *c,
602 struct bkey *k, gfp_t gfp)
603 {
604 struct btree *b = kzalloc(sizeof(struct btree), gfp);
605 if (!b)
606 return NULL;
607
608 init_rwsem(&b->lock);
609 lockdep_set_novalidate_class(&b->lock);
610 mutex_init(&b->write_lock);
611 lockdep_set_novalidate_class(&b->write_lock);
612 INIT_LIST_HEAD(&b->list);
613 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
614 b->c = c;
615 sema_init(&b->io_mutex, 1);
616
617 mca_data_alloc(b, k, gfp);
618 return b;
619 }
620
621 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
622 {
623 struct closure cl;
624
625 closure_init_stack(&cl);
626 lockdep_assert_held(&b->c->bucket_lock);
627
628 if (!down_write_trylock(&b->lock))
629 return -ENOMEM;
630
631 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
632
633 if (b->keys.page_order < min_order)
634 goto out_unlock;
635
636 if (!flush) {
637 if (btree_node_dirty(b))
638 goto out_unlock;
639
640 if (down_trylock(&b->io_mutex))
641 goto out_unlock;
642 up(&b->io_mutex);
643 }
644
645 mutex_lock(&b->write_lock);
646 if (btree_node_dirty(b))
647 __bch_btree_node_write(b, &cl);
648 mutex_unlock(&b->write_lock);
649
650 closure_sync(&cl);
651
652 /* wait for any in flight btree write */
653 down(&b->io_mutex);
654 up(&b->io_mutex);
655
656 return 0;
657 out_unlock:
658 rw_unlock(true, b);
659 return -ENOMEM;
660 }
661
662 static unsigned long bch_mca_scan(struct shrinker *shrink,
663 struct shrink_control *sc)
664 {
665 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
666 struct btree *b, *t;
667 unsigned long i, nr = sc->nr_to_scan;
668 unsigned long freed = 0;
669
670 if (c->shrinker_disabled)
671 return SHRINK_STOP;
672
673 if (c->btree_cache_alloc_lock)
674 return SHRINK_STOP;
675
676 /* Return -1 if we can't do anything right now */
677 if (sc->gfp_mask & __GFP_IO)
678 mutex_lock(&c->bucket_lock);
679 else if (!mutex_trylock(&c->bucket_lock))
680 return -1;
681
682 /*
683 * It's _really_ critical that we don't free too many btree nodes - we
684 * have to always leave ourselves a reserve. The reserve is how we
685 * guarantee that allocating memory for a new btree node can always
686 * succeed, so that inserting keys into the btree can always succeed and
687 * IO can always make forward progress:
688 */
689 nr /= c->btree_pages;
690 nr = min_t(unsigned long, nr, mca_can_free(c));
691
692 i = 0;
693 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
694 if (freed >= nr)
695 break;
696
697 if (++i > 3 &&
698 !mca_reap(b, 0, false)) {
699 mca_data_free(b);
700 rw_unlock(true, b);
701 freed++;
702 }
703 }
704
705 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
706 if (list_empty(&c->btree_cache))
707 goto out;
708
709 b = list_first_entry(&c->btree_cache, struct btree, list);
710 list_rotate_left(&c->btree_cache);
711
712 if (!b->accessed &&
713 !mca_reap(b, 0, false)) {
714 mca_bucket_free(b);
715 mca_data_free(b);
716 rw_unlock(true, b);
717 freed++;
718 } else
719 b->accessed = 0;
720 }
721 out:
722 mutex_unlock(&c->bucket_lock);
723 return freed;
724 }
725
726 static unsigned long bch_mca_count(struct shrinker *shrink,
727 struct shrink_control *sc)
728 {
729 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
730
731 if (c->shrinker_disabled)
732 return 0;
733
734 if (c->btree_cache_alloc_lock)
735 return 0;
736
737 return mca_can_free(c) * c->btree_pages;
738 }
739
740 void bch_btree_cache_free(struct cache_set *c)
741 {
742 struct btree *b;
743 struct closure cl;
744 closure_init_stack(&cl);
745
746 if (c->shrink.list.next)
747 unregister_shrinker(&c->shrink);
748
749 mutex_lock(&c->bucket_lock);
750
751 #ifdef CONFIG_BCACHE_DEBUG
752 if (c->verify_data)
753 list_move(&c->verify_data->list, &c->btree_cache);
754
755 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
756 #endif
757
758 list_splice(&c->btree_cache_freeable,
759 &c->btree_cache);
760
761 while (!list_empty(&c->btree_cache)) {
762 b = list_first_entry(&c->btree_cache, struct btree, list);
763
764 if (btree_node_dirty(b))
765 btree_complete_write(b, btree_current_write(b));
766 clear_bit(BTREE_NODE_dirty, &b->flags);
767
768 mca_data_free(b);
769 }
770
771 while (!list_empty(&c->btree_cache_freed)) {
772 b = list_first_entry(&c->btree_cache_freed,
773 struct btree, list);
774 list_del(&b->list);
775 cancel_delayed_work_sync(&b->work);
776 kfree(b);
777 }
778
779 mutex_unlock(&c->bucket_lock);
780 }
781
782 int bch_btree_cache_alloc(struct cache_set *c)
783 {
784 unsigned i;
785
786 for (i = 0; i < mca_reserve(c); i++)
787 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
788 return -ENOMEM;
789
790 list_splice_init(&c->btree_cache,
791 &c->btree_cache_freeable);
792
793 #ifdef CONFIG_BCACHE_DEBUG
794 mutex_init(&c->verify_lock);
795
796 c->verify_ondisk = (void *)
797 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
798
799 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800
801 if (c->verify_data &&
802 c->verify_data->keys.set->data)
803 list_del_init(&c->verify_data->list);
804 else
805 c->verify_data = NULL;
806 #endif
807
808 c->shrink.count_objects = bch_mca_count;
809 c->shrink.scan_objects = bch_mca_scan;
810 c->shrink.seeks = 4;
811 c->shrink.batch = c->btree_pages * 2;
812 register_shrinker(&c->shrink);
813
814 return 0;
815 }
816
817 /* Btree in memory cache - hash table */
818
819 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
820 {
821 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
822 }
823
824 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
825 {
826 struct btree *b;
827
828 rcu_read_lock();
829 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
830 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
831 goto out;
832 b = NULL;
833 out:
834 rcu_read_unlock();
835 return b;
836 }
837
838 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
839 {
840 struct task_struct *old;
841
842 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
843 if (old && old != current) {
844 if (op)
845 prepare_to_wait(&c->btree_cache_wait, &op->wait,
846 TASK_UNINTERRUPTIBLE);
847 return -EINTR;
848 }
849
850 return 0;
851 }
852
853 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
854 struct bkey *k)
855 {
856 struct btree *b;
857
858 trace_bcache_btree_cache_cannibalize(c);
859
860 if (mca_cannibalize_lock(c, op))
861 return ERR_PTR(-EINTR);
862
863 list_for_each_entry_reverse(b, &c->btree_cache, list)
864 if (!mca_reap(b, btree_order(k), false))
865 return b;
866
867 list_for_each_entry_reverse(b, &c->btree_cache, list)
868 if (!mca_reap(b, btree_order(k), true))
869 return b;
870
871 WARN(1, "btree cache cannibalize failed\n");
872 return ERR_PTR(-ENOMEM);
873 }
874
875 /*
876 * We can only have one thread cannibalizing other cached btree nodes at a time,
877 * or we'll deadlock. We use an open coded mutex to ensure that, which a
878 * cannibalize_bucket() will take. This means every time we unlock the root of
879 * the btree, we need to release this lock if we have it held.
880 */
881 static void bch_cannibalize_unlock(struct cache_set *c)
882 {
883 if (c->btree_cache_alloc_lock == current) {
884 c->btree_cache_alloc_lock = NULL;
885 wake_up(&c->btree_cache_wait);
886 }
887 }
888
889 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
890 struct bkey *k, int level)
891 {
892 struct btree *b;
893
894 BUG_ON(current->bio_list);
895
896 lockdep_assert_held(&c->bucket_lock);
897
898 if (mca_find(c, k))
899 return NULL;
900
901 /* btree_free() doesn't free memory; it sticks the node on the end of
902 * the list. Check if there's any freed nodes there:
903 */
904 list_for_each_entry(b, &c->btree_cache_freeable, list)
905 if (!mca_reap(b, btree_order(k), false))
906 goto out;
907
908 /* We never free struct btree itself, just the memory that holds the on
909 * disk node. Check the freed list before allocating a new one:
910 */
911 list_for_each_entry(b, &c->btree_cache_freed, list)
912 if (!mca_reap(b, 0, false)) {
913 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
914 if (!b->keys.set[0].data)
915 goto err;
916 else
917 goto out;
918 }
919
920 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
921 if (!b)
922 goto err;
923
924 BUG_ON(!down_write_trylock(&b->lock));
925 if (!b->keys.set->data)
926 goto err;
927 out:
928 BUG_ON(b->io_mutex.count != 1);
929
930 bkey_copy(&b->key, k);
931 list_move(&b->list, &c->btree_cache);
932 hlist_del_init_rcu(&b->hash);
933 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
934
935 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
936 b->parent = (void *) ~0UL;
937 b->flags = 0;
938 b->written = 0;
939 b->level = level;
940
941 if (!b->level)
942 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
943 &b->c->expensive_debug_checks);
944 else
945 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
946 &b->c->expensive_debug_checks);
947
948 return b;
949 err:
950 if (b)
951 rw_unlock(true, b);
952
953 b = mca_cannibalize(c, op, k);
954 if (!IS_ERR(b))
955 goto out;
956
957 return b;
958 }
959
960 /**
961 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
962 * in from disk if necessary.
963 *
964 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
965 *
966 * The btree node will have either a read or a write lock held, depending on
967 * level and op->lock.
968 */
969 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
970 struct bkey *k, int level, bool write)
971 {
972 int i = 0;
973 struct btree *b;
974
975 BUG_ON(level < 0);
976 retry:
977 b = mca_find(c, k);
978
979 if (!b) {
980 if (current->bio_list)
981 return ERR_PTR(-EAGAIN);
982
983 mutex_lock(&c->bucket_lock);
984 b = mca_alloc(c, op, k, level);
985 mutex_unlock(&c->bucket_lock);
986
987 if (!b)
988 goto retry;
989 if (IS_ERR(b))
990 return b;
991
992 bch_btree_node_read(b);
993
994 if (!write)
995 downgrade_write(&b->lock);
996 } else {
997 rw_lock(write, b, level);
998 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
999 rw_unlock(write, b);
1000 goto retry;
1001 }
1002 BUG_ON(b->level != level);
1003 }
1004
1005 b->accessed = 1;
1006
1007 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1008 prefetch(b->keys.set[i].tree);
1009 prefetch(b->keys.set[i].data);
1010 }
1011
1012 for (; i <= b->keys.nsets; i++)
1013 prefetch(b->keys.set[i].data);
1014
1015 if (btree_node_io_error(b)) {
1016 rw_unlock(write, b);
1017 return ERR_PTR(-EIO);
1018 }
1019
1020 BUG_ON(!b->written);
1021
1022 return b;
1023 }
1024
1025 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
1026 {
1027 struct btree *b;
1028
1029 mutex_lock(&c->bucket_lock);
1030 b = mca_alloc(c, NULL, k, level);
1031 mutex_unlock(&c->bucket_lock);
1032
1033 if (!IS_ERR_OR_NULL(b)) {
1034 bch_btree_node_read(b);
1035 rw_unlock(true, b);
1036 }
1037 }
1038
1039 /* Btree alloc */
1040
1041 static void btree_node_free(struct btree *b)
1042 {
1043 trace_bcache_btree_node_free(b);
1044
1045 BUG_ON(b == b->c->root);
1046
1047 mutex_lock(&b->write_lock);
1048
1049 if (btree_node_dirty(b))
1050 btree_complete_write(b, btree_current_write(b));
1051 clear_bit(BTREE_NODE_dirty, &b->flags);
1052
1053 mutex_unlock(&b->write_lock);
1054
1055 cancel_delayed_work(&b->work);
1056
1057 mutex_lock(&b->c->bucket_lock);
1058 bch_bucket_free(b->c, &b->key);
1059 mca_bucket_free(b);
1060 mutex_unlock(&b->c->bucket_lock);
1061 }
1062
1063 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1064 int level, bool wait)
1065 {
1066 BKEY_PADDED(key) k;
1067 struct btree *b = ERR_PTR(-EAGAIN);
1068
1069 mutex_lock(&c->bucket_lock);
1070 retry:
1071 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1072 goto err;
1073
1074 bkey_put(c, &k.key);
1075 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1076
1077 b = mca_alloc(c, op, &k.key, level);
1078 if (IS_ERR(b))
1079 goto err_free;
1080
1081 if (!b) {
1082 cache_bug(c,
1083 "Tried to allocate bucket that was in btree cache");
1084 goto retry;
1085 }
1086
1087 b->accessed = 1;
1088 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1089
1090 mutex_unlock(&c->bucket_lock);
1091
1092 trace_bcache_btree_node_alloc(b);
1093 return b;
1094 err_free:
1095 bch_bucket_free(c, &k.key);
1096 err:
1097 mutex_unlock(&c->bucket_lock);
1098
1099 trace_bcache_btree_node_alloc_fail(b);
1100 return b;
1101 }
1102
1103 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1104 struct btree_op *op, int level)
1105 {
1106 return __bch_btree_node_alloc(c, op, level, op != NULL);
1107 }
1108
1109 static struct btree *btree_node_alloc_replacement(struct btree *b,
1110 struct btree_op *op)
1111 {
1112 struct btree *n = bch_btree_node_alloc(b->c, op, b->level);
1113 if (!IS_ERR_OR_NULL(n)) {
1114 mutex_lock(&n->write_lock);
1115 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1116 bkey_copy_key(&n->key, &b->key);
1117 mutex_unlock(&n->write_lock);
1118 }
1119
1120 return n;
1121 }
1122
1123 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1124 {
1125 unsigned i;
1126
1127 mutex_lock(&b->c->bucket_lock);
1128
1129 atomic_inc(&b->c->prio_blocked);
1130
1131 bkey_copy(k, &b->key);
1132 bkey_copy_key(k, &ZERO_KEY);
1133
1134 for (i = 0; i < KEY_PTRS(k); i++)
1135 SET_PTR_GEN(k, i,
1136 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1137 PTR_BUCKET(b->c, &b->key, i)));
1138
1139 mutex_unlock(&b->c->bucket_lock);
1140 }
1141
1142 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1143 {
1144 struct cache_set *c = b->c;
1145 struct cache *ca;
1146 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1147
1148 mutex_lock(&c->bucket_lock);
1149
1150 for_each_cache(ca, c, i)
1151 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1152 if (op)
1153 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1154 TASK_UNINTERRUPTIBLE);
1155 mutex_unlock(&c->bucket_lock);
1156 return -EINTR;
1157 }
1158
1159 mutex_unlock(&c->bucket_lock);
1160
1161 return mca_cannibalize_lock(b->c, op);
1162 }
1163
1164 /* Garbage collection */
1165
1166 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1167 struct bkey *k)
1168 {
1169 uint8_t stale = 0;
1170 unsigned i;
1171 struct bucket *g;
1172
1173 /*
1174 * ptr_invalid() can't return true for the keys that mark btree nodes as
1175 * freed, but since ptr_bad() returns true we'll never actually use them
1176 * for anything and thus we don't want mark their pointers here
1177 */
1178 if (!bkey_cmp(k, &ZERO_KEY))
1179 return stale;
1180
1181 for (i = 0; i < KEY_PTRS(k); i++) {
1182 if (!ptr_available(c, k, i))
1183 continue;
1184
1185 g = PTR_BUCKET(c, k, i);
1186
1187 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1188 g->last_gc = PTR_GEN(k, i);
1189
1190 if (ptr_stale(c, k, i)) {
1191 stale = max(stale, ptr_stale(c, k, i));
1192 continue;
1193 }
1194
1195 cache_bug_on(GC_MARK(g) &&
1196 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1197 c, "inconsistent ptrs: mark = %llu, level = %i",
1198 GC_MARK(g), level);
1199
1200 if (level)
1201 SET_GC_MARK(g, GC_MARK_METADATA);
1202 else if (KEY_DIRTY(k))
1203 SET_GC_MARK(g, GC_MARK_DIRTY);
1204 else if (!GC_MARK(g))
1205 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1206
1207 /* guard against overflow */
1208 SET_GC_SECTORS_USED(g, min_t(unsigned,
1209 GC_SECTORS_USED(g) + KEY_SIZE(k),
1210 MAX_GC_SECTORS_USED));
1211
1212 BUG_ON(!GC_SECTORS_USED(g));
1213 }
1214
1215 return stale;
1216 }
1217
1218 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1219
1220 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1221 {
1222 unsigned i;
1223
1224 for (i = 0; i < KEY_PTRS(k); i++)
1225 if (ptr_available(c, k, i) &&
1226 !ptr_stale(c, k, i)) {
1227 struct bucket *b = PTR_BUCKET(c, k, i);
1228
1229 b->gen = PTR_GEN(k, i);
1230
1231 if (level && bkey_cmp(k, &ZERO_KEY))
1232 b->prio = BTREE_PRIO;
1233 else if (!level && b->prio == BTREE_PRIO)
1234 b->prio = INITIAL_PRIO;
1235 }
1236
1237 __bch_btree_mark_key(c, level, k);
1238 }
1239
1240 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1241 {
1242 uint8_t stale = 0;
1243 unsigned keys = 0, good_keys = 0;
1244 struct bkey *k;
1245 struct btree_iter iter;
1246 struct bset_tree *t;
1247
1248 gc->nodes++;
1249
1250 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1251 stale = max(stale, btree_mark_key(b, k));
1252 keys++;
1253
1254 if (bch_ptr_bad(&b->keys, k))
1255 continue;
1256
1257 gc->key_bytes += bkey_u64s(k);
1258 gc->nkeys++;
1259 good_keys++;
1260
1261 gc->data += KEY_SIZE(k);
1262 }
1263
1264 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1265 btree_bug_on(t->size &&
1266 bset_written(&b->keys, t) &&
1267 bkey_cmp(&b->key, &t->end) < 0,
1268 b, "found short btree key in gc");
1269
1270 if (b->c->gc_always_rewrite)
1271 return true;
1272
1273 if (stale > 10)
1274 return true;
1275
1276 if ((keys - good_keys) * 2 > keys)
1277 return true;
1278
1279 return false;
1280 }
1281
1282 #define GC_MERGE_NODES 4U
1283
1284 struct gc_merge_info {
1285 struct btree *b;
1286 unsigned keys;
1287 };
1288
1289 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1290 struct keylist *, atomic_t *, struct bkey *);
1291
1292 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1293 struct gc_stat *gc, struct gc_merge_info *r)
1294 {
1295 unsigned i, nodes = 0, keys = 0, blocks;
1296 struct btree *new_nodes[GC_MERGE_NODES];
1297 struct keylist keylist;
1298 struct closure cl;
1299 struct bkey *k;
1300
1301 bch_keylist_init(&keylist);
1302
1303 if (btree_check_reserve(b, NULL))
1304 return 0;
1305
1306 memset(new_nodes, 0, sizeof(new_nodes));
1307 closure_init_stack(&cl);
1308
1309 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1310 keys += r[nodes++].keys;
1311
1312 blocks = btree_default_blocks(b->c) * 2 / 3;
1313
1314 if (nodes < 2 ||
1315 __set_blocks(b->keys.set[0].data, keys,
1316 block_bytes(b->c)) > blocks * (nodes - 1))
1317 return 0;
1318
1319 for (i = 0; i < nodes; i++) {
1320 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1321 if (IS_ERR_OR_NULL(new_nodes[i]))
1322 goto out_nocoalesce;
1323 }
1324
1325 /*
1326 * We have to check the reserve here, after we've allocated our new
1327 * nodes, to make sure the insert below will succeed - we also check
1328 * before as an optimization to potentially avoid a bunch of expensive
1329 * allocs/sorts
1330 */
1331 if (btree_check_reserve(b, NULL))
1332 goto out_nocoalesce;
1333
1334 for (i = 0; i < nodes; i++)
1335 mutex_lock(&new_nodes[i]->write_lock);
1336
1337 for (i = nodes - 1; i > 0; --i) {
1338 struct bset *n1 = btree_bset_first(new_nodes[i]);
1339 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1340 struct bkey *k, *last = NULL;
1341
1342 keys = 0;
1343
1344 if (i > 1) {
1345 for (k = n2->start;
1346 k < bset_bkey_last(n2);
1347 k = bkey_next(k)) {
1348 if (__set_blocks(n1, n1->keys + keys +
1349 bkey_u64s(k),
1350 block_bytes(b->c)) > blocks)
1351 break;
1352
1353 last = k;
1354 keys += bkey_u64s(k);
1355 }
1356 } else {
1357 /*
1358 * Last node we're not getting rid of - we're getting
1359 * rid of the node at r[0]. Have to try and fit all of
1360 * the remaining keys into this node; we can't ensure
1361 * they will always fit due to rounding and variable
1362 * length keys (shouldn't be possible in practice,
1363 * though)
1364 */
1365 if (__set_blocks(n1, n1->keys + n2->keys,
1366 block_bytes(b->c)) >
1367 btree_blocks(new_nodes[i]))
1368 goto out_nocoalesce;
1369
1370 keys = n2->keys;
1371 /* Take the key of the node we're getting rid of */
1372 last = &r->b->key;
1373 }
1374
1375 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1376 btree_blocks(new_nodes[i]));
1377
1378 if (last)
1379 bkey_copy_key(&new_nodes[i]->key, last);
1380
1381 memcpy(bset_bkey_last(n1),
1382 n2->start,
1383 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1384
1385 n1->keys += keys;
1386 r[i].keys = n1->keys;
1387
1388 memmove(n2->start,
1389 bset_bkey_idx(n2, keys),
1390 (void *) bset_bkey_last(n2) -
1391 (void *) bset_bkey_idx(n2, keys));
1392
1393 n2->keys -= keys;
1394
1395 if (__bch_keylist_realloc(&keylist,
1396 bkey_u64s(&new_nodes[i]->key)))
1397 goto out_nocoalesce;
1398
1399 bch_btree_node_write(new_nodes[i], &cl);
1400 bch_keylist_add(&keylist, &new_nodes[i]->key);
1401 }
1402
1403 for (i = 0; i < nodes; i++)
1404 mutex_unlock(&new_nodes[i]->write_lock);
1405
1406 closure_sync(&cl);
1407
1408 /* We emptied out this node */
1409 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1410 btree_node_free(new_nodes[0]);
1411 rw_unlock(true, new_nodes[0]);
1412
1413 for (i = 0; i < nodes; i++) {
1414 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1415 goto out_nocoalesce;
1416
1417 make_btree_freeing_key(r[i].b, keylist.top);
1418 bch_keylist_push(&keylist);
1419 }
1420
1421 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1422 BUG_ON(!bch_keylist_empty(&keylist));
1423
1424 for (i = 0; i < nodes; i++) {
1425 btree_node_free(r[i].b);
1426 rw_unlock(true, r[i].b);
1427
1428 r[i].b = new_nodes[i];
1429 }
1430
1431 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1432 r[nodes - 1].b = ERR_PTR(-EINTR);
1433
1434 trace_bcache_btree_gc_coalesce(nodes);
1435 gc->nodes--;
1436
1437 bch_keylist_free(&keylist);
1438
1439 /* Invalidated our iterator */
1440 return -EINTR;
1441
1442 out_nocoalesce:
1443 closure_sync(&cl);
1444 bch_keylist_free(&keylist);
1445
1446 while ((k = bch_keylist_pop(&keylist)))
1447 if (!bkey_cmp(k, &ZERO_KEY))
1448 atomic_dec(&b->c->prio_blocked);
1449
1450 for (i = 0; i < nodes; i++)
1451 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1452 btree_node_free(new_nodes[i]);
1453 rw_unlock(true, new_nodes[i]);
1454 }
1455 return 0;
1456 }
1457
1458 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1459 struct btree *replace)
1460 {
1461 struct keylist keys;
1462 struct btree *n;
1463
1464 if (btree_check_reserve(b, NULL))
1465 return 0;
1466
1467 n = btree_node_alloc_replacement(replace, NULL);
1468
1469 /* recheck reserve after allocating replacement node */
1470 if (btree_check_reserve(b, NULL)) {
1471 btree_node_free(n);
1472 rw_unlock(true, n);
1473 return 0;
1474 }
1475
1476 bch_btree_node_write_sync(n);
1477
1478 bch_keylist_init(&keys);
1479 bch_keylist_add(&keys, &n->key);
1480
1481 make_btree_freeing_key(replace, keys.top);
1482 bch_keylist_push(&keys);
1483
1484 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1485 BUG_ON(!bch_keylist_empty(&keys));
1486
1487 btree_node_free(replace);
1488 rw_unlock(true, n);
1489
1490 /* Invalidated our iterator */
1491 return -EINTR;
1492 }
1493
1494 static unsigned btree_gc_count_keys(struct btree *b)
1495 {
1496 struct bkey *k;
1497 struct btree_iter iter;
1498 unsigned ret = 0;
1499
1500 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1501 ret += bkey_u64s(k);
1502
1503 return ret;
1504 }
1505
1506 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1507 struct closure *writes, struct gc_stat *gc)
1508 {
1509 int ret = 0;
1510 bool should_rewrite;
1511 struct bkey *k;
1512 struct btree_iter iter;
1513 struct gc_merge_info r[GC_MERGE_NODES];
1514 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1515
1516 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1517
1518 for (i = r; i < r + ARRAY_SIZE(r); i++)
1519 i->b = ERR_PTR(-EINTR);
1520
1521 while (1) {
1522 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1523 if (k) {
1524 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1525 true);
1526 if (IS_ERR(r->b)) {
1527 ret = PTR_ERR(r->b);
1528 break;
1529 }
1530
1531 r->keys = btree_gc_count_keys(r->b);
1532
1533 ret = btree_gc_coalesce(b, op, gc, r);
1534 if (ret)
1535 break;
1536 }
1537
1538 if (!last->b)
1539 break;
1540
1541 if (!IS_ERR(last->b)) {
1542 should_rewrite = btree_gc_mark_node(last->b, gc);
1543 if (should_rewrite) {
1544 ret = btree_gc_rewrite_node(b, op, last->b);
1545 if (ret)
1546 break;
1547 }
1548
1549 if (last->b->level) {
1550 ret = btree_gc_recurse(last->b, op, writes, gc);
1551 if (ret)
1552 break;
1553 }
1554
1555 bkey_copy_key(&b->c->gc_done, &last->b->key);
1556
1557 /*
1558 * Must flush leaf nodes before gc ends, since replace
1559 * operations aren't journalled
1560 */
1561 mutex_lock(&last->b->write_lock);
1562 if (btree_node_dirty(last->b))
1563 bch_btree_node_write(last->b, writes);
1564 mutex_unlock(&last->b->write_lock);
1565 rw_unlock(true, last->b);
1566 }
1567
1568 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1569 r->b = NULL;
1570
1571 if (need_resched()) {
1572 ret = -EAGAIN;
1573 break;
1574 }
1575 }
1576
1577 for (i = r; i < r + ARRAY_SIZE(r); i++)
1578 if (!IS_ERR_OR_NULL(i->b)) {
1579 mutex_lock(&i->b->write_lock);
1580 if (btree_node_dirty(i->b))
1581 bch_btree_node_write(i->b, writes);
1582 mutex_unlock(&i->b->write_lock);
1583 rw_unlock(true, i->b);
1584 }
1585
1586 return ret;
1587 }
1588
1589 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1590 struct closure *writes, struct gc_stat *gc)
1591 {
1592 struct btree *n = NULL;
1593 int ret = 0;
1594 bool should_rewrite;
1595
1596 should_rewrite = btree_gc_mark_node(b, gc);
1597 if (should_rewrite) {
1598 n = btree_node_alloc_replacement(b, NULL);
1599
1600 if (!IS_ERR_OR_NULL(n)) {
1601 bch_btree_node_write_sync(n);
1602
1603 bch_btree_set_root(n);
1604 btree_node_free(b);
1605 rw_unlock(true, n);
1606
1607 return -EINTR;
1608 }
1609 }
1610
1611 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1612
1613 if (b->level) {
1614 ret = btree_gc_recurse(b, op, writes, gc);
1615 if (ret)
1616 return ret;
1617 }
1618
1619 bkey_copy_key(&b->c->gc_done, &b->key);
1620
1621 return ret;
1622 }
1623
1624 static void btree_gc_start(struct cache_set *c)
1625 {
1626 struct cache *ca;
1627 struct bucket *b;
1628 unsigned i;
1629
1630 if (!c->gc_mark_valid)
1631 return;
1632
1633 mutex_lock(&c->bucket_lock);
1634
1635 c->gc_mark_valid = 0;
1636 c->gc_done = ZERO_KEY;
1637
1638 for_each_cache(ca, c, i)
1639 for_each_bucket(b, ca) {
1640 b->last_gc = b->gen;
1641 if (!atomic_read(&b->pin)) {
1642 SET_GC_MARK(b, 0);
1643 SET_GC_SECTORS_USED(b, 0);
1644 }
1645 }
1646
1647 mutex_unlock(&c->bucket_lock);
1648 }
1649
1650 static size_t bch_btree_gc_finish(struct cache_set *c)
1651 {
1652 size_t available = 0;
1653 struct bucket *b;
1654 struct cache *ca;
1655 unsigned i;
1656
1657 mutex_lock(&c->bucket_lock);
1658
1659 set_gc_sectors(c);
1660 c->gc_mark_valid = 1;
1661 c->need_gc = 0;
1662
1663 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1664 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1665 GC_MARK_METADATA);
1666
1667 /* don't reclaim buckets to which writeback keys point */
1668 rcu_read_lock();
1669 for (i = 0; i < c->nr_uuids; i++) {
1670 struct bcache_device *d = c->devices[i];
1671 struct cached_dev *dc;
1672 struct keybuf_key *w, *n;
1673 unsigned j;
1674
1675 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1676 continue;
1677 dc = container_of(d, struct cached_dev, disk);
1678
1679 spin_lock(&dc->writeback_keys.lock);
1680 rbtree_postorder_for_each_entry_safe(w, n,
1681 &dc->writeback_keys.keys, node)
1682 for (j = 0; j < KEY_PTRS(&w->key); j++)
1683 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1684 GC_MARK_DIRTY);
1685 spin_unlock(&dc->writeback_keys.lock);
1686 }
1687 rcu_read_unlock();
1688
1689 for_each_cache(ca, c, i) {
1690 uint64_t *i;
1691
1692 ca->invalidate_needs_gc = 0;
1693
1694 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1695 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1696
1697 for (i = ca->prio_buckets;
1698 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1699 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1700
1701 for_each_bucket(b, ca) {
1702 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1703
1704 if (atomic_read(&b->pin))
1705 continue;
1706
1707 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1708
1709 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1710 available++;
1711 }
1712 }
1713
1714 mutex_unlock(&c->bucket_lock);
1715 return available;
1716 }
1717
1718 static void bch_btree_gc(struct cache_set *c)
1719 {
1720 int ret;
1721 unsigned long available;
1722 struct gc_stat stats;
1723 struct closure writes;
1724 struct btree_op op;
1725 uint64_t start_time = local_clock();
1726
1727 trace_bcache_gc_start(c);
1728
1729 memset(&stats, 0, sizeof(struct gc_stat));
1730 closure_init_stack(&writes);
1731 bch_btree_op_init(&op, SHRT_MAX);
1732
1733 btree_gc_start(c);
1734
1735 do {
1736 ret = btree_root(gc_root, c, &op, &writes, &stats);
1737 closure_sync(&writes);
1738
1739 if (ret && ret != -EAGAIN)
1740 pr_warn("gc failed!");
1741 } while (ret);
1742
1743 available = bch_btree_gc_finish(c);
1744 wake_up_allocators(c);
1745
1746 bch_time_stats_update(&c->btree_gc_time, start_time);
1747
1748 stats.key_bytes *= sizeof(uint64_t);
1749 stats.data <<= 9;
1750 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1751 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1752
1753 trace_bcache_gc_end(c);
1754
1755 bch_moving_gc(c);
1756 }
1757
1758 static int bch_gc_thread(void *arg)
1759 {
1760 struct cache_set *c = arg;
1761 struct cache *ca;
1762 unsigned i;
1763
1764 while (1) {
1765 again:
1766 bch_btree_gc(c);
1767
1768 set_current_state(TASK_INTERRUPTIBLE);
1769 if (kthread_should_stop())
1770 break;
1771
1772 mutex_lock(&c->bucket_lock);
1773
1774 for_each_cache(ca, c, i)
1775 if (ca->invalidate_needs_gc) {
1776 mutex_unlock(&c->bucket_lock);
1777 set_current_state(TASK_RUNNING);
1778 goto again;
1779 }
1780
1781 mutex_unlock(&c->bucket_lock);
1782
1783 try_to_freeze();
1784 schedule();
1785 }
1786
1787 return 0;
1788 }
1789
1790 int bch_gc_thread_start(struct cache_set *c)
1791 {
1792 c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1793 if (IS_ERR(c->gc_thread))
1794 return PTR_ERR(c->gc_thread);
1795
1796 set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1797 return 0;
1798 }
1799
1800 /* Initial partial gc */
1801
1802 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1803 {
1804 int ret = 0;
1805 struct bkey *k, *p = NULL;
1806 struct btree_iter iter;
1807
1808 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1809 bch_initial_mark_key(b->c, b->level, k);
1810
1811 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1812
1813 if (b->level) {
1814 bch_btree_iter_init(&b->keys, &iter, NULL);
1815
1816 do {
1817 k = bch_btree_iter_next_filter(&iter, &b->keys,
1818 bch_ptr_bad);
1819 if (k)
1820 btree_node_prefetch(b->c, k, b->level - 1);
1821
1822 if (p)
1823 ret = btree(check_recurse, p, b, op);
1824
1825 p = k;
1826 } while (p && !ret);
1827 }
1828
1829 return ret;
1830 }
1831
1832 int bch_btree_check(struct cache_set *c)
1833 {
1834 struct btree_op op;
1835
1836 bch_btree_op_init(&op, SHRT_MAX);
1837
1838 return btree_root(check_recurse, c, &op);
1839 }
1840
1841 void bch_initial_gc_finish(struct cache_set *c)
1842 {
1843 struct cache *ca;
1844 struct bucket *b;
1845 unsigned i;
1846
1847 bch_btree_gc_finish(c);
1848
1849 mutex_lock(&c->bucket_lock);
1850
1851 /*
1852 * We need to put some unused buckets directly on the prio freelist in
1853 * order to get the allocator thread started - it needs freed buckets in
1854 * order to rewrite the prios and gens, and it needs to rewrite prios
1855 * and gens in order to free buckets.
1856 *
1857 * This is only safe for buckets that have no live data in them, which
1858 * there should always be some of.
1859 */
1860 for_each_cache(ca, c, i) {
1861 for_each_bucket(b, ca) {
1862 if (fifo_full(&ca->free[RESERVE_PRIO]))
1863 break;
1864
1865 if (bch_can_invalidate_bucket(ca, b) &&
1866 !GC_MARK(b)) {
1867 __bch_invalidate_one_bucket(ca, b);
1868 fifo_push(&ca->free[RESERVE_PRIO],
1869 b - ca->buckets);
1870 }
1871 }
1872 }
1873
1874 mutex_unlock(&c->bucket_lock);
1875 }
1876
1877 /* Btree insertion */
1878
1879 static bool btree_insert_key(struct btree *b, struct bkey *k,
1880 struct bkey *replace_key)
1881 {
1882 unsigned status;
1883
1884 BUG_ON(bkey_cmp(k, &b->key) > 0);
1885
1886 status = bch_btree_insert_key(&b->keys, k, replace_key);
1887 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1888 bch_check_keys(&b->keys, "%u for %s", status,
1889 replace_key ? "replace" : "insert");
1890
1891 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1892 status);
1893 return true;
1894 } else
1895 return false;
1896 }
1897
1898 static size_t insert_u64s_remaining(struct btree *b)
1899 {
1900 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1901
1902 /*
1903 * Might land in the middle of an existing extent and have to split it
1904 */
1905 if (b->keys.ops->is_extents)
1906 ret -= KEY_MAX_U64S;
1907
1908 return max(ret, 0L);
1909 }
1910
1911 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1912 struct keylist *insert_keys,
1913 struct bkey *replace_key)
1914 {
1915 bool ret = false;
1916 int oldsize = bch_count_data(&b->keys);
1917
1918 while (!bch_keylist_empty(insert_keys)) {
1919 struct bkey *k = insert_keys->keys;
1920
1921 if (bkey_u64s(k) > insert_u64s_remaining(b))
1922 break;
1923
1924 if (bkey_cmp(k, &b->key) <= 0) {
1925 if (!b->level)
1926 bkey_put(b->c, k);
1927
1928 ret |= btree_insert_key(b, k, replace_key);
1929 bch_keylist_pop_front(insert_keys);
1930 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1931 BKEY_PADDED(key) temp;
1932 bkey_copy(&temp.key, insert_keys->keys);
1933
1934 bch_cut_back(&b->key, &temp.key);
1935 bch_cut_front(&b->key, insert_keys->keys);
1936
1937 ret |= btree_insert_key(b, &temp.key, replace_key);
1938 break;
1939 } else {
1940 break;
1941 }
1942 }
1943
1944 if (!ret)
1945 op->insert_collision = true;
1946
1947 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1948
1949 BUG_ON(bch_count_data(&b->keys) < oldsize);
1950 return ret;
1951 }
1952
1953 static int btree_split(struct btree *b, struct btree_op *op,
1954 struct keylist *insert_keys,
1955 struct bkey *replace_key)
1956 {
1957 bool split;
1958 struct btree *n1, *n2 = NULL, *n3 = NULL;
1959 uint64_t start_time = local_clock();
1960 struct closure cl;
1961 struct keylist parent_keys;
1962
1963 closure_init_stack(&cl);
1964 bch_keylist_init(&parent_keys);
1965
1966 if (btree_check_reserve(b, op)) {
1967 if (!b->level)
1968 return -EINTR;
1969 else
1970 WARN(1, "insufficient reserve for split\n");
1971 }
1972
1973 n1 = btree_node_alloc_replacement(b, op);
1974 if (IS_ERR(n1))
1975 goto err;
1976
1977 split = set_blocks(btree_bset_first(n1),
1978 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1979
1980 if (split) {
1981 unsigned keys = 0;
1982
1983 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1984
1985 n2 = bch_btree_node_alloc(b->c, op, b->level);
1986 if (IS_ERR(n2))
1987 goto err_free1;
1988
1989 if (!b->parent) {
1990 n3 = bch_btree_node_alloc(b->c, op, b->level + 1);
1991 if (IS_ERR(n3))
1992 goto err_free2;
1993 }
1994
1995 mutex_lock(&n1->write_lock);
1996 mutex_lock(&n2->write_lock);
1997
1998 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
1999
2000 /*
2001 * Has to be a linear search because we don't have an auxiliary
2002 * search tree yet
2003 */
2004
2005 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2006 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2007 keys));
2008
2009 bkey_copy_key(&n1->key,
2010 bset_bkey_idx(btree_bset_first(n1), keys));
2011 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2012
2013 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2014 btree_bset_first(n1)->keys = keys;
2015
2016 memcpy(btree_bset_first(n2)->start,
2017 bset_bkey_last(btree_bset_first(n1)),
2018 btree_bset_first(n2)->keys * sizeof(uint64_t));
2019
2020 bkey_copy_key(&n2->key, &b->key);
2021
2022 bch_keylist_add(&parent_keys, &n2->key);
2023 bch_btree_node_write(n2, &cl);
2024 mutex_unlock(&n2->write_lock);
2025 rw_unlock(true, n2);
2026 } else {
2027 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2028
2029 mutex_lock(&n1->write_lock);
2030 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2031 }
2032
2033 bch_keylist_add(&parent_keys, &n1->key);
2034 bch_btree_node_write(n1, &cl);
2035 mutex_unlock(&n1->write_lock);
2036
2037 if (n3) {
2038 /* Depth increases, make a new root */
2039 mutex_lock(&n3->write_lock);
2040 bkey_copy_key(&n3->key, &MAX_KEY);
2041 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2042 bch_btree_node_write(n3, &cl);
2043 mutex_unlock(&n3->write_lock);
2044
2045 closure_sync(&cl);
2046 bch_btree_set_root(n3);
2047 rw_unlock(true, n3);
2048 } else if (!b->parent) {
2049 /* Root filled up but didn't need to be split */
2050 closure_sync(&cl);
2051 bch_btree_set_root(n1);
2052 } else {
2053 /* Split a non root node */
2054 closure_sync(&cl);
2055 make_btree_freeing_key(b, parent_keys.top);
2056 bch_keylist_push(&parent_keys);
2057
2058 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2059 BUG_ON(!bch_keylist_empty(&parent_keys));
2060 }
2061
2062 btree_node_free(b);
2063 rw_unlock(true, n1);
2064
2065 bch_time_stats_update(&b->c->btree_split_time, start_time);
2066
2067 return 0;
2068 err_free2:
2069 bkey_put(b->c, &n2->key);
2070 btree_node_free(n2);
2071 rw_unlock(true, n2);
2072 err_free1:
2073 bkey_put(b->c, &n1->key);
2074 btree_node_free(n1);
2075 rw_unlock(true, n1);
2076 err:
2077 WARN(1, "bcache: btree split failed (level %u)", b->level);
2078
2079 if (n3 == ERR_PTR(-EAGAIN) ||
2080 n2 == ERR_PTR(-EAGAIN) ||
2081 n1 == ERR_PTR(-EAGAIN))
2082 return -EAGAIN;
2083
2084 return -ENOMEM;
2085 }
2086
2087 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2088 struct keylist *insert_keys,
2089 atomic_t *journal_ref,
2090 struct bkey *replace_key)
2091 {
2092 struct closure cl;
2093
2094 BUG_ON(b->level && replace_key);
2095
2096 closure_init_stack(&cl);
2097
2098 mutex_lock(&b->write_lock);
2099
2100 if (write_block(b) != btree_bset_last(b) &&
2101 b->keys.last_set_unwritten)
2102 bch_btree_init_next(b); /* just wrote a set */
2103
2104 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2105 mutex_unlock(&b->write_lock);
2106 goto split;
2107 }
2108
2109 BUG_ON(write_block(b) != btree_bset_last(b));
2110
2111 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2112 if (!b->level)
2113 bch_btree_leaf_dirty(b, journal_ref);
2114 else
2115 bch_btree_node_write(b, &cl);
2116 }
2117
2118 mutex_unlock(&b->write_lock);
2119
2120 /* wait for btree node write if necessary, after unlock */
2121 closure_sync(&cl);
2122
2123 return 0;
2124 split:
2125 if (current->bio_list) {
2126 op->lock = b->c->root->level + 1;
2127 return -EAGAIN;
2128 } else if (op->lock <= b->c->root->level) {
2129 op->lock = b->c->root->level + 1;
2130 return -EINTR;
2131 } else {
2132 /* Invalidated all iterators */
2133 int ret = btree_split(b, op, insert_keys, replace_key);
2134
2135 if (bch_keylist_empty(insert_keys))
2136 return 0;
2137 else if (!ret)
2138 return -EINTR;
2139 return ret;
2140 }
2141 }
2142
2143 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2144 struct bkey *check_key)
2145 {
2146 int ret = -EINTR;
2147 uint64_t btree_ptr = b->key.ptr[0];
2148 unsigned long seq = b->seq;
2149 struct keylist insert;
2150 bool upgrade = op->lock == -1;
2151
2152 bch_keylist_init(&insert);
2153
2154 if (upgrade) {
2155 rw_unlock(false, b);
2156 rw_lock(true, b, b->level);
2157
2158 if (b->key.ptr[0] != btree_ptr ||
2159 b->seq != seq + 1)
2160 goto out;
2161 }
2162
2163 SET_KEY_PTRS(check_key, 1);
2164 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2165
2166 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2167
2168 bch_keylist_add(&insert, check_key);
2169
2170 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2171
2172 BUG_ON(!ret && !bch_keylist_empty(&insert));
2173 out:
2174 if (upgrade)
2175 downgrade_write(&b->lock);
2176 return ret;
2177 }
2178
2179 struct btree_insert_op {
2180 struct btree_op op;
2181 struct keylist *keys;
2182 atomic_t *journal_ref;
2183 struct bkey *replace_key;
2184 };
2185
2186 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2187 {
2188 struct btree_insert_op *op = container_of(b_op,
2189 struct btree_insert_op, op);
2190
2191 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2192 op->journal_ref, op->replace_key);
2193 if (ret && !bch_keylist_empty(op->keys))
2194 return ret;
2195 else
2196 return MAP_DONE;
2197 }
2198
2199 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2200 atomic_t *journal_ref, struct bkey *replace_key)
2201 {
2202 struct btree_insert_op op;
2203 int ret = 0;
2204
2205 BUG_ON(current->bio_list);
2206 BUG_ON(bch_keylist_empty(keys));
2207
2208 bch_btree_op_init(&op.op, 0);
2209 op.keys = keys;
2210 op.journal_ref = journal_ref;
2211 op.replace_key = replace_key;
2212
2213 while (!ret && !bch_keylist_empty(keys)) {
2214 op.op.lock = 0;
2215 ret = bch_btree_map_leaf_nodes(&op.op, c,
2216 &START_KEY(keys->keys),
2217 btree_insert_fn);
2218 }
2219
2220 if (ret) {
2221 struct bkey *k;
2222
2223 pr_err("error %i", ret);
2224
2225 while ((k = bch_keylist_pop(keys)))
2226 bkey_put(c, k);
2227 } else if (op.op.insert_collision)
2228 ret = -ESRCH;
2229
2230 return ret;
2231 }
2232
2233 void bch_btree_set_root(struct btree *b)
2234 {
2235 unsigned i;
2236 struct closure cl;
2237
2238 closure_init_stack(&cl);
2239
2240 trace_bcache_btree_set_root(b);
2241
2242 BUG_ON(!b->written);
2243
2244 for (i = 0; i < KEY_PTRS(&b->key); i++)
2245 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2246
2247 mutex_lock(&b->c->bucket_lock);
2248 list_del_init(&b->list);
2249 mutex_unlock(&b->c->bucket_lock);
2250
2251 b->c->root = b;
2252
2253 bch_journal_meta(b->c, &cl);
2254 closure_sync(&cl);
2255 }
2256
2257 /* Map across nodes or keys */
2258
2259 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2260 struct bkey *from,
2261 btree_map_nodes_fn *fn, int flags)
2262 {
2263 int ret = MAP_CONTINUE;
2264
2265 if (b->level) {
2266 struct bkey *k;
2267 struct btree_iter iter;
2268
2269 bch_btree_iter_init(&b->keys, &iter, from);
2270
2271 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2272 bch_ptr_bad))) {
2273 ret = btree(map_nodes_recurse, k, b,
2274 op, from, fn, flags);
2275 from = NULL;
2276
2277 if (ret != MAP_CONTINUE)
2278 return ret;
2279 }
2280 }
2281
2282 if (!b->level || flags == MAP_ALL_NODES)
2283 ret = fn(op, b);
2284
2285 return ret;
2286 }
2287
2288 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2289 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2290 {
2291 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2292 }
2293
2294 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2295 struct bkey *from, btree_map_keys_fn *fn,
2296 int flags)
2297 {
2298 int ret = MAP_CONTINUE;
2299 struct bkey *k;
2300 struct btree_iter iter;
2301
2302 bch_btree_iter_init(&b->keys, &iter, from);
2303
2304 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2305 ret = !b->level
2306 ? fn(op, b, k)
2307 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2308 from = NULL;
2309
2310 if (ret != MAP_CONTINUE)
2311 return ret;
2312 }
2313
2314 if (!b->level && (flags & MAP_END_KEY))
2315 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2316 KEY_OFFSET(&b->key), 0));
2317
2318 return ret;
2319 }
2320
2321 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2322 struct bkey *from, btree_map_keys_fn *fn, int flags)
2323 {
2324 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2325 }
2326
2327 /* Keybuf code */
2328
2329 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2330 {
2331 /* Overlapping keys compare equal */
2332 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2333 return -1;
2334 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2335 return 1;
2336 return 0;
2337 }
2338
2339 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2340 struct keybuf_key *r)
2341 {
2342 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2343 }
2344
2345 struct refill {
2346 struct btree_op op;
2347 unsigned nr_found;
2348 struct keybuf *buf;
2349 struct bkey *end;
2350 keybuf_pred_fn *pred;
2351 };
2352
2353 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2354 struct bkey *k)
2355 {
2356 struct refill *refill = container_of(op, struct refill, op);
2357 struct keybuf *buf = refill->buf;
2358 int ret = MAP_CONTINUE;
2359
2360 if (bkey_cmp(k, refill->end) >= 0) {
2361 ret = MAP_DONE;
2362 goto out;
2363 }
2364
2365 if (!KEY_SIZE(k)) /* end key */
2366 goto out;
2367
2368 if (refill->pred(buf, k)) {
2369 struct keybuf_key *w;
2370
2371 spin_lock(&buf->lock);
2372
2373 w = array_alloc(&buf->freelist);
2374 if (!w) {
2375 spin_unlock(&buf->lock);
2376 return MAP_DONE;
2377 }
2378
2379 w->private = NULL;
2380 bkey_copy(&w->key, k);
2381
2382 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2383 array_free(&buf->freelist, w);
2384 else
2385 refill->nr_found++;
2386
2387 if (array_freelist_empty(&buf->freelist))
2388 ret = MAP_DONE;
2389
2390 spin_unlock(&buf->lock);
2391 }
2392 out:
2393 buf->last_scanned = *k;
2394 return ret;
2395 }
2396
2397 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2398 struct bkey *end, keybuf_pred_fn *pred)
2399 {
2400 struct bkey start = buf->last_scanned;
2401 struct refill refill;
2402
2403 cond_resched();
2404
2405 bch_btree_op_init(&refill.op, -1);
2406 refill.nr_found = 0;
2407 refill.buf = buf;
2408 refill.end = end;
2409 refill.pred = pred;
2410
2411 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2412 refill_keybuf_fn, MAP_END_KEY);
2413
2414 trace_bcache_keyscan(refill.nr_found,
2415 KEY_INODE(&start), KEY_OFFSET(&start),
2416 KEY_INODE(&buf->last_scanned),
2417 KEY_OFFSET(&buf->last_scanned));
2418
2419 spin_lock(&buf->lock);
2420
2421 if (!RB_EMPTY_ROOT(&buf->keys)) {
2422 struct keybuf_key *w;
2423 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2424 buf->start = START_KEY(&w->key);
2425
2426 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2427 buf->end = w->key;
2428 } else {
2429 buf->start = MAX_KEY;
2430 buf->end = MAX_KEY;
2431 }
2432
2433 spin_unlock(&buf->lock);
2434 }
2435
2436 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2437 {
2438 rb_erase(&w->node, &buf->keys);
2439 array_free(&buf->freelist, w);
2440 }
2441
2442 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2443 {
2444 spin_lock(&buf->lock);
2445 __bch_keybuf_del(buf, w);
2446 spin_unlock(&buf->lock);
2447 }
2448
2449 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2450 struct bkey *end)
2451 {
2452 bool ret = false;
2453 struct keybuf_key *p, *w, s;
2454 s.key = *start;
2455
2456 if (bkey_cmp(end, &buf->start) <= 0 ||
2457 bkey_cmp(start, &buf->end) >= 0)
2458 return false;
2459
2460 spin_lock(&buf->lock);
2461 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2462
2463 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2464 p = w;
2465 w = RB_NEXT(w, node);
2466
2467 if (p->private)
2468 ret = true;
2469 else
2470 __bch_keybuf_del(buf, p);
2471 }
2472
2473 spin_unlock(&buf->lock);
2474 return ret;
2475 }
2476
2477 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2478 {
2479 struct keybuf_key *w;
2480 spin_lock(&buf->lock);
2481
2482 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2483
2484 while (w && w->private)
2485 w = RB_NEXT(w, node);
2486
2487 if (w)
2488 w->private = ERR_PTR(-EINTR);
2489
2490 spin_unlock(&buf->lock);
2491 return w;
2492 }
2493
2494 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2495 struct keybuf *buf,
2496 struct bkey *end,
2497 keybuf_pred_fn *pred)
2498 {
2499 struct keybuf_key *ret;
2500
2501 while (1) {
2502 ret = bch_keybuf_next(buf);
2503 if (ret)
2504 break;
2505
2506 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2507 pr_debug("scan finished");
2508 break;
2509 }
2510
2511 bch_refill_keybuf(c, buf, end, pred);
2512 }
2513
2514 return ret;
2515 }
2516
2517 void bch_keybuf_init(struct keybuf *buf)
2518 {
2519 buf->last_scanned = MAX_KEY;
2520 buf->keys = RB_ROOT;
2521
2522 spin_lock_init(&buf->lock);
2523 array_allocator_init(&buf->freelist);
2524 }